• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  *  Copyright 2014 Google, Inc.
4  *
5  *  Licensed under the Apache License, Version 2.0 (the "License");
6  *  you may not use this file except in compliance with the License.
7  *  You may obtain a copy of the License at:
8  *
9  *  http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  *
17  ******************************************************************************/
18 
19 #include "internal_include/bt_target.h"
20 
21 #define LOG_TAG "bt_osi_alarm"
22 
23 #include "osi/include/alarm.h"
24 
25 #include <base/cancelable_callback.h>
26 #include <base/logging.h>
27 #include <base/message_loop/message_loop.h>
28 #include <errno.h>
29 #include <fcntl.h>
30 #include <inttypes.h>
31 #include <malloc.h>
32 #include <pthread.h>
33 #include <signal.h>
34 #include <string.h>
35 #include <time.h>
36 
37 #include <hardware/bluetooth.h>
38 
39 #include <mutex>
40 
41 #include "osi/include/allocator.h"
42 #include "osi/include/fixed_queue.h"
43 #include "osi/include/list.h"
44 #include "osi/include/log.h"
45 #include "osi/include/osi.h"
46 #include "osi/include/semaphore.h"
47 #include "osi/include/thread.h"
48 #include "osi/include/wakelock.h"
49 #include "stack/include/btu.h"
50 
51 using base::Bind;
52 using base::CancelableClosure;
53 using base::MessageLoop;
54 
55 // Callback and timer threads should run at RT priority in order to ensure they
56 // meet audio deadlines.  Use this priority for all audio/timer related thread.
57 static const int THREAD_RT_PRIORITY = 1;
58 
59 typedef struct {
60   size_t count;
61   uint64_t total_ms;
62   uint64_t max_ms;
63 } stat_t;
64 
65 // Alarm-related information and statistics
66 typedef struct {
67   const char* name;
68   size_t scheduled_count;
69   size_t canceled_count;
70   size_t rescheduled_count;
71   size_t total_updates;
72   uint64_t last_update_ms;
73   stat_t overdue_scheduling;
74   stat_t premature_scheduling;
75 } alarm_stats_t;
76 
77 /* Wrapper around CancellableClosure that let it be embedded in structs, without
78  * need to define copy operator. */
79 struct CancelableClosureInStruct {
80   base::CancelableClosure i;
81 
operator =CancelableClosureInStruct82   CancelableClosureInStruct& operator=(const CancelableClosureInStruct& in) {
83     if (!in.i.callback().is_null()) i.Reset(in.i.callback());
84     return *this;
85   }
86 };
87 
88 struct alarm_t {
89   // The mutex is held while the callback for this alarm is being executed.
90   // It allows us to release the coarse-grained monitor lock while a
91   // potentially long-running callback is executing. |alarm_cancel| uses this
92   // mutex to provide a guarantee to its caller that the callback will not be
93   // in progress when it returns.
94   std::shared_ptr<std::recursive_mutex> callback_mutex;
95   uint64_t creation_time_ms;
96   uint64_t period_ms;
97   uint64_t deadline_ms;
98   uint64_t prev_deadline_ms;  // Previous deadline - used for accounting of
99                               // periodic timers
100   bool is_periodic;
101   fixed_queue_t* queue;  // The processing queue to add this alarm to
102   alarm_callback_t callback;
103   void* data;
104   alarm_stats_t stats;
105 
106   bool for_msg_loop;  // True, if the alarm should be processed on message loop
107   CancelableClosureInStruct closure;  // posted to message loop for processing
108 };
109 
110 // If the next wakeup time is less than this threshold, we should acquire
111 // a wakelock instead of setting a wake alarm so we're not bouncing in
112 // and out of suspend frequently. This value is externally visible to allow
113 // unit tests to run faster. It should not be modified by production code.
114 int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
115 static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
116 
117 // This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
118 // functions execute serially and not concurrently. As a result, this mutex
119 // also protects the |alarms| list.
