1 //===- LoopDependenceAnalysis.cpp - LDA Implementation ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the (beginning) of an implementation of a loop dependence analysis
11 // framework, which is used to detect dependences in memory accesses in loops.
12 //
13 // Please note that this is work in progress and the interface is subject to
14 // change.
15 //
16 // TODO: adapt as implementation progresses.
17 //
18 // TODO: document lingo (pair, subscript, index)
19 //
20 //===----------------------------------------------------------------------===//
21
22 #define DEBUG_TYPE "lda"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/LoopDependenceAnalysis.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Assembly/Writer.h"
32 #include "llvm/Instructions.h"
33 #include "llvm/Operator.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetData.h"
39 using namespace llvm;
40
41 STATISTIC(NumAnswered, "Number of dependence queries answered");
42 STATISTIC(NumAnalysed, "Number of distinct dependence pairs analysed");
43 STATISTIC(NumDependent, "Number of pairs with dependent accesses");
44 STATISTIC(NumIndependent, "Number of pairs with independent accesses");
45 STATISTIC(NumUnknown, "Number of pairs with unknown accesses");
46
createLoopDependenceAnalysisPass()47 LoopPass *llvm::createLoopDependenceAnalysisPass() {
48 return new LoopDependenceAnalysis();
49 }
50
51 INITIALIZE_PASS_BEGIN(LoopDependenceAnalysis, "lda",
52 "Loop Dependence Analysis", false, true)
53 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
54 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
55 INITIALIZE_PASS_END(LoopDependenceAnalysis, "lda",
56 "Loop Dependence Analysis", false, true)
57 char LoopDependenceAnalysis::ID = 0;
58
59 //===----------------------------------------------------------------------===//
60 // Utility Functions
61 //===----------------------------------------------------------------------===//
62
IsMemRefInstr(const Value * V)63 static inline bool IsMemRefInstr(const Value *V) {
64 const Instruction *I = dyn_cast<const Instruction>(V);
65 return I && (I->mayReadFromMemory() || I->mayWriteToMemory());
66 }
67
GetMemRefInstrs(const Loop * L,SmallVectorImpl<Instruction * > & Memrefs)68 static void GetMemRefInstrs(const Loop *L,
69 SmallVectorImpl<Instruction*> &Memrefs) {
70 for (Loop::block_iterator b = L->block_begin(), be = L->block_end();
71 b != be; ++b)
72 for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end();
73 i != ie; ++i)
74 if (IsMemRefInstr(i))
75 Memrefs.push_back(i);
76 }
77
IsLoadOrStoreInst(Value * I)78 static bool IsLoadOrStoreInst(Value *I) {
79 // Returns true if the load or store can be analyzed. Atomic and volatile
80 // operations have properties which this analysis does not understand.
81 if (LoadInst *LI = dyn_cast<LoadInst>(I))
82 return LI->isUnordered();
83 else if (StoreInst *SI = dyn_cast<StoreInst>(I))
84 return SI->isUnordered();
85 return false;
86 }
87
GetPointerOperand(Value * I)88 static Value *GetPointerOperand(Value *I) {
89 if (LoadInst *i = dyn_cast<LoadInst>(I))
90 return i->getPointerOperand();
91 if (StoreInst *i = dyn_cast<StoreInst>(I))
92 return i->getPointerOperand();
93 llvm_unreachable("Value is no load or store instruction!");
94 // Never reached.
