1 //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the C++ related Decl classes.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/TypeLoc.h"
22 #include "clang/Basic/IdentifierTable.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 using namespace clang;
26
27 //===----------------------------------------------------------------------===//
28 // Decl Allocation/Deallocation Method Implementations
29 //===----------------------------------------------------------------------===//
30
anchor()31 void AccessSpecDecl::anchor() { }
32
CreateDeserialized(ASTContext & C,unsigned ID)33 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
34 return new (C, ID) AccessSpecDecl(EmptyShell());
35 }
36
getFromExternalSource(ASTContext & C) const37 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
38 ExternalASTSource *Source = C.getExternalSource();
39 assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
40 assert(Source && "getFromExternalSource with no external source");
41
42 for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
43 I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
44 reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
45 Impl.Decls.setLazy(false);
46 }
47
DefinitionData(CXXRecordDecl * D)48 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
49 : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
50 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
51 Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
52 HasPrivateFields(false), HasProtectedFields(false),
53 HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
54 HasOnlyCMembers(true), HasInClassInitializer(false),
55 HasUninitializedReferenceMember(false), HasUninitializedFields(false),
56 HasInheritedConstructor(false), HasInheritedAssignment(false),
57 NeedOverloadResolutionForMoveConstructor(false),
58 NeedOverloadResolutionForMoveAssignment(false),
59 NeedOverloadResolutionForDestructor(false),
60 DefaultedMoveConstructorIsDeleted(false),
61 DefaultedMoveAssignmentIsDeleted(false),
62 DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
63 DeclaredNonTrivialSpecialMembers(0), HasIrrelevantDestructor(true),
64 HasConstexprNonCopyMoveConstructor(false),
65 HasDefaultedDefaultConstructor(false),
66 DefaultedDefaultConstructorIsConstexpr(true),
67 HasConstexprDefaultConstructor(false),
68 HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
69 UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
70 ImplicitCopyConstructorHasConstParam(true),
71 ImplicitCopyAssignmentHasConstParam(true),
72 HasDeclaredCopyConstructorWithConstParam(false),
73 HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false),
74 IsParsingBaseSpecifiers(false), NumBases(0), NumVBases(0), Bases(),
75 VBases(), Definition(D), FirstFriend() {}
76
getBasesSlowCase() const77 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
78 return Bases.get(Definition->getASTContext().getExternalSource());
79 }
80
getVBasesSlowCase() const81 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
82 return VBases.get(Definition->getASTContext().getExternalSource());
83 }
84
CXXRecordDecl(Kind K,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl)85 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
86 DeclContext *DC, SourceLocation StartLoc,
87 SourceLocation IdLoc, IdentifierInfo *Id,
88 CXXRecordDecl *PrevDecl)
89 : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
90 DefinitionData(PrevDecl ? PrevDecl->DefinitionData
91 : nullptr),
92 TemplateOrInstantiation() {}
93
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl,bool DelayTypeCreation)94 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
95 DeclContext *DC, SourceLocation StartLoc,
96 SourceLocation IdLoc, IdentifierInfo *Id,
97 CXXRecordDecl* PrevDecl,
98 bool DelayTypeCreation) {
99 CXXRecordDecl *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc,
100 IdLoc, Id, PrevDecl);
101 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
102
103 // FIXME: DelayTypeCreation seems like such a hack
104 if (!DelayTypeCreation)
105 C.getTypeDeclType(R, PrevDecl);
106 return R;
107 }
108
109 CXXRecordDecl *
CreateLambda(const ASTContext & C,DeclContext * DC,TypeSourceInfo * Info,SourceLocation Loc,bool Dependent,bool IsGeneric,LambdaCaptureDefault CaptureDefault)110 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
111 TypeSourceInfo *Info, SourceLocation Loc,
112 bool Dependent, bool IsGeneric,
113 LambdaCaptureDefault CaptureDefault) {
114 CXXRecordDecl *R =
115 new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
116 nullptr, nullptr);
117 R->IsBeingDefined = true;
118 R->DefinitionData =
119 new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
120 CaptureDefault);
121 R->MayHaveOutOfDateDef = false;
122 R->setImplicit(true);
123 C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
124 return R;
125 }
126
127 CXXRecordDecl *
CreateDeserialized(const ASTContext & C,unsigned ID)128 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
129 CXXRecordDecl *R = new (C, ID) CXXRecordDecl(
130 CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
131 nullptr, nullptr);
132 R->MayHaveOutOfDateDef = false;
133 return R;
134 }
135
136 void
setBases(CXXBaseSpecifier const * const * Bases,unsigned NumBases)137 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
138 unsigned NumBases) {
139 ASTContext &C = getASTContext();
140
141 if (!data().Bases.isOffset() && data().NumBases > 0)
142 C.Deallocate(data().getBases());
143
144 if (NumBases) {
145 if (!C.getLangOpts().CPlusPlus1z) {
146 // C++ [dcl.init.aggr]p1:
147 // An aggregate is [...] a class with [...] no base classes [...].
148 data().Aggregate = false;
149 }
150
151 // C++ [class]p4:
152 // A POD-struct is an aggregate class...
153 data().PlainOldData = false;
154 }
155
156 // The set of seen virtual base types.
157 llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
158
159 // The virtual bases of this class.
160 SmallVector<const CXXBaseSpecifier *, 8> VBases;
161
162 data().Bases = new(C) CXXBaseSpecifier [NumBases];
163 data().NumBases = NumBases;
164 for (unsigned i = 0; i < NumBases; ++i) {
165 data().getBases()[i] = *Bases[i];
166 // Keep track of inherited vbases for this base class.
167 const CXXBaseSpecifier *Base = Bases[i];
168 QualType BaseType = Base->getType();
169 // Skip dependent types; we can't do any checking on them now.
170 if (BaseType->isDependentType())
171 continue;
172 CXXRecordDecl *BaseClassDecl
173 = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
174
175 if (!BaseClassDecl->isEmpty()) {
176 if (!data().Empty) {
177 // C++0x [class]p7:
178 // A standard-layout class is a class that:
179 // [...]
180 // -- either has no non-static data members in the most derived
181 // class and at most one base class with non-static data members,
182 // or has no base classes with non-static data members, and
183 // If this is the second non-empty base, then neither of these two
184 // clauses can be true.
185 data().IsStandardLayout = false;
186 }
187
188 // C++14 [meta.unary.prop]p4:
189 // T is a class type [...] with [...] no base class B for which
190 // is_empty<B>::value is false.
191 data().Empty = false;
192 data().HasNoNonEmptyBases = false;
193 }
194
195 // C++1z [dcl.init.agg]p1:
196 // An aggregate is a class with [...] no private or protected base classes
197 if (Base->getAccessSpecifier() != AS_public)
198 data().Aggregate = false;
199
200 // C++ [class.virtual]p1:
201 // A class that declares or inherits a virtual function is called a
202 // polymorphic class.
203 if (BaseClassDecl->isPolymorphic())
204 data().Polymorphic = true;
205
206 // C++0x [class]p7:
207 // A standard-layout class is a class that: [...]
208 // -- has no non-standard-layout base classes
209 if (!BaseClassDecl->isStandardLayout())
210 data().IsStandardLayout = false;
211
212 // Record if this base is the first non-literal field or base.
213 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
214 data().HasNonLiteralTypeFieldsOrBases = true;
215
216 // Now go through all virtual bases of this base and add them.
217 for (const auto &VBase : BaseClassDecl->vbases()) {
218 // Add this base if it's not already in the list.
219 if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
220 VBases.push_back(&VBase);
221
222 // C++11 [class.copy]p8:
223 // The implicitly-declared copy constructor for a class X will have
224 // the form 'X::X(const X&)' if each [...] virtual base class B of X
225 // has a copy constructor whose first parameter is of type
226 // 'const B&' or 'const volatile B&' [...]
227 if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
228 if (!VBaseDecl->hasCopyConstructorWithConstParam())
229 data().ImplicitCopyConstructorHasConstParam = false;
230
231 // C++1z [dcl.init.agg]p1:
232 // An aggregate is a class with [...] no virtual base classes
233 data().Aggregate = false;
234 }
235 }
236
237 if (Base->isVirtual()) {
238 // Add this base if it's not already in the list.
239 if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
240 VBases.push_back(Base);
241
242 // C++14 [meta.unary.prop] is_empty:
243 // T is a class type, but not a union type, with ... no virtual base
244 // classes
245 data().Empty = false;
246
247 // C++1z [dcl.init.agg]p1:
248 // An aggregate is a class with [...] no virtual base classes
249 data().Aggregate = false;
250
251 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
252 // A [default constructor, copy/move constructor, or copy/move assignment
253 // operator for a class X] is trivial [...] if:
254 // -- class X has [...] no virtual base classes
255 data().HasTrivialSpecialMembers &= SMF_Destructor;
256
257 // C++0x [class]p7:
258 // A standard-layout class is a class that: [...]
259 // -- has [...] no virtual base classes
260 data().IsStandardLayout = false;
261
262 // C++11 [dcl.constexpr]p4:
263 // In the definition of a constexpr constructor [...]
264 // -- the class shall not have any virtual base classes
265 data().DefaultedDefaultConstructorIsConstexpr = false;
266 } else {
267 // C++ [class.ctor]p5:
268 // A default constructor is trivial [...] if:
269 // -- all the direct base classes of its class have trivial default
270 // constructors.
271 if (!BaseClassDecl->hasTrivialDefaultConstructor())
272 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
273
274 // C++0x [class.copy]p13:
275 // A copy/move constructor for class X is trivial if [...]
276 // [...]
277 // -- the constructor selected to copy/move each direct base class
278 // subobject is trivial, and
279 if (!BaseClassDecl->hasTrivialCopyConstructor())
280 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
281 // If the base class doesn't have a simple move constructor, we'll eagerly
282 // declare it and perform overload resolution to determine which function
283 // it actually calls. If it does have a simple move constructor, this
284 // check is correct.
285 if (!BaseClassDecl->hasTrivialMoveConstructor())
286 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
287
288 // C++0x [class.copy]p27:
289 // A copy/move assignment operator for class X is trivial if [...]
290 // [...]
291 // -- the assignment operator selected to copy/move each direct base
292 // class subobject is trivial, and
293 if (!BaseClassDecl->hasTrivialCopyAssignment())
294 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
295 // If the base class doesn't have a simple move assignment, we'll eagerly
296 // declare it and perform overload resolution to determine which function
297 // it actually calls. If it does have a simple move assignment, this
298 // check is correct.