120 static std::mutex alarms_mutex;
121 static list_t* alarms;
122 static timer_t timer;
123 static timer_t wakeup_timer;
124 static bool timer_set;
125 
126 // All alarm callbacks are dispatched from |dispatcher_thread|
127 static thread_t* dispatcher_thread;
128 static bool dispatcher_thread_active;
129 static semaphore_t* alarm_expired;
130 
131 // Default alarm callback thread and queue
132 static thread_t* default_callback_thread;
133 static fixed_queue_t* default_callback_queue;
134 
135 static alarm_t* alarm_new_internal(const char* name, bool is_periodic);
136 static bool lazy_initialize(void);
137 static uint64_t now_ms(void);
138 static void alarm_set_internal(alarm_t* alarm, uint64_t period_ms,
139                                alarm_callback_t cb, void* data,
140                                fixed_queue_t* queue, bool for_msg_loop);
141 static void alarm_cancel_internal(alarm_t* alarm);
142 static void remove_pending_alarm(alarm_t* alarm);
143 static void schedule_next_instance(alarm_t* alarm);
144 static void reschedule_root_alarm(void);
145 static void alarm_queue_ready(fixed_queue_t* queue, void* context);
146 static void timer_callback(void* data);
147 static void callback_dispatch(void* context);
148 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer);
149 static void update_scheduling_stats(alarm_stats_t* stats, uint64_t now_ms,
150                                     uint64_t deadline_ms);
151 // Registers |queue| for processing alarm callbacks on |thread|.
152 // |queue| may not be NULL. |thread| may not be NULL.
153 static void alarm_register_processing_queue(fixed_queue_t* queue,
154                                             thread_t* thread);
155 
update_stat(stat_t * stat,uint64_t delta_ms)156 static void update_stat(stat_t* stat, uint64_t delta_ms) {
157   if (stat->max_ms < delta_ms) stat->max_ms = delta_ms;
158   stat->total_ms += delta_ms;
159   stat->count++;
160 }
161 
alarm_new(const char * name)162 alarm_t* alarm_new(const char* name) { return alarm_new_internal(name, false); }
163 
alarm_new_periodic(const char * name)164 alarm_t* alarm_new_periodic(const char* name) {
165   return alarm_new_internal(name, true);
166 }
167 
alarm_new_internal(const char * name,bool is_periodic)168 static alarm_t* alarm_new_internal(const char* name, bool is_periodic) {
169   // Make sure we have a list we can insert alarms into.
170   if (!alarms && !lazy_initialize()) {
171     CHECK(false);  // if initialization failed, we should not continue
172     return NULL;
173   }
174 
175   alarm_t* ret = static_cast<alarm_t*>(osi_calloc(sizeof(alarm_t)));
176 
177   std::shared_ptr<std::recursive_mutex> ptr(new std::recursive_mutex());
178   ret->callback_mutex = ptr;
179   ret->is_periodic = is_periodic;
180   ret->stats.name = osi_strdup(name);
181 
182   ret->for_msg_loop = false;
183   // placement new
184   new (&ret->closure) CancelableClosureInStruct();
185 
186   // NOTE: The stats were reset by osi_calloc() above
187 
188   return ret;
189 }
190 
alarm_free(alarm_t * alarm)191 void alarm_free(alarm_t* alarm) {
192   if (!alarm) return;
193 
194   alarm_cancel(alarm);
195 
196   osi_free((void*)alarm->stats.name);
197   alarm->closure.~CancelableClosureInStruct();
198   osi_free(alarm);
199 }
200 
alarm_get_remaining_ms(const alarm_t * alarm)201 uint64_t alarm_get_remaining_ms(const alarm_t* alarm) {
202   CHECK(alarm != NULL);
203   uint64_t remaining_ms = 0;
204   uint64_t just_now_ms = now_ms();
205 
206   std::lock_guard<std::mutex> lock(alarms_mutex);
207   if (alarm->deadline_ms > just_now_ms)
208     remaining_ms = alarm->deadline_ms - just_now_ms;
209 
210   return remaining_ms;
211 }
212 
alarm_set(alarm_t * alarm,uint64_t interval_ms,alarm_callback_t cb,void * data)213 void alarm_set(alarm_t* alarm, uint64_t interval_ms, alarm_callback_t cb,
214                void* data) {
215   alarm_set_internal(alarm, interval_ms, cb, data, default_callback_queue,
216                      false);
217 }
218 
alarm_set_on_mloop(alarm_t * alarm,uint64_t interval_ms,alarm_callback_t cb,void * data)219 void alarm_set_on_mloop(alarm_t* alarm, uint64_t interval_ms,
220                         alarm_callback_t cb, void* data) {
221   alarm_set_internal(alarm, interval_ms, cb, data, NULL, true);
222 }
223 
224 // Runs in exclusion with alarm_cancel and timer_callback.