95 return 0;
96 }
97
UnderlyingObjectsAlias(AliasAnalysis * AA,const Value * A,const Value * B)98 static AliasAnalysis::AliasResult UnderlyingObjectsAlias(AliasAnalysis *AA,
99 const Value *A,
100 const Value *B) {
101 const Value *aObj = GetUnderlyingObject(A);
102 const Value *bObj = GetUnderlyingObject(B);
103 return AA->alias(aObj, AA->getTypeStoreSize(aObj->getType()),
104 bObj, AA->getTypeStoreSize(bObj->getType()));
105 }
106
GetZeroSCEV(ScalarEvolution * SE)107 static inline const SCEV *GetZeroSCEV(ScalarEvolution *SE) {
108 return SE->getConstant(Type::getInt32Ty(SE->getContext()), 0L);
109 }
110
111 //===----------------------------------------------------------------------===//
112 // Dependence Testing
113 //===----------------------------------------------------------------------===//
114
isDependencePair(const Value * A,const Value * B) const115 bool LoopDependenceAnalysis::isDependencePair(const Value *A,
116 const Value *B) const {
117 return IsMemRefInstr(A) &&
118 IsMemRefInstr(B) &&
119 (cast<const Instruction>(A)->mayWriteToMemory() ||
120 cast<const Instruction>(B)->mayWriteToMemory());
121 }
122
findOrInsertDependencePair(Value * A,Value * B,DependencePair * & P)123 bool LoopDependenceAnalysis::findOrInsertDependencePair(Value *A,
124 Value *B,
125 DependencePair *&P) {
126 void *insertPos = 0;
127 FoldingSetNodeID id;
128 id.AddPointer(A);
129 id.AddPointer(B);
130
131 P = Pairs.FindNodeOrInsertPos(id, insertPos);
132 if (P) return true;
133
134 P = new (PairAllocator) DependencePair(id, A, B);
135 Pairs.InsertNode(P, insertPos);
136 return false;
137 }
138
getLoops(const SCEV * S,DenseSet<const Loop * > * Loops) const139 void LoopDependenceAnalysis::getLoops(const SCEV *S,
140 DenseSet<const Loop*>* Loops) const {
141 // Refactor this into an SCEVVisitor, if efficiency becomes a concern.
142 for (const Loop *L = this->L; L != 0; L = L->getParentLoop())
143 if (!SE->isLoopInvariant(S, L))
144 Loops->insert(L);
145 }
146
isLoopInvariant(const SCEV * S) const147 bool LoopDependenceAnalysis::isLoopInvariant(const SCEV *S) const {
148 DenseSet<const Loop*> loops;
149 getLoops(S, &loops);
150 return loops.empty();
151 }
152
isAffine(const SCEV * S) const153 bool LoopDependenceAnalysis::isAffine(const SCEV *S) const {
154 const SCEVAddRecExpr *rec = dyn_cast<SCEVAddRecExpr>(S);
155 return isLoopInvariant(S) || (rec && rec->isAffine());
156 }
157
isZIVPair(const SCEV * A,const SCEV * B) const158 bool LoopDependenceAnalysis::isZIVPair(const SCEV *A, const SCEV *B) const {
159 return isLoopInvariant(A) && isLoopInvariant(B);
160 }
161
isSIVPair(const SCEV * A,const SCEV * B) const162 bool LoopDependenceAnalysis::isSIVPair(const SCEV *A, const SCEV *B) const {
163 DenseSet<const Loop*> loops;
164 getLoops(A, &loops);
165 getLoops(B, &loops);
166 return loops.size() == 1;
167 }
168
169 LoopDependenceAnalysis::DependenceResult
analyseZIV(const SCEV * A,const SCEV * B,Subscript * S) const170 LoopDependenceAnalysis::analyseZIV(const SCEV *A,
171 const SCEV *B,
172 Subscript *S) const {
173 assert(isZIVPair(A, B) && "Attempted to ZIV-test non-ZIV SCEVs!");
174 return A == B ? Dependent : Independent;
175 }
176
177 LoopDependenceAnalysis::DependenceResult
analyseSIV(const SCEV * A,const SCEV * B,Subscript * S) const178 LoopDependenceAnalysis::analyseSIV(const SCEV *A,
179 const SCEV *B,
180 Subscript *S) const {
181 return Unknown; // TODO: Implement.
182 }
183
184 LoopDependenceAnalysis::DependenceResult
analyseMIV(const SCEV * A,const SCEV * B,Subscript * S) const185 LoopDependenceAnalysis::analyseMIV(const SCEV *A,
186 const SCEV *B,
187 Subscript *S) const {
188 return Unknown; // TODO: Implement.
