• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/TableGen/Record.h - Classes for Table Records -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the main TableGen data structures, including the TableGen
11 // types, values, and high-level data structures.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_TABLEGEN_RECORD_H
16 #define LLVM_TABLEGEN_RECORD_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/SMLoc.h"
28 #include "llvm/Support/TrailingObjects.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <cstdint>
34 #include <map>
35 #include <memory>
36 #include <string>
37 #include <utility>
38 #include <vector>
39 
40 namespace llvm {
41 
42 class ListRecTy;
43 struct MultiClass;
44 class Record;
45 class RecordKeeper;
46 class RecordVal;
47 class Resolver;
48 class StringInit;
49 class TypedInit;
50 
51 //===----------------------------------------------------------------------===//
52 //  Type Classes
53 //===----------------------------------------------------------------------===//
54 
55 class RecTy {
56 public:
57   /// Subclass discriminator (for dyn_cast<> et al.)
58   enum RecTyKind {
59     BitRecTyKind,
60     BitsRecTyKind,
61     CodeRecTyKind,
62     IntRecTyKind,
63     StringRecTyKind,
64     ListRecTyKind,
65     DagRecTyKind,
66     RecordRecTyKind
67   };
68 
69 private:
70   RecTyKind Kind;
71   ListRecTy *ListTy = nullptr;
72 
73 public:
RecTy(RecTyKind K)74   RecTy(RecTyKind K) : Kind(K) {}
75   virtual ~RecTy() = default;
76 
getRecTyKind()77   RecTyKind getRecTyKind() const { return Kind; }
78 
79   virtual std::string getAsString() const = 0;
print(raw_ostream & OS)80   void print(raw_ostream &OS) const { OS << getAsString(); }
81   void dump() const;
82 
83   /// Return true if all values of 'this' type can be converted to the specified
84   /// type.
85   virtual bool typeIsConvertibleTo(const RecTy *RHS) const;
86 
87   /// Return true if 'this' type is equal to or a subtype of RHS. For example,
88   /// a bit set is not an int, but they are convertible.
89   virtual bool typeIsA(const RecTy *RHS) const;
90 
91   /// Returns the type representing list<this>.
92   ListRecTy *getListTy();
93 };
94 
95 inline raw_ostream &operator<<(raw_ostream &OS, const RecTy &Ty) {
96   Ty.print(OS);
97   return OS;
98 }
99 
100 /// 'bit' - Represent a single bit
101 class BitRecTy : public RecTy {
102   static BitRecTy Shared;
103 
BitRecTy()104   BitRecTy() : RecTy(BitRecTyKind) {}
105 
106 public:
classof(const RecTy * RT)107   static bool classof(const RecTy *RT) {
108     return RT->getRecTyKind() == BitRecTyKind;
109   }
110 
get()111   static BitRecTy *get() { return &Shared; }
112 
getAsString()113   std::string getAsString() const override { return "bit"; }
114 
115   bool typeIsConvertibleTo(const RecTy *RHS) const override;
116 };
117 
118 /// 'bits<n>' - Represent a fixed number of bits
119 class BitsRecTy : public RecTy {
120   unsigned Size;
121 
BitsRecTy(unsigned Sz)122   explicit BitsRecTy(unsigned Sz) : RecTy(BitsRecTyKind), Size(Sz) {}
123 
124 public:
classof(const RecTy * RT)125   static bool classof(const RecTy *RT) {
126     return RT->getRecTyKind() == BitsRecTyKind;
127   }
128 
129   static BitsRecTy *get(unsigned Sz);
130 
getNumBits()131   unsigned getNumBits() const { return Size; }
132 
133   std::string getAsString() const override;
134 
135   bool typeIsConvertibleTo(const RecTy *RHS) const override;
136 
137   bool typeIsA(const RecTy *RHS) const override;
138 };
139 
140 /// 'code' - Represent a code fragment
141 class CodeRecTy : public RecTy {
142   static CodeRecTy Shared;
143 
CodeRecTy()144   CodeRecTy() : RecTy(CodeRecTyKind) {}
145 
146 public:
