1 /*
2 * Copyright (c) 2017, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <math.h>
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <string.h>
16
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_dsp/noise_model.h"
19 #include "aom_dsp/noise_util.h"
20 #include "aom_mem/aom_mem.h"
21 #include "av1/common/common.h"
22 #include "av1/encoder/mathutils.h"
23
24 #define kLowPolyNumParams 3
25
26 static const int kMaxLag = 4;
27
28 // Defines a function that can be used to obtain the mean of a block for the
29 // provided data type (uint8_t, or uint16_t)
30 #define GET_BLOCK_MEAN(INT_TYPE, suffix) \
31 static double get_block_mean_##suffix(const INT_TYPE *data, int w, int h, \
32 int stride, int x_o, int y_o, \
33 int block_size) { \
34 const int max_h = AOMMIN(h - y_o, block_size); \
35 const int max_w = AOMMIN(w - x_o, block_size); \
36 double block_mean = 0; \
37 for (int y = 0; y < max_h; ++y) { \
38 for (int x = 0; x < max_w; ++x) { \
39 block_mean += data[(y_o + y) * stride + x_o + x]; \
40 } \
41 } \
42 return block_mean / (max_w * max_h); \
43 }
44
45 GET_BLOCK_MEAN(uint8_t, lowbd);
46 GET_BLOCK_MEAN(uint16_t, highbd);
47
get_block_mean(const uint8_t * data,int w,int h,int stride,int x_o,int y_o,int block_size,int use_highbd)48 static INLINE double get_block_mean(const uint8_t *data, int w, int h,
49 int stride, int x_o, int y_o,
50 int block_size, int use_highbd) {
51 if (use_highbd)
52 return get_block_mean_highbd((const uint16_t *)data, w, h, stride, x_o, y_o,
53 block_size);
54 return get_block_mean_lowbd(data, w, h, stride, x_o, y_o, block_size);
55 }
56
57 // Defines a function that can be used to obtain the variance of a block
58 // for the provided data type (uint8_t, or uint16_t)
59 #define GET_NOISE_VAR(INT_TYPE, suffix) \
60 static double get_noise_var_##suffix( \
61 const INT_TYPE *data, const INT_TYPE *denoised, int stride, int w, \
62 int h, int x_o, int y_o, int block_size_x, int block_size_y) { \
63 const int max_h = AOMMIN(h - y_o, block_size_y); \
64 const int max_w = AOMMIN(w - x_o, block_size_x); \
65 double noise_var = 0; \
66 double noise_mean = 0; \
67 for (int y = 0; y < max_h; ++y) { \
68 for (int x = 0; x < max_w; ++x) { \
69 double noise = (double)data[(y_o + y) * stride + x_o + x] - \
70 denoised[(y_o + y) * stride + x_o + x]; \
71 noise_mean += noise; \
72 noise_var += noise * noise; \
73 } \
74 } \
75 noise_mean /= (max_w * max_h); \
76 return noise_var / (max_w * max_h) - noise_mean * noise_mean; \
77 }
78
79 GET_NOISE_VAR(uint8_t, lowbd);
80 GET_NOISE_VAR(uint16_t, highbd);
81
get_noise_var(const uint8_t * data,const uint8_t * denoised,int w,int h,int stride,int x_o,int y_o,int block_size_x,int block_size_y,int use_highbd)82 static INLINE double get_noise_var(const uint8_t *data, const uint8_t *denoised,
83 int w, int h, int stride, int x_o, int y_o,
84 int block_size_x, int block_size_y,
85 int use_highbd) {
86 if (use_highbd)
87 return get_noise_var_highbd((const uint16_t *)data,
88 (const uint16_t *)denoised, w, h, stride, x_o,
89 y_o, block_size_x, block_size_y);
90 return get_noise_var_lowbd(data, denoised, w, h, stride, x_o, y_o,
91 block_size_x, block_size_y);
92 }
93
equation_system_clear(aom_equation_system_t * eqns)94 static void equation_system_clear(aom_equation_system_t *eqns) {
95 const int n = eqns->n;
96 memset(eqns->A, 0, sizeof(*eqns->A) * n * n);
97 memset(eqns->x, 0, sizeof(*eqns->x) * n);
98 memset(eqns->b, 0, sizeof(*eqns->b) * n);
99 }
100
equation_system_copy(aom_equation_system_t * dst,const aom_equation_system_t * src)101 static void equation_system_copy(aom_equation_system_t *dst,
102 const aom_equation_system_t *src) {
103 const int n = dst->n;
104 memcpy(dst->A, src->A, sizeof(*dst->A) * n * n);
105 memcpy(dst->x, src->x, sizeof(*dst->x) * n);
106 memcpy(dst->b, src->b, sizeof(*dst->b) * n);
107 }
108
equation_system_init(aom_equation_system_t * eqns,int n)109 static int equation_system_init(aom_equation_system_t *eqns, int n) {
110 eqns->A = (double *)aom_malloc(sizeof(*eqns->A) * n * n);
111 eqns->b = (double *)aom_malloc(sizeof(*eqns->b) * n);
112 eqns->x = (double *)aom_malloc(sizeof(*eqns->x) * n);
113 eqns->n = n;
114 if (!eqns->A || !eqns->b || !eqns->x) {
115 fprintf(stderr, "Failed to allocate system of equations of size %d\n", n);
116 aom_free(eqns->A);
117 aom_free(eqns->b);
118 aom_free(eqns->x);
119 memset(eqns, 0, sizeof(*eqns));
120 return 0;
121 }
122 equation_system_clear(eqns);
123 return 1;
124 }
125
equation_system_solve(aom_equation_system_t * eqns)126 static int equation_system_solve(aom_equation_system_t *eqns) {
127 const int n = eqns->n;
128 double *b = (double *)aom_malloc(sizeof(*b) * n);
129 double *A = (double *)aom_malloc(sizeof(*A) * n * n);
130 int ret = 0;
131 if (A == NULL || b == NULL) {
132 fprintf(stderr, "Unable to allocate temp values of size %dx%d\n", n, n);
133 aom_free(b);
134 aom_free(A);
135 return 0;
136 }
137 memcpy(A, eqns->A, sizeof(*eqns->A) * n * n);
138 memcpy(b, eqns->b, sizeof(*eqns->b) * n);
139 ret = linsolve(n, A, eqns->n, b, eqns->x);
140 aom_free(b);
141 aom_free(A);
142
143 if (ret == 0) {
144 return 0;
145 }
146 return 1;
147 }
148
equation_system_add(aom_equation_system_t * dest,aom_equation_system_t * src)149 static void equation_system_add(aom_equation_system_t *dest,
150 aom_equation_system_t *src) {
151 const int n = dest->n;
152 int i, j;
153 for (i = 0; i < n; ++i) {
154 for (j = 0; j < n; ++j) {
155 dest->A[i * n + j] += src->A[i * n + j];
156 }
157 dest->b[i] += src->b[i];
158 }
159 }
160
equation_system_free(aom_equation_system_t * eqns)161 static void equation_system_free(aom_equation_system_t *eqns) {
162 if (!eqns) return;
163 aom_free(eqns->A);
164 aom_free(eqns->b);
165 aom_free(eqns->x);
166 memset(eqns, 0, sizeof(*eqns));
167 }
168
noise_strength_solver_clear(aom_noise_strength_solver_t * solver)169 static void noise_strength_solver_clear(aom_noise_strength_solver_t *solver) {
170 equation_system_clear(&solver->eqns);
171 solver->num_equations = 0;
172 solver->total = 0;
173 }
174
noise_strength_solver_add(aom_noise_strength_solver_t * dest,aom_noise_strength_solver_t * src)175 static void noise_strength_solver_add(aom_noise_strength_solver_t *dest,
176 aom_noise_strength_solver_t *src) {
177 equation_system_add(&dest->eqns, &src->eqns);
178 dest->num_equations += src->num_equations;
179 dest->total += src->total;
180 }
181
182 // Return the number of coefficients required for the given parameters
num_coeffs(const aom_noise_model_params_t params)183 static int num_coeffs(const aom_noise_model_params_t params) {
184 const int n = 2 * params.lag + 1;
185 switch (params.shape) {
186 case AOM_NOISE_SHAPE_DIAMOND: return params.lag * (params.lag + 1);
187 case AOM_NOISE_SHAPE_SQUARE: return (n * n) / 2;
188 }
189 return 0;
190 }
191
noise_state_init(aom_noise_state_t * state,int n,int bit_depth)192 static int noise_state_init(aom_noise_state_t *state, int n, int bit_depth) {
193 const int kNumBins = 20;
194 if (!equation_system_init(&state->eqns, n)) {
195 fprintf(stderr, "Failed initialization noise state with size %d\n", n);
196 return 0;
197 }
198 state->ar_gain = 1.0;
199 state->num_observations = 0;
200 return aom_noise_strength_solver_init(&state->strength_solver, kNumBins,
201 bit_depth);
202 }
203
set_chroma_coefficient_fallback_soln(aom_equation_system_t * eqns)204 static void set_chroma_coefficient_fallback_soln(aom_equation_system_t *eqns) {
205 const double kTolerance = 1e-6;
206 const int last = eqns->n - 1;
207 // Set all of the AR coefficients to zero, but try to solve for correlation
208 // with the luma channel
209 memset(eqns->x, 0, sizeof(*eqns->x) * eqns->n);
210 if (fabs(eqns->A[last * eqns->n + last]) > kTolerance) {
211 eqns->x[last] = eqns->b[last] / eqns->A[last * eqns->n + last];
212 }
213 }
214
aom_noise_strength_lut_init(aom_noise_strength_lut_t * lut,int num_points)215 int aom_noise_strength_lut_init(aom_noise_strength_lut_t *lut, int num_points) {
216 if (!lut) return 0;
217 lut->points = (double(*)[2])aom_malloc(num_points * sizeof(*lut->points));
218 if (!lut->points) return 0;
219 lut->num_points = num_points;
220 memset(lut->points, 0, sizeof(*lut->points) * num_points);
221 return 1;
222 }
223
aom_noise_strength_lut_free(aom_noise_strength_lut_t * lut)224 void aom_noise_strength_lut_free(aom_noise_strength_lut_t *lut) {
225 if (!lut) return;
226 aom_free(lut->points);
227 memset(lut, 0, sizeof(*lut));
228 }
229
aom_noise_strength_lut_eval(const aom_noise_strength_lut_t * lut,double x)230 double aom_noise_strength_lut_eval(const aom_noise_strength_lut_t *lut,
231 double x) {
232 int i = 0;
233 // Constant extrapolation for x < x_0.