299 if (!BaseClassDecl->hasTrivialMoveAssignment())
300 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
301
302 // C++11 [class.ctor]p6:
303 // If that user-written default constructor would satisfy the
304 // requirements of a constexpr constructor, the implicitly-defined
305 // default constructor is constexpr.
306 if (!BaseClassDecl->hasConstexprDefaultConstructor())
307 data().DefaultedDefaultConstructorIsConstexpr = false;
308 }
309
310 // C++ [class.ctor]p3:
311 // A destructor is trivial if all the direct base classes of its class
312 // have trivial destructors.
313 if (!BaseClassDecl->hasTrivialDestructor())
314 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
315
316 if (!BaseClassDecl->hasIrrelevantDestructor())
317 data().HasIrrelevantDestructor = false;
318
319 // C++11 [class.copy]p18:
320 // The implicitly-declared copy assignment oeprator for a class X will
321 // have the form 'X& X::operator=(const X&)' if each direct base class B
322 // of X has a copy assignment operator whose parameter is of type 'const
323 // B&', 'const volatile B&', or 'B' [...]
324 if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
325 data().ImplicitCopyAssignmentHasConstParam = false;
326
327 // C++11 [class.copy]p8:
328 // The implicitly-declared copy constructor for a class X will have
329 // the form 'X::X(const X&)' if each direct [...] base class B of X
330 // has a copy constructor whose first parameter is of type
331 // 'const B&' or 'const volatile B&' [...]
332 if (!BaseClassDecl->hasCopyConstructorWithConstParam())
333 data().ImplicitCopyConstructorHasConstParam = false;
334
335 // A class has an Objective-C object member if... or any of its bases
336 // has an Objective-C object member.
337 if (BaseClassDecl->hasObjectMember())
338 setHasObjectMember(true);
339
340 if (BaseClassDecl->hasVolatileMember())
341 setHasVolatileMember(true);
342
343 // Keep track of the presence of mutable fields.
344 if (BaseClassDecl->hasMutableFields())
345 data().HasMutableFields = true;
346
347 if (BaseClassDecl->hasUninitializedReferenceMember())
348 data().HasUninitializedReferenceMember = true;
349
350 if (!BaseClassDecl->allowConstDefaultInit())
351 data().HasUninitializedFields = true;
352
353 addedClassSubobject(BaseClassDecl);
354 }
355
356 if (VBases.empty()) {
357 data().IsParsingBaseSpecifiers = false;
358 return;
359 }
360
361 // Create base specifier for any direct or indirect virtual bases.
362 data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
363 data().NumVBases = VBases.size();
364 for (int I = 0, E = VBases.size(); I != E; ++I) {
365 QualType Type = VBases[I]->getType();
366 if (!Type->isDependentType())
367 addedClassSubobject(Type->getAsCXXRecordDecl());
368 data().getVBases()[I] = *VBases[I];
369 }
370
371 data().IsParsingBaseSpecifiers = false;
372 }
373
addedClassSubobject(CXXRecordDecl * Subobj)374 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
375 // C++11 [class.copy]p11:
376 // A defaulted copy/move constructor for a class X is defined as
377 // deleted if X has:
378 // -- a direct or virtual base class B that cannot be copied/moved [...]
379 // -- a non-static data member of class type M (or array thereof)
380 // that cannot be copied or moved [...]
381 if (!Subobj->hasSimpleMoveConstructor())
382 data().NeedOverloadResolutionForMoveConstructor = true;
383
384 // C++11 [class.copy]p23:
385 // A defaulted copy/move assignment operator for a class X is defined as
386 // deleted if X has:
387 // -- a direct or virtual base class B that cannot be copied/moved [...]
388 // -- a non-static data member of class type M (or array thereof)
389 // that cannot be copied or moved [...]
390 if (!Subobj->hasSimpleMoveAssignment())
391 data().NeedOverloadResolutionForMoveAssignment = true;
392
393 // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
394 // A defaulted [ctor or dtor] for a class X is defined as
395 // deleted if X has:
396 // -- any direct or virtual base class [...] has a type with a destructor
397 // that is deleted or inaccessible from the defaulted [ctor or dtor].
398 // -- any non-static data member has a type with a destructor
399 // that is deleted or inaccessible from the defaulted [ctor or dtor].
400 if (!Subobj->hasSimpleDestructor()) {
401 data().NeedOverloadResolutionForMoveConstructor = true;
402 data().NeedOverloadResolutionForDestructor = true;
403 }
404 }
405
hasAnyDependentBases() const406 bool CXXRecordDecl::hasAnyDependentBases() const {
407 if (!isDependentContext())
408 return false;
409
410 return !forallBases([](const CXXRecordDecl *) { return true; });
411 }
412
isTriviallyCopyable() const413 bool CXXRecordDecl::isTriviallyCopyable() const {
414 // C++0x [class]p5:
415 // A trivially copyable class is a class that:
416 // -- has no non-trivial copy constructors,
417 if (hasNonTrivialCopyConstructor()) return false;
418 // -- has no non-trivial move constructors,
419 if (hasNonTrivialMoveConstructor()) return false;
420 // -- has no non-trivial copy assignment operators,
421 if (hasNonTrivialCopyAssignment()) return false;
422 // -- has no non-trivial move assignment operators, and
423 if (hasNonTrivialMoveAssignment()) return false;
424 // -- has a trivial destructor.
425 if (!hasTrivialDestructor()) return false;
426
427 return true;
428 }
429
markedVirtualFunctionPure()430 void CXXRecordDecl::markedVirtualFunctionPure() {
431 // C++ [class.abstract]p2:
432 // A class is abstract if it has at least one pure virtual function.
433 data().Abstract = true;
434 }
435
addedMember(Decl * D)436 void CXXRecordDecl::addedMember(Decl *D) {
437 if (!D->isImplicit() &&
438 !isa<FieldDecl>(D) &&
439 !isa<IndirectFieldDecl>(D) &&
440 (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
441 cast<TagDecl>(D)->getTagKind() == TTK_Interface))
442 data().HasOnlyCMembers = false;
443
444 // Ignore friends and invalid declarations.
445 if (D->getFriendObjectKind() || D->isInvalidDecl())
446 return;
447
448 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
449 if (FunTmpl)
450 D = FunTmpl->getTemplatedDecl();
451
452 // FIXME: Pass NamedDecl* to addedMember?
453 Decl *DUnderlying = D;
454 if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
455 DUnderlying = ND->getUnderlyingDecl();
456 if (FunctionTemplateDecl *UnderlyingFunTmpl =
457 dyn_cast<FunctionTemplateDecl>(DUnderlying))
458 DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
459 }
460
461 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
462 if (Method->isVirtual()) {
463 // C++ [dcl.init.aggr]p1:
464 // An aggregate is an array or a class with [...] no virtual functions.
465 data().Aggregate = false;
466
467 // C++ [class]p4:
468 // A POD-struct is an aggregate class...
469 data().PlainOldData = false;
470
471 // C++14 [meta.unary.prop]p4:
472 // T is a class type [...] with [...] no virtual member functions...
473 data().Empty = false;
474
475 // C++ [class.virtual]p1:
476 // A class that declares or inherits a virtual function is called a
477 // polymorphic class.
478 data().Polymorphic = true;
479
480 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
481 // A [default constructor, copy/move constructor, or copy/move
482 // assignment operator for a class X] is trivial [...] if:
483 // -- class X has no virtual functions [...]
484 data().HasTrivialSpecialMembers &= SMF_Destructor;
485
486 // C++0x [class]p7:
487 // A standard-layout class is a class that: [...]
488 // -- has no virtual functions
489 data().IsStandardLayout = false;
490 }
491 }
492
493 // Notify the listener if an implicit member was added after the definition
494 // was completed.
495 if (!isBeingDefined() && D->isImplicit())
496 if (ASTMutationListener *L = getASTMutationListener())
497 L->AddedCXXImplicitMember(data().Definition, D);
498
499 // The kind of special member this declaration is, if any.
500 unsigned SMKind = 0;
501
502 // Handle constructors.
503 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
504 if (!Constructor->isImplicit()) {
505 // Note that we have a user-declared constructor.
506 data().UserDeclaredConstructor = true;
507
508 // C++ [class]p4:
509 // A POD-struct is an aggregate class [...]
510 // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
511 // type is technically an aggregate in C++0x since it wouldn't be in 03.
512 data().PlainOldData = false;
513 }
514
515 if (Constructor->isDefaultConstructor()) {
516 SMKind |= SMF_DefaultConstructor;
517
518 if (Constructor->isUserProvided())
519 data().UserProvidedDefaultConstructor = true;
520 if (Constructor->isConstexpr())
521 data().HasConstexprDefaultConstructor = true;
522 if (Constructor->isDefaulted())
523 data().HasDefaultedDefaultConstructor = true;
524 }
525
526 if (!FunTmpl) {
527 unsigned Quals;
528 if (Constructor->isCopyConstructor(Quals)) {
529 SMKind |= SMF_CopyConstructor;
530
531 if (Quals & Qualifiers::Const)
532 data().HasDeclaredCopyConstructorWithConstParam = true;
533 } else if (Constructor->isMoveConstructor())
534 SMKind |= SMF_MoveConstructor;
535 }
536 }
537
538 // Handle constructors, including those inherited from base classes.
539 if (CXXConstructorDecl *Constructor =
540 dyn_cast<CXXConstructorDecl>(DUnderlying)) {
541 // Record if we see any constexpr constructors which are neither copy
542 // nor move constructors.
543 // C++1z [basic.types]p10:
544 // [...] has at least one constexpr constructor or constructor template
545 // (possibly inherited from a base class) that is not a copy or move
546 // constructor [...]
547 if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
548 data().HasConstexprNonCopyMoveConstructor = true;
549
550 // C++ [dcl.init.aggr]p1:
551 // An aggregate is an array or a class with no user-declared
552 // constructors [...].
553 // C++11 [dcl.init.aggr]p1:
554 // An aggregate is an array or a class with no user-provided
555 // constructors [...].
556 // C++11 [dcl.init.aggr]p1:
557 // An aggregate is an array or a class with no user-provided
558 // constructors (including those inherited from a base class) [...].
559 if (getASTContext().getLangOpts().CPlusPlus11
560 ? Constructor->isUserProvided()
561 : !Constructor->isImplicit())
562 data().Aggregate = false;
563 }
564
565 // Handle destructors.
566 if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
567 SMKind |= SMF_Destructor;
568
569 if (DD->isUserProvided())
570 data().HasIrrelevantDestructor = false;
571 // If the destructor is explicitly defaulted and not trivial or not public
572 // or if the destructor is deleted, we clear HasIrrelevantDestructor in
573 // finishedDefaultedOrDeletedMember.
