• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <sys/mman.h>
30 #include <drm_fourcc.h>
31 
32 #include "anv_private.h"
33 #include "util/debug.h"
34 #include "vk_util.h"
35 
36 #include "vk_format_info.h"
37 
38 static isl_surf_usage_flags_t
choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,VkImageUsageFlags vk_usage,isl_surf_usage_flags_t isl_extra_usage,VkImageAspectFlagBits aspect)39 choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
40                       VkImageUsageFlags vk_usage,
41                       isl_surf_usage_flags_t isl_extra_usage,
42                       VkImageAspectFlagBits aspect)
43 {
44    isl_surf_usage_flags_t isl_usage = isl_extra_usage;
45 
46    if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
47       isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
48 
49    if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
50       isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
51 
52    if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
53       isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
54 
55    if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
56       isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
57 
58    /* Even if we're only using it for transfer operations, clears to depth and
59     * stencil images happen as depth and stencil so they need the right ISL
60     * usage bits or else things will fall apart.
61     */
62    switch (aspect) {
63    case VK_IMAGE_ASPECT_DEPTH_BIT:
64       isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
65       break;
66    case VK_IMAGE_ASPECT_STENCIL_BIT:
67       isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
68       break;
69    case VK_IMAGE_ASPECT_COLOR_BIT:
70    case VK_IMAGE_ASPECT_PLANE_0_BIT_KHR:
71    case VK_IMAGE_ASPECT_PLANE_1_BIT_KHR:
72    case VK_IMAGE_ASPECT_PLANE_2_BIT_KHR:
73       break;
74    default:
75       unreachable("bad VkImageAspect");
76    }
77 
78    if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
79       /* blorp implements transfers by sampling from the source image. */
80       isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
81    }
82 
83    if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
84        aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
85       /* blorp implements transfers by rendering into the destination image.
86        * Only request this with color images, as we deal with depth/stencil
87        * formats differently. */
88       isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
89    }
90 
91    return isl_usage;
92 }
93 
94 static isl_tiling_flags_t
choose_isl_tiling_flags(const struct anv_image_create_info * anv_info,const struct isl_drm_modifier_info * isl_mod_info)95 choose_isl_tiling_flags(const struct anv_image_create_info *anv_info,
96                         const struct isl_drm_modifier_info *isl_mod_info)
97 {
98    const VkImageCreateInfo *base_info = anv_info->vk_info;
99    isl_tiling_flags_t flags = 0;
100 
101    switch (base_info->tiling) {
102    default:
103       unreachable("bad VkImageTiling");
104    case VK_IMAGE_TILING_OPTIMAL:
105       flags = ISL_TILING_ANY_MASK;
106       break;
107    case VK_IMAGE_TILING_LINEAR:
108       flags = ISL_TILING_LINEAR_BIT;
109       break;
110    }
111 
112    if (anv_info->isl_tiling_flags)
113       flags &= anv_info->isl_tiling_flags;
114 
115    if (isl_mod_info)
116       flags &= 1 << isl_mod_info->tiling;
117 
118    assert(flags);
119 
120    return flags;
121 }
122 
123 static struct anv_surface *
get_surface(struct anv_image * image,VkImageAspectFlagBits aspect)124 get_surface(struct anv_image *image, VkImageAspectFlagBits aspect)
125 {
126    uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
127    return &image->planes[plane].surface;
128 }
129 
130 static void
add_surface(struct anv_image * image,struct anv_surface * surf,uint32_t plane)131 add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane)
132 {
133    assert(surf->isl.size > 0); /* isl surface must be initialized */
134 
135    if (image->disjoint) {
136       surf->offset = align_u32(image->planes[plane].size, surf->isl.alignment);
137       /* Plane offset is always 0 when it's disjoint. */
138    } else {
139       surf->offset = align_u32(image->size, surf->isl.alignment);
140       /* Determine plane's offset only once when the first surface is added. */
141       if (image->planes[plane].size == 0)
142          image->planes[plane].offset = image->size;
143    }
144 
145    image->size = surf->offset + surf->isl.size;
146    image->planes[plane].size = (surf->offset + surf->isl.size) - image->planes[plane].offset;
147 
148    image->alignment = MAX2(image->alignment, surf->isl.alignment);
149    image->planes[plane].alignment = MAX2(image->planes[plane].alignment,
150                                          surf->isl.alignment);
151 }
152 
153 
154 static bool
all_formats_ccs_e_compatible(const struct gen_device_info * devinfo,const struct VkImageCreateInfo * vk_info)155 all_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
156                              const struct VkImageCreateInfo *vk_info)
157 {
158    enum isl_format format =
159       anv_get_isl_format(devinfo, vk_info->format,
160                          VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
161 
162    if (!isl_format_supports_ccs_e(devinfo, format))
163       return false;
164 
165    if (!(vk_info->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
166       return true;
167 
168    const VkImageFormatListCreateInfoKHR *fmt_list =
169       vk_find_struct_const(vk_info->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
170 
171    if (!fmt_list || fmt_list->viewFormatCount == 0)
172       return false;
173 
174    for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
175       enum isl_format view_format =
176          anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
177                             VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
178 
179       if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
180          return false;
181    }
182 
183    return true;
184 }
185 
186 /**
187  * For color images that have an auxiliary surface, request allocation for an
188  * additional buffer that mainly stores fast-clear values. Use of this buffer
189  * allows us to access the image's subresources while being aware of their
190  * fast-clear values in non-trivial cases (e.g., outside of a render pass in
191  * which a fast clear has occurred).
192  *
193  * For the purpose of discoverability, the algorithm used to manage this buffer
194  * is described here. A clear value in this buffer is updated when a fast clear
195  * is performed on a subresource. One of two synchronization operations is
196  * performed in order for a following memory access to use the fast-clear
197  * value:
198  *    a. Copy the value from the buffer to the surface state object used for
199  *       reading. This is done implicitly when the value is the clear value
200  *       predetermined to be the default in other surface state objects. This
201  *       is currently only done explicitly for the operation below.
202  *    b. Do (a) and use the surface state object to resolve the subresource.
203  *       This is only done during layout transitions for decent performance.
204  *
205  * With the above scheme, we can fast-clear whenever the hardware allows except
206  * for two cases in which synchronization becomes impossible or undesirable:
207  *    * The subresource is in the GENERAL layout and is cleared to a value
208  *      other than the special default value.
209  *
210  *      Performing a synchronization operation in order to read from the
211  *      subresource is undesirable in this case. Firstly, b) is not an option
212  *      because a layout transition isn't required between a write and read of
213  *      an image in the GENERAL layout. Secondly, it's undesirable to do a)
214  *      explicitly because it would require large infrastructural changes. The
215  *      Vulkan API supports us in deciding not to optimize this layout by
216  *      stating that using this layout may cause suboptimal performance. NOTE:
217  *      the auxiliary buffer must always be enabled to support a) implicitly.