234 if (x < lut->points[0][0]) return lut->points[0][1];
235 for (i = 0; i < lut->num_points - 1; ++i) {
236 if (x >= lut->points[i][0] && x <= lut->points[i + 1][0]) {
237 const double a =
238 (x - lut->points[i][0]) / (lut->points[i + 1][0] - lut->points[i][0]);
239 return lut->points[i + 1][1] * a + lut->points[i][1] * (1.0 - a);
240 }
241 }
242 // Constant extrapolation for x > x_{n-1}
243 return lut->points[lut->num_points - 1][1];
244 }
245
noise_strength_solver_get_bin_index(const aom_noise_strength_solver_t * solver,double value)246 static double noise_strength_solver_get_bin_index(
247 const aom_noise_strength_solver_t *solver, double value) {
248 const double val =
249 fclamp(value, solver->min_intensity, solver->max_intensity);
250 const double range = solver->max_intensity - solver->min_intensity;
251 return (solver->num_bins - 1) * (val - solver->min_intensity) / range;
252 }
253
noise_strength_solver_get_value(const aom_noise_strength_solver_t * solver,double x)254 static double noise_strength_solver_get_value(
255 const aom_noise_strength_solver_t *solver, double x) {
256 const double bin = noise_strength_solver_get_bin_index(solver, x);
257 const int bin_i0 = (int)floor(bin);
258 const int bin_i1 = AOMMIN(solver->num_bins - 1, bin_i0 + 1);
259 const double a = bin - bin_i0;
260 return (1.0 - a) * solver->eqns.x[bin_i0] + a * solver->eqns.x[bin_i1];
261 }
262
aom_noise_strength_solver_add_measurement(aom_noise_strength_solver_t * solver,double block_mean,double noise_std)263 void aom_noise_strength_solver_add_measurement(
264 aom_noise_strength_solver_t *solver, double block_mean, double noise_std) {
265 const double bin = noise_strength_solver_get_bin_index(solver, block_mean);
266 const int bin_i0 = (int)floor(bin);
267 const int bin_i1 = AOMMIN(solver->num_bins - 1, bin_i0 + 1);
268 const double a = bin - bin_i0;
269 const int n = solver->num_bins;
270 solver->eqns.A[bin_i0 * n + bin_i0] += (1.0 - a) * (1.0 - a);
271 solver->eqns.A[bin_i1 * n + bin_i0] += a * (1.0 - a);
272 solver->eqns.A[bin_i1 * n + bin_i1] += a * a;
273 solver->eqns.A[bin_i0 * n + bin_i1] += a * (1.0 - a);
274 solver->eqns.b[bin_i0] += (1.0 - a) * noise_std;
275 solver->eqns.b[bin_i1] += a * noise_std;
276 solver->total += noise_std;
277 solver->num_equations++;
278 }
279
aom_noise_strength_solver_solve(aom_noise_strength_solver_t * solver)280 int aom_noise_strength_solver_solve(aom_noise_strength_solver_t *solver) {
281 // Add regularization proportional to the number of constraints
282 const int n = solver->num_bins;
283 const double kAlpha = 2.0 * (double)(solver->num_equations) / n;
284 int result = 0;
285 double mean = 0;
286
287 // Do this in a non-destructive manner so it is not confusing to the caller
288 double *old_A = solver->eqns.A;
289 double *A = (double *)aom_malloc(sizeof(*A) * n * n);
290 if (!A) {
291 fprintf(stderr, "Unable to allocate copy of A\n");
292 return 0;
293 }
294 memcpy(A, old_A, sizeof(*A) * n * n);
295
296 for (int i = 0; i < n; ++i) {
297 const int i_lo = AOMMAX(0, i - 1);
298 const int i_hi = AOMMIN(n - 1, i + 1);
299 A[i * n + i_lo] -= kAlpha;
300 A[i * n + i] += 2 * kAlpha;
301 A[i * n + i_hi] -= kAlpha;
302 }
303
304 // Small regularization to give average noise strength
305 mean = solver->total / solver->num_equations;
306 for (int i = 0; i < n; ++i) {
307 A[i * n + i] += 1.0 / 8192.;
308 solver->eqns.b[i] += mean / 8192.;
309 }
310 solver->eqns.A = A;
311 result = equation_system_solve(&solver->eqns);
312 solver->eqns.A = old_A;
313
314 aom_free(A);
315 return result;
316 }
317
aom_noise_strength_solver_init(aom_noise_strength_solver_t * solver,int num_bins,int bit_depth)318 int aom_noise_strength_solver_init(aom_noise_strength_solver_t *solver,
319 int num_bins, int bit_depth) {
320 if (!solver) return 0;
321 memset(solver, 0, sizeof(*solver));
322 solver->num_bins = num_bins;
323 solver->min_intensity = 0;
324 solver->max_intensity = (1 << bit_depth) - 1;
325 solver->total = 0;
326 solver->num_equations = 0;
327 return equation_system_init(&solver->eqns, num_bins);
328 }
329
aom_noise_strength_solver_free(aom_noise_strength_solver_t * solver)330 void aom_noise_strength_solver_free(aom_noise_strength_solver_t *solver) {
331 if (!solver) return;
332 equation_system_free(&solver->eqns);
333 }
334
aom_noise_strength_solver_get_center(const aom_noise_strength_solver_t * solver,int i)335 double aom_noise_strength_solver_get_center(
336 const aom_noise_strength_solver_t *solver, int i) {
337 const double range = solver->max_intensity - solver->min_intensity;
338 const int n = solver->num_bins;
339 return ((double)i) / (n - 1) * range + solver->min_intensity;
340 }
341
342 // Computes the residual if a point were to be removed from the lut. This is
343 // calculated as the area between the output of the solver and the line segment
344 // that would be formed between [x_{i - 1}, x_{i + 1}).
update_piecewise_linear_residual(const aom_noise_strength_solver_t * solver,const aom_noise_strength_lut_t * lut,double * residual,int start,int end)345 static void update_piecewise_linear_residual(
346 const aom_noise_strength_solver_t *solver,
347 const aom_noise_strength_lut_t *lut, double *residual, int start, int end) {
348 const double dx = 255. / solver->num_bins;
349 for (int i = AOMMAX(start, 1); i < AOMMIN(end, lut->num_points - 1); ++i) {
350 const int lower = AOMMAX(0, (int)floor(noise_strength_solver_get_bin_index(
351 solver, lut->points[i - 1][0])));
352 const int upper = AOMMIN(solver->num_bins - 1,
353 (int)ceil(noise_strength_solver_get_bin_index(
354 solver, lut->points[i + 1][0])));
355 double r = 0;
356 for (int j = lower; j <= upper; ++j) {
357 const double x = aom_noise_strength_solver_get_center(solver, j);
358 if (x < lut->points[i - 1][0]) continue;
359 if (x >= lut->points[i + 1][0]) continue;
360 const double y = solver->eqns.x[j];
361 const double a = (x - lut->points[i - 1][0]) /
362 (lut->points[i + 1][0] - lut->points[i - 1][0]);
363 const double estimate_y =
364 lut->points[i - 1][1] * (1.0 - a) + lut->points[i + 1][1] * a;
365 r += fabs(y - estimate_y);
366 }
367 residual[i] = r * dx;
368 }
369 }
370
aom_noise_strength_solver_fit_piecewise(const aom_noise_strength_solver_t * solver,int max_output_points,aom_noise_strength_lut_t * lut)371 int aom_noise_strength_solver_fit_piecewise(
372 const aom_noise_strength_solver_t *solver, int max_output_points,
373 aom_noise_strength_lut_t *lut) {
374 // The tolerance is normalized to be give consistent results between
375 // different bit-depths.
376 const double kTolerance = solver->max_intensity * 0.00625 / 255.0;
377 if (!aom_noise_strength_lut_init(lut, solver->num_bins)) {
378 fprintf(stderr, "Failed to init lut\n");
379 return 0;
380 }
381 for (int i = 0; i < solver->num_bins; ++i) {
382 lut->points[i][0] = aom_noise_strength_solver_get_center(solver, i);
383 lut->points[i][1] = solver->eqns.x[i];
384 }
385 if (max_output_points < 0) {
386 max_output_points = solver->num_bins;
387 }
388
389 double *residual = aom_malloc(solver->num_bins * sizeof(*residual));
390 memset(residual, 0, sizeof(*residual) * solver->num_bins);
391
392 update_piecewise_linear_residual(solver, lut, residual, 0, solver->num_bins);
393
394 // Greedily remove points if there are too many or if it doesn't hurt local
395 // approximation (never remove the end points)
396 while (lut->num_points > 2) {
397 int min_index = 1;
398 for (int j = 1; j < lut->num_points - 1; ++j) {
399 if (residual[j] < residual[min_index]) {
400 min_index = j;
401 }
402 }
403 const double dx =
404 lut->points[min_index + 1][0] - lut->points[min_index - 1][0];
405 const double avg_residual = residual[min_index] / dx;
406 if (lut->num_points <= max_output_points && avg_residual > kTolerance) {
407 break;
408 }
409
410 const int num_remaining = lut->num_points - min_index - 1;
411 memmove(lut->points + min_index, lut->points + min_index + 1,
412 sizeof(lut->points[0]) * num_remaining);
413 lut->num_points--;
414
415 update_piecewise_linear_residual(solver, lut, residual, min_index - 1,
416 min_index + 1);
417 }
418 aom_free(residual);
419 return 1;
420 }
421
aom_flat_block_finder_init(aom_flat_block_finder_t * block_finder,int block_size,int bit_depth,int use_highbd)422 int aom_flat_block_finder_init(aom_flat_block_finder_t *block_finder,
423 int block_size, int bit_depth, int use_highbd) {
424 const int n = block_size * block_size;
425 aom_equation_system_t eqns;
426 double *AtA_inv = 0;
427 double *A = 0;
428 int x = 0, y = 0, i = 0, j = 0;
429 if (!equation_system_init(&eqns, kLowPolyNumParams)) {
430 fprintf(stderr, "Failed to init equation system for block_size=%d\n",
431 block_size);
432 return 0;
433 }
434
435 AtA_inv = (double *)aom_malloc(kLowPolyNumParams * kLowPolyNumParams *
436 sizeof(*AtA_inv));
437 A = (double *)aom_malloc(kLowPolyNumParams * n * sizeof(*A));
438 if (AtA_inv == NULL || A == NULL) {
439 fprintf(stderr, "Failed to alloc A or AtA_inv for block_size=%d\n",
440 block_size);
441 aom_free(AtA_inv);
442 aom_free(A);
443 equation_system_free(&eqns);
444 return 0;
445 }
446
447 block_finder->A = A;
448 block_finder->AtA_inv = AtA_inv;
449 block_finder->block_size = block_size;
450 block_finder->normalization = (1 << bit_depth) - 1;
451 block_finder->use_highbd = use_highbd;
452
453 for (y = 0; y < block_size; ++y) {
454 const double yd = ((double)y - block_size / 2.) / (block_size / 2.);
455 for (x = 0; x < block_size; ++x) {
456 const double xd = ((double)x - block_size / 2.) / (block_size / 2.);
457 const double coords[3] = { yd, xd, 1 };
458 const int row = y * block_size + x;
459 A[kLowPolyNumParams * row + 0] = yd;
460 A[kLowPolyNumParams * row + 1] = xd;
461 A[kLowPolyNumParams * row + 2] = 1;
462
463 for (i = 0; i < kLowPolyNumParams; ++i) {
464 for (j = 0; j < kLowPolyNumParams; ++j) {
465 eqns.A[kLowPolyNumParams * i + j] += coords[i] * coords[j];
466 }
467 }
468 }
469 }
470
471 // Lazy inverse using existing equation solver.