alarm_set_internal(alarm_t * alarm,uint64_t period_ms,alarm_callback_t cb,void * data,fixed_queue_t * queue,bool for_msg_loop)225 static void alarm_set_internal(alarm_t* alarm, uint64_t period_ms,
226                                alarm_callback_t cb, void* data,
227                                fixed_queue_t* queue, bool for_msg_loop) {
228   CHECK(alarms != NULL);
229   CHECK(alarm != NULL);
230   CHECK(cb != NULL);
231 
232   std::lock_guard<std::mutex> lock(alarms_mutex);
233 
234   alarm->creation_time_ms = now_ms();
235   alarm->period_ms = period_ms;
236   alarm->queue = queue;
237   alarm->callback = cb;
238   alarm->data = data;
239   alarm->for_msg_loop = for_msg_loop;
240 
241   schedule_next_instance(alarm);
242   alarm->stats.scheduled_count++;
243 }
244 
alarm_cancel(alarm_t * alarm)245 void alarm_cancel(alarm_t* alarm) {
246   CHECK(alarms != NULL);
247   if (!alarm) return;
248 
249   std::shared_ptr<std::recursive_mutex> local_mutex_ref;
250   {
251     std::lock_guard<std::mutex> lock(alarms_mutex);
252     local_mutex_ref = alarm->callback_mutex;
253     alarm_cancel_internal(alarm);
254   }
255 
256   // If the callback for |alarm| is in progress, wait here until it completes.
257   std::lock_guard<std::recursive_mutex> lock(*local_mutex_ref);
258 }
259 
260 // Internal implementation of canceling an alarm.
261 // The caller must hold the |alarms_mutex|
alarm_cancel_internal(alarm_t * alarm)262 static void alarm_cancel_internal(alarm_t* alarm) {
263   bool needs_reschedule =
264       (!list_is_empty(alarms) && list_front(alarms) == alarm);
265 
266   remove_pending_alarm(alarm);
267 
268   alarm->deadline_ms = 0;
269   alarm->prev_deadline_ms = 0;
270   alarm->callback = NULL;
271   alarm->data = NULL;
272   alarm->stats.canceled_count++;
273   alarm->queue = NULL;
274 
275   if (needs_reschedule) reschedule_root_alarm();
276 }
277 
alarm_is_scheduled(const alarm_t * alarm)278 bool alarm_is_scheduled(const alarm_t* alarm) {
279   if ((alarms == NULL) || (alarm == NULL)) return false;
280   return (alarm->callback != NULL);
281 }
282 
alarm_cleanup(void)283 void alarm_cleanup(void) {
284   // If lazy_initialize never ran there is nothing else to do
285   if (!alarms) return;
286 
287   dispatcher_thread_active = false;
288   semaphore_post(alarm_expired);
289   thread_free(dispatcher_thread);
290   dispatcher_thread = NULL;
291 
292   std::lock_guard<std::mutex> lock(alarms_mutex);
293 
294   fixed_queue_free(default_callback_queue, NULL);
295   default_callback_queue = NULL;
296   thread_free(default_callback_thread);
297   default_callback_thread = NULL;
298 
299   timer_delete(wakeup_timer);
300   timer_delete(timer);
301   semaphore_free(alarm_expired);
302   alarm_expired = NULL;
303 
304   list_free(alarms);
305   alarms = NULL;
306 }
307 
lazy_initialize(void)308 static bool lazy_initialize(void) {
309   CHECK(alarms == NULL);
310 
311   // timer_t doesn't have an invalid value so we must track whether
312   // the |timer| variable is valid ourselves.