218  *
219  *
220  *    * For the given miplevel, only some of the layers are cleared at once.
221  *
222  *      If the user clears each layer to a different value, then tries to
223  *      render to multiple layers at once, we have no ability to perform a
224  *      synchronization operation in between. a) is not helpful because the
225  *      object can only hold one clear value. b) is not an option because a
226  *      layout transition isn't required in this case.
227  */
228 static void
add_fast_clear_state_buffer(struct anv_image * image,VkImageAspectFlagBits aspect,uint32_t plane,const struct anv_device * device)229 add_fast_clear_state_buffer(struct anv_image *image,
230                             VkImageAspectFlagBits aspect,
231                             uint32_t plane,
232                             const struct anv_device *device)
233 {
234    assert(image && device);
235    assert(image->planes[plane].aux_surface.isl.size > 0 &&
236           image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
237 
238    /* The offset to the buffer of clear values must be dword-aligned for GPU
239     * memcpy operations. It is located immediately after the auxiliary surface.
240     */
241 
242    /* Tiled images are guaranteed to be 4K aligned, so the image alignment
243     * should also be dword-aligned.
244     */
245    assert(image->alignment % 4 == 0);
246 
247    /* Auxiliary buffers should be a multiple of 4K, so the start of the clear
248     * values buffer should already be dword-aligned.
249     */
250    assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0);
251 
252    /* This buffer should be at the very end of the plane. */
253    if (image->disjoint) {
254       assert(image->planes[plane].size ==
255              (image->planes[plane].offset + image->planes[plane].size));
256    } else {
257       assert(image->size ==
258              (image->planes[plane].offset + image->planes[plane].size));
259    }
260 
261    const unsigned entry_size = anv_fast_clear_state_entry_size(device);
262    /* There's no padding between entries, so ensure that they're always a
263     * multiple of 32 bits in order to enable GPU memcpy operations.
264     */
265    assert(entry_size % 4 == 0);
266 
267    const unsigned plane_state_size =
268       entry_size * anv_image_aux_levels(image, aspect);
269 
270    image->planes[plane].fast_clear_state_offset =
271       image->planes[plane].offset + image->planes[plane].size;
272 
273    image->planes[plane].size += plane_state_size;
274    image->size += plane_state_size;
275 }
276 
277 /**
278  * Initialize the anv_image::*_surface selected by \a aspect. Then update the
279  * image's memory requirements (that is, the image's size and alignment).
280  */
281 static VkResult
make_surface(const struct anv_device * dev,struct anv_image * image,const struct anv_image_create_info * anv_info,isl_tiling_flags_t tiling_flags,VkImageAspectFlagBits aspect)282 make_surface(const struct anv_device *dev,
283              struct anv_image *image,
284              const struct anv_image_create_info *anv_info,
285              isl_tiling_flags_t tiling_flags,
286              VkImageAspectFlagBits aspect)
287 {
288    const VkImageCreateInfo *vk_info = anv_info->vk_info;
289    bool ok UNUSED;
290 
291    static const enum isl_surf_dim vk_to_isl_surf_dim[] = {
292       [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
293       [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
294       [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
295    };
296 
297    image->extent = anv_sanitize_image_extent(vk_info->imageType,
298                                              vk_info->extent);
299 
300    const unsigned plane = anv_image_aspect_to_plane(image->aspects, aspect);
301    const  struct anv_format_plane plane_format =
302       anv_get_format_plane(&dev->info, image->vk_format, aspect, image->tiling);
303    struct anv_surface *anv_surf = &image->planes[plane].surface;
304 
305    const isl_surf_usage_flags_t usage =
306       choose_isl_surf_usage(vk_info->flags, image->usage,
307                             anv_info->isl_extra_usage_flags, aspect);
308 
309    /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
310     * fall back to linear on Broadwell and earlier because we aren't
311     * guaranteed that we can handle offsets correctly.  On Sky Lake, the
312     * horizontal and vertical alignments are sufficiently high that we can
313     * just use RENDER_SURFACE_STATE::X/Y Offset.
314     */
315    bool needs_shadow = false;
316    if (dev->info.gen <= 8 &&
317        (vk_info->flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR) &&
318        vk_info->tiling == VK_IMAGE_TILING_OPTIMAL) {
319       assert(isl_format_is_compressed(plane_format.isl_format));
320       tiling_flags = ISL_TILING_LINEAR_BIT;
321       needs_shadow = true;
322    }
323 
324    ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl,
325       .dim = vk_to_isl_surf_dim[vk_info->imageType],
326       .format = plane_format.isl_format,
327       .width = image->extent.width / plane_format.denominator_scales[0],
328       .height = image->extent.height / plane_format.denominator_scales[1],
329       .depth = image->extent.depth,
330       .levels = vk_info->mipLevels,
331       .array_len = vk_info->arrayLayers,
332       .samples = vk_info->samples,
333       .min_alignment = 0,
334       .row_pitch = anv_info->stride,
335       .usage = usage,
336       .tiling_flags = tiling_flags);
337 
338    if (!ok)
339       return VK_ERROR_OUT_OF_DEVICE_MEMORY;
340 
341    image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
342 
343    add_surface(image, anv_surf, plane);
344 
345    /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
346     * create an identical tiled shadow surface for use while texturing so we
347     * don't get garbage performance.
348     */
349    if (needs_shadow) {
350       assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
351       assert(tiling_flags == ISL_TILING_LINEAR_BIT);
352 
353       ok = isl_surf_init(&dev->isl_dev, &image->planes[plane].shadow_surface.isl,
354          .dim = vk_to_isl_surf_dim[vk_info->imageType],
355          .format = plane_format.isl_format,
356          .width = image->extent.width,
357          .height = image->extent.height,
358          .depth = image->extent.depth,
359          .levels = vk_info->mipLevels,
360          .array_len = vk_info->arrayLayers,
361          .samples = vk_info->samples,
362          .min_alignment = 0,
363          .row_pitch = anv_info->stride,
364          .usage = usage,
365          .tiling_flags = ISL_TILING_ANY_MASK);
366 
367       /* isl_surf_init() will fail only if provided invalid input. Invalid input
368        * is illegal in Vulkan.
369        */
370       assert(ok);
371 
372       add_surface(image, &image->planes[plane].shadow_surface, plane);
373    }
374 
375    /* Add a HiZ surface to a depth buffer that will be used for rendering.
376     */
377    if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
378       /* We don't advertise that depth buffers could be used as storage
379        * images.
380        */
381        assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
382 
383       /* Allow the user to control HiZ enabling. Disable by default on gen7
384        * because resolves are not currently implemented pre-BDW.