574
575 // C++11 [class.dtor]p5:
576 // A destructor is trivial if [...] the destructor is not virtual.
577 if (DD->isVirtual())
578 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
579 }
580
581 // Handle member functions.
582 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
583 if (Method->isCopyAssignmentOperator()) {
584 SMKind |= SMF_CopyAssignment;
585
586 const ReferenceType *ParamTy =
587 Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
588 if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
589 data().HasDeclaredCopyAssignmentWithConstParam = true;
590 }
591
592 if (Method->isMoveAssignmentOperator())
593 SMKind |= SMF_MoveAssignment;
594
595 // Keep the list of conversion functions up-to-date.
596 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
597 // FIXME: We use the 'unsafe' accessor for the access specifier here,
598 // because Sema may not have set it yet. That's really just a misdesign
599 // in Sema. However, LLDB *will* have set the access specifier correctly,
600 // and adds declarations after the class is technically completed,
601 // so completeDefinition()'s overriding of the access specifiers doesn't
602 // work.
603 AccessSpecifier AS = Conversion->getAccessUnsafe();
604
605 if (Conversion->getPrimaryTemplate()) {
606 // We don't record specializations.
607 } else {
608 ASTContext &Ctx = getASTContext();
609 ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
610 NamedDecl *Primary =
611 FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
612 if (Primary->getPreviousDecl())
613 Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
614 Primary, AS);
615 else
616 Conversions.addDecl(Ctx, Primary, AS);
617 }
618 }
619
620 if (SMKind) {
621 // If this is the first declaration of a special member, we no longer have
622 // an implicit trivial special member.
623 data().HasTrivialSpecialMembers &=
624 data().DeclaredSpecialMembers | ~SMKind;
625
626 if (!Method->isImplicit() && !Method->isUserProvided()) {
627 // This method is user-declared but not user-provided. We can't work out
628 // whether it's trivial yet (not until we get to the end of the class).
629 // We'll handle this method in finishedDefaultedOrDeletedMember.
630 } else if (Method->isTrivial())
631 data().HasTrivialSpecialMembers |= SMKind;
632 else
633 data().DeclaredNonTrivialSpecialMembers |= SMKind;
634
635 // Note when we have declared a declared special member, and suppress the
636 // implicit declaration of this special member.
637 data().DeclaredSpecialMembers |= SMKind;
638
639 if (!Method->isImplicit()) {
640 data().UserDeclaredSpecialMembers |= SMKind;
641
642 // C++03 [class]p4:
643 // A POD-struct is an aggregate class that has [...] no user-defined
644 // copy assignment operator and no user-defined destructor.
645 //
646 // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
647 // aggregates could not have any constructors, clear it even for an
648 // explicitly defaulted or deleted constructor.
649 // type is technically an aggregate in C++0x since it wouldn't be in 03.
650 //
651 // Also, a user-declared move assignment operator makes a class non-POD.
652 // This is an extension in C++03.
653 data().PlainOldData = false;
654 }
655 }
656
657 return;
658 }
659
660 // Handle non-static data members.
661 if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
662 // C++ [class.bit]p2:
663 // A declaration for a bit-field that omits the identifier declares an
664 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
665 // initialized.
666 if (Field->isUnnamedBitfield())
667 return;
668
669 // C++ [dcl.init.aggr]p1:
670 // An aggregate is an array or a class (clause 9) with [...] no
671 // private or protected non-static data members (clause 11).
672 //
673 // A POD must be an aggregate.
674 if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
675 data().Aggregate = false;
676 data().PlainOldData = false;
677 }
678
679 // C++0x [class]p7:
680 // A standard-layout class is a class that:
681 // [...]
682 // -- has the same access control for all non-static data members,
683 switch (D->getAccess()) {
684 case AS_private: data().HasPrivateFields = true; break;
685 case AS_protected: data().HasProtectedFields = true; break;
686 case AS_public: data().HasPublicFields = true; break;
687 case AS_none: llvm_unreachable("Invalid access specifier");
688 };
689 if ((data().HasPrivateFields + data().HasProtectedFields +
690 data().HasPublicFields) > 1)
691 data().IsStandardLayout = false;
692
693 // Keep track of the presence of mutable fields.
694 if (Field->isMutable())
695 data().HasMutableFields = true;
696
697 // C++11 [class.union]p8, DR1460:
698 // If X is a union, a non-static data member of X that is not an anonymous
699 // union is a variant member of X.
700 if (isUnion() && !Field->isAnonymousStructOrUnion())
701 data().HasVariantMembers = true;
702
703 // C++0x [class]p9:
704 // A POD struct is a class that is both a trivial class and a
705 // standard-layout class, and has no non-static data members of type
706 // non-POD struct, non-POD union (or array of such types).
707 //
708 // Automatic Reference Counting: the presence of a member of Objective-C pointer type
709 // that does not explicitly have no lifetime makes the class a non-POD.
710 ASTContext &Context = getASTContext();
711 QualType T = Context.getBaseElementType(Field->getType());
712 if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
713 if (!Context.getLangOpts().ObjCAutoRefCount) {
714 setHasObjectMember(true);
715 } else if (T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
716 // Objective-C Automatic Reference Counting:
717 // If a class has a non-static data member of Objective-C pointer
718 // type (or array thereof), it is a non-POD type and its
719 // default constructor (if any), copy constructor, move constructor,
720 // copy assignment operator, move assignment operator, and destructor are
721 // non-trivial.
722 setHasObjectMember(true);
723 struct DefinitionData &Data = data();
724 Data.PlainOldData = false;
725 Data.HasTrivialSpecialMembers = 0;
726 Data.HasIrrelevantDestructor = false;
727 }
728 } else if (!T.isCXX98PODType(Context))
729 data().PlainOldData = false;
730
731 if (T->isReferenceType()) {
732 if (!Field->hasInClassInitializer())
733 data().HasUninitializedReferenceMember = true;
734
735 // C++0x [class]p7:
736 // A standard-layout class is a class that:
737 // -- has no non-static data members of type [...] reference,
738 data().IsStandardLayout = false;
739 }
740
741 if (!Field->hasInClassInitializer() && !Field->isMutable()) {
742 if (CXXRecordDecl *FieldType = Field->getType()->getAsCXXRecordDecl()) {
743 if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
744 data().HasUninitializedFields = true;
745 } else {
746 data().HasUninitializedFields = true;
747 }
748 }
749
750 // Record if this field is the first non-literal or volatile field or base.
751 if (!T->isLiteralType(Context) || T.isVolatileQualified())
752 data().HasNonLiteralTypeFieldsOrBases = true;
753
754 if (Field->hasInClassInitializer() ||
755 (Field->isAnonymousStructOrUnion() &&
756 Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
757 data().HasInClassInitializer = true;
758
759 // C++11 [class]p5:
760 // A default constructor is trivial if [...] no non-static data member
761 // of its class has a brace-or-equal-initializer.
762 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
763
764 // C++11 [dcl.init.aggr]p1:
765 // An aggregate is a [...] class with [...] no
766 // brace-or-equal-initializers for non-static data members.
767 //
768 // This rule was removed in C++14.
769 if (!getASTContext().getLangOpts().CPlusPlus14)
770 data().Aggregate = false;
771
772 // C++11 [class]p10:
773 // A POD struct is [...] a trivial class.
774 data().PlainOldData = false;
775 }
776
777 // C++11 [class.copy]p23:
778 // A defaulted copy/move assignment operator for a class X is defined
779 // as deleted if X has:
780 // -- a non-static data member of reference type
781 if (T->isReferenceType())
782 data().DefaultedMoveAssignmentIsDeleted = true;
783
784 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
785 CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
786 if (FieldRec->getDefinition()) {
787 addedClassSubobject(FieldRec);
788
789 // We may need to perform overload resolution to determine whether a
790 // field can be moved if it's const or volatile qualified.
791 if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
792 data().NeedOverloadResolutionForMoveConstructor = true;
793 data().NeedOverloadResolutionForMoveAssignment = true;
794 }
795
796 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
797 // A defaulted [special member] for a class X is defined as
798 // deleted if:
799 // -- X is a union-like class that has a variant member with a
800 // non-trivial [corresponding special member]
801 if (isUnion()) {
802 if (FieldRec->hasNonTrivialMoveConstructor())
803 data().DefaultedMoveConstructorIsDeleted = true;
804 if (FieldRec->hasNonTrivialMoveAssignment())
805 data().DefaultedMoveAssignmentIsDeleted = true;
806 if (FieldRec->hasNonTrivialDestructor())
807 data().DefaultedDestructorIsDeleted = true;
808 }
809
810 // C++0x [class.ctor]p5:
811 // A default constructor is trivial [...] if:
812 // -- for all the non-static data members of its class that are of
813 // class type (or array thereof), each such class has a trivial
814 // default constructor.
815 if (!FieldRec->hasTrivialDefaultConstructor())
816 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
817
818 // C++0x [class.copy]p13:
819 // A copy/move constructor for class X is trivial if [...]
820 // [...]
821 // -- for each non-static data member of X that is of class type (or
822 // an array thereof), the constructor selected to copy/move that
823 // member is trivial;
824 if (!FieldRec->hasTrivialCopyConstructor())
825 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
826 // If the field doesn't have a simple move constructor, we'll eagerly
827 // declare the move constructor for this class and we'll decide whether
828 // it's trivial then.
829 if (!FieldRec->hasTrivialMoveConstructor())
830 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
831
832 // C++0x [class.copy]p27:
833 // A copy/move assignment operator for class X is trivial if [...]
834 // [...]
835 // -- for each non-static data member of X that is of class type (or
836 // an array thereof), the assignment operator selected to
837 // copy/move that member is trivial;
838 if (!FieldRec->hasTrivialCopyAssignment())
839 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
840 // If the field doesn't have a simple move assignment, we'll eagerly
841 // declare the move assignment for this class and we'll decide whether
842 // it's trivial then.
843 if (!FieldRec->hasTrivialMoveAssignment())
844 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
845
846 if (!FieldRec->hasTrivialDestructor())
847 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
848 if (!FieldRec->hasIrrelevantDestructor())
849 data().HasIrrelevantDestructor = false;
850 if (FieldRec->hasObjectMember())
851 setHasObjectMember(true);
852 if (FieldRec->hasVolatileMember())
853 setHasVolatileMember(true);
854
855 // C++0x [class]p7:
856 // A standard-layout class is a class that:
857 // -- has no non-static data members of type non-standard-layout
858 // class (or array of such types) [...]