472 for (i = 0; i < kLowPolyNumParams; ++i) {
473 memset(eqns.b, 0, sizeof(*eqns.b) * kLowPolyNumParams);
474 eqns.b[i] = 1;
475 equation_system_solve(&eqns);
476
477 for (j = 0; j < kLowPolyNumParams; ++j) {
478 AtA_inv[j * kLowPolyNumParams + i] = eqns.x[j];
479 }
480 }
481 equation_system_free(&eqns);
482 return 1;
483 }
484
aom_flat_block_finder_free(aom_flat_block_finder_t * block_finder)485 void aom_flat_block_finder_free(aom_flat_block_finder_t *block_finder) {
486 if (!block_finder) return;
487 aom_free(block_finder->A);
488 aom_free(block_finder->AtA_inv);
489 memset(block_finder, 0, sizeof(*block_finder));
490 }
491
aom_flat_block_finder_extract_block(const aom_flat_block_finder_t * block_finder,const uint8_t * const data,int w,int h,int stride,int offsx,int offsy,double * plane,double * block)492 void aom_flat_block_finder_extract_block(
493 const aom_flat_block_finder_t *block_finder, const uint8_t *const data,
494 int w, int h, int stride, int offsx, int offsy, double *plane,
495 double *block) {
496 const int block_size = block_finder->block_size;
497 const int n = block_size * block_size;
498 const double *A = block_finder->A;
499 const double *AtA_inv = block_finder->AtA_inv;
500 double plane_coords[kLowPolyNumParams];
501 double AtA_inv_b[kLowPolyNumParams];
502 int xi, yi, i;
503
504 if (block_finder->use_highbd) {
505 const uint16_t *const data16 = (const uint16_t *const)data;
506 for (yi = 0; yi < block_size; ++yi) {
507 const int y = clamp(offsy + yi, 0, h - 1);
508 for (xi = 0; xi < block_size; ++xi) {
509 const int x = clamp(offsx + xi, 0, w - 1);
510 block[yi * block_size + xi] =
511 ((double)data16[y * stride + x]) / block_finder->normalization;
512 }
513 }
514 } else {
515 for (yi = 0; yi < block_size; ++yi) {
516 const int y = clamp(offsy + yi, 0, h - 1);
517 for (xi = 0; xi < block_size; ++xi) {
518 const int x = clamp(offsx + xi, 0, w - 1);
519 block[yi * block_size + xi] =
520 ((double)data[y * stride + x]) / block_finder->normalization;
521 }
522 }
523 }
524 multiply_mat(block, A, AtA_inv_b, 1, n, kLowPolyNumParams);
525 multiply_mat(AtA_inv, AtA_inv_b, plane_coords, kLowPolyNumParams,
526 kLowPolyNumParams, 1);
527 multiply_mat(A, plane_coords, plane, n, kLowPolyNumParams, 1);
528
529 for (i = 0; i < n; ++i) {
530 block[i] -= plane[i];
531 }
532 }
533
534 typedef struct {
535 int index;
536 float score;
537 } index_and_score_t;
538
compare_scores(const void * a,const void * b)539 static int compare_scores(const void *a, const void *b) {
540 const float diff =
541 ((index_and_score_t *)a)->score - ((index_and_score_t *)b)->score;
542 if (diff < 0)
543 return -1;
544 else if (diff > 0)
545 return 1;
546 return 0;
547 }
548
aom_flat_block_finder_run(const aom_flat_block_finder_t * block_finder,const uint8_t * const data,int w,int h,int stride,uint8_t * flat_blocks)549 int aom_flat_block_finder_run(const aom_flat_block_finder_t *block_finder,
550 const uint8_t *const data, int w, int h,
551 int stride, uint8_t *flat_blocks) {
552 // The gradient-based features used in this code are based on:
553 // A. Kokaram, D. Kelly, H. Denman and A. Crawford, "Measuring noise
554 // correlation for improved video denoising," 2012 19th, ICIP.
555 // The thresholds are more lenient to allow for correct grain modeling
556 // if extreme cases.
557 const int block_size = block_finder->block_size;
558 const int n = block_size * block_size;
559 const double kTraceThreshold = 0.15 / (32 * 32);
560 const double kRatioThreshold = 1.25;
561 const double kNormThreshold = 0.08 / (32 * 32);
562 const double kVarThreshold = 0.005 / (double)n;
563 const int num_blocks_w = (w + block_size - 1) / block_size;
564 const int num_blocks_h = (h + block_size - 1) / block_size;
565 int num_flat = 0;
566 int bx = 0, by = 0;
567 double *plane = (double *)aom_malloc(n * sizeof(*plane));
568 double *block = (double *)aom_malloc(n * sizeof(*block));
569 index_and_score_t *scores = (index_and_score_t *)aom_malloc(
570 num_blocks_w * num_blocks_h * sizeof(*scores));
571 if (plane == NULL || block == NULL || scores == NULL) {
572 fprintf(stderr, "Failed to allocate memory for block of size %d\n", n);
573 aom_free(plane);
574 aom_free(block);
575 aom_free(scores);
576 return -1;
577 }
578
579 #ifdef NOISE_MODEL_LOG_SCORE
580 fprintf(stderr, "score = [");
581 #endif
582 for (by = 0; by < num_blocks_h; ++by) {
583 for (bx = 0; bx < num_blocks_w; ++bx) {
584 // Compute gradient covariance matrix.
585 double Gxx = 0, Gxy = 0, Gyy = 0;
586 double var = 0;
587 double mean = 0;
588 int xi, yi;
589 aom_flat_block_finder_extract_block(block_finder, data, w, h, stride,
590 bx * block_size, by * block_size,
591 plane, block);
592
593 for (yi = 1; yi < block_size - 1; ++yi) {
594 for (xi = 1; xi < block_size - 1; ++xi) {
595 const double gx = (block[yi * block_size + xi + 1] -
596 block[yi * block_size + xi - 1]) /
597 2;
598 const double gy = (block[yi * block_size + xi + block_size] -
599 block[yi * block_size + xi - block_size]) /
600 2;
601 Gxx += gx * gx;
602 Gxy += gx * gy;
603 Gyy += gy * gy;
604
605 mean += block[yi * block_size + xi];
606 var += block[yi * block_size + xi] * block[yi * block_size + xi];
607 }
608 }
609 mean /= (block_size - 2) * (block_size - 2);
610
611 // Normalize gradients by block_size.
612 Gxx /= ((block_size - 2) * (block_size - 2));
613 Gxy /= ((block_size - 2) * (block_size - 2));
614 Gyy /= ((block_size - 2) * (block_size - 2));
615 var = var / ((block_size - 2) * (block_size - 2)) - mean * mean;
616
617 {
618 const double trace = Gxx + Gyy;
619 const double det = Gxx * Gyy - Gxy * Gxy;
620 const double e1 = (trace + sqrt(trace * trace - 4 * det)) / 2.;
621 const double e2 = (trace - sqrt(trace * trace - 4 * det)) / 2.;
622 const double norm = e1; // Spectral norm
623 const double ratio = (e1 / AOMMAX(e2, 1e-6));
624 const int is_flat = (trace < kTraceThreshold) &&
625 (ratio < kRatioThreshold) &&
626 (norm < kNormThreshold) && (var > kVarThreshold);
627 // The following weights are used to combine the above features to give
628 // a sigmoid score for flatness. If the input was normalized to [0,100]
629 // the magnitude of these values would be close to 1 (e.g., weights
630 // corresponding to variance would be a factor of 10000x smaller).
631 // The weights are given in the following order:
632 // [{var}, {ratio}, {trace}, {norm}, offset]
633 // with one of the most discriminative being simply the variance.