385        */
386       if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
387          /* It will never be used as an attachment, HiZ is pointless. */
388       } else if (dev->info.gen == 7) {
389          anv_perf_warn(dev->instance, image, "Implement gen7 HiZ");
390       } else if (vk_info->mipLevels > 1) {
391          anv_perf_warn(dev->instance, image, "Enable multi-LOD HiZ");
392       } else if (vk_info->arrayLayers > 1) {
393          anv_perf_warn(dev->instance, image,
394                        "Implement multi-arrayLayer HiZ clears and resolves");
395       } else if (dev->info.gen == 8 && vk_info->samples > 1) {
396          anv_perf_warn(dev->instance, image, "Enable gen8 multisampled HiZ");
397       } else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) {
398          assert(image->planes[plane].aux_surface.isl.size == 0);
399          ok = isl_surf_get_hiz_surf(&dev->isl_dev,
400                                     &image->planes[plane].surface.isl,
401                                     &image->planes[plane].aux_surface.isl);
402          assert(ok);
403          add_surface(image, &image->planes[plane].aux_surface, plane);
404          image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
405       }
406    } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples == 1) {
407       /* TODO: Disallow compression with :
408        *
409        *     1) non multiplanar images (We appear to hit a sampler bug with
410        *        CCS & R16G16 format. Putting the clear state a page/4096bytes
411        *        further fixes the issue).
412        *
413        *     2) alias images, because they might be aliases of images
414        *        described in 1)
415        *
416        *     3) compression disabled by debug
417        */
418       const bool allow_compression =
419          image->n_planes == 1 &&
420          (vk_info->flags & VK_IMAGE_CREATE_ALIAS_BIT_KHR) == 0 &&
421          likely((INTEL_DEBUG & DEBUG_NO_RBC) == 0);
422 
423       if (allow_compression) {
424          assert(image->planes[plane].aux_surface.isl.size == 0);
425          ok = isl_surf_get_ccs_surf(&dev->isl_dev,
426                                     &image->planes[plane].surface.isl,
427                                     &image->planes[plane].aux_surface.isl, 0);
428          if (ok) {
429 
430             /* Disable CCS when it is not useful (i.e., when you can't render
431              * to the image with CCS enabled).
432              */
433             if (!isl_format_supports_rendering(&dev->info,
434                                                plane_format.isl_format)) {
435                /* While it may be technically possible to enable CCS for this
436                 * image, we currently don't have things hooked up to get it
437                 * working.
438                 */
439                anv_perf_warn(dev->instance, image,
440                              "This image format doesn't support rendering. "
441                              "Not allocating an CCS buffer.");
442                image->planes[plane].aux_surface.isl.size = 0;
443                return VK_SUCCESS;
444             }
445 
446             add_surface(image, &image->planes[plane].aux_surface, plane);
447             add_fast_clear_state_buffer(image, aspect, plane, dev);
448 
449             /* For images created without MUTABLE_FORMAT_BIT set, we know that
450              * they will always be used with the original format.  In
451              * particular, they will always be used with a format that
452              * supports color compression.  If it's never used as a storage
453              * image, then it will only be used through the sampler or the as
454              * a render target.  This means that it's safe to just leave
455              * compression on at all times for these formats.
456              */
457             if (!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
458                 all_formats_ccs_e_compatible(&dev->info, vk_info)) {
459                image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
460             }
461          }
462       }
463    } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples > 1) {
464       assert(!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT));
465       assert(image->planes[plane].aux_surface.isl.size == 0);
466       ok = isl_surf_get_mcs_surf(&dev->isl_dev,
467                                  &image->planes[plane].surface.isl,
468                                  &image->planes[plane].aux_surface.isl);
469       if (ok) {
470          add_surface(image, &image->planes[plane].aux_surface, plane);
471          add_fast_clear_state_buffer(image, aspect, plane, dev);
472          image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
473       }
474    }
475 
476    assert((image->planes[plane].offset + image->planes[plane].size) == image->size);
477 
478    /* Upper bound of the last surface should be smaller than the plane's
479     * size.
480     */
481    assert((MAX2(image->planes[plane].surface.offset,
482                 image->planes[plane].aux_surface.offset) +
483            (image->planes[plane].aux_surface.isl.size > 0 ?
484             image->planes[plane].aux_surface.isl.size :
485             image->planes[plane].surface.isl.size)) <=
486           (image->planes[plane].offset + image->planes[plane].size));
487 
488    if (image->planes[plane].aux_surface.isl.size) {
489       /* assert(image->planes[plane].fast_clear_state_offset == */
490       /*        (image->planes[plane].aux_surface.offset + image->planes[plane].aux_surface.isl.size)); */
491       assert(image->planes[plane].fast_clear_state_offset <
492              (image->planes[plane].offset + image->planes[plane].size));
493    }
494 
495    return VK_SUCCESS;
496 }
497 
498 static const struct isl_drm_modifier_info *
get_legacy_scanout_drm_format_mod(VkImageTiling tiling)499 get_legacy_scanout_drm_format_mod(VkImageTiling tiling)
500 {
501    switch (tiling) {
502    case VK_IMAGE_TILING_OPTIMAL:
503       return isl_drm_modifier_get_info(I915_FORMAT_MOD_X_TILED);
504    case VK_IMAGE_TILING_LINEAR:
505       return isl_drm_modifier_get_info(DRM_FORMAT_MOD_LINEAR);
506    default:
507       unreachable("bad VkImageTiling");
508    }
509 }
510 
511 VkResult
anv_image_create(VkDevice _device,const struct anv_image_create_info * create_info,const VkAllocationCallbacks * alloc,VkImage * pImage)512 anv_image_create(VkDevice _device,
513                  const struct anv_image_create_info *create_info,
514                  const VkAllocationCallbacks* alloc,
515                  VkImage *pImage)
516 {
517    ANV_FROM_HANDLE(anv_device, device, _device);
518    const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
519    const struct isl_drm_modifier_info *isl_mod_info = NULL;
520    struct anv_image *image = NULL;
521    VkResult r;
522 
523    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
524 
525    const struct wsi_image_create_info *wsi_info =
526       vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
527    if (wsi_info && wsi_info->scanout)
528       isl_mod_info = get_legacy_scanout_drm_format_mod(pCreateInfo->tiling);
529 
530    anv_assert(pCreateInfo->mipLevels > 0);
531    anv_assert(pCreateInfo->arrayLayers > 0);
532    anv_assert(pCreateInfo->samples > 0);
533    anv_assert(pCreateInfo->extent.width > 0);
534    anv_assert(pCreateInfo->extent.height > 0);
535    anv_assert(pCreateInfo->extent.depth > 0);
536 
537    image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8,
538                        VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
539    if (!image)
540       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
541 
542    image->type = pCreateInfo->imageType;