classof(const RecTy * RT)147   static bool classof(const RecTy *RT) {
148     return RT->getRecTyKind() == CodeRecTyKind;
149   }
150 
get()151   static CodeRecTy *get() { return &Shared; }
152 
getAsString()153   std::string getAsString() const override { return "code"; }
154 
155   bool typeIsConvertibleTo(const RecTy *RHS) const override;
156 };
157 
158 /// 'int' - Represent an integer value of no particular size
159 class IntRecTy : public RecTy {
160   static IntRecTy Shared;
161 
IntRecTy()162   IntRecTy() : RecTy(IntRecTyKind) {}
163 
164 public:
classof(const RecTy * RT)165   static bool classof(const RecTy *RT) {
166     return RT->getRecTyKind() == IntRecTyKind;
167   }
168 
get()169   static IntRecTy *get() { return &Shared; }
170 
getAsString()171   std::string getAsString() const override { return "int"; }
172 
173   bool typeIsConvertibleTo(const RecTy *RHS) const override;
174 };
175 
176 /// 'string' - Represent an string value
177 class StringRecTy : public RecTy {
178   static StringRecTy Shared;
179 
StringRecTy()180   StringRecTy() : RecTy(StringRecTyKind) {}
181 
182 public:
classof(const RecTy * RT)183   static bool classof(const RecTy *RT) {
184     return RT->getRecTyKind() == StringRecTyKind;
185   }
186 
get()187   static StringRecTy *get() { return &Shared; }
188 
189   std::string getAsString() const override;
190 
191   bool typeIsConvertibleTo(const RecTy *RHS) const override;
192 };
193 
194 /// 'list<Ty>' - Represent a list of values, all of which must be of
195 /// the specified type.
196 class ListRecTy : public RecTy {
197   friend ListRecTy *RecTy::getListTy();
198 
199   RecTy *Ty;
200 
ListRecTy(RecTy * T)201   explicit ListRecTy(RecTy *T) : RecTy(ListRecTyKind), Ty(T) {}
202 
203 public:
classof(const RecTy * RT)204   static bool classof(const RecTy *RT) {
205     return RT->getRecTyKind() == ListRecTyKind;
206   }
207 
get(RecTy * T)208   static ListRecTy *get(RecTy *T) { return T->getListTy(); }
getElementType()209   RecTy *getElementType() const { return Ty; }
210 
211   std::string getAsString() const override;
212 
213   bool typeIsConvertibleTo(const RecTy *RHS) const override;
214 
215   bool typeIsA(const RecTy *RHS) const override;
216 };
217 
218 /// 'dag' - Represent a dag fragment
219 class DagRecTy : public RecTy {
220   static DagRecTy Shared;
221 
DagRecTy()222   DagRecTy() : RecTy(DagRecTyKind) {}
223 
224 public:
classof(const RecTy * RT)225   static bool classof(const RecTy *RT) {
226     return RT->getRecTyKind() == DagRecTyKind;
227   }
228 
get()229   static DagRecTy *get() { return &Shared; }
230 
231   std::string getAsString() const override;
232 };
233 
234 /// '[classname]' - Type of record values that have zero or more superclasses.
235 ///
236 /// The list of superclasses is non-redundant, i.e. only contains classes that
237 /// are not the superclass of some other listed class.
238 class RecordRecTy final : public RecTy, public FoldingSetNode,
239                           public TrailingObjects<RecordRecTy, Record *> {
240   friend class Record;
241 
242   unsigned NumClasses;
243 
RecordRecTy(unsigned Num)244   explicit RecordRecTy(unsigned Num)
245       : RecTy(RecordRecTyKind), NumClasses(Num) {}
246 
247 public:
248   RecordRecTy(const RecordRecTy &) = delete;
249   RecordRecTy &operator=(const RecordRecTy &) = delete;
250 
251   // Do not use sized deallocation due to trailing objects.
delete(void * p)252   void operator delete(void *p) { ::operator delete(p); }
253 
classof(const RecTy * RT)254   static bool classof(const RecTy *RT) {
255     return RT->getRecTyKind() == RecordRecTyKind;
256   }
257 
258   /// Get the record type with the given non-redundant list of superclasses.