634 const double weights[5] = { -6682, -0.2056, 13087, -12434, 2.5694 };
635 const float score =
636 (float)(1.0 / (1 + exp(-(weights[0] * var + weights[1] * ratio +
637 weights[2] * trace + weights[3] * norm +
638 weights[4]))));
639 flat_blocks[by * num_blocks_w + bx] = is_flat ? 255 : 0;
640 scores[by * num_blocks_w + bx].score = var > kVarThreshold ? score : 0;
641 scores[by * num_blocks_w + bx].index = by * num_blocks_w + bx;
642 #ifdef NOISE_MODEL_LOG_SCORE
643 fprintf(stderr, "%g %g %g %g %g %d ", score, var, ratio, trace, norm,
644 is_flat);
645 #endif
646 num_flat += is_flat;
647 }
648 }
649 #ifdef NOISE_MODEL_LOG_SCORE
650 fprintf(stderr, "\n");
651 #endif
652 }
653 #ifdef NOISE_MODEL_LOG_SCORE
654 fprintf(stderr, "];\n");
655 #endif
656 // Find the top-scored blocks (most likely to be flat) and set the flat blocks
657 // be the union of the thresholded results and the top 10th percentile of the
658 // scored results.
659 qsort(scores, num_blocks_w * num_blocks_h, sizeof(*scores), &compare_scores);
660 const int top_nth_percentile = num_blocks_w * num_blocks_h * 90 / 100;
661 const float score_threshold = scores[top_nth_percentile].score;
662 for (int i = 0; i < num_blocks_w * num_blocks_h; ++i) {
663 if (scores[i].score >= score_threshold) {
664 num_flat += flat_blocks[scores[i].index] == 0;
665 flat_blocks[scores[i].index] |= 1;
666 }
667 }
668 aom_free(block);
669 aom_free(plane);
670 aom_free(scores);
671 return num_flat;
672 }
673
aom_noise_model_init(aom_noise_model_t * model,const aom_noise_model_params_t params)674 int aom_noise_model_init(aom_noise_model_t *model,
675 const aom_noise_model_params_t params) {
676 const int n = num_coeffs(params);
677 const int lag = params.lag;
678 const int bit_depth = params.bit_depth;
679 int x = 0, y = 0, i = 0, c = 0;
680
681 memset(model, 0, sizeof(*model));
682 if (params.lag < 1) {
683 fprintf(stderr, "Invalid noise param: lag = %d must be >= 1\n", params.lag);
684 return 0;
685 }
686 if (params.lag > kMaxLag) {
687 fprintf(stderr, "Invalid noise param: lag = %d must be <= %d\n", params.lag,
688 kMaxLag);
689 return 0;
690 }
691
692 memcpy(&model->params, ¶ms, sizeof(params));
693 for (c = 0; c < 3; ++c) {
694 if (!noise_state_init(&model->combined_state[c], n + (c > 0), bit_depth)) {
695 fprintf(stderr, "Failed to allocate noise state for channel %d\n", c);
696 aom_noise_model_free(model);
697 return 0;
698 }
699 if (!noise_state_init(&model->latest_state[c], n + (c > 0), bit_depth)) {
700 fprintf(stderr, "Failed to allocate noise state for channel %d\n", c);
701 aom_noise_model_free(model);
702 return 0;
703 }
704 }
705 model->n = n;
706 model->coords = (int(*)[2])aom_malloc(sizeof(*model->coords) * n);
707
708 for (y = -lag; y <= 0; ++y) {
709 const int max_x = y == 0 ? -1 : lag;
710 for (x = -lag; x <= max_x; ++x) {
711 switch (params.shape) {
712 case AOM_NOISE_SHAPE_DIAMOND:
713 if (abs(x) <= y + lag) {
714 model->coords[i][0] = x;
715 model->coords[i][1] = y;
716 ++i;
717 }
718 break;
719 case AOM_NOISE_SHAPE_SQUARE:
720 model->coords[i][0] = x;
721 model->coords[i][1] = y;
722 ++i;
723 break;
724 default:
725 fprintf(stderr, "Invalid shape\n");
726 aom_noise_model_free(model);
727 return 0;
728 }
729 }
730 }
731 assert(i == n);
732 return 1;
733 }
734
aom_noise_model_free(aom_noise_model_t * model)735 void aom_noise_model_free(aom_noise_model_t *model) {
736 int c = 0;
737 if (!model) return;
738
739 aom_free(model->coords);
740 for (c = 0; c < 3; ++c) {
741 equation_system_free(&model->latest_state[c].eqns);
742 equation_system_free(&model->combined_state[c].eqns);
743
744 equation_system_free(&model->latest_state[c].strength_solver.eqns);
745 equation_system_free(&model->combined_state[c].strength_solver.eqns);
746 }
747 memset(model, 0, sizeof(*model));
748 }
749
750 // Extracts the neighborhood defined by coords around point (x, y) from
751 // the difference between the data and denoised images. Also extracts the
752 // entry (possibly downsampled) for (x, y) in the alt_data (e.g., luma).
753 #define EXTRACT_AR_ROW(INT_TYPE, suffix) \
754 static double extract_ar_row_##suffix( \
755 int(*coords)[2], int num_coords, const INT_TYPE *const data, \
756 const INT_TYPE *const denoised, int stride, int sub_log2[2], \
757 const INT_TYPE *const alt_data, const INT_TYPE *const alt_denoised, \
758 int alt_stride, int x, int y, double *buffer) { \
759 for (int i = 0; i < num_coords; ++i) { \
760 const int x_i = x + coords[i][0], y_i = y + coords[i][1]; \
761 buffer[i] = \
762 (double)data[y_i * stride + x_i] - denoised[y_i * stride + x_i]; \
763 } \
764 const double val = \
765 (double)data[y * stride + x] - denoised[y * stride + x]; \
766 \
767 if (alt_data && alt_denoised) { \
768 double avg_data = 0, avg_denoised = 0; \
769 int num_samples = 0; \
770 for (int dy_i = 0; dy_i < (1 << sub_log2[1]); dy_i++) { \
771 const int y_up = (y << sub_log2[1]) + dy_i; \
772 for (int dx_i = 0; dx_i < (1 << sub_log2[0]); dx_i++) { \
773 const int x_up = (x << sub_log2[0]) + dx_i; \
774 avg_data += alt_data[y_up * alt_stride + x_up]; \
775 avg_denoised += alt_denoised[y_up * alt_stride + x_up]; \
776 num_samples++; \
777 } \
778 } \
779 buffer[num_coords] = (avg_data - avg_denoised) / num_samples; \
780 } \
781 return val; \
782 }
783
784 EXTRACT_AR_ROW(uint8_t, lowbd);
785 EXTRACT_AR_ROW(uint16_t, highbd);
786
add_block_observations(aom_noise_model_t * noise_model,int c,const uint8_t * const data,const uint8_t * const denoised,int w,int h,int stride,int sub_log2[2],const uint8_t * const alt_data,const uint8_t * const alt_denoised,int alt_stride,const uint8_t * const flat_blocks,int block_size,int num_blocks_w,int num_blocks_h)787 static int add_block_observations(
788 aom_noise_model_t *noise_model, int c, const uint8_t *const data,
789 const uint8_t *const denoised, int w, int h, int stride, int sub_log2[2],
790 const uint8_t *const alt_data, const uint8_t *const alt_denoised,
791 int alt_stride, const uint8_t *const flat_blocks, int block_size,
792 int num_blocks_w, int num_blocks_h) {
793 const int lag = noise_model->params.lag;
794 const int num_coords = noise_model->n;
795 const double normalization = (1 << noise_model->params.bit_depth) - 1;
796 double *A = noise_model->latest_state[c].eqns.A;
797 double *b = noise_model->latest_state[c].eqns.b;
798 double *buffer = (double *)aom_malloc(sizeof(*buffer) * (num_coords + 1));
799 const int n = noise_model->latest_state[c].eqns.n;
800
801 if (!buffer) {
802 fprintf(stderr, "Unable to allocate buffer of size %d\n", num_coords + 1);
803 return 0;
804 }
805 for (int by = 0; by < num_blocks_h; ++by) {
806 const int y_o = by * (block_size >> sub_log2[1]);
807 for (int bx = 0; bx < num_blocks_w; ++bx) {
808 const int x_o = bx * (block_size >> sub_log2[0]);
809 if (!flat_blocks[by * num_blocks_w + bx]) {
810 continue;
811 }
812 int y_start =
813 (by > 0 && flat_blocks[(by - 1) * num_blocks_w + bx]) ? 0 : lag;
814 int x_start =
815 (bx > 0 && flat_blocks[by * num_blocks_w + bx - 1]) ? 0 : lag;
816 int y_end = AOMMIN((h >> sub_log2[1]) - by * (block_size >> sub_log2[1]),
817 block_size >> sub_log2[1]);
818 int x_end = AOMMIN(
819 (w >> sub_log2[0]) - bx * (block_size >> sub_log2[0]) - lag,
820 (bx + 1 < num_blocks_w && flat_blocks[by * num_blocks_w + bx + 1])
821 ? (block_size >> sub_log2[0])
822 : ((block_size >> sub_log2[0]) - lag));
823 for (int y = y_start; y < y_end; ++y) {
824 for (int x = x_start; x < x_end; ++x) {
825 const double val =
826 noise_model->params.use_highbd
827 ? extract_ar_row_highbd(noise_model->coords, num_coords,
828 (const uint16_t *const)data,
829 (const uint16_t *const)denoised,
830 stride, sub_log2,
831 (const uint16_t *const)alt_data,
832 (const uint16_t *const)alt_denoised,
833 alt_stride, x + x_o, y + y_o, buffer)
834 : extract_ar_row_lowbd(noise_model->coords, num_coords, data,
835 denoised, stride, sub_log2, alt_data,
836 alt_denoised, alt_stride, x + x_o,
837 y + y_o, buffer);
838 for (int i = 0; i < n; ++i) {
839 for (int j = 0; j < n; ++j) {
840 A[i * n + j] +=
841 (buffer[i] * buffer[j]) / (normalization * normalization);
842 }
843 b[i] += (buffer[i] * val) / (normalization * normalization);
844 }
845 noise_model->latest_state[c].num_observations++;
846 }
847 }
848 }
849 }
850 aom_free(buffer);
851 return 1;
852 }
853
add_noise_std_observations(aom_noise_model_t * noise_model,int c,const double * coeffs,const uint8_t * const data,const uint8_t * const denoised,int w,int h,int stride,int sub_log2[2],const uint8_t * const alt_data,int alt_stride,const uint8_t * const flat_blocks,int block_size,int num_blocks_w,int num_blocks_h)854 static void add_noise_std_observations(
855 aom_noise_model_t *noise_model, int c, const double *coeffs,
856 const uint8_t *const data, const uint8_t *const denoised, int w, int h,
857 int stride, int sub_log2[2], const uint8_t *const alt_data, int alt_stride,
858 const uint8_t *const flat_blocks, int block_size, int num_blocks_w,
859 int num_blocks_h) {
860 const int num_coords = noise_model->n;
861 aom_noise_strength_solver_t *noise_strength_solver =
862 &noise_model->latest_state[c].strength_solver;
863
864 const aom_noise_strength_solver_t *noise_strength_luma =
865 &noise_model->latest_state[0].strength_solver;
866 const double luma_gain = noise_model->latest_state[0].ar_gain;
867 const double noise_gain = noise_model->latest_state[c].ar_gain;
868 for (int by = 0; by < num_blocks_h; ++by) {
869 const int y_o = by * (block_size >> sub_log2[1]);
870 for (int bx = 0; bx < num_blocks_w; ++bx) {
871 const int x_o = bx * (block_size >> sub_log2[0]);
872 if (!flat_blocks[by * num_blocks_w + bx]) {
873 continue;
874 }
875 const int num_samples_h =
876 AOMMIN((h >> sub_log2[1]) - by * (block_size >> sub_log2[1]),
877 block_size >> sub_log2[1]);
878 const int num_samples_w =
879 AOMMIN((w >> sub_log2[0]) - bx * (block_size >> sub_log2[0]),
880 (block_size >> sub_log2[0]));
881 // Make sure that we have a reasonable amount of samples to consider the
882 // block
883 if (num_samples_w * num_samples_h > block_size) {
884 const double block_mean = get_block_mean(
885 alt_data ? alt_data : data, w, h, alt_data ? alt_stride : stride,
886 x_o << sub_log2[0], y_o << sub_log2[1], block_size,
887 noise_model->params.use_highbd);
888 const double noise_var = get_noise_var(
889 data, denoised, stride, w >> sub_log2[0], h >> sub_log2[1], x_o,
890 y_o, block_size >> sub_log2[0], block_size >> sub_log2[1],
891 noise_model->params.use_highbd);
892 // We want to remove the part of the noise that came from being
893 // correlated with luma. Note that the noise solver for luma must
894 // have already been run.