859 if (!FieldRec->isStandardLayout())
860 data().IsStandardLayout = false;
861
862 // C++0x [class]p7:
863 // A standard-layout class is a class that:
864 // [...]
865 // -- has no base classes of the same type as the first non-static
866 // data member.
867 // We don't want to expend bits in the state of the record decl
868 // tracking whether this is the first non-static data member so we
869 // cheat a bit and use some of the existing state: the empty bit.
870 // Virtual bases and virtual methods make a class non-empty, but they
871 // also make it non-standard-layout so we needn't check here.
872 // A non-empty base class may leave the class standard-layout, but not
873 // if we have arrived here, and have at least one non-static data
874 // member. If IsStandardLayout remains true, then the first non-static
875 // data member must come through here with Empty still true, and Empty
876 // will subsequently be set to false below.
877 if (data().IsStandardLayout && data().Empty) {
878 for (const auto &BI : bases()) {
879 if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
880 data().IsStandardLayout = false;
881 break;
882 }
883 }
884 }
885
886 // Keep track of the presence of mutable fields.
887 if (FieldRec->hasMutableFields())
888 data().HasMutableFields = true;
889
890 // C++11 [class.copy]p13:
891 // If the implicitly-defined constructor would satisfy the
892 // requirements of a constexpr constructor, the implicitly-defined
893 // constructor is constexpr.
894 // C++11 [dcl.constexpr]p4:
895 // -- every constructor involved in initializing non-static data
896 // members [...] shall be a constexpr constructor
897 if (!Field->hasInClassInitializer() &&
898 !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
899 // The standard requires any in-class initializer to be a constant
900 // expression. We consider this to be a defect.
901 data().DefaultedDefaultConstructorIsConstexpr = false;
902
903 // C++11 [class.copy]p8:
904 // The implicitly-declared copy constructor for a class X will have
905 // the form 'X::X(const X&)' if [...] for all the non-static data
906 // members of X that are of a class type M (or array thereof), each
907 // such class type has a copy constructor whose first parameter is
908 // of type 'const M&' or 'const volatile M&'.
909 if (!FieldRec->hasCopyConstructorWithConstParam())
910 data().ImplicitCopyConstructorHasConstParam = false;
911
912 // C++11 [class.copy]p18:
913 // The implicitly-declared copy assignment oeprator for a class X will
914 // have the form 'X& X::operator=(const X&)' if [...] for all the
915 // non-static data members of X that are of a class type M (or array
916 // thereof), each such class type has a copy assignment operator whose
917 // parameter is of type 'const M&', 'const volatile M&' or 'M'.
918 if (!FieldRec->hasCopyAssignmentWithConstParam())
919 data().ImplicitCopyAssignmentHasConstParam = false;
920
921 if (FieldRec->hasUninitializedReferenceMember() &&
922 !Field->hasInClassInitializer())
923 data().HasUninitializedReferenceMember = true;
924
925 // C++11 [class.union]p8, DR1460:
926 // a non-static data member of an anonymous union that is a member of
927 // X is also a variant member of X.
928 if (FieldRec->hasVariantMembers() &&
929 Field->isAnonymousStructOrUnion())
930 data().HasVariantMembers = true;
931 }
932 } else {
933 // Base element type of field is a non-class type.
934 if (!T->isLiteralType(Context) ||
935 (!Field->hasInClassInitializer() && !isUnion()))
936 data().DefaultedDefaultConstructorIsConstexpr = false;
937
938 // C++11 [class.copy]p23:
939 // A defaulted copy/move assignment operator for a class X is defined
940 // as deleted if X has:
941 // -- a non-static data member of const non-class type (or array
942 // thereof)
943 if (T.isConstQualified())
944 data().DefaultedMoveAssignmentIsDeleted = true;
945 }
946
947 // C++0x [class]p7:
948 // A standard-layout class is a class that:
949 // [...]
950 // -- either has no non-static data members in the most derived
951 // class and at most one base class with non-static data members,
952 // or has no base classes with non-static data members, and
953 // At this point we know that we have a non-static data member, so the last
954 // clause holds.
955 if (!data().HasNoNonEmptyBases)
956 data().IsStandardLayout = false;
957
958 // C++14 [meta.unary.prop]p4:
959 // T is a class type [...] with [...] no non-static data members other
960 // than bit-fields of length 0...
961 if (data().Empty) {
962 if (!Field->isBitField() ||
963 (!Field->getBitWidth()->isTypeDependent() &&
964 !Field->getBitWidth()->isValueDependent() &&
965 Field->getBitWidthValue(Context) != 0))
966 data().Empty = false;
967 }
968 }
969
970 // Handle using declarations of conversion functions.
971 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) {
972 if (Shadow->getDeclName().getNameKind()
973 == DeclarationName::CXXConversionFunctionName) {
974 ASTContext &Ctx = getASTContext();
975 data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
976 }
977 }
978
979 if (UsingDecl *Using = dyn_cast<UsingDecl>(D)) {
980 if (Using->getDeclName().getNameKind() ==
981 DeclarationName::CXXConstructorName)
982 data().HasInheritedConstructor = true;
983
984 if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
985 data().HasInheritedAssignment = true;
986 }
987 }
988
finishedDefaultedOrDeletedMember(CXXMethodDecl * D)989 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
990 assert(!D->isImplicit() && !D->isUserProvided());
991
992 // The kind of special member this declaration is, if any.
993 unsigned SMKind = 0;
994
995 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
996 if (Constructor->isDefaultConstructor()) {
997 SMKind |= SMF_DefaultConstructor;
998 if (Constructor->isConstexpr())
999 data().HasConstexprDefaultConstructor = true;
1000 }
1001 if (Constructor->isCopyConstructor())
1002 SMKind |= SMF_CopyConstructor;
1003 else if (Constructor->isMoveConstructor())
1004 SMKind |= SMF_MoveConstructor;
1005 else if (Constructor->isConstexpr())
1006 // We may now know that the constructor is constexpr.
1007 data().HasConstexprNonCopyMoveConstructor = true;
1008 } else if (isa<CXXDestructorDecl>(D)) {
1009 SMKind |= SMF_Destructor;
1010 if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1011 data().HasIrrelevantDestructor = false;
1012 } else if (D->isCopyAssignmentOperator())
1013 SMKind |= SMF_CopyAssignment;
1014 else if (D->isMoveAssignmentOperator())
1015 SMKind |= SMF_MoveAssignment;
1016
1017 // Update which trivial / non-trivial special members we have.
1018 // addedMember will have skipped this step for this member.
1019 if (D->isTrivial())
1020 data().HasTrivialSpecialMembers |= SMKind;
1021 else
1022 data().DeclaredNonTrivialSpecialMembers |= SMKind;
1023 }
1024
isCLike() const1025 bool CXXRecordDecl::isCLike() const {
1026 if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
1027 !TemplateOrInstantiation.isNull())
1028 return false;
1029 if (!hasDefinition())
1030 return true;
1031
1032 return isPOD() && data().HasOnlyCMembers;
1033 }
1034
isGenericLambda() const1035 bool CXXRecordDecl::isGenericLambda() const {
1036 if (!isLambda()) return false;
1037 return getLambdaData().IsGenericLambda;
1038 }
1039
getLambdaCallOperator() const1040 CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
1041 if (!isLambda()) return nullptr;
1042 DeclarationName Name =
1043 getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1044 DeclContext::lookup_result Calls = lookup(Name);
1045
1046 assert(!Calls.empty() && "Missing lambda call operator!");
1047 assert(Calls.size() == 1 && "More than one lambda call operator!");
1048
1049 NamedDecl *CallOp = Calls.front();
1050 if (FunctionTemplateDecl *CallOpTmpl =
1051 dyn_cast<FunctionTemplateDecl>(CallOp))
1052 return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1053
1054 return cast<CXXMethodDecl>(CallOp);
1055 }
1056
getLambdaStaticInvoker() const1057 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1058 if (!isLambda()) return nullptr;
1059 DeclarationName Name =
1060 &getASTContext().Idents.get(getLambdaStaticInvokerName());
1061 DeclContext::lookup_result Invoker = lookup(Name);
1062 if (Invoker.empty()) return nullptr;
1063 assert(Invoker.size() == 1 && "More than one static invoker operator!");
1064 NamedDecl *InvokerFun = Invoker.front();
1065 if (FunctionTemplateDecl *InvokerTemplate =
1066 dyn_cast<FunctionTemplateDecl>(InvokerFun))
1067 return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1068
1069 return cast<CXXMethodDecl>(InvokerFun);
1070 }
1071
getCaptureFields(llvm::DenseMap<const VarDecl *,FieldDecl * > & Captures,FieldDecl * & ThisCapture) const1072 void CXXRecordDecl::getCaptureFields(
1073 llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1074 FieldDecl *&ThisCapture) const {
1075 Captures.clear();
1076 ThisCapture = nullptr;
1077
1078 LambdaDefinitionData &Lambda = getLambdaData();
1079 RecordDecl::field_iterator Field = field_begin();
1080 for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1081 C != CEnd; ++C, ++Field) {
1082 if (C->capturesThis())
1083 ThisCapture = *Field;
1084 else if (C->capturesVariable())
1085 Captures[C->getCapturedVar()] = *Field;
1086 }
1087 assert(Field == field_end());
1088 }
1089
1090 TemplateParameterList *
getGenericLambdaTemplateParameterList() const1091 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1092 if (!isLambda()) return nullptr;
1093 CXXMethodDecl *CallOp = getLambdaCallOperator();
1094 if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1095 return Tmpl->getTemplateParameters();
1096 return nullptr;
1097 }
1098
GetConversionType(ASTContext & Context,NamedDecl * Conv)1099 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1100 QualType T =
1101 cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1102 ->getConversionType();
1103 return Context.getCanonicalType(T);
1104 }
1105
1106 /// Collect the visible conversions of a base class.
1107 ///
1108 /// \param Record a base class of the class we're considering
1109 /// \param InVirtual whether this base class is a virtual base (or a base
1110 /// of a virtual base)
1111 /// \param Access the access along the inheritance path to this base
1112 /// \param ParentHiddenTypes the conversions provided by the inheritors
1113 /// of this base
1114 /// \param Output the set to which to add conversions from non-virtual bases
1115 /// \param VOutput the set to which to add conversions from virtual bases
1116 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1117 /// virtual base along some inheritance path
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,bool InVirtual,AccessSpecifier Access,const llvm::SmallPtrSet<CanQualType,8> & ParentHiddenTypes,ASTUnresolvedSet & Output,UnresolvedSetImpl & VOutput,llvm::SmallPtrSet<NamedDecl *,8> & HiddenVBaseCs)1118 static void CollectVisibleConversions(ASTContext &Context,
1119 CXXRecordDecl *Record,
1120 bool InVirtual,
1121 AccessSpecifier Access,
1122 const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1123 ASTUnresolvedSet &Output,
1124 UnresolvedSetImpl &VOutput,
1125 llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
1126 // The set of types which have conversions in this class or its
1127 // subclasses. As an optimization, we don't copy the derived set
1128 // unless it might change.