259   static RecordRecTy *get(ArrayRef<Record *> Classes);
260 
261   void Profile(FoldingSetNodeID &ID) const;
262 
getClasses()263   ArrayRef<Record *> getClasses() const {
264     return makeArrayRef(getTrailingObjects<Record *>(), NumClasses);
265   }
266 
267   using const_record_iterator = Record * const *;
268 
classes_begin()269   const_record_iterator classes_begin() const { return getClasses().begin(); }
classes_end()270   const_record_iterator classes_end() const { return getClasses().end(); }
271 
272   std::string getAsString() const override;
273 
274   bool isSubClassOf(Record *Class) const;
275   bool typeIsConvertibleTo(const RecTy *RHS) const override;
276 
277   bool typeIsA(const RecTy *RHS) const override;
278 };
279 
280 /// Find a common type that T1 and T2 convert to.
281 /// Return 0 if no such type exists.
282 RecTy *resolveTypes(RecTy *T1, RecTy *T2);
283 
284 //===----------------------------------------------------------------------===//
285 //  Initializer Classes
286 //===----------------------------------------------------------------------===//
287 
288 class Init {
289 protected:
290   /// Discriminator enum (for isa<>, dyn_cast<>, et al.)
291   ///
292   /// This enum is laid out by a preorder traversal of the inheritance
293   /// hierarchy, and does not contain an entry for abstract classes, as per
294   /// the recommendation in docs/HowToSetUpLLVMStyleRTTI.rst.
295   ///
296   /// We also explicitly include "first" and "last" values for each
297   /// interior node of the inheritance tree, to make it easier to read the
298   /// corresponding classof().
299   ///
300   /// We could pack these a bit tighter by not having the IK_FirstXXXInit
301   /// and IK_LastXXXInit be their own values, but that would degrade
302   /// readability for really no benefit.
303   enum InitKind : uint8_t {
304     IK_First, // unused; silence a spurious warning
305     IK_FirstTypedInit,
306     IK_BitInit,
307     IK_BitsInit,
308     IK_CodeInit,
309     IK_DagInit,
310     IK_DefInit,
311     IK_FieldInit,
312     IK_IntInit,
313     IK_ListInit,
314     IK_FirstOpInit,
315     IK_BinOpInit,
316     IK_TernOpInit,
317     IK_UnOpInit,
318     IK_LastOpInit,
319     IK_FoldOpInit,
320     IK_IsAOpInit,
321     IK_StringInit,
322     IK_VarInit,
323     IK_VarListElementInit,
324     IK_VarBitInit,
325     IK_VarDefInit,
326     IK_LastTypedInit,
327     IK_UnsetInit
328   };
329 
330 private:
331   const InitKind Kind;
332 
333 protected:
334   uint8_t Opc; // Used by UnOpInit, BinOpInit, and TernOpInit
335 
336 private:
337   virtual void anchor();
338 
339 public:
getKind()340   InitKind getKind() const { return Kind; }
341 
342 protected:
Kind(K)343   explicit Init(InitKind K, uint8_t Opc = 0) : Kind(K), Opc(Opc) {}
344 
345 public:
346   Init(const Init &) = delete;
347   Init &operator=(const Init &) = delete;
348   virtual ~Init() = default;
349 
350   /// This virtual method should be overridden by values that may
351   /// not be completely specified yet.
isComplete()352   virtual bool isComplete() const { return true; }
353 
354   /// Is this a concrete and fully resolved value without any references or
355   /// stuck operations? Unset values are concrete.
isConcrete()356   virtual bool isConcrete() const { return false; }
357 
358   /// Print out this value.
print(raw_ostream & OS)359   void print(raw_ostream &OS) const { OS << getAsString(); }
360 
361   /// Convert this value to a string form.
362   virtual std::string getAsString() const = 0;
363   /// Convert this value to a string form,
364   /// without adding quote markers.  This primaruly affects
365   /// StringInits where we will not surround the string value with
366   /// quotes.
getAsUnquotedString()367   virtual std::string getAsUnquotedString() const { return getAsString(); }
368 
369   /// Debugging method that may be called through a debugger, just
370   /// invokes print on stderr.
371   void dump() const;
372 
373   /// If this initializer is convertible to Ty, return an initializer whose
374   /// type is-a Ty, generating a !cast operation if required. Otherwise, return
375   /// nullptr.
376   virtual Init *getCastTo(RecTy *Ty) const = 0;
377 
378   /// Convert to an initializer whose type is-a Ty, or return nullptr if this
379   /// is not possible (this can happen if the initializer's type is convertible
380   /// to Ty, but there are unresolved references).