543    image->extent = pCreateInfo->extent;
544    image->vk_format = pCreateInfo->format;
545    image->format = anv_get_format(pCreateInfo->format);
546    image->aspects = vk_format_aspects(image->vk_format);
547    image->levels = pCreateInfo->mipLevels;
548    image->array_size = pCreateInfo->arrayLayers;
549    image->samples = pCreateInfo->samples;
550    image->usage = pCreateInfo->usage;
551    image->tiling = pCreateInfo->tiling;
552    image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_KHR;
553    image->drm_format_mod = isl_mod_info ? isl_mod_info->modifier :
554                                           DRM_FORMAT_MOD_INVALID;
555 
556    const struct anv_format *format = anv_get_format(image->vk_format);
557    assert(format != NULL);
558 
559    const isl_tiling_flags_t isl_tiling_flags =
560       choose_isl_tiling_flags(create_info, isl_mod_info);
561 
562    image->n_planes = format->n_planes;
563 
564    uint32_t b;
565    for_each_bit(b, image->aspects) {
566       r = make_surface(device, image, create_info, isl_tiling_flags,
567                        (1 << b));
568       if (r != VK_SUCCESS)
569          goto fail;
570    }
571 
572    *pImage = anv_image_to_handle(image);
573 
574    return VK_SUCCESS;
575 
576 fail:
577    if (image)
578       vk_free2(&device->alloc, alloc, image);
579 
580    return r;
581 }
582 
583 VkResult
anv_CreateImage(VkDevice device,const VkImageCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImage * pImage)584 anv_CreateImage(VkDevice device,
585                 const VkImageCreateInfo *pCreateInfo,
586                 const VkAllocationCallbacks *pAllocator,
587                 VkImage *pImage)
588 {
589 #ifdef ANDROID
590    const VkNativeBufferANDROID *gralloc_info =
591       vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
592 
593    if (gralloc_info)
594       return anv_image_from_gralloc(device, pCreateInfo, gralloc_info,
595                                     pAllocator, pImage);
596 #endif
597 
598    return anv_image_create(device,
599       &(struct anv_image_create_info) {
600          .vk_info = pCreateInfo,
601       },
602       pAllocator,
603       pImage);
604 }
605 
606 void
anv_DestroyImage(VkDevice _device,VkImage _image,const VkAllocationCallbacks * pAllocator)607 anv_DestroyImage(VkDevice _device, VkImage _image,
608                  const VkAllocationCallbacks *pAllocator)
609 {
610    ANV_FROM_HANDLE(anv_device, device, _device);
611    ANV_FROM_HANDLE(anv_image, image, _image);
612 
613    if (!image)
614       return;
615 
616    for (uint32_t p = 0; p < image->n_planes; ++p) {
617       if (image->planes[p].bo_is_owned) {
618          assert(image->planes[p].bo != NULL);
619          anv_bo_cache_release(device, &device->bo_cache, image->planes[p].bo);
620       }
621    }
622 
623    vk_free2(&device->alloc, pAllocator, image);
624 }
625 
anv_image_bind_memory_plane(struct anv_device * device,struct anv_image * image,uint32_t plane,struct anv_device_memory * memory,uint32_t memory_offset)626 static void anv_image_bind_memory_plane(struct anv_device *device,
627                                         struct anv_image *image,
628                                         uint32_t plane,
629                                         struct anv_device_memory *memory,
630                                         uint32_t memory_offset)
631 {
632    assert(!image->planes[plane].bo_is_owned);
633 
634    if (!memory) {
635       image->planes[plane].bo = NULL;
636       image->planes[plane].bo_offset = 0;
637       return;
638    }
639 
640    image->planes[plane].bo = memory->bo;
641    image->planes[plane].bo_offset = memory_offset;
642 }
643 
anv_BindImageMemory(VkDevice _device,VkImage _image,VkDeviceMemory _memory,VkDeviceSize memoryOffset)644 VkResult anv_BindImageMemory(
645     VkDevice                                    _device,
646     VkImage                                     _image,
647     VkDeviceMemory                              _memory,
648     VkDeviceSize                                memoryOffset)
649 {
650    ANV_FROM_HANDLE(anv_device, device, _device);
651    ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
652    ANV_FROM_HANDLE(anv_image, image, _image);
653 
654    uint32_t aspect_bit;
655    anv_foreach_image_aspect_bit(aspect_bit, image, image->aspects) {
656       uint32_t plane =
657          anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
658       anv_image_bind_memory_plane(device, image, plane, mem, memoryOffset);
659    }
660 
661    return VK_SUCCESS;
662 }
663 
anv_BindImageMemory2KHR(VkDevice _device,uint32_t bindInfoCount,const VkBindImageMemoryInfoKHR * pBindInfos)664 VkResult anv_BindImageMemory2KHR(
665     VkDevice                                    _device,
666     uint32_t                                    bindInfoCount,
667     const VkBindImageMemoryInfoKHR*             pBindInfos)
668 {
669    ANV_FROM_HANDLE(anv_device, device, _device);
670 
671    for (uint32_t i = 0; i < bindInfoCount; i++) {
672       const VkBindImageMemoryInfoKHR *bind_info = &pBindInfos[i];
673       ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
674       ANV_FROM_HANDLE(anv_image, image, bind_info->image);
675       VkImageAspectFlags aspects = image->aspects;
676 
677       vk_foreach_struct_const(s, bind_info->pNext) {
678          switch (s->sType) {
679          case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO_KHR: {
680             const VkBindImagePlaneMemoryInfoKHR *plane_info =
681                (const VkBindImagePlaneMemoryInfoKHR *) s;
682 
683             aspects = plane_info->planeAspect;
684             break;
685          }
686          default:
687             anv_debug_ignored_stype(s->sType);
688             break;
689          }
690       }
691 
692       uint32_t aspect_bit;
693       anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
694          uint32_t plane =
695             anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
696          anv_image_bind_memory_plane(device, image, plane,
697                                      mem, bind_info->memoryOffset);
698       }
699    }
700 
701    return VK_SUCCESS;
702 }
703 
anv_GetImageSubresourceLayout(VkDevice device,VkImage _image,const VkImageSubresource * subresource,VkSubresourceLayout * layout)704 void anv_GetImageSubresourceLayout(
705     VkDevice                                    device,
706     VkImage                                     _image,
707     const VkImageSubresource*                   subresource,
708     VkSubresourceLayout*                        layout)
709 {
710    ANV_FROM_HANDLE(anv_image, image, _image);
711    const struct anv_surface *surface =
712       get_surface(image, subresource->aspectMask);
713 
714    assert(__builtin_popcount(subresource->aspectMask) == 1);
715 
716    /* If we are on a non-zero mip level or array slice, we need to
717     * calculate a real offset.
718     */
719    anv_assert(subresource->mipLevel == 0);
720    anv_assert(subresource->arrayLayer == 0);
721 
722    layout->offset = surface->offset;
723    layout->rowPitch = surface->isl.row_pitch;
724    layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
725    layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);
726    layout->size = surface->isl.size;
727 }
728 
729 /**
730  * This function determines the optimal buffer to use for a given
731  * VkImageLayout and other pieces of information needed to make that
732  * determination. This does not determine the optimal buffer to use
733  * during a resolve operation.
734  *
735  * @param devinfo The device information of the Intel GPU.
736  * @param image The image that may contain a collection of buffers.
737  * @param plane The plane of the image to be accessed.