1129 const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1130 llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1131
1132 // Collect the direct conversions and figure out which conversions
1133 // will be hidden in the subclasses.
1134 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1135 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1136 if (ConvI != ConvE) {
1137 HiddenTypesBuffer = ParentHiddenTypes;
1138 HiddenTypes = &HiddenTypesBuffer;
1139
1140 for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1141 CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1142 bool Hidden = ParentHiddenTypes.count(ConvType);
1143 if (!Hidden)
1144 HiddenTypesBuffer.insert(ConvType);
1145
1146 // If this conversion is hidden and we're in a virtual base,
1147 // remember that it's hidden along some inheritance path.
1148 if (Hidden && InVirtual)
1149 HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1150
1151 // If this conversion isn't hidden, add it to the appropriate output.
1152 else if (!Hidden) {
1153 AccessSpecifier IAccess
1154 = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1155
1156 if (InVirtual)
1157 VOutput.addDecl(I.getDecl(), IAccess);
1158 else
1159 Output.addDecl(Context, I.getDecl(), IAccess);
1160 }
1161 }
1162 }
1163
1164 // Collect information recursively from any base classes.
1165 for (const auto &I : Record->bases()) {
1166 const RecordType *RT = I.getType()->getAs<RecordType>();
1167 if (!RT) continue;
1168
1169 AccessSpecifier BaseAccess
1170 = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1171 bool BaseInVirtual = InVirtual || I.isVirtual();
1172
1173 CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1174 CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1175 *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1176 }
1177 }
1178
1179 /// Collect the visible conversions of a class.
1180 ///
1181 /// This would be extremely straightforward if it weren't for virtual
1182 /// bases. It might be worth special-casing that, really.
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,ASTUnresolvedSet & Output)1183 static void CollectVisibleConversions(ASTContext &Context,
1184 CXXRecordDecl *Record,
1185 ASTUnresolvedSet &Output) {
1186 // The collection of all conversions in virtual bases that we've
1187 // found. These will be added to the output as long as they don't
1188 // appear in the hidden-conversions set.
1189 UnresolvedSet<8> VBaseCs;
1190
1191 // The set of conversions in virtual bases that we've determined to
1192 // be hidden.
1193 llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1194
1195 // The set of types hidden by classes derived from this one.
1196 llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1197
1198 // Go ahead and collect the direct conversions and add them to the
1199 // hidden-types set.
1200 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1201 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1202 Output.append(Context, ConvI, ConvE);
1203 for (; ConvI != ConvE; ++ConvI)
1204 HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1205
1206 // Recursively collect conversions from base classes.
1207 for (const auto &I : Record->bases()) {
1208 const RecordType *RT = I.getType()->getAs<RecordType>();
1209 if (!RT) continue;
1210
1211 CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1212 I.isVirtual(), I.getAccessSpecifier(),
1213 HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1214 }
1215
1216 // Add any unhidden conversions provided by virtual bases.
1217 for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1218 I != E; ++I) {
1219 if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1220 Output.addDecl(Context, I.getDecl(), I.getAccess());
1221 }
1222 }
1223
1224 /// getVisibleConversionFunctions - get all conversion functions visible
1225 /// in current class; including conversion function templates.
1226 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
getVisibleConversionFunctions()1227 CXXRecordDecl::getVisibleConversionFunctions() {
1228 ASTContext &Ctx = getASTContext();
1229
1230 ASTUnresolvedSet *Set;
1231 if (bases_begin() == bases_end()) {
1232 // If root class, all conversions are visible.
1233 Set = &data().Conversions.get(Ctx);
1234 } else {
1235 Set = &data().VisibleConversions.get(Ctx);
1236 // If visible conversion list is not evaluated, evaluate it.
1237 if (!data().ComputedVisibleConversions) {
1238 CollectVisibleConversions(Ctx, this, *Set);
1239 data().ComputedVisibleConversions = true;
1240 }
1241 }
1242 return llvm::make_range(Set->begin(), Set->end());
1243 }
1244
removeConversion(const NamedDecl * ConvDecl)1245 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1246 // This operation is O(N) but extremely rare. Sema only uses it to
1247 // remove UsingShadowDecls in a class that were followed by a direct
1248 // declaration, e.g.:
1249 // class A : B {
1250 // using B::operator int;
1251 // operator int();
1252 // };
1253 // This is uncommon by itself and even more uncommon in conjunction
1254 // with sufficiently large numbers of directly-declared conversions
1255 // that asymptotic behavior matters.
1256
1257 ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1258 for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1259 if (Convs[I].getDecl() == ConvDecl) {
1260 Convs.erase(I);
1261 assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
1262 && "conversion was found multiple times in unresolved set");
1263 return;
1264 }
1265 }
1266
1267 llvm_unreachable("conversion not found in set!");
1268 }
1269
getInstantiatedFromMemberClass() const1270 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1271 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1272 return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1273
1274 return nullptr;
1275 }
1276
getMemberSpecializationInfo() const1277 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1278 return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1279 }
1280
1281 void
setInstantiationOfMemberClass(CXXRecordDecl * RD,TemplateSpecializationKind TSK)1282 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1283 TemplateSpecializationKind TSK) {
1284 assert(TemplateOrInstantiation.isNull() &&
1285 "Previous template or instantiation?");
1286 assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1287 TemplateOrInstantiation
1288 = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1289 }
1290
getDescribedClassTemplate() const1291 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1292 return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1293 }
1294
setDescribedClassTemplate(ClassTemplateDecl * Template)1295 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1296 TemplateOrInstantiation = Template;
1297 }
1298
getTemplateSpecializationKind() const1299 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1300 if (const ClassTemplateSpecializationDecl *Spec
1301 = dyn_cast<ClassTemplateSpecializationDecl>(this))
1302 return Spec->getSpecializationKind();
1303
1304 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1305 return MSInfo->getTemplateSpecializationKind();
1306
1307 return TSK_Undeclared;
1308 }
1309
1310 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK)1311 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1312 if (ClassTemplateSpecializationDecl *Spec
1313 = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1314 Spec->setSpecializationKind(TSK);
1315 return;
1316 }
1317
1318 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1319 MSInfo->setTemplateSpecializationKind(TSK);
1320 return;
1321 }
1322
1323 llvm_unreachable("Not a class template or member class specialization");
1324 }
1325
getTemplateInstantiationPattern() const1326 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1327 // If it's a class template specialization, find the template or partial
1328 // specialization from which it was instantiated.
1329 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1330 auto From = TD->getInstantiatedFrom();
1331 if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1332 while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1333 if (NewCTD->isMemberSpecialization())
1334 break;
1335 CTD = NewCTD;
1336 }
1337 return CTD->getTemplatedDecl()->getDefinition();
1338 }
1339 if (auto *CTPSD =
1340 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1341 while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1342 if (NewCTPSD->isMemberSpecialization())
1343 break;
1344 CTPSD = NewCTPSD;
1345 }
1346 return CTPSD->getDefinition();
1347 }
1348 }
1349
1350 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1351 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1352 const CXXRecordDecl *RD = this;
1353 while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1354 RD = NewRD;
1355 return RD->getDefinition();
1356 }
1357 }
1358
1359 assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1360 "couldn't find pattern for class template instantiation");
1361 return nullptr;
1362 }
1363
getDestructor() const1364 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1365 ASTContext &Context = getASTContext();
1366 QualType ClassType = Context.getTypeDeclType(this);
1367
1368 DeclarationName Name
1369 = Context.DeclarationNames.getCXXDestructorName(
1370 Context.getCanonicalType(ClassType));
1371
1372 DeclContext::lookup_result R = lookup(Name);
1373 if (R.empty())
1374 return nullptr;
1375
1376 CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
1377 return Dtor;
1378 }
1379
isAnyDestructorNoReturn() const1380 bool CXXRecordDecl::isAnyDestructorNoReturn() const {
1381 // Destructor is noreturn.
1382 if (const CXXDestructorDecl *Destructor = getDestructor())
1383 if (Destructor->isNoReturn())
1384 return true;
1385
1386 // Check base classes destructor for noreturn.
1387 for (const auto &Base : bases())
1388 if (Base.getType()->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
1389 return true;
1390
1391 // Check fields for noreturn.
1392 for (const auto *Field : fields())
1393 if (const CXXRecordDecl *RD =
1394 Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
1395 if (RD->isAnyDestructorNoReturn())
1396 return true;
1397
1398 // All destructors are not noreturn.
1399 return false;
1400 }
1401
completeDefinition()1402 void CXXRecordDecl::completeDefinition() {
1403 completeDefinition(nullptr);
1404 }
1405
completeDefinition(CXXFinalOverriderMap * FinalOverriders)1406 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1407 RecordDecl::completeDefinition();
1408
1409 // If the class may be abstract (but hasn't been marked as such), check for
1410 // any pure final overriders.
1411 if (mayBeAbstract()) {
1412 CXXFinalOverriderMap MyFinalOverriders;
1413 if (!FinalOverriders) {
1414 getFinalOverriders(MyFinalOverriders);
1415 FinalOverriders = &MyFinalOverriders;
1416 }
1417
1418 bool Done = false;
1419 for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1420 MEnd = FinalOverriders->end();
1421 M != MEnd && !Done; ++M) {
1422 for (OverridingMethods::iterator SO = M->second.begin(),
1423 SOEnd = M->second.end();
1424 SO != SOEnd && !Done; ++SO) {
1425 assert(SO->second.size() > 0 &&
1426 "All virtual functions have overridding virtual functions");
1427
1428 // C++ [class.abstract]p4:
1429 // A class is abstract if it contains or inherits at least one
1430 // pure virtual function for which the final overrider is pure
1431 // virtual.
1432 if (SO->second.front().Method->isPure()) {
1433 data().Abstract = true;
1434 Done = true;
1435 break;
1436 }
1437 }
1438 }
1439 }
1440
1441 // Set access bits correctly on the directly-declared conversions.