381   virtual Init *convertInitializerTo(RecTy *Ty) const = 0;
382 
383   /// This method is used to implement the bitrange
384   /// selection operator.  Given an initializer, it selects the specified bits
385   /// out, returning them as a new init of bits type.  If it is not legal to use
386   /// the bit subscript operator on this initializer, return null.
convertInitializerBitRange(ArrayRef<unsigned> Bits)387   virtual Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
388     return nullptr;
389   }
390 
391   /// This method is used to implement the list slice
392   /// selection operator.  Given an initializer, it selects the specified list
393   /// elements, returning them as a new init of list type.  If it is not legal
394   /// to take a slice of this, return null.
convertInitListSlice(ArrayRef<unsigned> Elements)395   virtual Init *convertInitListSlice(ArrayRef<unsigned> Elements) const {
396     return nullptr;
397   }
398 
399   /// This method is used to implement the FieldInit class.
400   /// Implementors of this method should return the type of the named field if
401   /// they are of record type.
getFieldType(StringInit * FieldName)402   virtual RecTy *getFieldType(StringInit *FieldName) const {
403     return nullptr;
404   }
405 
406   /// This method is used by classes that refer to other
407   /// variables which may not be defined at the time the expression is formed.
408   /// If a value is set for the variable later, this method will be called on
409   /// users of the value to allow the value to propagate out.
resolveReferences(Resolver & R)410   virtual Init *resolveReferences(Resolver &R) const {
411     return const_cast<Init *>(this);
412   }
413 
414   /// This method is used to return the initializer for the specified
415   /// bit.
416   virtual Init *getBit(unsigned Bit) const = 0;
417 };
418 
419 inline raw_ostream &operator<<(raw_ostream &OS, const Init &I) {
420   I.print(OS); return OS;
421 }
422 
423 /// This is the common super-class of types that have a specific,
424 /// explicit, type.
425 class TypedInit : public Init {
426   RecTy *Ty;
427 
428 protected:
429   explicit TypedInit(InitKind K, RecTy *T, uint8_t Opc = 0)
Init(K,Opc)430     : Init(K, Opc), Ty(T) {}
431 
432 public:
433   TypedInit(const TypedInit &) = delete;
434   TypedInit &operator=(const TypedInit &) = delete;
435 
classof(const Init * I)436   static bool classof(const Init *I) {
437     return I->getKind() >= IK_FirstTypedInit &&
438            I->getKind() <= IK_LastTypedInit;
439   }
440 
getType()441   RecTy *getType() const { return Ty; }
442 
443   Init *getCastTo(RecTy *Ty) const override;
444   Init *convertInitializerTo(RecTy *Ty) const override;
445 
446   Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
447   Init *convertInitListSlice(ArrayRef<unsigned> Elements) const override;
448 
449   /// This method is used to implement the FieldInit class.
450   /// Implementors of this method should return the type of the named field if
451   /// they are of record type.
452   ///
453   RecTy *getFieldType(StringInit *FieldName) const override;
454 };
455 
456 /// '?' - Represents an uninitialized value
457 class UnsetInit : public Init {
UnsetInit()458   UnsetInit() : Init(IK_UnsetInit) {}
459 
460 public:
461   UnsetInit(const UnsetInit &) = delete;
462   UnsetInit &operator=(const UnsetInit &) = delete;
463 
classof(const Init * I)464   static bool classof(const Init *I) {
465     return I->getKind() == IK_UnsetInit;
466   }
467 
468   static UnsetInit *get();
469 
470   Init *getCastTo(RecTy *Ty) const override;
471   Init *convertInitializerTo(RecTy *Ty) const override;
472 
getBit(unsigned Bit)473   Init *getBit(unsigned Bit) const override {
474     return const_cast<UnsetInit*>(this);
475   }
476 
isComplete()477   bool isComplete() const override { return false; }
isConcrete()478   bool isConcrete() const override { return true; }
getAsString()479   std::string getAsString() const override { return "?"; }
480 };
481 
482 /// 'true'/'false' - Represent a concrete initializer for a bit.