738  * @param layout The current layout of the image aspect(s).
739  *
740  * @return The primary buffer that should be used for the given layout.
741  */
742 enum isl_aux_usage
anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,const struct anv_image * const image,const VkImageAspectFlagBits aspect,const VkImageLayout layout)743 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
744                         const struct anv_image * const image,
745                         const VkImageAspectFlagBits aspect,
746                         const VkImageLayout layout)
747 {
748    /* Validate the inputs. */
749 
750    /* The devinfo is needed as the optimal buffer varies across generations. */
751    assert(devinfo != NULL);
752 
753    /* The layout of a NULL image is not properly defined. */
754    assert(image != NULL);
755 
756    /* The aspect must be exactly one of the image aspects. */
757    assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects));
758 
759    /* Determine the optimal buffer. */
760 
761    uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
762 
763    /* If there is no auxiliary surface allocated, we must use the one and only
764     * main buffer.
765     */
766    if (image->planes[plane].aux_surface.isl.size == 0)
767       return ISL_AUX_USAGE_NONE;
768 
769    /* All images that use an auxiliary surface are required to be tiled. */
770    assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
771 
772    /* Stencil has no aux */
773    assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
774 
775    /* The following switch currently only handles depth stencil aspects.
776     * TODO: Handle the color aspect.
777     */
778    if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV)
779       return image->planes[plane].aux_usage;
780 
781    switch (layout) {
782 
783    /* Invalid Layouts */
784    case VK_IMAGE_LAYOUT_RANGE_SIZE:
785    case VK_IMAGE_LAYOUT_MAX_ENUM:
786       unreachable("Invalid image layout.");
787 
788    /* Undefined layouts
789     *
790     * The pre-initialized layout is equivalent to the undefined layout for
791     * optimally-tiled images.  We can only do color compression (CCS or HiZ)
792     * on tiled images.
793     */
794    case VK_IMAGE_LAYOUT_UNDEFINED:
795    case VK_IMAGE_LAYOUT_PREINITIALIZED:
796       return ISL_AUX_USAGE_NONE;
797 
798 
799    /* Transfer Layouts
800     *
801     * This buffer could be a depth buffer used in a transfer operation. BLORP
802     * currently doesn't use HiZ for transfer operations so we must use the main
803     * buffer for this layout. TODO: Enable HiZ in BLORP.
804     */
805    case VK_IMAGE_LAYOUT_GENERAL:
806    case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
807    case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
808       return ISL_AUX_USAGE_NONE;
809 
810 
811    /* Sampling Layouts */
812    case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
813       assert((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
814       /* Fall-through */
815    case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
816    case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL_KHR:
817       assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
818       if (anv_can_sample_with_hiz(devinfo, image))
819          return ISL_AUX_USAGE_HIZ;
820       else
821          return ISL_AUX_USAGE_NONE;
822 
823    case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
824       assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
825 
826       /* On SKL+, the render buffer can be decompressed by the presentation
827        * engine. Support for this feature has not yet landed in the wider
828        * ecosystem. TODO: Update this code when support lands.
829        *
830        * From the BDW PRM, Vol 7, Render Target Resolve:
831        *
832        *    If the MCS is enabled on a non-multisampled render target, the
833        *    render target must be resolved before being used for other
834        *    purposes (display, texture, CPU lock) The clear value from
835        *    SURFACE_STATE is written into pixels in the render target
836        *    indicated as clear in the MCS.
837        *
838        * Pre-SKL, the render buffer must be resolved before being used for
839        * presentation. We can infer that the auxiliary buffer is not used.
840        */
841       return ISL_AUX_USAGE_NONE;
842 
843 
844    /* Rendering Layouts */
845    case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
846       assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
847       unreachable("Color images are not yet supported.");
848 
849    case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
850    case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL_KHR:
851       assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
852       return ISL_AUX_USAGE_HIZ;
853 
854    case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
855       unreachable("VK_KHR_shared_presentable_image is unsupported");
856    }
857 
858    /* If the layout isn't recognized in the exhaustive switch above, the
859     * VkImageLayout value is not defined in vulkan.h.
860     */
861    unreachable("layout is not a VkImageLayout enumeration member.");
862 }
863 
864 
865 static struct anv_state
alloc_surface_state(struct anv_device * device)866 alloc_surface_state(struct anv_device *device)
867 {
868    return anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
869 }
870 
871 static enum isl_channel_select
remap_swizzle(VkComponentSwizzle swizzle,VkComponentSwizzle component,struct isl_swizzle format_swizzle)872 remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component,
873               struct isl_swizzle format_swizzle)
874 {
875    if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY)
876       swizzle = component;
877 
878    switch (swizzle) {
879    case VK_COMPONENT_SWIZZLE_ZERO:  return ISL_CHANNEL_SELECT_ZERO;
880    case VK_COMPONENT_SWIZZLE_ONE:   return ISL_CHANNEL_SELECT_ONE;
881    case VK_COMPONENT_SWIZZLE_R:     return format_swizzle.r;
882    case VK_COMPONENT_SWIZZLE_G:     return format_swizzle.g;
883    case VK_COMPONENT_SWIZZLE_B:     return format_swizzle.b;
884    case VK_COMPONENT_SWIZZLE_A:     return format_swizzle.a;
885    default:
886       unreachable("Invalid swizzle");
887    }
888 }
889 
890 void
anv_image_fill_surface_state(struct anv_device * device,const struct anv_image * image,VkImageAspectFlagBits aspect,const struct isl_view * view_in,isl_surf_usage_flags_t view_usage,enum isl_aux_usage aux_usage,const union isl_color_value * clear_color,enum anv_image_view_state_flags flags,struct anv_surface_state * state_inout,struct brw_image_param * image_param_out)891 anv_image_fill_surface_state(struct anv_device *device,
892                              const struct anv_image *image,
893                              VkImageAspectFlagBits aspect,
894                              const struct isl_view *view_in,
895                              isl_surf_usage_flags_t view_usage,
896                              enum isl_aux_usage aux_usage,
897                              const union isl_color_value *clear_color,
898                              enum anv_image_view_state_flags flags,
899                              struct anv_surface_state *state_inout,
900                              struct brw_image_param *image_param_out)
901 {
902    uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
903 
904    const struct anv_surface *surface = &image->planes[plane].surface,
905       *aux_surface = &image->planes[plane].aux_surface;
906 
907    struct isl_view view = *view_in;
908    view.usage |= view_usage;
909 
910    /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
911     * compressed surface with a shadow surface, we use the shadow instead of
912     * the primary surface.  The shadow surface will be tiled, unlike the main
913     * surface, so it should get significantly better performance.