313   bool timer_initialized = false;
314   bool wakeup_timer_initialized = false;
315 
316   std::lock_guard<std::mutex> lock(alarms_mutex);
317 
318   alarms = list_new(NULL);
319   if (!alarms) {
320     LOG_ERROR(LOG_TAG, "%s unable to allocate alarm list.", __func__);
321     goto error;
322   }
323 
324   if (!timer_create_internal(CLOCK_ID, &timer)) goto error;
325   timer_initialized = true;
326 
327   if (!timer_create_internal(CLOCK_BOOTTIME_ALARM, &wakeup_timer)) {
328     if (!timer_create_internal(CLOCK_BOOTTIME, &wakeup_timer)) {
329       goto error;
330     }
331   }
332   wakeup_timer_initialized = true;
333 
334   alarm_expired = semaphore_new(0);
335   if (!alarm_expired) {
336     LOG_ERROR(LOG_TAG, "%s unable to create alarm expired semaphore", __func__);
337     goto error;
338   }
339 
340   default_callback_thread =
341       thread_new_sized("alarm_default_callbacks", SIZE_MAX);
342   if (default_callback_thread == NULL) {
343     LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks thread.",
344               __func__);
345     goto error;
346   }
347   thread_set_rt_priority(default_callback_thread, THREAD_RT_PRIORITY);
348   default_callback_queue = fixed_queue_new(SIZE_MAX);
349   if (default_callback_queue == NULL) {
350     LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks queue.",
351               __func__);
352     goto error;
353   }
354   alarm_register_processing_queue(default_callback_queue,
355                                   default_callback_thread);
356 
357   dispatcher_thread_active = true;
358   dispatcher_thread = thread_new("alarm_dispatcher");
359   if (!dispatcher_thread) {
360     LOG_ERROR(LOG_TAG, "%s unable to create alarm callback thread.", __func__);
361     goto error;
362   }
363   thread_set_rt_priority(dispatcher_thread, THREAD_RT_PRIORITY);
364   thread_post(dispatcher_thread, callback_dispatch, NULL);
365   return true;
366 
367 error:
368   fixed_queue_free(default_callback_queue, NULL);
369   default_callback_queue = NULL;
370   thread_free(default_callback_thread);
371   default_callback_thread = NULL;
372 
373   thread_free(dispatcher_thread);
374   dispatcher_thread = NULL;
375 
376   dispatcher_thread_active = false;
377 
378   semaphore_free(alarm_expired);
379   alarm_expired = NULL;
380 
381   if (wakeup_timer_initialized) timer_delete(wakeup_timer);
382 
383   if (timer_initialized) timer_delete(timer);
384 
385   list_free(alarms);
386   alarms = NULL;
387 
388   return false;
389 }
390 
now_ms(void)391 static uint64_t now_ms(void) {
392   CHECK(alarms != NULL);
393 
394   struct timespec ts;
395   if (clock_gettime(CLOCK_ID, &ts) == -1) {
396     LOG_ERROR(LOG_TAG, "%s unable to get current time: %s", __func__,
397               strerror(errno));
398     return 0;
399   }
400 
401   return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
402 }
403 
404 // Remove alarm from internal alarm list and the processing queue
405 // The caller must hold the |alarms_mutex|
remove_pending_alarm(alarm_t * alarm)406 static void remove_pending_alarm(alarm_t* alarm) {
407   list_remove(alarms, alarm);
408 
409   if (alarm->for_msg_loop) {
410     alarm->closure.i.Cancel();
411   } else {
412     while (fixed_queue_try_remove_from_queue(alarm->queue, alarm) != NULL) {
413       // Remove all repeated alarm instances from the queue.