483 class BitInit final : public TypedInit {
484   bool Value;
485 
BitInit(bool V)486   explicit BitInit(bool V) : TypedInit(IK_BitInit, BitRecTy::get()), Value(V) {}
487 
488 public:
489   BitInit(const BitInit &) = delete;
490   BitInit &operator=(BitInit &) = delete;
491 
classof(const Init * I)492   static bool classof(const Init *I) {
493     return I->getKind() == IK_BitInit;
494   }
495 
496   static BitInit *get(bool V);
497 
getValue()498   bool getValue() const { return Value; }
499 
500   Init *convertInitializerTo(RecTy *Ty) const override;
501 
getBit(unsigned Bit)502   Init *getBit(unsigned Bit) const override {
503     assert(Bit < 1 && "Bit index out of range!");
504     return const_cast<BitInit*>(this);
505   }
506 
isConcrete()507   bool isConcrete() const override { return true; }
getAsString()508   std::string getAsString() const override { return Value ? "1" : "0"; }
509 };
510 
511 /// '{ a, b, c }' - Represents an initializer for a BitsRecTy value.
512 /// It contains a vector of bits, whose size is determined by the type.
513 class BitsInit final : public TypedInit, public FoldingSetNode,
514                        public TrailingObjects<BitsInit, Init *> {
515   unsigned NumBits;
516 
BitsInit(unsigned N)517   BitsInit(unsigned N)
518     : TypedInit(IK_BitsInit, BitsRecTy::get(N)), NumBits(N) {}
519 
520 public:
521   BitsInit(const BitsInit &) = delete;
522   BitsInit &operator=(const BitsInit &) = delete;
523 
524   // Do not use sized deallocation due to trailing objects.
delete(void * p)525   void operator delete(void *p) { ::operator delete(p); }
526 
classof(const Init * I)527   static bool classof(const Init *I) {
528     return I->getKind() == IK_BitsInit;
529   }
530 
531   static BitsInit *get(ArrayRef<Init *> Range);
532 
533   void Profile(FoldingSetNodeID &ID) const;
534 
getNumBits()535   unsigned getNumBits() const { return NumBits; }
536 
537   Init *convertInitializerTo(RecTy *Ty) const override;
538   Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
539 
isComplete()540   bool isComplete() const override {
541     for (unsigned i = 0; i != getNumBits(); ++i)
542       if (!getBit(i)->isComplete()) return false;
543     return true;
544   }
545 
allInComplete()546   bool allInComplete() const {
547     for (unsigned i = 0; i != getNumBits(); ++i)
548       if (getBit(i)->isComplete()) return false;
549     return true;
550   }
551 
552   bool isConcrete() const override;
553   std::string getAsString() const override;
554 
555   Init *resolveReferences(Resolver &R) const override;
556 
getBit(unsigned Bit)557   Init *getBit(unsigned Bit) const override {
558     assert(Bit < NumBits && "Bit index out of range!");
559     return getTrailingObjects<Init *>()[Bit];
560   }
561 };
562 
563 /// '7' - Represent an initialization by a literal integer value.
564 class IntInit : public TypedInit {
565   int64_t Value;
566 
IntInit(int64_t V)567   explicit IntInit(int64_t V)
568     : TypedInit(IK_IntInit, IntRecTy::get()), Value(V) {}
569 
570 public:
571   IntInit(const IntInit &) = delete;
572   IntInit &operator=(const IntInit &) = delete;
573 
classof(const Init * I)574   static bool classof(const Init *I) {
575     return I->getKind() == IK_IntInit;
576   }
577 
578   static IntInit *get(int64_t V);
579 
getValue()580   int64_t getValue() const { return Value; }
581 
582   Init *convertInitializerTo(RecTy *Ty) const override;
583   Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
584 
isConcrete()585   bool isConcrete() const override { return true; }
586   std::string getAsString() const override;
587 
getBit(unsigned Bit)588   Init *getBit(unsigned Bit) const override {
589     return BitInit::get((Value & (1ULL << Bit)) != 0);
590   }
591 };
592 
593 /// "foo" - Represent an initialization by a string value.