914     */
915    if (image->planes[plane].shadow_surface.isl.size > 0 &&
916        isl_format_is_compressed(view.format) &&
917        (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
918       assert(isl_format_is_compressed(surface->isl.format));
919       assert(surface->isl.tiling == ISL_TILING_LINEAR);
920       assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
921       surface = &image->planes[plane].shadow_surface;
922    }
923 
924    if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
925       view.swizzle = anv_swizzle_for_render(view.swizzle);
926 
927    /* If this is a HiZ buffer we can sample from with a programmable clear
928     * value (SKL+), define the clear value to the optimal constant.
929     */
930    union isl_color_value default_clear_color = { .u32 = { 0, } };
931    if (device->info.gen >= 9 && aux_usage == ISL_AUX_USAGE_HIZ)
932       default_clear_color.f32[0] = ANV_HZ_FC_VAL;
933    if (!clear_color)
934       clear_color = &default_clear_color;
935 
936    const uint64_t address = image->planes[plane].bo_offset + surface->offset;
937    const uint64_t aux_address = aux_usage == ISL_AUX_USAGE_NONE ?
938       0 : (image->planes[plane].bo_offset + aux_surface->offset);
939 
940    if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
941        !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) &&
942        !isl_has_matching_typed_storage_image_format(&device->info,
943                                                     view.format)) {
944       /* In this case, we are a writeable storage buffer which needs to be
945        * lowered to linear. All tiling and offset calculations will be done in
946        * the shader.
947        */
948       assert(aux_usage == ISL_AUX_USAGE_NONE);
949       isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
950                             .address = address,
951                             .size = surface->isl.size,
952                             .format = ISL_FORMAT_RAW,
953                             .stride = 1,
954                             .mocs = device->default_mocs);
955       state_inout->address = address,
956       state_inout->aux_address = 0;
957    } else {
958       if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
959           !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) {
960          /* Typed surface reads support a very limited subset of the shader
961           * image formats.  Translate it into the closest format the hardware
962           * supports.
963           */
964          assert(aux_usage == ISL_AUX_USAGE_NONE);
965          view.format = isl_lower_storage_image_format(&device->info,
966                                                       view.format);
967       }
968 
969       const struct isl_surf *isl_surf = &surface->isl;
970 
971       struct isl_surf tmp_surf;
972       uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
973       if (isl_format_is_compressed(surface->isl.format) &&
974           !isl_format_is_compressed(view.format)) {
975          /* We're creating an uncompressed view of a compressed surface.  This
976           * is allowed but only for a single level/layer.
977           */
978          assert(surface->isl.samples == 1);
979          assert(view.levels == 1);
980          assert(view.array_len == 1);
981 
982          isl_surf_get_image_surf(&device->isl_dev, isl_surf,
983                                  view.base_level,
984                                  surface->isl.dim == ISL_SURF_DIM_3D ?
985                                     0 : view.base_array_layer,
986                                  surface->isl.dim == ISL_SURF_DIM_3D ?
987                                     view.base_array_layer : 0,
988                                  &tmp_surf,
989                                  &offset_B, &tile_x_sa, &tile_y_sa);
990 
991          /* The newly created image represents the one subimage we're
992           * referencing with this view so it only has one array slice and
993           * miplevel.
994           */
995          view.base_array_layer = 0;
996          view.base_level = 0;
997 
998          /* We're making an uncompressed view here.  The image dimensions need
999           * to be scaled down by the block size.
1000           */
1001          const struct isl_format_layout *fmtl =
1002             isl_format_get_layout(surface->isl.format);
1003          tmp_surf.format = view.format;
1004          tmp_surf.logical_level0_px.width =
1005             DIV_ROUND_UP(tmp_surf.logical_level0_px.width, fmtl->bw);
1006          tmp_surf.logical_level0_px.height =
1007             DIV_ROUND_UP(tmp_surf.logical_level0_px.height, fmtl->bh);
1008          tmp_surf.phys_level0_sa.width /= fmtl->bw;
1009          tmp_surf.phys_level0_sa.height /= fmtl->bh;
1010          tile_x_sa /= fmtl->bw;
1011          tile_y_sa /= fmtl->bh;
1012 
1013          isl_surf = &tmp_surf;
1014 
1015          if (device->info.gen <= 8) {
1016             assert(surface->isl.tiling == ISL_TILING_LINEAR);
1017             assert(tile_x_sa == 0);
1018             assert(tile_y_sa == 0);
1019          }
1020       }
1021 
1022       isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
1023                           .surf = isl_surf,
1024                           .view = &view,
1025                           .address = address + offset_B,
1026                           .clear_color = *clear_color,
1027                           .aux_surf = &aux_surface->isl,
1028                           .aux_usage = aux_usage,
1029                           .aux_address = aux_address,
1030                           .mocs = device->default_mocs,
1031                           .x_offset_sa = tile_x_sa,
1032                           .y_offset_sa = tile_y_sa);
1033       state_inout->address = address + offset_B;
1034       if (device->info.gen >= 8) {
1035          state_inout->aux_address = aux_address;
1036       } else {
1037          /* On gen7 and prior, the bottom 12 bits of the MCS base address are
1038           * used to store other information.  This should be ok, however,
1039           * because surface buffer addresses are always 4K page alinged.
1040           */
1041          uint32_t *aux_addr_dw = state_inout->state.map +
1042                                  device->isl_dev.ss.aux_addr_offset;
1043          assert((aux_address & 0xfff) == 0);
1044          assert(aux_address == (*aux_addr_dw & 0xfffff000));
1045          state_inout->aux_address = *aux_addr_dw;
1046       }
1047    }
1048 
1049    anv_state_flush(device, state_inout->state);
1050 
1051    if (image_param_out) {
1052       assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT);
1053       isl_surf_fill_image_param(&device->isl_dev, image_param_out,
1054                                 &surface->isl, &view);
1055    }
1056 }
1057 
1058 static VkImageAspectFlags
remap_aspect_flags(VkImageAspectFlags view_aspects)1059 remap_aspect_flags(VkImageAspectFlags view_aspects)
1060 {
1061    if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1062       if (_mesa_bitcount(view_aspects) == 1)
1063          return VK_IMAGE_ASPECT_COLOR_BIT;
1064 
1065       VkImageAspectFlags color_aspects = 0;
1066       for (uint32_t i = 0; i < _mesa_bitcount(view_aspects); i++)
1067          color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT_KHR << i;
1068       return color_aspects;
1069    }
1070    /* No special remapping needed for depth & stencil aspects. */
1071    return view_aspects;
1072 }
1073 
1074 VkResult
anv_CreateImageView(VkDevice _device,const VkImageViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImageView * pView)1075 anv_CreateImageView(VkDevice _device,
1076                     const VkImageViewCreateInfo *pCreateInfo,
1077                     const VkAllocationCallbacks *pAllocator,
1078                     VkImageView *pView)
1079 {
1080    ANV_FROM_HANDLE(anv_device, device, _device);
1081    ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
1082    struct anv_image_view *iview;
1083 
1084    iview = vk_zalloc2(&device->alloc, pAllocator, sizeof(*iview), 8,
1085                       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1086    if (iview == NULL)
1087       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1088 
1089    const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
1090 
1091    assert(range->layerCount > 0);
1092    assert(range->baseMipLevel < image->levels);
1093 
1094    const VkImageViewUsageCreateInfoKHR *usage_info =
1095       vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO_KHR);
1096    VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image->usage;
1097    /* View usage should be a subset of image usage */
1098    assert((view_usage & ~image->usage) == 0);
1099    assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
1100                         VK_IMAGE_USAGE_STORAGE_BIT |
1101                         VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
1102                         VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
1103                         VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
1104 
1105    switch (image->type) {
1106    default:
1107       unreachable("bad VkImageType");
1108    case VK_IMAGE_TYPE_1D:
1109    case VK_IMAGE_TYPE_2D:
1110       assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size);
1111       break;
1112    case VK_IMAGE_TYPE_3D:
1113       assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1
1114              <= anv_minify(image->extent.depth, range->baseMipLevel));
1115       break;
1116    }
1117 
1118    /* First expand aspects to the image's ones (for example
1119     * VK_IMAGE_ASPECT_COLOR_BIT will be converted to
1120     * VK_IMAGE_ASPECT_PLANE_0_BIT_KHR | VK_IMAGE_ASPECT_PLANE_1_BIT_KHR |
1121     * VK_IMAGE_ASPECT_PLANE_2_BIT_KHR for an image of format
1122     * VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR.