414       // NOTE: We are defensive here - we shouldn't have repeated alarm
415       // instances
416     }
417   }
418 }
419 
420 // Must be called with |alarms_mutex| held
schedule_next_instance(alarm_t * alarm)421 static void schedule_next_instance(alarm_t* alarm) {
422   // If the alarm is currently set and it's at the start of the list,
423   // we'll need to re-schedule since we've adjusted the earliest deadline.
424   bool needs_reschedule =
425       (!list_is_empty(alarms) && list_front(alarms) == alarm);
426   if (alarm->callback) remove_pending_alarm(alarm);
427 
428   // Calculate the next deadline for this alarm
429   uint64_t just_now_ms = now_ms();
430   uint64_t ms_into_period = 0;
431   if ((alarm->is_periodic) && (alarm->period_ms != 0))
432     ms_into_period =
433         ((just_now_ms - alarm->creation_time_ms) % alarm->period_ms);
434   alarm->deadline_ms = just_now_ms + (alarm->period_ms - ms_into_period);
435 
436   // Add it into the timer list sorted by deadline (earliest deadline first).
437   if (list_is_empty(alarms) ||
438       ((alarm_t*)list_front(alarms))->deadline_ms > alarm->deadline_ms) {
439     list_prepend(alarms, alarm);
440   } else {
441     for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
442          node = list_next(node)) {
443       list_node_t* next = list_next(node);
444       if (next == list_end(alarms) ||
445           ((alarm_t*)list_node(next))->deadline_ms > alarm->deadline_ms) {
446         list_insert_after(alarms, node, alarm);
447         break;
448       }
449     }
450   }
451 
452   // If the new alarm has the earliest deadline, we need to re-evaluate our
453   // schedule.
454   if (needs_reschedule ||
455       (!list_is_empty(alarms) && list_front(alarms) == alarm)) {
456     reschedule_root_alarm();
457   }
458 }
459 
460 // NOTE: must be called with |alarms_mutex| held
reschedule_root_alarm(void)461 static void reschedule_root_alarm(void) {
462   CHECK(alarms != NULL);
463 
464   const bool timer_was_set = timer_set;
465   alarm_t* next;
466   int64_t next_expiration;
467 
468   // If used in a zeroed state, disarms the timer.
469   struct itimerspec timer_time;
470   memset(&timer_time, 0, sizeof(timer_time));
471 
472   if (list_is_empty(alarms)) goto done;
473 
474   next = static_cast<alarm_t*>(list_front(alarms));
475   next_expiration = next->deadline_ms - now_ms();
476   if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
477     if (!timer_set) {
478       if (!wakelock_acquire()) {
479         LOG_ERROR(LOG_TAG, "%s unable to acquire wake lock", __func__);
480         goto done;
481       }
482     }
483 
484     timer_time.it_value.tv_sec = (next->deadline_ms / 1000);
485     timer_time.it_value.tv_nsec = (next->deadline_ms % 1000) * 1000000LL;
486 
487     // It is entirely unsafe to call timer_settime(2) with a zeroed timerspec
488     // for timers with *_ALARM clock IDs. Although the man page states that the
489     // timer would be canceled, the current behavior (as of Linux kernel 3.17)
490     // is that the callback is issued immediately. The only way to cancel an
491     // *_ALARM timer is to delete the timer. But unfortunately, deleting and
492     // re-creating a timer is rather expensive; every timer_create(2) spawns a
493     // new thread. So we simply set the timer to fire at the largest possible
494     // time.
495     //
496     // If we've reached this code path, we're going to grab a wake lock and
497     // wait for the next timer to fire. In that case, there's no reason to
498     // have a pending wakeup timer so we simply cancel it.