1442 for (conversion_iterator I = conversion_begin(), E = conversion_end();
1443 I != E; ++I)
1444 I.setAccess((*I)->getAccess());
1445 }
1446
mayBeAbstract() const1447 bool CXXRecordDecl::mayBeAbstract() const {
1448 if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1449 isDependentContext())
1450 return false;
1451
1452 for (const auto &B : bases()) {
1453 CXXRecordDecl *BaseDecl
1454 = cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl());
1455 if (BaseDecl->isAbstract())
1456 return true;
1457 }
1458
1459 return false;
1460 }
1461
anchor()1462 void CXXMethodDecl::anchor() { }
1463
isStatic() const1464 bool CXXMethodDecl::isStatic() const {
1465 const CXXMethodDecl *MD = getCanonicalDecl();
1466
1467 if (MD->getStorageClass() == SC_Static)
1468 return true;
1469
1470 OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
1471 return isStaticOverloadedOperator(OOK);
1472 }
1473
recursivelyOverrides(const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)1474 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
1475 const CXXMethodDecl *BaseMD) {
1476 for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
1477 E = DerivedMD->end_overridden_methods(); I != E; ++I) {
1478 const CXXMethodDecl *MD = *I;
1479 if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
1480 return true;
1481 if (recursivelyOverrides(MD, BaseMD))
1482 return true;
1483 }
1484 return false;
1485 }
1486
1487 CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl * RD,bool MayBeBase)1488 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1489 bool MayBeBase) {
1490 if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
1491 return this;
1492
1493 // Lookup doesn't work for destructors, so handle them separately.
1494 if (isa<CXXDestructorDecl>(this)) {
1495 CXXMethodDecl *MD = RD->getDestructor();
1496 if (MD) {
1497 if (recursivelyOverrides(MD, this))
1498 return MD;
1499 if (MayBeBase && recursivelyOverrides(this, MD))
1500 return MD;
1501 }
1502 return nullptr;
1503 }
1504
1505 for (auto *ND : RD->lookup(getDeclName())) {
1506 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND);
1507 if (!MD)
1508 continue;
1509 if (recursivelyOverrides(MD, this))
1510 return MD;
1511 if (MayBeBase && recursivelyOverrides(this, MD))
1512 return MD;
1513 }
1514
1515 for (const auto &I : RD->bases()) {
1516 const RecordType *RT = I.getType()->getAs<RecordType>();
1517 if (!RT)
1518 continue;
1519 const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1520 CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
1521 if (T)
1522 return T;
1523 }
1524
1525 return nullptr;
1526 }
1527
1528 CXXMethodDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInline,bool isConstexpr,SourceLocation EndLocation)1529 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1530 SourceLocation StartLoc,
1531 const DeclarationNameInfo &NameInfo,
1532 QualType T, TypeSourceInfo *TInfo,
1533 StorageClass SC, bool isInline,
1534 bool isConstexpr, SourceLocation EndLocation) {
1535 return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo,
1536 T, TInfo, SC, isInline, isConstexpr,
1537 EndLocation);
1538 }
1539
CreateDeserialized(ASTContext & C,unsigned ID)1540 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1541 return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(),
1542 DeclarationNameInfo(), QualType(), nullptr,
1543 SC_None, false, false, SourceLocation());
1544 }
1545
isUsualDeallocationFunction() const1546 bool CXXMethodDecl::isUsualDeallocationFunction() const {
1547 if (getOverloadedOperator() != OO_Delete &&
1548 getOverloadedOperator() != OO_Array_Delete)
1549 return false;
1550
1551 // C++ [basic.stc.dynamic.deallocation]p2:
1552 // A template instance is never a usual deallocation function,
1553 // regardless of its signature.
1554 if (getPrimaryTemplate())
1555 return false;
1556
1557 // C++ [basic.stc.dynamic.deallocation]p2:
1558 // If a class T has a member deallocation function named operator delete
1559 // with exactly one parameter, then that function is a usual (non-placement)
1560 // deallocation function. [...]
1561 if (getNumParams() == 1)
1562 return true;
1563
1564 // C++ [basic.stc.dynamic.deallocation]p2:
1565 // [...] If class T does not declare such an operator delete but does
1566 // declare a member deallocation function named operator delete with
1567 // exactly two parameters, the second of which has type std::size_t (18.1),
1568 // then this function is a usual deallocation function.
1569 ASTContext &Context = getASTContext();
1570 if (getNumParams() != 2 ||
1571 !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
1572 Context.getSizeType()))
1573 return false;
1574
1575 // This function is a usual deallocation function if there are no
1576 // single-parameter deallocation functions of the same kind.
1577 DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
1578 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
1579 I != E; ++I) {
1580 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
1581 if (FD->getNumParams() == 1)
1582 return false;
1583 }
1584
1585 return true;
1586 }
1587
isCopyAssignmentOperator() const1588 bool CXXMethodDecl::isCopyAssignmentOperator() const {
1589 // C++0x [class.copy]p17:
1590 // A user-declared copy assignment operator X::operator= is a non-static
1591 // non-template member function of class X with exactly one parameter of
1592 // type X, X&, const X&, volatile X& or const volatile X&.
1593 if (/*operator=*/getOverloadedOperator() != OO_Equal ||
1594 /*non-static*/ isStatic() ||
1595 /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1596 getNumParams() != 1)
1597 return false;
1598
1599 QualType ParamType = getParamDecl(0)->getType();
1600 if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
1601 ParamType = Ref->getPointeeType();
1602
1603 ASTContext &Context = getASTContext();
1604 QualType ClassType
1605 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1606 return Context.hasSameUnqualifiedType(ClassType, ParamType);
1607 }
1608
isMoveAssignmentOperator() const1609 bool CXXMethodDecl::isMoveAssignmentOperator() const {
1610 // C++0x [class.copy]p19:
1611 // A user-declared move assignment operator X::operator= is a non-static
1612 // non-template member function of class X with exactly one parameter of type
1613 // X&&, const X&&, volatile X&&, or const volatile X&&.
1614 if (getOverloadedOperator() != OO_Equal || isStatic() ||
1615 getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1616 getNumParams() != 1)
1617 return false;
1618
1619 QualType ParamType = getParamDecl(0)->getType();
1620 if (!isa<RValueReferenceType>(ParamType))
1621 return false;
1622 ParamType = ParamType->getPointeeType();
1623
1624 ASTContext &Context = getASTContext();
1625 QualType ClassType
1626 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1627 return Context.hasSameUnqualifiedType(ClassType, ParamType);
1628 }
1629
addOverriddenMethod(const CXXMethodDecl * MD)1630 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
1631 assert(MD->isCanonicalDecl() && "Method is not canonical!");
1632 assert(!MD->getParent()->isDependentContext() &&
1633 "Can't add an overridden method to a class template!");
1634 assert(MD->isVirtual() && "Method is not virtual!");
1635
1636 getASTContext().addOverriddenMethod(this, MD);
1637 }
1638
begin_overridden_methods() const1639 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
1640 if (isa<CXXConstructorDecl>(this)) return nullptr;
1641 return getASTContext().overridden_methods_begin(this);
1642 }
1643
end_overridden_methods() const1644 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
1645 if (isa<CXXConstructorDecl>(this)) return nullptr;
1646 return getASTContext().overridden_methods_end(this);
1647 }
1648
size_overridden_methods() const1649 unsigned CXXMethodDecl::size_overridden_methods() const {
1650 if (isa<CXXConstructorDecl>(this)) return 0;
1651 return getASTContext().overridden_methods_size(this);
1652 }
1653
1654 CXXMethodDecl::overridden_method_range
overridden_methods() const1655 CXXMethodDecl::overridden_methods() const {
1656 if (isa<CXXConstructorDecl>(this))
1657 return overridden_method_range(nullptr, nullptr);
1658 return getASTContext().overridden_methods(this);
1659 }
1660
getThisType(ASTContext & C) const1661 QualType CXXMethodDecl::getThisType(ASTContext &C) const {
1662 // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
1663 // If the member function is declared const, the type of this is const X*,
1664 // if the member function is declared volatile, the type of this is
1665 // volatile X*, and if the member function is declared const volatile,
1666 // the type of this is const volatile X*.
1667
1668 assert(isInstance() && "No 'this' for static methods!");
1669
1670 QualType ClassTy = C.getTypeDeclType(getParent());
1671 ClassTy = C.getQualifiedType(ClassTy,
1672 Qualifiers::fromCVRUMask(getTypeQualifiers()));
1673 return C.getPointerType(ClassTy);
1674 }
1675
hasInlineBody() const1676 bool CXXMethodDecl::hasInlineBody() const {
1677 // If this function is a template instantiation, look at the template from
1678 // which it was instantiated.