1123     */
1124    VkImageAspectFlags expanded_aspects =
1125       anv_image_expand_aspects(image, range->aspectMask);
1126 
1127    iview->image = image;
1128 
1129    /* Remap the expanded aspects for the image view. For example if only
1130     * VK_IMAGE_ASPECT_PLANE_1_BIT_KHR was given in range->aspectMask, we will
1131     * convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of
1132     * the image view, it only has a single plane.
1133     */
1134    iview->aspect_mask = remap_aspect_flags(expanded_aspects);
1135    iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask);
1136    iview->vk_format = pCreateInfo->format;
1137 
1138    iview->extent = (VkExtent3D) {
1139       .width  = anv_minify(image->extent.width , range->baseMipLevel),
1140       .height = anv_minify(image->extent.height, range->baseMipLevel),
1141       .depth  = anv_minify(image->extent.depth , range->baseMipLevel),
1142    };
1143 
1144    /* Now go through the underlying image selected planes (computed in
1145     * expanded_aspects) and map them to planes in the image view.
1146     */
1147    uint32_t iaspect_bit, vplane = 0;
1148    anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) {
1149       uint32_t iplane =
1150          anv_image_aspect_to_plane(expanded_aspects, 1UL << iaspect_bit);
1151       VkImageAspectFlags vplane_aspect =
1152          anv_plane_to_aspect(iview->aspect_mask, vplane);
1153       struct anv_format_plane format =
1154          anv_get_format_plane(&device->info, pCreateInfo->format,
1155                               vplane_aspect, image->tiling);
1156 
1157       iview->planes[vplane].image_plane = iplane;
1158 
1159       iview->planes[vplane].isl = (struct isl_view) {
1160          .format = format.isl_format,
1161          .base_level = range->baseMipLevel,
1162          .levels = anv_get_levelCount(image, range),
1163          .base_array_layer = range->baseArrayLayer,
1164          .array_len = anv_get_layerCount(image, range),
1165          .swizzle = {
1166             .r = remap_swizzle(pCreateInfo->components.r,
1167                                VK_COMPONENT_SWIZZLE_R, format.swizzle),
1168             .g = remap_swizzle(pCreateInfo->components.g,
1169                                VK_COMPONENT_SWIZZLE_G, format.swizzle),
1170             .b = remap_swizzle(pCreateInfo->components.b,
1171                                VK_COMPONENT_SWIZZLE_B, format.swizzle),
1172             .a = remap_swizzle(pCreateInfo->components.a,
1173                                VK_COMPONENT_SWIZZLE_A, format.swizzle),
1174          },
1175       };
1176 
1177       if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
1178          iview->planes[vplane].isl.base_array_layer = 0;
1179          iview->planes[vplane].isl.array_len = iview->extent.depth;
1180       }
1181 
1182       if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
1183           pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
1184          iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
1185       } else {
1186          iview->planes[vplane].isl.usage = 0;
1187       }
1188 
1189       if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT ||
1190           (view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT &&
1191            !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) {
1192          iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device);
1193          iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device);
1194 
1195          enum isl_aux_usage general_aux_usage =
1196             anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1197                                     VK_IMAGE_LAYOUT_GENERAL);
1198          enum isl_aux_usage optimal_aux_usage =
1199             anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1200                                     VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
1201 
1202          anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1203                                       &iview->planes[vplane].isl,
1204                                       ISL_SURF_USAGE_TEXTURE_BIT,
1205                                       optimal_aux_usage, NULL,
1206                                       ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
1207                                       &iview->planes[vplane].optimal_sampler_surface_state,
1208                                       NULL);
1209 
1210          anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1211                                       &iview->planes[vplane].isl,
1212                                       ISL_SURF_USAGE_TEXTURE_BIT,
1213                                       general_aux_usage, NULL,
1214                                       0,
1215                                       &iview->planes[vplane].general_sampler_surface_state,
1216                                       NULL);
1217       }
1218 
1219       /* NOTE: This one needs to go last since it may stomp isl_view.format */
1220       if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
1221          iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device);
1222          iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device);
1223 
1224          anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1225                                       &iview->planes[vplane].isl,
1226                                       ISL_SURF_USAGE_STORAGE_BIT,
1227                                       ISL_AUX_USAGE_NONE, NULL,
1228                                       0,
1229                                       &iview->planes[vplane].storage_surface_state,
1230                                       &iview->planes[vplane].storage_image_param);
1231 
1232          anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1233                                       &iview->planes[vplane].isl,
1234                                       ISL_SURF_USAGE_STORAGE_BIT,
1235                                       ISL_AUX_USAGE_NONE, NULL,
1236                                       ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY,
1237                                       &iview->planes[vplane].writeonly_storage_surface_state,
1238                                       NULL);
1239       }
1240 
1241       vplane++;
1242    }
1243 
1244    *pView = anv_image_view_to_handle(iview);
1245 
1246    return VK_SUCCESS;
1247 }
1248 
1249 void
anv_DestroyImageView(VkDevice _device,VkImageView _iview,const VkAllocationCallbacks * pAllocator)1250 anv_DestroyImageView(VkDevice _device, VkImageView _iview,
1251                      const VkAllocationCallbacks *pAllocator)
1252 {
1253    ANV_FROM_HANDLE(anv_device, device, _device);
1254    ANV_FROM_HANDLE(anv_image_view, iview, _iview);
1255 
1256    if (!iview)
1257       return;
1258 
1259    for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
1260       if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) {
1261          anv_state_pool_free(&device->surface_state_pool,
1262                              iview->planes[plane].optimal_sampler_surface_state.state);
1263       }
1264 
1265       if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) {
1266          anv_state_pool_free(&device->surface_state_pool,
1267                              iview->planes[plane].general_sampler_surface_state.state);
1268       }
1269 
1270       if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) {
1271          anv_state_pool_free(&device->surface_state_pool,
1272                              iview->planes[plane].storage_surface_state.state);
1273       }
1274 