895 const double luma_strength =
896 c > 0 ? luma_gain * noise_strength_solver_get_value(
897 noise_strength_luma, block_mean)
898 : 0;
899 const double corr = c > 0 ? coeffs[num_coords] : 0;
900 // Chroma noise:
901 // N(0, noise_var) = N(0, uncorr_var) + corr * N(0, luma_strength^2)
902 // The uncorrelated component:
903 // uncorr_var = noise_var - (corr * luma_strength)^2
904 // But don't allow fully correlated noise (hence the max), since the
905 // synthesis cannot model it.
906 const double uncorr_std = sqrt(
907 AOMMAX(noise_var / 16, noise_var - pow(corr * luma_strength, 2)));
908 // After we've removed correlation with luma, undo the gain that will
909 // come from running the IIR filter.
910 const double adjusted_strength = uncorr_std / noise_gain;
911 aom_noise_strength_solver_add_measurement(
912 noise_strength_solver, block_mean, adjusted_strength);
913 }
914 }
915 }
916 }
917
918 // Return true if the noise estimate appears to be different from the combined
919 // (multi-frame) estimate. The difference is measured by checking whether the
920 // AR coefficients have diverged (using a threshold on normalized cross
921 // correlation), or whether the noise strength has changed.
is_noise_model_different(aom_noise_model_t * const noise_model)922 static int is_noise_model_different(aom_noise_model_t *const noise_model) {
923 // These thresholds are kind of arbitrary and will likely need further tuning
924 // (or exported as parameters). The threshold on noise strength is a weighted
925 // difference between the noise strength histograms
926 const double kCoeffThreshold = 0.9;
927 const double kStrengthThreshold =
928 0.005 * (1 << (noise_model->params.bit_depth - 8));
929 for (int c = 0; c < 1; ++c) {
930 const double corr =
931 aom_normalized_cross_correlation(noise_model->latest_state[c].eqns.x,
932 noise_model->combined_state[c].eqns.x,
933 noise_model->combined_state[c].eqns.n);
934 if (corr < kCoeffThreshold) return 1;
935
936 const double dx =
937 1.0 / noise_model->latest_state[c].strength_solver.num_bins;
938
939 const aom_equation_system_t *latest_eqns =
940 &noise_model->latest_state[c].strength_solver.eqns;
941 const aom_equation_system_t *combined_eqns =
942 &noise_model->combined_state[c].strength_solver.eqns;
943 double diff = 0;
944 double total_weight = 0;
945 for (int j = 0; j < latest_eqns->n; ++j) {
946 double weight = 0;
947 for (int i = 0; i < latest_eqns->n; ++i) {
948 weight += latest_eqns->A[i * latest_eqns->n + j];
949 }
950 weight = sqrt(weight);
951 diff += weight * fabs(latest_eqns->x[j] - combined_eqns->x[j]);
952 total_weight += weight;
953 }
954 if (diff * dx / total_weight > kStrengthThreshold) return 1;
955 }
956 return 0;
957 }
958
ar_equation_system_solve(aom_noise_state_t * state,int is_chroma)959 static int ar_equation_system_solve(aom_noise_state_t *state, int is_chroma) {
960 const int ret = equation_system_solve(&state->eqns);
961 state->ar_gain = 1.0;
962 if (!ret) return ret;
963
964 // Update the AR gain from the equation system as it will be used to fit
965 // the noise strength as a function of intensity. In the Yule-Walker
966 // equations, the diagonal should be the variance of the correlated noise.
967 // In the case of the least squares estimate, there will be some variability
968 // in the diagonal. So use the mean of the diagonal as the estimate of
969 // overall variance (this works for least squares or Yule-Walker formulation).
970 double var = 0;
971 const int n = state->eqns.n;
972 for (int i = 0; i < (state->eqns.n - is_chroma); ++i) {
973 var += state->eqns.A[i * n + i] / state->num_observations;
974 }
975 var /= (n - is_chroma);
976
977 // Keep track of E(Y^2) = <b, x> + E(X^2)
978 // In the case that we are using chroma and have an estimate of correlation
979 // with luma we adjust that estimate slightly to remove the correlated bits by
980 // subtracting out the last column of a scaled by our correlation estimate
981 // from b. E(y^2) = <b - A(:, end)*x(end), x>
982 double sum_covar = 0;
983 for (int i = 0; i < state->eqns.n - is_chroma; ++i) {
984 double bi = state->eqns.b[i];
985 if (is_chroma) {
986 bi -= state->eqns.A[i * n + (n - 1)] * state->eqns.x[n - 1];
987 }
988 sum_covar += (bi * state->eqns.x[i]) / state->num_observations;
989 }
990 // Now, get an estimate of the variance of uncorrelated noise signal and use
991 // it to determine the gain of the AR filter.
992 const double noise_var = AOMMAX(var - sum_covar, 1e-6);
993 state->ar_gain = AOMMAX(1, sqrt(AOMMAX(var / noise_var, 1e-6)));
994 return ret;
995 }
996
aom_noise_model_update(aom_noise_model_t * const noise_model,const uint8_t * const data[3],const uint8_t * const denoised[3],int w,int h,int stride[3],int chroma_sub_log2[2],const uint8_t * const flat_blocks,int block_size)997 aom_noise_status_t aom_noise_model_update(
998 aom_noise_model_t *const noise_model, const uint8_t *const data[3],
999 const uint8_t *const denoised[3], int w, int h, int stride[3],
1000 int chroma_sub_log2[2], const uint8_t *const flat_blocks, int block_size) {
1001 const int num_blocks_w = (w + block_size - 1) / block_size;
1002 const int num_blocks_h = (h + block_size - 1) / block_size;
1003 int y_model_different = 0;
1004 int num_blocks = 0;
1005 int i = 0, channel = 0;
1006
1007 if (block_size <= 1) {
1008 fprintf(stderr, "block_size = %d must be > 1\n", block_size);
1009 return AOM_NOISE_STATUS_INVALID_ARGUMENT;
1010 }
1011
1012 if (block_size < noise_model->params.lag * 2 + 1) {
1013 fprintf(stderr, "block_size = %d must be >= %d\n", block_size,
1014 noise_model->params.lag * 2 + 1);
1015 return AOM_NOISE_STATUS_INVALID_ARGUMENT;
1016 }
1017
1018 // Clear the latest equation system
1019 for (i = 0; i < 3; ++i) {
1020 equation_system_clear(&noise_model->latest_state[i].eqns);
1021 noise_model->latest_state[i].num_observations = 0;
1022 noise_strength_solver_clear(&noise_model->latest_state[i].strength_solver);
1023 }
1024
1025 // Check that we have enough flat blocks
1026 for (i = 0; i < num_blocks_h * num_blocks_w; ++i) {
1027 if (flat_blocks[i]) {
1028 num_blocks++;
1029 }
1030 }
1031
1032 if (num_blocks <= 1) {
1033 fprintf(stderr, "Not enough flat blocks to update noise estimate\n");
1034 return AOM_NOISE_STATUS_INSUFFICIENT_FLAT_BLOCKS;
1035 }
1036
1037 for (channel = 0; channel < 3; ++channel) {
1038 int no_subsampling[2] = { 0, 0 };
1039 const uint8_t *alt_data = channel > 0 ? data[0] : 0;
1040 const uint8_t *alt_denoised = channel > 0 ? denoised[0] : 0;
1041 int *sub = channel > 0 ? chroma_sub_log2 : no_subsampling;
1042 const int is_chroma = channel != 0;
1043 if (!data[channel] || !denoised[channel]) break;
1044 if (!add_block_observations(noise_model, channel, data[channel],
1045 denoised[channel], w, h, stride[channel], sub,
1046 alt_data, alt_denoised, stride[0], flat_blocks,
1047 block_size, num_blocks_w, num_blocks_h)) {
1048 fprintf(stderr, "Adding block observation failed\n");
1049 return AOM_NOISE_STATUS_INTERNAL_ERROR;
1050 }
1051
1052 if (!ar_equation_system_solve(&noise_model->latest_state[channel],
1053 is_chroma)) {
1054 if (is_chroma) {
1055 set_chroma_coefficient_fallback_soln(
1056 &noise_model->latest_state[channel].eqns);
1057 } else {
1058 fprintf(stderr, "Solving latest noise equation system failed %d!\n",
1059 channel);
1060 return AOM_NOISE_STATUS_INTERNAL_ERROR;
1061 }
1062 }
1063
1064 add_noise_std_observations(
1065 noise_model, channel, noise_model->latest_state[channel].eqns.x,
1066 data[channel], denoised[channel], w, h, stride[channel], sub, alt_data,
1067 stride[0], flat_blocks, block_size, num_blocks_w, num_blocks_h);
1068
1069 if (!aom_noise_strength_solver_solve(
1070 &noise_model->latest_state[channel].strength_solver)) {
1071 fprintf(stderr, "Solving latest noise strength failed!\n");
1072 return AOM_NOISE_STATUS_INTERNAL_ERROR;
1073 }
1074
1075 // Check noise characteristics and return if error.