1679 const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1680 if (!CheckFn)
1681 CheckFn = this;
1682
1683 const FunctionDecl *fn;
1684 return CheckFn->hasBody(fn) && !fn->isOutOfLine();
1685 }
1686
isLambdaStaticInvoker() const1687 bool CXXMethodDecl::isLambdaStaticInvoker() const {
1688 const CXXRecordDecl *P = getParent();
1689 if (P->isLambda()) {
1690 if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
1691 if (StaticInvoker == this) return true;
1692 if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
1693 return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
1694 }
1695 }
1696 return false;
1697 }
1698
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,bool IsVirtual,SourceLocation L,Expr * Init,SourceLocation R,SourceLocation EllipsisLoc)1699 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1700 TypeSourceInfo *TInfo, bool IsVirtual,
1701 SourceLocation L, Expr *Init,
1702 SourceLocation R,
1703 SourceLocation EllipsisLoc)
1704 : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
1705 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
1706 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1707 {
1708 }
1709
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1710 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1711 FieldDecl *Member,
1712 SourceLocation MemberLoc,
1713 SourceLocation L, Expr *Init,
1714 SourceLocation R)
1715 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1716 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1717 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1718 {
1719 }
1720
CXXCtorInitializer(ASTContext & Context,IndirectFieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1721 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1722 IndirectFieldDecl *Member,
1723 SourceLocation MemberLoc,
1724 SourceLocation L, Expr *Init,
1725 SourceLocation R)
1726 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1727 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1728 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1729 {
1730 }
1731
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,SourceLocation L,Expr * Init,SourceLocation R)1732 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1733 TypeSourceInfo *TInfo,
1734 SourceLocation L, Expr *Init,
1735 SourceLocation R)
1736 : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
1737 LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
1738 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1739 {
1740 }
1741
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1742 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1743 FieldDecl *Member,
1744 SourceLocation MemberLoc,
1745 SourceLocation L, Expr *Init,
1746 SourceLocation R,
1747 VarDecl **Indices,
1748 unsigned NumIndices)
1749 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1750 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1751 IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
1752 {
1753 std::uninitialized_copy(Indices, Indices + NumIndices,
1754 getTrailingObjects<VarDecl *>());
1755 }
1756
Create(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1757 CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
1758 FieldDecl *Member,
1759 SourceLocation MemberLoc,
1760 SourceLocation L, Expr *Init,
1761 SourceLocation R,
1762 VarDecl **Indices,
1763 unsigned NumIndices) {
1764 void *Mem = Context.Allocate(totalSizeToAlloc<VarDecl *>(NumIndices),
1765 llvm::alignOf<CXXCtorInitializer>());
1766 return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
1767 Indices, NumIndices);
1768 }
1769
getBaseClassLoc() const1770 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
1771 if (isBaseInitializer())
1772 return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
1773 else
1774 return TypeLoc();
1775 }
1776
getBaseClass() const1777 const Type *CXXCtorInitializer::getBaseClass() const {
1778 if (isBaseInitializer())
1779 return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
1780 else
1781 return nullptr;
1782 }
1783
getSourceLocation() const1784 SourceLocation CXXCtorInitializer::getSourceLocation() const {
1785 if (isInClassMemberInitializer())
1786 return getAnyMember()->getLocation();
1787
1788 if (isAnyMemberInitializer())
1789 return getMemberLocation();
1790
1791 if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
1792 return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
1793
1794 return SourceLocation();
1795 }
1796
getSourceRange() const1797 SourceRange CXXCtorInitializer::getSourceRange() const {
1798 if (isInClassMemberInitializer()) {
1799 FieldDecl *D = getAnyMember();
1800 if (Expr *I = D->getInClassInitializer())
1801 return I->getSourceRange();
1802 return SourceRange();
1803 }
1804
1805 return SourceRange(getSourceLocation(), getRParenLoc());
1806 }
1807
anchor()1808 void CXXConstructorDecl::anchor() { }
1809
CreateDeserialized(ASTContext & C,unsigned ID,bool Inherited)1810 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
1811 unsigned ID,
1812 bool Inherited) {
1813 unsigned Extra = additionalSizeToAlloc<InheritedConstructor>(Inherited);
1814 auto *Result = new (C, ID, Extra) CXXConstructorDecl(
1815 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
1816 false, false, false, false, InheritedConstructor());
1817 Result->IsInheritingConstructor = Inherited;
1818 return Result;
1819 }
1820
1821 CXXConstructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isExplicit,bool isInline,bool isImplicitlyDeclared,bool isConstexpr,InheritedConstructor Inherited)1822 CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1823 SourceLocation StartLoc,
1824 const DeclarationNameInfo &NameInfo,
1825 QualType T, TypeSourceInfo *TInfo,
1826 bool isExplicit, bool isInline,
1827 bool isImplicitlyDeclared, bool isConstexpr,
1828 InheritedConstructor Inherited) {
1829 assert(NameInfo.getName().getNameKind()
1830 == DeclarationName::CXXConstructorName &&
1831 "Name must refer to a constructor");
1832 unsigned Extra =
1833 additionalSizeToAlloc<InheritedConstructor>(Inherited ? 1 : 0);
1834 return new (C, RD, Extra) CXXConstructorDecl(
1835 C, RD, StartLoc, NameInfo, T, TInfo, isExplicit, isInline,
1836 isImplicitlyDeclared, isConstexpr, Inherited);
1837 }
1838
init_begin() const1839 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
1840 return CtorInitializers.get(getASTContext().getExternalSource());
1841 }
1842
getTargetConstructor() const1843 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
1844 assert(isDelegatingConstructor() && "Not a delegating constructor!");
1845 Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
1846 if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
1847 return Construct->getConstructor();
1848
1849 return nullptr;
1850 }
1851
isDefaultConstructor() const1852 bool CXXConstructorDecl::isDefaultConstructor() const {
1853 // C++ [class.ctor]p5:
1854 // A default constructor for a class X is a constructor of class
1855 // X that can be called without an argument.
1856 return (getNumParams() == 0) ||
1857 (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
1858 }
1859
1860 bool
isCopyConstructor(unsigned & TypeQuals) const1861 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
1862 return isCopyOrMoveConstructor(TypeQuals) &&
1863 getParamDecl(0)->getType()->isLValueReferenceType();
1864 }
1865
isMoveConstructor(unsigned & TypeQuals) const1866 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
1867 return isCopyOrMoveConstructor(TypeQuals) &&
1868 getParamDecl(0)->getType()->isRValueReferenceType();
1869 }
1870
1871 /// \brief Determine whether this is a copy or move constructor.
isCopyOrMoveConstructor(unsigned & TypeQuals) const1872 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
1873 // C++ [class.copy]p2:
1874 // A non-template constructor for class X is a copy constructor
1875 // if its first parameter is of type X&, const X&, volatile X& or
1876 // const volatile X&, and either there are no other parameters
1877 // or else all other parameters have default arguments (8.3.6).
1878 // C++0x [class.copy]p3:
1879 // A non-template constructor for class X is a move constructor if its
1880 // first parameter is of type X&&, const X&&, volatile X&&, or
1881 // const volatile X&&, and either there are no other parameters or else
1882 // all other parameters have default arguments.
1883 if ((getNumParams() < 1) ||
1884 (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1885 (getPrimaryTemplate() != nullptr) ||
1886 (getDescribedFunctionTemplate() != nullptr))
1887 return false;
1888
1889 const ParmVarDecl *Param = getParamDecl(0);
1890
1891 // Do we have a reference type?
1892 const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
1893 if (!ParamRefType)
1894 return false;
1895
1896 // Is it a reference to our class type?
1897 ASTContext &Context = getASTContext();
1898
1899 CanQualType PointeeType
1900 = Context.getCanonicalType(ParamRefType->getPointeeType());
1901 CanQualType ClassTy
1902 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1903 if (PointeeType.getUnqualifiedType() != ClassTy)
1904 return false;
1905
1906 // FIXME: other qualifiers?
1907
1908 // We have a copy or move constructor.
1909 TypeQuals = PointeeType.getCVRQualifiers();
1910 return true;
1911 }
1912
isConvertingConstructor(bool AllowExplicit) const1913 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
1914 // C++ [class.conv.ctor]p1:
1915 // A constructor declared without the function-specifier explicit
1916 // that can be called with a single parameter specifies a
1917 // conversion from the type of its first parameter to the type of
1918 // its class. Such a constructor is called a converting
1919 // constructor.
1920 if (isExplicit() && !AllowExplicit)
1921 return false;
1922
1923 return (getNumParams() == 0 &&
1924 getType()->getAs<FunctionProtoType>()->isVariadic()) ||
1925 (getNumParams() == 1) ||
1926 (getNumParams() > 1 &&
1927 (getParamDecl(1)->hasDefaultArg() ||
1928 getParamDecl(1)->isParameterPack()));
1929 }
1930
isSpecializationCopyingObject() const1931 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
1932 if ((getNumParams() < 1) ||
1933 (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1934 (getDescribedFunctionTemplate() != nullptr))
1935 return false;
1936
1937 const ParmVarDecl *Param = getParamDecl(0);
1938
1939 ASTContext &Context = getASTContext();
1940 CanQualType ParamType = Context.getCanonicalType(Param->getType());
1941
1942 // Is it the same as our our class type?
1943 CanQualType ClassTy
1944 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1945 if (ParamType.getUnqualifiedType() != ClassTy)
1946 return false;
1947
1948 return true;
1949 }
1950
anchor()1951 void CXXDestructorDecl::anchor() { }
1952
1953 CXXDestructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1954 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1955 return new (C, ID)
1956 CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
1957 QualType(), nullptr, false, false);
1958 }
1959
1960 CXXDestructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isImplicitlyDeclared)1961 CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1962 SourceLocation StartLoc,
1963 const DeclarationNameInfo &NameInfo,
1964 QualType T, TypeSourceInfo *TInfo,
1965 bool isInline, bool isImplicitlyDeclared) {
1966 assert(NameInfo.getName().getNameKind()
1967 == DeclarationName::CXXDestructorName &&
1968 "Name must refer to a destructor");
1969 return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1970 isInline, isImplicitlyDeclared);
1971 }
1972
setOperatorDelete(FunctionDecl * OD)1973 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD) {
1974 auto *First = cast<CXXDestructorDecl>(getFirstDecl());
1975 if (OD && !First->OperatorDelete) {
1976 First->OperatorDelete = OD;
1977 if (auto *L = getASTMutationListener())
1978 L->ResolvedOperatorDelete(First, OD);
1979 }
1980 }
1981
anchor()1982 void CXXConversionDecl::anchor() { }
1983
1984 CXXConversionDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1985 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1986 return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(),
1987 DeclarationNameInfo(), QualType(),
1988 nullptr, false, false, false,
1989 SourceLocation());
1990 }
1991
1992 CXXConversionDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isExplicit,bool isConstexpr,SourceLocation EndLocation)1993 CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1994 SourceLocation StartLoc,
1995 const DeclarationNameInfo &NameInfo,
1996 QualType T, TypeSourceInfo *TInfo,
1997 bool isInline, bool isExplicit,
1998 bool isConstexpr, SourceLocation EndLocation) {
1999 assert(NameInfo.getName().getNameKind()
2000 == DeclarationName::CXXConversionFunctionName &&
2001 "Name must refer to a conversion function");
2002 return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo,
2003 isInline, isExplicit, isConstexpr,
2004 EndLocation);
2005 }
2006
isLambdaToBlockPointerConversion() const2007 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2008 return isImplicit() && getParent()->isLambda() &&
2009 getConversionType()->isBlockPointerType();
2010 }
2011
anchor()2012 void LinkageSpecDecl::anchor() { }
2013
Create(ASTContext & C,DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs Lang,bool HasBraces)2014 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
2015 DeclContext *DC,
2016 SourceLocation ExternLoc,
2017 SourceLocation LangLoc,
2018 LanguageIDs Lang,
2019 bool HasBraces) {
2020 return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2021 }
2022
CreateDeserialized(ASTContext & C,unsigned ID)2023 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2024 unsigned ID) {
2025 return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
2026 SourceLocation(), lang_c, false);
2027 }
2028
anchor()2029 void UsingDirectiveDecl::anchor() { }
2030
Create(ASTContext & C,DeclContext * DC,SourceLocation L,SourceLocation NamespaceLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Used,DeclContext * CommonAncestor)2031 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2032 SourceLocation L,
2033 SourceLocation NamespaceLoc,
2034 NestedNameSpecifierLoc QualifierLoc,
2035 SourceLocation IdentLoc,
2036 NamedDecl *Used,
2037 DeclContext *CommonAncestor) {
2038 if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2039 Used = NS->getOriginalNamespace();
2040 return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2041 IdentLoc, Used, CommonAncestor);
2042 }
2043
CreateDeserialized(ASTContext & C,unsigned ID)2044 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2045 unsigned ID) {
2046 return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2047 SourceLocation(),
2048 NestedNameSpecifierLoc(),
2049 SourceLocation(), nullptr, nullptr);
2050 }
2051
getNominatedNamespace()2052 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2053 if (NamespaceAliasDecl *NA =
2054 dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2055 return NA->getNamespace();
2056 return cast_or_null<NamespaceDecl>(NominatedNamespace);
2057 }
2058
NamespaceDecl(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)2059 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2060 SourceLocation StartLoc, SourceLocation IdLoc,
2061 IdentifierInfo *Id, NamespaceDecl *PrevDecl)
2062 : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2063 redeclarable_base(C), LocStart(StartLoc), RBraceLoc(),
2064 AnonOrFirstNamespaceAndInline(nullptr, Inline) {
2065 setPreviousDecl(PrevDecl);
2066
2067 if (PrevDecl)
2068 AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
2069 }
2070
Create(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)2071 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2072 bool Inline, SourceLocation StartLoc,
2073 SourceLocation IdLoc, IdentifierInfo *Id,
2074 NamespaceDecl *PrevDecl) {
2075 return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
2076 PrevDecl);
2077 }
2078
CreateDeserialized(ASTContext & C,unsigned ID)2079 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2080 return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2081 SourceLocation(), nullptr, nullptr);
2082 }
2083
getOriginalNamespace()2084 NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2085 if (isFirstDecl())
2086 return this;
2087
2088 return AnonOrFirstNamespaceAndInline.getPointer();
2089 }
2090
getOriginalNamespace() const2091 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2092 if (isFirstDecl())
2093 return this;
2094
2095 return AnonOrFirstNamespaceAndInline.getPointer();
2096 }
2097
isOriginalNamespace() const2098 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2099
getNextRedeclarationImpl()2100 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2101 return getNextRedeclaration();
2102 }
getPreviousDeclImpl()2103 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2104 return getPreviousDecl();
2105 }
getMostRecentDeclImpl()2106 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2107 return getMostRecentDecl();
2108 }
2109
anchor()2110 void NamespaceAliasDecl::anchor() { }
2111
getNextRedeclarationImpl()2112 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2113 return getNextRedeclaration();
2114 }
getPreviousDeclImpl()2115 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2116 return getPreviousDecl();
2117 }
getMostRecentDeclImpl()2118 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2119 return getMostRecentDecl();
2120 }
2121
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)2122 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2123 SourceLocation UsingLoc,
2124 SourceLocation AliasLoc,
2125 IdentifierInfo *Alias,
2126 NestedNameSpecifierLoc QualifierLoc,
2127 SourceLocation IdentLoc,
2128 NamedDecl *Namespace) {
2129 // FIXME: Preserve the aliased namespace as written.