499     struct itimerspec end_of_time;
500     memset(&end_of_time, 0, sizeof(end_of_time));
501     end_of_time.it_value.tv_sec = (time_t)(1LL << (sizeof(time_t) * 8 - 2));
502     timer_settime(wakeup_timer, TIMER_ABSTIME, &end_of_time, NULL);
503   } else {
504     // WARNING: do not attempt to use relative timers with *_ALARM clock IDs
505     // in kernels before 3.17 unless you have the following patch:
506     // https://lkml.org/lkml/2014/7/7/576
507     struct itimerspec wakeup_time;
508     memset(&wakeup_time, 0, sizeof(wakeup_time));
509 
510     wakeup_time.it_value.tv_sec = (next->deadline_ms / 1000);
511     wakeup_time.it_value.tv_nsec = (next->deadline_ms % 1000) * 1000000LL;
512     if (timer_settime(wakeup_timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1)
513       LOG_ERROR(LOG_TAG, "%s unable to set wakeup timer: %s", __func__,
514                 strerror(errno));
515   }
516 
517 done:
518   timer_set =
519       timer_time.it_value.tv_sec != 0 || timer_time.it_value.tv_nsec != 0;
520   if (timer_was_set && !timer_set) {
521     wakelock_release();
522   }
523 
524   if (timer_settime(timer, TIMER_ABSTIME, &timer_time, NULL) == -1)
525     LOG_ERROR(LOG_TAG, "%s unable to set timer: %s", __func__, strerror(errno));
526 
527   // If next expiration was in the past (e.g. short timer that got context
528   // switched) then the timer might have diarmed itself. Detect this case and
529   // work around it by manually signalling the |alarm_expired| semaphore.
530   //
531   // It is possible that the timer was actually super short (a few
532   // milliseconds) and the timer expired normally before we called
533   // |timer_gettime|. Worst case, |alarm_expired| is signaled twice for that
534   // alarm. Nothing bad should happen in that case though since the callback
535   // dispatch function checks to make sure the timer at the head of the list
536   // actually expired.
537   if (timer_set) {
538     struct itimerspec time_to_expire;
539     timer_gettime(timer, &time_to_expire);
540     if (time_to_expire.it_value.tv_sec == 0 &&
541         time_to_expire.it_value.tv_nsec == 0) {
542       LOG_DEBUG(
543           LOG_TAG,
544           "%s alarm expiration too close for posix timers, switching to guns",
545           __func__);
546       semaphore_post(alarm_expired);
547     }
548   }
549 }
550 
alarm_register_processing_queue(fixed_queue_t * queue,thread_t * thread)551 static void alarm_register_processing_queue(fixed_queue_t* queue,
552                                             thread_t* thread) {
553   CHECK(queue != NULL);
554   CHECK(thread != NULL);
555 
556   fixed_queue_register_dequeue(queue, thread_get_reactor(thread),
557                                alarm_queue_ready, NULL);
558 }
559 
alarm_ready_generic(alarm_t * alarm,std::unique_lock<std::mutex> & lock)560 static void alarm_ready_generic(alarm_t* alarm,
561                                 std::unique_lock<std::mutex>& lock) {
562   if (alarm == NULL) {
563     return;  // The alarm was probably canceled
564   }
565 
566   //
567   // If the alarm is not periodic, we've fully serviced it now, and can reset
568   // some of its internal state. This is useful to distinguish between expired
569   // alarms and active ones.
570   //
571   if (!alarm->callback) {
572     LOG(FATAL) << __func__
573                << ": timer callback is NULL! Name=" << alarm->stats.name;
574   }
575   alarm_callback_t callback = alarm->callback;
576   void* data = alarm->data;
577   uint64_t deadline_ms = alarm->deadline_ms;
578   if (alarm->is_periodic) {
579     // The periodic alarm has been rescheduled and alarm->deadline has been
580     // updated, hence we need to use the previous deadline.
581     deadline_ms = alarm->prev_deadline_ms;
582   } else {
583     alarm->deadline_ms = 0;
584     alarm->callback = NULL;
585     alarm->data = NULL;
586     alarm->queue = NULL;
587   }
588 
589   // Increment the reference count of the mutex so it doesn't get freed
590   // before the callback gets finished executing.
591   std::shared_ptr<std::recursive_mutex> local_mutex_ref = alarm->callback_mutex;
592   std::lock_guard<std::recursive_mutex> cb_lock(*local_mutex_ref);
593   lock.unlock();
594 
595   // Update the statistics
596   update_scheduling_stats(&alarm->stats, now_ms(), deadline_ms);
597 
598   // NOTE: Do NOT access "alarm" after the callback, as a safety precaution
599   // in case the callback itself deleted the alarm.