1076 if (channel == 0 &&
1077 noise_model->combined_state[channel].strength_solver.num_equations >
1078 0 &&
1079 is_noise_model_different(noise_model)) {
1080 y_model_different = 1;
1081 }
1082
1083 // Don't update the combined stats if the y model is different.
1084 if (y_model_different) continue;
1085
1086 noise_model->combined_state[channel].num_observations +=
1087 noise_model->latest_state[channel].num_observations;
1088 equation_system_add(&noise_model->combined_state[channel].eqns,
1089 &noise_model->latest_state[channel].eqns);
1090 if (!ar_equation_system_solve(&noise_model->combined_state[channel],
1091 is_chroma)) {
1092 if (is_chroma) {
1093 set_chroma_coefficient_fallback_soln(
1094 &noise_model->combined_state[channel].eqns);
1095 } else {
1096 fprintf(stderr, "Solving combined noise equation system failed %d!\n",
1097 channel);
1098 return AOM_NOISE_STATUS_INTERNAL_ERROR;
1099 }
1100 }
1101
1102 noise_strength_solver_add(
1103 &noise_model->combined_state[channel].strength_solver,
1104 &noise_model->latest_state[channel].strength_solver);
1105
1106 if (!aom_noise_strength_solver_solve(
1107 &noise_model->combined_state[channel].strength_solver)) {
1108 fprintf(stderr, "Solving combined noise strength failed!\n");
1109 return AOM_NOISE_STATUS_INTERNAL_ERROR;
1110 }
1111 }
1112
1113 return y_model_different ? AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE
1114 : AOM_NOISE_STATUS_OK;
1115 }
1116
aom_noise_model_save_latest(aom_noise_model_t * noise_model)1117 void aom_noise_model_save_latest(aom_noise_model_t *noise_model) {
1118 for (int c = 0; c < 3; c++) {
1119 equation_system_copy(&noise_model->combined_state[c].eqns,
1120 &noise_model->latest_state[c].eqns);
1121 equation_system_copy(&noise_model->combined_state[c].strength_solver.eqns,
1122 &noise_model->latest_state[c].strength_solver.eqns);
1123 noise_model->combined_state[c].strength_solver.num_equations =
1124 noise_model->latest_state[c].strength_solver.num_equations;
1125 noise_model->combined_state[c].num_observations =
1126 noise_model->latest_state[c].num_observations;
1127 noise_model->combined_state[c].ar_gain =
1128 noise_model->latest_state[c].ar_gain;
1129 }
1130 }
1131
aom_noise_model_get_grain_parameters(aom_noise_model_t * const noise_model,aom_film_grain_t * film_grain)1132 int aom_noise_model_get_grain_parameters(aom_noise_model_t *const noise_model,
1133 aom_film_grain_t *film_grain) {
1134 if (noise_model->params.lag > 3) {
1135 fprintf(stderr, "params.lag = %d > 3\n", noise_model->params.lag);
1136 return 0;
1137 }
1138 uint16_t random_seed = film_grain->random_seed;
1139 memset(film_grain, 0, sizeof(*film_grain));
1140 film_grain->random_seed = random_seed;
1141
1142 film_grain->apply_grain = 1;
1143 film_grain->update_parameters = 1;
1144
1145 film_grain->ar_coeff_lag = noise_model->params.lag;
1146
1147 // Convert the scaling functions to 8 bit values
1148 aom_noise_strength_lut_t scaling_points[3];
1149 aom_noise_strength_solver_fit_piecewise(
1150 &noise_model->combined_state[0].strength_solver, 14, scaling_points + 0);
1151 aom_noise_strength_solver_fit_piecewise(
1152 &noise_model->combined_state[1].strength_solver, 10, scaling_points + 1);
1153 aom_noise_strength_solver_fit_piecewise(
1154 &noise_model->combined_state[2].strength_solver, 10, scaling_points + 2);
1155
1156 // Both the domain and the range of the scaling functions in the film_grain
1157 // are normalized to 8-bit (e.g., they are implicitly scaled during grain
1158 // synthesis).
1159 const double strength_divisor = 1 << (noise_model->params.bit_depth - 8);
1160 double max_scaling_value = 1e-4;
1161 for (int c = 0; c < 3; ++c) {
1162 for (int i = 0; i < scaling_points[c].num_points; ++i) {
1163 scaling_points[c].points[i][0] =
1164 AOMMIN(255, scaling_points[c].points[i][0] / strength_divisor);
1165 scaling_points[c].points[i][1] =
1166 AOMMIN(255, scaling_points[c].points[i][1] / strength_divisor);
1167 max_scaling_value =
1168 AOMMAX(scaling_points[c].points[i][1], max_scaling_value);
1169 }
1170 }
1171
1172 // Scaling_shift values are in the range [8,11]
1173 const int max_scaling_value_log2 =
1174 clamp((int)floor(log2(max_scaling_value) + 1), 2, 5);
1175 film_grain->scaling_shift = 5 + (8 - max_scaling_value_log2);
1176
1177 const double scale_factor = 1 << (8 - max_scaling_value_log2);
1178 film_grain->num_y_points = scaling_points[0].num_points;
1179 film_grain->num_cb_points = scaling_points[1].num_points;
1180 film_grain->num_cr_points = scaling_points[2].num_points;
1181
1182 int(*film_grain_scaling[3])[2] = {
1183 film_grain->scaling_points_y,
1184 film_grain->scaling_points_cb,
1185 film_grain->scaling_points_cr,
1186 };
1187 for (int c = 0; c < 3; c++) {
1188 for (int i = 0; i < scaling_points[c].num_points; ++i) {
1189 film_grain_scaling[c][i][0] = (int)(scaling_points[c].points[i][0] + 0.5);
1190 film_grain_scaling[c][i][1] = clamp(
1191 (int)(scale_factor * scaling_points[c].points[i][1] + 0.5), 0, 255);
1192 }
1193 }
1194 aom_noise_strength_lut_free(scaling_points + 0);
1195 aom_noise_strength_lut_free(scaling_points + 1);
1196 aom_noise_strength_lut_free(scaling_points + 2);
1197
1198 // Convert the ar_coeffs into 8-bit values
1199 const int n_coeff = noise_model->combined_state[0].eqns.n;
1200 double max_coeff = 1e-4, min_coeff = -1e-4;
1201 double y_corr[2] = { 0, 0 };
1202 double avg_luma_strength = 0;
1203 for (int c = 0; c < 3; c++) {
1204 aom_equation_system_t *eqns = &noise_model->combined_state[c].eqns;
1205 for (int i = 0; i < n_coeff; ++i) {
1206 max_coeff = AOMMAX(max_coeff, eqns->x[i]);
1207 min_coeff = AOMMIN(min_coeff, eqns->x[i]);
1208 }
1209 // Since the correlation between luma/chroma was computed in an already
1210 // scaled space, we adjust it in the un-scaled space.
1211 aom_noise_strength_solver_t *solver =
1212 &noise_model->combined_state[c].strength_solver;
1213 // Compute a weighted average of the strength for the channel.
1214 double average_strength = 0, total_weight = 0;
1215 for (int i = 0; i < solver->eqns.n; ++i) {
1216 double w = 0;
1217 for (int j = 0; j < solver->eqns.n; ++j) {
1218 w += solver->eqns.A[i * solver->eqns.n + j];
1219 }
1220 w = sqrt(w);
1221 average_strength += solver->eqns.x[i] * w;
1222 total_weight += w;
1223 }
1224 if (total_weight == 0)
1225 average_strength = 1;
1226 else
1227 average_strength /= total_weight;
1228 if (c == 0) {
1229 avg_luma_strength = average_strength;
1230 } else {
1231 y_corr[c - 1] = avg_luma_strength * eqns->x[n_coeff] / average_strength;
1232 max_coeff = AOMMAX(max_coeff, y_corr[c - 1]);
1233 min_coeff = AOMMIN(min_coeff, y_corr[c - 1]);
1234 }
1235 }
1236 // Shift value: AR coeffs range (values 6-9)
1237 // 6: [-2, 2), 7: [-1, 1), 8: [-0.5, 0.5), 9: [-0.25, 0.25)
1238 film_grain->ar_coeff_shift =
1239 clamp(7 - (int)AOMMAX(1 + floor(log2(max_coeff)), ceil(log2(-min_coeff))),
1240 6, 9);
1241 double scale_ar_coeff = 1 << film_grain->ar_coeff_shift;
1242 int *ar_coeffs[3] = {
1243 film_grain->ar_coeffs_y,
1244 film_grain->ar_coeffs_cb,
1245 film_grain->ar_coeffs_cr,
1246 };
1247 for (int c = 0; c < 3; ++c) {
1248 aom_equation_system_t *eqns = &noise_model->combined_state[c].eqns;
1249 for (int i = 0; i < n_coeff; ++i) {
1250 ar_coeffs[c][i] =
1251 clamp((int)round(scale_ar_coeff * eqns->x[i]), -128, 127);
1252 }
1253 if (c > 0) {
1254 ar_coeffs[c][n_coeff] =
1255 clamp((int)round(scale_ar_coeff * y_corr[c - 1]), -128, 127);
1256 }
1257 }
1258
1259 // At the moment, the noise modeling code assumes that the chroma scaling
1260 // functions are a function of luma.