1275       if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) {
1276          anv_state_pool_free(&device->surface_state_pool,
1277                              iview->planes[plane].writeonly_storage_surface_state.state);
1278       }
1279    }
1280 
1281    vk_free2(&device->alloc, pAllocator, iview);
1282 }
1283 
1284 
1285 VkResult
anv_CreateBufferView(VkDevice _device,const VkBufferViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBufferView * pView)1286 anv_CreateBufferView(VkDevice _device,
1287                      const VkBufferViewCreateInfo *pCreateInfo,
1288                      const VkAllocationCallbacks *pAllocator,
1289                      VkBufferView *pView)
1290 {
1291    ANV_FROM_HANDLE(anv_device, device, _device);
1292    ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
1293    struct anv_buffer_view *view;
1294 
1295    view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1296                      VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1297    if (!view)
1298       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1299 
1300    /* TODO: Handle the format swizzle? */
1301 
1302    view->format = anv_get_isl_format(&device->info, pCreateInfo->format,
1303                                      VK_IMAGE_ASPECT_COLOR_BIT,
1304                                      VK_IMAGE_TILING_LINEAR);
1305    const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8;
1306    view->bo = buffer->bo;
1307    view->offset = buffer->offset + pCreateInfo->offset;
1308    view->range = anv_buffer_get_range(buffer, pCreateInfo->offset,
1309                                               pCreateInfo->range);
1310    view->range = align_down_npot_u32(view->range, format_bs);
1311 
1312    if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
1313       view->surface_state = alloc_surface_state(device);
1314 
1315       anv_fill_buffer_surface_state(device, view->surface_state,
1316                                     view->format,
1317                                     view->offset, view->range, format_bs);
1318    } else {
1319       view->surface_state = (struct anv_state){ 0 };
1320    }
1321 
1322    if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
1323       view->storage_surface_state = alloc_surface_state(device);
1324       view->writeonly_storage_surface_state = alloc_surface_state(device);
1325 
1326       enum isl_format storage_format =
1327          isl_has_matching_typed_storage_image_format(&device->info,
1328                                                      view->format) ?
1329          isl_lower_storage_image_format(&device->info, view->format) :
1330          ISL_FORMAT_RAW;
1331 
1332       anv_fill_buffer_surface_state(device, view->storage_surface_state,
1333                                     storage_format,
1334                                     view->offset, view->range,
1335                                     (storage_format == ISL_FORMAT_RAW ? 1 :
1336                                      isl_format_get_layout(storage_format)->bpb / 8));
1337 
1338       /* Write-only accesses should use the original format. */
1339       anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state,
1340                                     view->format,
1341                                     view->offset, view->range,
1342                                     isl_format_get_layout(view->format)->bpb / 8);
1343 
1344       isl_buffer_fill_image_param(&device->isl_dev,
1345                                   &view->storage_image_param,
1346                                   view->format, view->range);
1347    } else {
1348       view->storage_surface_state = (struct anv_state){ 0 };
1349       view->writeonly_storage_surface_state = (struct anv_state){ 0 };
1350    }
1351 
1352    *pView = anv_buffer_view_to_handle(view);
1353 
1354    return VK_SUCCESS;
1355 }
1356 
1357 void
anv_DestroyBufferView(VkDevice _device,VkBufferView bufferView,const VkAllocationCallbacks * pAllocator)1358 anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
1359                       const VkAllocationCallbacks *pAllocator)
1360 {
1361    ANV_FROM_HANDLE(anv_device, device, _device);
1362    ANV_FROM_HANDLE(anv_buffer_view, view, bufferView);
1363 
1364    if (!view)
1365       return;
1366 
1367    if (view->surface_state.alloc_size > 0)
1368       anv_state_pool_free(&device->surface_state_pool,
1369                           view->surface_state);
1370 
1371    if (view->storage_surface_state.alloc_size > 0)
1372       anv_state_pool_free(&device->surface_state_pool,
1373                           view->storage_surface_state);
1374 
1375    if (view->writeonly_storage_surface_state.alloc_size > 0)
1376       anv_state_pool_free(&device->surface_state_pool,
1377                           view->writeonly_storage_surface_state);
1378 
1379    vk_free2(&device->alloc, pAllocator, view);
1380 }
1381 
1382 const struct anv_surface *
anv_image_get_surface_for_aspect_mask(const struct anv_image * image,VkImageAspectFlags aspect_mask)1383 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
1384                                       VkImageAspectFlags aspect_mask)
1385 {
1386    VkImageAspectFlags sanitized_mask;
1387 
1388    switch (aspect_mask) {
1389    case VK_IMAGE_ASPECT_COLOR_BIT:
1390       assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1391       sanitized_mask = VK_IMAGE_ASPECT_COLOR_BIT;
1392       break;
1393    case VK_IMAGE_ASPECT_DEPTH_BIT:
1394       assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
1395       sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1396       break;
1397    case VK_IMAGE_ASPECT_STENCIL_BIT:
1398       assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
1399       sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1400       break;
1401    case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
1402       /* FINISHME: The Vulkan spec (git a511ba2) requires support for
1403        * combined depth stencil formats. Specifically, it states:
1404        *
1405        *    At least one of ename:VK_FORMAT_D24_UNORM_S8_UINT or
1406        *    ename:VK_FORMAT_D32_SFLOAT_S8_UINT must be supported.
1407        *
1408        * Image views with both depth and stencil aspects are only valid for
1409        * render target attachments, in which case
1410        * cmd_buffer_emit_depth_stencil() will pick out both the depth and
1411        * stencil surfaces from the underlying surface.
1412        */
1413       if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1414          sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1415       } else {
1416          assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
1417          sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1418       }
1419       break;
1420    case VK_IMAGE_ASPECT_PLANE_0_BIT_KHR:
1421       assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1422       sanitized_mask = VK_IMAGE_ASPECT_PLANE_0_BIT_KHR;
1423       break;
1424    case VK_IMAGE_ASPECT_PLANE_1_BIT_KHR:
1425       assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1426       sanitized_mask = VK_IMAGE_ASPECT_PLANE_1_BIT_KHR;
1427       break;
1428    case VK_IMAGE_ASPECT_PLANE_2_BIT_KHR:
1429       assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1430       sanitized_mask = VK_IMAGE_ASPECT_PLANE_2_BIT_KHR;
1431       break;
1432    default:
1433        unreachable("image does not have aspect");
1434        return NULL;
1435    }
1436 
1437    uint32_t plane = anv_image_aspect_to_plane(image->aspects, sanitized_mask);
1438    return &image->planes[plane].surface;
1439 }
1440