600   callback(data);
601 }
602 
alarm_ready_mloop(alarm_t * alarm)603 static void alarm_ready_mloop(alarm_t* alarm) {
604   std::unique_lock<std::mutex> lock(alarms_mutex);
605   alarm_ready_generic(alarm, lock);
606 }
607 
alarm_queue_ready(fixed_queue_t * queue,UNUSED_ATTR void * context)608 static void alarm_queue_ready(fixed_queue_t* queue, UNUSED_ATTR void* context) {
609   CHECK(queue != NULL);
610 
611   std::unique_lock<std::mutex> lock(alarms_mutex);
612   alarm_t* alarm = (alarm_t*)fixed_queue_try_dequeue(queue);
613   alarm_ready_generic(alarm, lock);
614 }
615 
616 // Callback function for wake alarms and our posix timer
timer_callback(UNUSED_ATTR void * ptr)617 static void timer_callback(UNUSED_ATTR void* ptr) {
618   semaphore_post(alarm_expired);
619 }
620 
621 // Function running on |dispatcher_thread| that performs the following:
622 //   (1) Receives a signal using |alarm_exired| that the alarm has expired
623 //   (2) Dispatches the alarm callback for processing by the corresponding
624 // thread for that alarm.
callback_dispatch(UNUSED_ATTR void * context)625 static void callback_dispatch(UNUSED_ATTR void* context) {
626   while (true) {
627     semaphore_wait(alarm_expired);
628     if (!dispatcher_thread_active) break;
629 
630     std::lock_guard<std::mutex> lock(alarms_mutex);
631     alarm_t* alarm;
632 
633     // Take into account that the alarm may get cancelled before we get to it.
634     // We're done here if there are no alarms or the alarm at the front is in
635     // the future. Exit right away since there's nothing left to do.
636     if (list_is_empty(alarms) ||
637         (alarm = static_cast<alarm_t*>(list_front(alarms)))->deadline_ms >
638             now_ms()) {
639       reschedule_root_alarm();
640       continue;
641     }
642 
643     list_remove(alarms, alarm);
644 
645     if (alarm->is_periodic) {
646       alarm->prev_deadline_ms = alarm->deadline_ms;
647       schedule_next_instance(alarm);
648       alarm->stats.rescheduled_count++;
649     }
650     reschedule_root_alarm();
651 
652     // Enqueue the alarm for processing
653     if (alarm->for_msg_loop) {
654       if (!get_main_message_loop()) {
655         LOG_ERROR(LOG_TAG, "%s: message loop already NULL. Alarm: %s", __func__,
656                   alarm->stats.name);
657         continue;
658       }
659 
660       alarm->closure.i.Reset(Bind(alarm_ready_mloop, alarm));
661       get_main_message_loop()->task_runner()->PostTask(
662           FROM_HERE, alarm->closure.i.callback());
663     } else {
664       fixed_queue_enqueue(alarm->queue, alarm);
665     }
666   }
667 
668   LOG_DEBUG(LOG_TAG, "%s Callback thread exited", __func__);
669 }
670 
timer_create_internal(const clockid_t clock_id,timer_t * timer)671 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer) {
672   CHECK(timer != NULL);
673 
674   struct sigevent sigevent;
675   // create timer with RT priority thread
676   pthread_attr_t thread_attr;
677   pthread_attr_init(&thread_attr);
678   pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
679   struct sched_param param;
680   param.sched_priority = THREAD_RT_PRIORITY;
681   pthread_attr_setschedparam(&thread_attr, &param);
682 
683   memset(&sigevent, 0, sizeof(sigevent));
684   sigevent.sigev_notify = SIGEV_THREAD;
685   sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;
686   sigevent.sigev_notify_attributes = &thread_attr;
687   if (timer_create(clock_id, &sigevent, timer) == -1) {
688     LOG_ERROR(LOG_TAG, "%s unable to create timer with clock %d: %s", __func__,