1261 film_grain->cb_mult = 128; // 8 bits
1262 film_grain->cb_luma_mult = 192; // 8 bits
1263 film_grain->cb_offset = 256; // 9 bits
1264
1265 film_grain->cr_mult = 128; // 8 bits
1266 film_grain->cr_luma_mult = 192; // 8 bits
1267 film_grain->cr_offset = 256; // 9 bits
1268
1269 film_grain->chroma_scaling_from_luma = 0;
1270 film_grain->grain_scale_shift = 0;
1271 film_grain->overlap_flag = 1;
1272 return 1;
1273 }
1274
pointwise_multiply(const float * a,float * b,int n)1275 static void pointwise_multiply(const float *a, float *b, int n) {
1276 for (int i = 0; i < n; ++i) {
1277 b[i] *= a[i];
1278 }
1279 }
1280
get_half_cos_window(int block_size)1281 static float *get_half_cos_window(int block_size) {
1282 float *window_function =
1283 (float *)aom_malloc(block_size * block_size * sizeof(*window_function));
1284 for (int y = 0; y < block_size; ++y) {
1285 const double cos_yd = cos((.5 + y) * PI / block_size - PI / 2);
1286 for (int x = 0; x < block_size; ++x) {
1287 const double cos_xd = cos((.5 + x) * PI / block_size - PI / 2);
1288 window_function[y * block_size + x] = (float)(cos_yd * cos_xd);
1289 }
1290 }
1291 return window_function;
1292 }
1293
1294 #define DITHER_AND_QUANTIZE(INT_TYPE, suffix) \
1295 static void dither_and_quantize_##suffix( \
1296 float *result, int result_stride, INT_TYPE *denoised, int w, int h, \
1297 int stride, int chroma_sub_w, int chroma_sub_h, int block_size, \
1298 float block_normalization) { \
1299 for (int y = 0; y < (h >> chroma_sub_h); ++y) { \
1300 for (int x = 0; x < (w >> chroma_sub_w); ++x) { \
1301 const int result_idx = \
1302 (y + (block_size >> chroma_sub_h)) * result_stride + x + \
1303 (block_size >> chroma_sub_w); \
1304 INT_TYPE new_val = (INT_TYPE)AOMMIN( \
1305 AOMMAX(result[result_idx] * block_normalization + 0.5f, 0), \
1306 block_normalization); \
1307 const float err = \
1308 -(((float)new_val) / block_normalization - result[result_idx]); \
1309 denoised[y * stride + x] = new_val; \
1310 if (x + 1 < (w >> chroma_sub_w)) { \
1311 result[result_idx + 1] += err * 7.0f / 16.0f; \
1312 } \
1313 if (y + 1 < (h >> chroma_sub_h)) { \
1314 if (x > 0) { \
1315 result[result_idx + result_stride - 1] += err * 3.0f / 16.0f; \
1316 } \
1317 result[result_idx + result_stride] += err * 5.0f / 16.0f; \
1318 if (x + 1 < (w >> chroma_sub_w)) { \
1319 result[result_idx + result_stride + 1] += err * 1.0f / 16.0f; \
1320 } \
1321 } \
1322 } \
1323 } \
1324 }
1325
1326 DITHER_AND_QUANTIZE(uint8_t, lowbd);
1327 DITHER_AND_QUANTIZE(uint16_t, highbd);
1328
aom_wiener_denoise_2d(const uint8_t * const data[3],uint8_t * denoised[3],int w,int h,int stride[3],int chroma_sub[2],float * noise_psd[3],int block_size,int bit_depth,int use_highbd)1329 int aom_wiener_denoise_2d(const uint8_t *const data[3], uint8_t *denoised[3],
1330 int w, int h, int stride[3], int chroma_sub[2],
1331 float *noise_psd[3], int block_size, int bit_depth,
1332 int use_highbd) {
1333 float *plane = NULL, *block = NULL, *window_full = NULL,
1334 *window_chroma = NULL;
1335 double *block_d = NULL, *plane_d = NULL;
1336 struct aom_noise_tx_t *tx_full = NULL;
1337 struct aom_noise_tx_t *tx_chroma = NULL;
1338 const int num_blocks_w = (w + block_size - 1) / block_size;
1339 const int num_blocks_h = (h + block_size - 1) / block_size;
1340 const int result_stride = (num_blocks_w + 2) * block_size;
1341 const int result_height = (num_blocks_h + 2) * block_size;
1342 float *result = NULL;
1343 int init_success = 1;
1344 aom_flat_block_finder_t block_finder_full;
1345 aom_flat_block_finder_t block_finder_chroma;
1346 const float kBlockNormalization = (float)((1 << bit_depth) - 1);
1347 if (chroma_sub[0] != chroma_sub[1]) {
1348 fprintf(stderr,
1349 "aom_wiener_denoise_2d doesn't handle different chroma "
1350 "subsampling");
1351 return 0;
1352 }
1353 init_success &= aom_flat_block_finder_init(&block_finder_full, block_size,
1354 bit_depth, use_highbd);
1355 result = (float *)aom_malloc((num_blocks_h + 2) * block_size * result_stride *
1356 sizeof(*result));
1357 plane = (float *)aom_malloc(block_size * block_size * sizeof(*plane));
1358 block =
1359 (float *)aom_memalign(32, 2 * block_size * block_size * sizeof(*block));
1360 block_d = (double *)aom_malloc(block_size * block_size * sizeof(*block_d));
1361 plane_d = (double *)aom_malloc(block_size * block_size * sizeof(*plane_d));
1362 window_full = get_half_cos_window(block_size);
1363 tx_full = aom_noise_tx_malloc(block_size);
1364
1365 if (chroma_sub[0] != 0) {
1366 init_success &= aom_flat_block_finder_init(&block_finder_chroma,
1367 block_size >> chroma_sub[0],
1368 bit_depth, use_highbd);
1369 window_chroma = get_half_cos_window(block_size >> chroma_sub[0]);
1370 tx_chroma = aom_noise_tx_malloc(block_size >> chroma_sub[0]);
1371 } else {
1372 window_chroma = window_full;
1373 tx_chroma = tx_full;
1374 }
1375
1376 init_success &= (tx_full != NULL) && (tx_chroma != NULL) && (plane != NULL) &&
1377 (plane_d != NULL) && (block != NULL) && (block_d != NULL) &&
1378 (window_full != NULL) && (window_chroma != NULL) &&
1379 (result != NULL);
1380 for (int c = init_success ? 0 : 3; c < 3; ++c) {
1381 float *window_function = c == 0 ? window_full : window_chroma;
1382 aom_flat_block_finder_t *block_finder = &block_finder_full;
1383 const int chroma_sub_h = c > 0 ? chroma_sub[1] : 0;
1384 const int chroma_sub_w = c > 0 ? chroma_sub[0] : 0;
1385 struct aom_noise_tx_t *tx =
1386 (c > 0 && chroma_sub[0] > 0) ? tx_chroma : tx_full;
1387 if (!data[c] || !denoised[c]) continue;
1388 if (c > 0 && chroma_sub[0] != 0) {
1389 block_finder = &block_finder_chroma;
1390 }
1391 memset(result, 0, sizeof(*result) * result_stride * result_height);
1392 // Do overlapped block processing (half overlapped). The block rows can
1393 // easily be done in parallel
1394 for (int offsy = 0; offsy < (block_size >> chroma_sub_h);
1395 offsy += (block_size >> chroma_sub_h) / 2) {
1396 for (int offsx = 0; offsx < (block_size >> chroma_sub_w);
1397 offsx += (block_size >> chroma_sub_w) / 2) {
1398 // Pad the boundary when processing each block-set.
1399 for (int by = -1; by < num_blocks_h; ++by) {
1400 for (int bx = -1; bx < num_blocks_w; ++bx) {
1401 const int pixels_per_block =
1402 (block_size >> chroma_sub_w) * (block_size >> chroma_sub_h);
1403 aom_flat_block_finder_extract_block(
1404 block_finder, data[c], w >> chroma_sub_w, h >> chroma_sub_h,
1405 stride[c], bx * (block_size >> chroma_sub_w) + offsx,
1406 by * (block_size >> chroma_sub_h) + offsy, plane_d, block_d);
1407 for (int j = 0; j < pixels_per_block; ++j) {
1408 block[j] = (float)block_d[j];
1409 plane[j] = (float)plane_d[j];
1410 }
1411 pointwise_multiply(window_function, block, pixels_per_block);
1412 aom_noise_tx_forward(tx, block);
1413 aom_noise_tx_filter(tx, noise_psd[c]);
1414 aom_noise_tx_inverse(tx, block);
1415
1416 // Apply window function to the plane approximation (we will apply
1417 // it to the sum of plane + block when composing the results).