189 }
190
191 LoopDependenceAnalysis::DependenceResult
analyseSubscript(const SCEV * A,const SCEV * B,Subscript * S) const192 LoopDependenceAnalysis::analyseSubscript(const SCEV *A,
193 const SCEV *B,
194 Subscript *S) const {
195 DEBUG(dbgs() << " Testing subscript: " << *A << ", " << *B << "\n");
196
197 if (A == B) {
198 DEBUG(dbgs() << " -> [D] same SCEV\n");
199 return Dependent;
200 }
201
202 if (!isAffine(A) || !isAffine(B)) {
203 DEBUG(dbgs() << " -> [?] not affine\n");
204 return Unknown;
205 }
206
207 if (isZIVPair(A, B))
208 return analyseZIV(A, B, S);
209
210 if (isSIVPair(A, B))
211 return analyseSIV(A, B, S);
212
213 return analyseMIV(A, B, S);
214 }
215
216 LoopDependenceAnalysis::DependenceResult
analysePair(DependencePair * P) const217 LoopDependenceAnalysis::analysePair(DependencePair *P) const {
218 DEBUG(dbgs() << "Analysing:\n" << *P->A << "\n" << *P->B << "\n");
219
220 // We only analyse loads and stores but no possible memory accesses by e.g.
221 // free, call, or invoke instructions.
222 if (!IsLoadOrStoreInst(P->A) || !IsLoadOrStoreInst(P->B)) {
223 DEBUG(dbgs() << "--> [?] no load/store\n");
224 return Unknown;
225 }
226
227 Value *aPtr = GetPointerOperand(P->A);
228 Value *bPtr = GetPointerOperand(P->B);
229
230 switch (UnderlyingObjectsAlias(AA, aPtr, bPtr)) {
231 case AliasAnalysis::MayAlias:
232 case AliasAnalysis::PartialAlias:
233 // We can not analyse objects if we do not know about their aliasing.
234 DEBUG(dbgs() << "---> [?] may alias\n");
235 return Unknown;
236
237 case AliasAnalysis::NoAlias:
238 // If the objects noalias, they are distinct, accesses are independent.
239 DEBUG(dbgs() << "---> [I] no alias\n");
240 return Independent;
241
242 case AliasAnalysis::MustAlias:
243 break; // The underlying objects alias, test accesses for dependence.
244 }
245
246 const GEPOperator *aGEP = dyn_cast<GEPOperator>(aPtr);
247 const GEPOperator *bGEP = dyn_cast<GEPOperator>(bPtr);
248
249 if (!aGEP || !bGEP)
250 return Unknown;
251
252 // FIXME: Is filtering coupled subscripts necessary?
253
254 // Collect GEP operand pairs (FIXME: use GetGEPOperands from BasicAA), adding
255 // trailing zeroes to the smaller GEP, if needed.
256 typedef SmallVector<std::pair<const SCEV*, const SCEV*>, 4> GEPOpdPairsTy;
257 GEPOpdPairsTy opds;
258 for(GEPOperator::const_op_iterator aIdx = aGEP->idx_begin(),
259 aEnd = aGEP->idx_end(),
260 bIdx = bGEP->idx_begin(),
261 bEnd = bGEP->idx_end();
262 aIdx != aEnd && bIdx != bEnd;
263 aIdx += (aIdx != aEnd), bIdx += (bIdx != bEnd)) {
264 const SCEV* aSCEV = (aIdx != aEnd) ? SE->getSCEV(*aIdx) : GetZeroSCEV(SE);
265 const SCEV* bSCEV = (bIdx != bEnd) ? SE->getSCEV(*bIdx) : GetZeroSCEV(SE);
266 opds.push_back(std::make_pair(aSCEV, bSCEV));
267 }
268
269 if (!opds.empty() && opds[0].first != opds[0].second) {
270 // We cannot (yet) handle arbitrary GEP pointer offsets. By limiting
271 //
272 // TODO: this could be relaxed by adding the size of the underlying object
273 // to the first subscript. If we have e.g. (GEP x,0,i; GEP x,2,-i) and we
274 // know that x is a [100 x i8]*, we could modify the first subscript to be
275 // (i, 200-i) instead of (i, -i).