689               clock_id, strerror(errno));
690     if (clock_id == CLOCK_BOOTTIME_ALARM) {
691       LOG_ERROR(LOG_TAG,
692                 "The kernel might not have support for "
693                 "timer_create(CLOCK_BOOTTIME_ALARM): "
694                 "https://lwn.net/Articles/429925/");
695       LOG_ERROR(LOG_TAG,
696                 "See following patches: "
697                 "https://git.kernel.org/cgit/linux/kernel/git/torvalds/"
698                 "linux.git/log/?qt=grep&q=CLOCK_BOOTTIME_ALARM");
699     }
700     return false;
701   }
702 
703   return true;
704 }
705 
update_scheduling_stats(alarm_stats_t * stats,uint64_t now_ms,uint64_t deadline_ms)706 static void update_scheduling_stats(alarm_stats_t* stats, uint64_t now_ms,
707                                     uint64_t deadline_ms) {
708   stats->total_updates++;
709   stats->last_update_ms = now_ms;
710 
711   if (deadline_ms < now_ms) {
712     // Overdue scheduling
713     uint64_t delta_ms = now_ms - deadline_ms;
714     update_stat(&stats->overdue_scheduling, delta_ms);
715   } else if (deadline_ms > now_ms) {
716     // Premature scheduling
717     uint64_t delta_ms = deadline_ms - now_ms;
718     update_stat(&stats->premature_scheduling, delta_ms);
719   }
720 }
721 
dump_stat(int fd,stat_t * stat,const char * description)722 static void dump_stat(int fd, stat_t* stat, const char* description) {
723   uint64_t average_time_ms = 0;
724   if (stat->count != 0) average_time_ms = stat->total_ms / stat->count;
725 
726   dprintf(fd, "%-51s: %llu / %llu / %llu\n", description,
727           (unsigned long long)stat->total_ms, (unsigned long long)stat->max_ms,
728           (unsigned long long)average_time_ms);
729 }
730 
alarm_debug_dump(int fd)731 void alarm_debug_dump(int fd) {
732   dprintf(fd, "\nBluetooth Alarms Statistics:\n");
733 
734   std::lock_guard<std::mutex> lock(alarms_mutex);
735 
736   if (alarms == NULL) {
737     dprintf(fd, "  None\n");
738     return;
739   }
740 
741   uint64_t just_now_ms = now_ms();
742 
743   dprintf(fd, "  Total Alarms: %zu\n\n", list_length(alarms));
744 
745   // Dump info for each alarm
746   for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
747        node = list_next(node)) {
748     alarm_t* alarm = (alarm_t*)list_node(node);
749     alarm_stats_t* stats = &alarm->stats;
750 
751     dprintf(fd, "  Alarm : %s (%s)\n", stats->name,
752             (alarm->is_periodic) ? "PERIODIC" : "SINGLE");
753 
754     dprintf(fd, "%-51s: %zu / %zu / %zu / %zu\n",
755             "    Action counts (sched/resched/exec/cancel)",
756             stats->scheduled_count, stats->rescheduled_count,
757             stats->total_updates, stats->canceled_count);
758 
759     dprintf(fd, "%-51s: %zu / %zu\n",
760             "    Deviation counts (overdue/premature)",
761             stats->overdue_scheduling.count, stats->premature_scheduling.count);
762 
763     dprintf(fd, "%-51s: %llu / %llu / %lld\n",
764             "    Time in ms (since creation/interval/remaining)",
765             (unsigned long long)(just_now_ms - alarm->creation_time_ms),
766             (unsigned long long)alarm->period_ms,
767             (long long)(alarm->deadline_ms - just_now_ms));
768 
769     dump_stat(fd, &stats->overdue_scheduling,
770               "    Overdue scheduling time in ms (total/max/avg)");
771 
772     dump_stat(fd, &stats->premature_scheduling,
773               "    Premature scheduling time in ms (total/max/avg)");
774 
775     dprintf(fd, "\n");
776   }
777 }
778