1418 pointwise_multiply(window_function, plane, pixels_per_block);
1419
1420 for (int y = 0; y < (block_size >> chroma_sub_h); ++y) {
1421 const int y_result =
1422 y + (by + 1) * (block_size >> chroma_sub_h) + offsy;
1423 for (int x = 0; x < (block_size >> chroma_sub_w); ++x) {
1424 const int x_result =
1425 x + (bx + 1) * (block_size >> chroma_sub_w) + offsx;
1426 result[y_result * result_stride + x_result] +=
1427 (block[y * (block_size >> chroma_sub_w) + x] +
1428 plane[y * (block_size >> chroma_sub_w) + x]) *
1429 window_function[y * (block_size >> chroma_sub_w) + x];
1430 }
1431 }
1432 }
1433 }
1434 }
1435 }
1436 if (use_highbd) {
1437 dither_and_quantize_highbd(result, result_stride, (uint16_t *)denoised[c],
1438 w, h, stride[c], chroma_sub_w, chroma_sub_h,
1439 block_size, kBlockNormalization);
1440 } else {
1441 dither_and_quantize_lowbd(result, result_stride, denoised[c], w, h,
1442 stride[c], chroma_sub_w, chroma_sub_h,
1443 block_size, kBlockNormalization);
1444 }
1445 }
1446 aom_free(result);
1447 aom_free(plane);
1448 aom_free(block);
1449 aom_free(plane_d);
1450 aom_free(block_d);
1451 aom_free(window_full);
1452
1453 aom_noise_tx_free(tx_full);
1454
1455 aom_flat_block_finder_free(&block_finder_full);
1456 if (chroma_sub[0] != 0) {
1457 aom_flat_block_finder_free(&block_finder_chroma);
1458 aom_free(window_chroma);
1459 aom_noise_tx_free(tx_chroma);
1460 }
1461 return init_success;
1462 }
1463
1464 struct aom_denoise_and_model_t {
1465 int block_size;
1466 int bit_depth;
1467 float noise_level;
1468
1469 // Size of current denoised buffer and flat_block buffer
1470 int width;
1471 int height;
1472 int y_stride;
1473 int uv_stride;
1474 int num_blocks_w;
1475 int num_blocks_h;
1476
1477 // Buffers for image and noise_psd allocated on the fly
1478 float *noise_psd[3];
1479 uint8_t *denoised[3];
1480 uint8_t *flat_blocks;
1481
1482 aom_flat_block_finder_t flat_block_finder;
1483 aom_noise_model_t noise_model;
1484 };
1485
aom_denoise_and_model_alloc(int bit_depth,int block_size,float noise_level)1486 struct aom_denoise_and_model_t *aom_denoise_and_model_alloc(int bit_depth,
1487 int block_size,
1488 float noise_level) {
1489 struct aom_denoise_and_model_t *ctx =
1490 (struct aom_denoise_and_model_t *)aom_malloc(
1491 sizeof(struct aom_denoise_and_model_t));
1492 if (!ctx) {
1493 fprintf(stderr, "Unable to allocate denoise_and_model struct\n");
1494 return NULL;
1495 }
1496 memset(ctx, 0, sizeof(*ctx));
1497
1498 ctx->block_size = block_size;
1499 ctx->noise_level = noise_level;
1500 ctx->bit_depth = bit_depth;
1501
1502 ctx->noise_psd[0] =
1503 aom_malloc(sizeof(*ctx->noise_psd[0]) * block_size * block_size);
1504 ctx->noise_psd[1] =
1505 aom_malloc(sizeof(*ctx->noise_psd[1]) * block_size * block_size);
1506 ctx->noise_psd[2] =
1507 aom_malloc(sizeof(*ctx->noise_psd[2]) * block_size * block_size);
1508 if (!ctx->noise_psd[0] || !ctx->noise_psd[1] || !ctx->noise_psd[2]) {
1509 fprintf(stderr, "Unable to allocate noise PSD buffers\n");
1510 aom_denoise_and_model_free(ctx);
1511 return NULL;
1512 }
1513 return ctx;
1514 }
1515
aom_denoise_and_model_free(struct aom_denoise_and_model_t * ctx)1516 void aom_denoise_and_model_free(struct aom_denoise_and_model_t *ctx) {
1517 aom_free(ctx->flat_blocks);
1518 for (int i = 0; i < 3; ++i) {
1519 aom_free(ctx->denoised[i]);
1520 aom_free(ctx->noise_psd[i]);
1521 }
1522 aom_noise_model_free(&ctx->noise_model);
1523 aom_flat_block_finder_free(&ctx->flat_block_finder);
1524 aom_free(ctx);
1525 }
1526
denoise_and_model_realloc_if_necessary(struct aom_denoise_and_model_t * ctx,YV12_BUFFER_CONFIG * sd)1527 static int denoise_and_model_realloc_if_necessary(
1528 struct aom_denoise_and_model_t *ctx, YV12_BUFFER_CONFIG *sd) {
1529 if (ctx->width == sd->y_width && ctx->height == sd->y_height &&
1530 ctx->y_stride == sd->y_stride && ctx->uv_stride == sd->uv_stride)
1531 return 1;
1532 const int use_highbd = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
1533 const int block_size = ctx->block_size;
1534
1535 ctx->width = sd->y_width;
1536 ctx->height = sd->y_height;
1537 ctx->y_stride = sd->y_stride;
1538 ctx->uv_stride = sd->uv_stride;
1539
1540 for (int i = 0; i < 3; ++i) {
1541 aom_free(ctx->denoised[i]);
1542 ctx->denoised[i] = NULL;
1543 }
1544 aom_free(ctx->flat_blocks);
1545 ctx->flat_blocks = NULL;
1546
1547 ctx->denoised[0] = aom_malloc((sd->y_stride * sd->y_height) << use_highbd);
1548 ctx->denoised[1] = aom_malloc((sd->uv_stride * sd->uv_height) << use_highbd);
1549 ctx->denoised[2] = aom_malloc((sd->uv_stride * sd->uv_height) << use_highbd);
1550 if (!ctx->denoised[0] || !ctx->denoised[1] || !ctx->denoised[2]) {
1551 fprintf(stderr, "Unable to allocate denoise buffers\n");
1552 return 0;
1553 }
1554 ctx->num_blocks_w = (sd->y_width + ctx->block_size - 1) / ctx->block_size;
1555 ctx->num_blocks_h = (sd->y_height + ctx->block_size - 1) / ctx->block_size;
1556 ctx->flat_blocks = aom_malloc(ctx->num_blocks_w * ctx->num_blocks_h);
1557
1558 aom_flat_block_finder_free(&ctx->flat_block_finder);
1559 if (!aom_flat_block_finder_init(&ctx->flat_block_finder, ctx->block_size,
1560 ctx->bit_depth, use_highbd)) {
1561 fprintf(stderr, "Unable to init flat block finder\n");
1562 return 0;
1563 }
1564
1565 const aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 3,
1566 ctx->bit_depth, use_highbd };
1567 aom_noise_model_free(&ctx->noise_model);
1568 if (!aom_noise_model_init(&ctx->noise_model, params)) {
1569 fprintf(stderr, "Unable to init noise model\n");
1570 return 0;
1571 }
1572
1573 // Simply use a flat PSD (although we could use the flat blocks to estimate
1574 // PSD) those to estimate an actual noise PSD)
1575 const float y_noise_level =
1576 aom_noise_psd_get_default_value(ctx->block_size, ctx->noise_level);
1577 const float uv_noise_level = aom_noise_psd_get_default_value(
1578 ctx->block_size >> sd->subsampling_x, ctx->noise_level);
1579 for (int i = 0; i < block_size * block_size; ++i) {
1580 ctx->noise_psd[0][i] = y_noise_level;
1581 ctx->noise_psd[1][i] = ctx->noise_psd[2][i] = uv_noise_level;
1582 }
1583 return 1;
1584 }
1585
aom_denoise_and_model_run(struct aom_denoise_and_model_t * ctx,YV12_BUFFER_CONFIG * sd,aom_film_grain_t * film_grain)1586 int aom_denoise_and_model_run(struct aom_denoise_and_model_t *ctx,
1587 YV12_BUFFER_CONFIG *sd,
1588 aom_film_grain_t *film_grain) {
1589 const int block_size = ctx->block_size;
1590 const int use_highbd = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
1591 uint8_t *raw_data[3] = {
1592 use_highbd ? (uint8_t *)CONVERT_TO_SHORTPTR(sd->y_buffer) : sd->y_buffer,
1593 use_highbd ? (uint8_t *)CONVERT_TO_SHORTPTR(sd->u_buffer) : sd->u_buffer,
1594 use_highbd ? (uint8_t *)CONVERT_TO_SHORTPTR(sd->v_buffer) : sd->v_buffer,
1595 };
1596 const uint8_t *const data[3] = { raw_data[0], raw_data[1], raw_data[2] };
1597 int strides[3] = { sd->y_stride, sd->uv_stride, sd->uv_stride };
1598 int chroma_sub_log2[2] = { sd->subsampling_x, sd->subsampling_y };
1599
1600 if (!denoise_and_model_realloc_if_necessary(ctx, sd)) {
1601 fprintf(stderr, "Unable to realloc buffers\n");
1602 return 0;
1603 }
1604
1605 aom_flat_block_finder_run(&ctx->flat_block_finder, data[0], sd->y_width,
1606 sd->y_height, strides[0], ctx->flat_blocks);
1607
1608 if (!aom_wiener_denoise_2d(data, ctx->denoised, sd->y_width, sd->y_height,
1609 strides, chroma_sub_log2, ctx->noise_psd,
1610 block_size, ctx->bit_depth, use_highbd)) {
1611 fprintf(stderr, "Unable to denoise image\n");
1612 return 0;
1613 }
1614
1615 const aom_noise_status_t status = aom_noise_model_update(
1616 &ctx->noise_model, data, (const uint8_t *const *)ctx->denoised,
1617 sd->y_width, sd->y_height, strides, chroma_sub_log2, ctx->flat_blocks,
1618 block_size);
1619 int have_noise_estimate = 0;
1620 if (status == AOM_NOISE_STATUS_OK) {
1621 have_noise_estimate = 1;
1622 } else if (status == AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE) {
1623 aom_noise_model_save_latest(&ctx->noise_model);
1624 have_noise_estimate = 1;
1625 } else {
1626 // Unable to update noise model; proceed if we have a previous estimate.
1627 have_noise_estimate =
1628 (ctx->noise_model.combined_state[0].strength_solver.num_equations > 0);
1629 }
1630
1631 film_grain->apply_grain = 0;
1632 if (have_noise_estimate) {
1633 if (!aom_noise_model_get_grain_parameters(&ctx->noise_model, film_grain)) {
1634 fprintf(stderr, "Unable to get grain parameters.\n");
1635 return 0;
1636 }
1637 if (!film_grain->random_seed) {
1638 film_grain->random_seed = 7391;
1639 }
1640 memcpy(raw_data[0], ctx->denoised[0],
1641 (strides[0] * sd->y_height) << use_highbd);
1642 memcpy(raw_data[1], ctx->denoised[1],
1643 (strides[1] * sd->uv_height) << use_highbd);
1644 memcpy(raw_data[2], ctx->denoised[2],
1645 (strides[2] * sd->uv_height) << use_highbd);
1646 }
1647 return 1;
1648 }
1649