2130 if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2131 Namespace = NS->getOriginalNamespace();
2132 return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2133 QualifierLoc, IdentLoc, Namespace);
2134 }
2135
2136 NamespaceAliasDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2137 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2138 return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2139 SourceLocation(), nullptr,
2140 NestedNameSpecifierLoc(),
2141 SourceLocation(), nullptr);
2142 }
2143
anchor()2144 void UsingShadowDecl::anchor() { }
2145
UsingShadowDecl(Kind K,ASTContext & C,DeclContext * DC,SourceLocation Loc,UsingDecl * Using,NamedDecl * Target)2146 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
2147 SourceLocation Loc, UsingDecl *Using,
2148 NamedDecl *Target)
2149 : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()),
2150 redeclarable_base(C), Underlying(Target),
2151 UsingOrNextShadow(cast<NamedDecl>(Using)) {
2152 if (Target)
2153 IdentifierNamespace = Target->getIdentifierNamespace();
2154 setImplicit();
2155 }
2156
UsingShadowDecl(Kind K,ASTContext & C,EmptyShell Empty)2157 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
2158 : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
2159 redeclarable_base(C), Underlying(), UsingOrNextShadow() {}
2160
2161 UsingShadowDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2162 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2163 return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
2164 }
2165
getUsingDecl() const2166 UsingDecl *UsingShadowDecl::getUsingDecl() const {
2167 const UsingShadowDecl *Shadow = this;
2168 while (const UsingShadowDecl *NextShadow =
2169 dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
2170 Shadow = NextShadow;
2171 return cast<UsingDecl>(Shadow->UsingOrNextShadow);
2172 }
2173
anchor()2174 void ConstructorUsingShadowDecl::anchor() { }
2175
2176 ConstructorUsingShadowDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation Loc,UsingDecl * Using,NamedDecl * Target,bool IsVirtual)2177 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
2178 SourceLocation Loc, UsingDecl *Using,
2179 NamedDecl *Target, bool IsVirtual) {
2180 return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
2181 IsVirtual);
2182 }
2183
2184 ConstructorUsingShadowDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2185 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2186 return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
2187 }
2188
getNominatedBaseClass() const2189 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
2190 return getUsingDecl()->getQualifier()->getAsRecordDecl();
2191 }
2192
anchor()2193 void UsingDecl::anchor() { }
2194
addShadowDecl(UsingShadowDecl * S)2195 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
2196 assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
2197 "declaration already in set");
2198 assert(S->getUsingDecl() == this);
2199
2200 if (FirstUsingShadow.getPointer())
2201 S->UsingOrNextShadow = FirstUsingShadow.getPointer();
2202 FirstUsingShadow.setPointer(S);
2203 }
2204
removeShadowDecl(UsingShadowDecl * S)2205 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
2206 assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
2207 "declaration not in set");
2208 assert(S->getUsingDecl() == this);
2209
2210 // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
2211
2212 if (FirstUsingShadow.getPointer() == S) {
2213 FirstUsingShadow.setPointer(
2214 dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
2215 S->UsingOrNextShadow = this;
2216 return;
2217 }
2218
2219 UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
2220 while (Prev->UsingOrNextShadow != S)
2221 Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
2222 Prev->UsingOrNextShadow = S->UsingOrNextShadow;
2223 S->UsingOrNextShadow = this;
2224 }
2225
Create(ASTContext & C,DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool HasTypename)2226 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
2227 NestedNameSpecifierLoc QualifierLoc,
2228 const DeclarationNameInfo &NameInfo,
2229 bool HasTypename) {
2230 return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
2231 }
2232
CreateDeserialized(ASTContext & C,unsigned ID)2233 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2234 return new (C, ID) UsingDecl(nullptr, SourceLocation(),
2235 NestedNameSpecifierLoc(), DeclarationNameInfo(),
2236 false);
2237 }
2238
getSourceRange() const2239 SourceRange UsingDecl::getSourceRange() const {
2240 SourceLocation Begin = isAccessDeclaration()
2241 ? getQualifierLoc().getBeginLoc() : UsingLocation;
2242 return SourceRange(Begin, getNameInfo().getEndLoc());
2243 }
2244
anchor()2245 void UnresolvedUsingValueDecl::anchor() { }
2246
2247 UnresolvedUsingValueDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo)2248 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
2249 SourceLocation UsingLoc,
2250 NestedNameSpecifierLoc QualifierLoc,
2251 const DeclarationNameInfo &NameInfo) {
2252 return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
2253 QualifierLoc, NameInfo);
2254 }
2255
2256 UnresolvedUsingValueDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2257 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2258 return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
2259 SourceLocation(),
2260 NestedNameSpecifierLoc(),
2261 DeclarationNameInfo());
2262 }
2263
getSourceRange() const2264 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
2265 SourceLocation Begin = isAccessDeclaration()
2266 ? getQualifierLoc().getBeginLoc() : UsingLocation;
2267 return SourceRange(Begin, getNameInfo().getEndLoc());
2268 }
2269
anchor()2270 void UnresolvedUsingTypenameDecl::anchor() { }
2271
2272 UnresolvedUsingTypenameDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,DeclarationName TargetName)2273 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
2274 SourceLocation UsingLoc,
2275 SourceLocation TypenameLoc,
2276 NestedNameSpecifierLoc QualifierLoc,
2277 SourceLocation TargetNameLoc,
2278 DeclarationName TargetName) {
2279 return new (C, DC) UnresolvedUsingTypenameDecl(
2280 DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
2281 TargetName.getAsIdentifierInfo());
2282 }
2283
2284 UnresolvedUsingTypenameDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2285 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2286 return new (C, ID) UnresolvedUsingTypenameDecl(
2287 nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
2288 SourceLocation(), nullptr);
2289 }
2290
anchor()2291 void StaticAssertDecl::anchor() { }
2292
Create(ASTContext & C,DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * Message,SourceLocation RParenLoc,bool Failed)2293 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
2294 SourceLocation StaticAssertLoc,
2295 Expr *AssertExpr,
2296 StringLiteral *Message,
2297 SourceLocation RParenLoc,
2298 bool Failed) {
2299 return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
2300 RParenLoc, Failed);
2301 }
2302
CreateDeserialized(ASTContext & C,unsigned ID)2303 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
2304 unsigned ID) {
2305 return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
2306 nullptr, SourceLocation(), false);
2307 }
2308
Create(ASTContext & C,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL,IdentifierInfo * Getter,IdentifierInfo * Setter)2309 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
2310 SourceLocation L, DeclarationName N,
2311 QualType T, TypeSourceInfo *TInfo,
2312 SourceLocation StartL,
2313 IdentifierInfo *Getter,
2314 IdentifierInfo *Setter) {
2315 return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
2316 }
2317
CreateDeserialized(ASTContext & C,unsigned ID)2318 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
2319 unsigned ID) {
2320 return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
2321 DeclarationName(), QualType(), nullptr,
2322 SourceLocation(), nullptr, nullptr);
2323 }
2324
getAccessName(AccessSpecifier AS)2325 static const char *getAccessName(AccessSpecifier AS) {
2326 switch (AS) {
2327 case AS_none:
2328 llvm_unreachable("Invalid access specifier!");
2329 case AS_public:
2330 return "public";
2331 case AS_private:
2332 return "private";
2333 case AS_protected:
2334 return "protected";
2335 }
2336 llvm_unreachable("Invalid access specifier!");
2337 }
2338
operator <<(const DiagnosticBuilder & DB,AccessSpecifier AS)2339 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
2340 AccessSpecifier AS) {
2341 return DB << getAccessName(AS);
2342 }
2343
operator <<(const PartialDiagnostic & DB,AccessSpecifier AS)2344 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
2345 AccessSpecifier AS) {
2346 return DB << getAccessName(AS);
2347 }
2348