276 return Unknown;
277 }
278
279 // Now analyse the collected operand pairs (skipping the GEP ptr offsets).
280 for (GEPOpdPairsTy::const_iterator i = opds.begin() + 1, end = opds.end();
281 i != end; ++i) {
282 Subscript subscript;
283 DependenceResult result = analyseSubscript(i->first, i->second, &subscript);
284 if (result != Dependent) {
285 // We either proved independence or failed to analyse this subscript.
286 // Further subscripts will not improve the situation, so abort early.
287 return result;
288 }
289 P->Subscripts.push_back(subscript);
290 }
291 // We successfully analysed all subscripts but failed to prove independence.
292 return Dependent;
293 }
294
depends(Value * A,Value * B)295 bool LoopDependenceAnalysis::depends(Value *A, Value *B) {
296 assert(isDependencePair(A, B) && "Values form no dependence pair!");
297 ++NumAnswered;
298
299 DependencePair *p;
300 if (!findOrInsertDependencePair(A, B, p)) {
301 // The pair is not cached, so analyse it.
302 ++NumAnalysed;
303 switch (p->Result = analysePair(p)) {
304 case Dependent: ++NumDependent; break;
305 case Independent: ++NumIndependent; break;
306 case Unknown: ++NumUnknown; break;
307 }
308 }
309 return p->Result != Independent;
310 }
311
312 //===----------------------------------------------------------------------===//
313 // LoopDependenceAnalysis Implementation
314 //===----------------------------------------------------------------------===//
315
runOnLoop(Loop * L,LPPassManager &)316 bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) {
317 this->L = L;
318 AA = &getAnalysis<AliasAnalysis>();
319 SE = &getAnalysis<ScalarEvolution>();
320 return false;
321 }
322
releaseMemory()323 void LoopDependenceAnalysis::releaseMemory() {
324 Pairs.clear();
325 PairAllocator.Reset();
326 }
327
getAnalysisUsage(AnalysisUsage & AU) const328 void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
329 AU.setPreservesAll();
330 AU.addRequiredTransitive<AliasAnalysis>();
331 AU.addRequiredTransitive<ScalarEvolution>();
332 }
333
PrintLoopInfo(raw_ostream & OS,LoopDependenceAnalysis * LDA,const Loop * L)334 static void PrintLoopInfo(raw_ostream &OS,
335 LoopDependenceAnalysis *LDA, const Loop *L) {
336 if (!L->empty()) return; // ignore non-innermost loops
337
338 SmallVector<Instruction*, 8> memrefs;
339 GetMemRefInstrs(L, memrefs);
340
341 OS << "Loop at depth " << L->getLoopDepth() << ", header block: ";
342 WriteAsOperand(OS, L->getHeader(), false);
343 OS << "\n";
344
345 OS << " Load/store instructions: " << memrefs.size() << "\n";
346 for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
347 end = memrefs.end(); x != end; ++x)
348 OS << "\t" << (x - memrefs.begin()) << ": " << **x << "\n";
349
350 OS << " Pairwise dependence results:\n";
351 for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
352 end = memrefs.end(); x != end; ++x)
353 for (SmallVector<Instruction*, 8>::const_iterator y = x + 1;
354 y != end; ++y)
355 if (LDA->isDependencePair(*x, *y))
356 OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin())
357 << ": " << (LDA->depends(*x, *y) ? "dependent" : "independent")
358 << "\n";
359 }
360
print(raw_ostream & OS,const Module *) const361 void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const {
362 // TODO: doc why const_cast is safe
363 PrintLoopInfo(OS, const_cast<LoopDependenceAnalysis*>(this), this->L);
364 }
365