594 class StringInit : public TypedInit {
595   StringRef Value;
596 
StringInit(StringRef V)597   explicit StringInit(StringRef V)
598       : TypedInit(IK_StringInit, StringRecTy::get()), Value(V) {}
599 
600 public:
601   StringInit(const StringInit &) = delete;
602   StringInit &operator=(const StringInit &) = delete;
603 
classof(const Init * I)604   static bool classof(const Init *I) {
605     return I->getKind() == IK_StringInit;
606   }
607 
608   static StringInit *get(StringRef);
609 
getValue()610   StringRef getValue() const { return Value; }
611 
612   Init *convertInitializerTo(RecTy *Ty) const override;
613 
isConcrete()614   bool isConcrete() const override { return true; }
getAsString()615   std::string getAsString() const override { return "\"" + Value.str() + "\""; }
616 
getAsUnquotedString()617   std::string getAsUnquotedString() const override { return Value; }
618 
getBit(unsigned Bit)619   Init *getBit(unsigned Bit) const override {
620     llvm_unreachable("Illegal bit reference off string");
621   }
622 };
623 
624 class CodeInit : public TypedInit {
625   StringRef Value;
626 
CodeInit(StringRef V)627   explicit CodeInit(StringRef V)
628       : TypedInit(IK_CodeInit, static_cast<RecTy *>(CodeRecTy::get())),
629         Value(V) {}
630 
631 public:
632   CodeInit(const StringInit &) = delete;
633   CodeInit &operator=(const StringInit &) = delete;
634 
classof(const Init * I)635   static bool classof(const Init *I) {
636     return I->getKind() == IK_CodeInit;
637   }
638 
639   static CodeInit *get(StringRef);
640 
getValue()641   StringRef getValue() const { return Value; }
642 
643   Init *convertInitializerTo(RecTy *Ty) const override;
644 
isConcrete()645   bool isConcrete() const override { return true; }
getAsString()646   std::string getAsString() const override {
647     return "[{" + Value.str() + "}]";
648   }
649 
getAsUnquotedString()650   std::string getAsUnquotedString() const override { return Value; }
651 
getBit(unsigned Bit)652   Init *getBit(unsigned Bit) const override {
653     llvm_unreachable("Illegal bit reference off string");
654   }
655 };
656 
657 /// [AL, AH, CL] - Represent a list of defs
658 ///
659 class ListInit final : public TypedInit, public FoldingSetNode,
660                        public TrailingObjects<ListInit, Init *> {
661   unsigned NumValues;
662 
663 public:
664   using const_iterator = Init *const *;
665 
666 private:
ListInit(unsigned N,RecTy * EltTy)667   explicit ListInit(unsigned N, RecTy *EltTy)
668     : TypedInit(IK_ListInit, ListRecTy::get(EltTy)), NumValues(N) {}
669 
670 public:
671   ListInit(const ListInit &) = delete;
672   ListInit &operator=(const ListInit &) = delete;
673 
674   // Do not use sized deallocation due to trailing objects.
delete(void * p)675   void operator delete(void *p) { ::operator delete(p); }
676 
classof(const Init * I)677   static bool classof(const Init *I) {
678     return I->getKind() == IK_ListInit;
679   }
680   static ListInit *get(ArrayRef<Init *> Range, RecTy *EltTy);
681 
682   void Profile(FoldingSetNodeID &ID) const;
683 
getElement(unsigned i)684   Init *getElement(unsigned i) const {
685     assert(i < NumValues && "List element index out of range!");
686     return getTrailingObjects<Init *>()[i];
687   }
getElementType()688   RecTy *getElementType() const {
689     return cast<ListRecTy>(getType())->getElementType();
690   }
691 
692   Record *getElementAsRecord(unsigned i) const;
693 
694   Init *convertInitListSlice(ArrayRef<unsigned> Elements) const override;
695 
696   Init *convertInitializerTo(RecTy *Ty) const override;
697 
698   /// This method is used by classes that refer to other
699   /// variables which may not be defined at the time they expression is formed.
700   /// If a value is set for the variable later, this method will be called on
701   /// users of the value to allow the value to propagate out.
702   ///
703   Init *resolveReferences(Resolver &R) const override;
704 
705   bool isConcrete() const override;
706   std::string getAsString() const override;
707 
getValues()708   ArrayRef<Init*> getValues() const {
709     return makeArrayRef(getTrailingObjects<Init *>(), NumValues);
710   }
711 
begin()712   const_iterator begin() const { return getTrailingObjects<Init *>(); }
end()713   const_iterator end  () const { return begin() + NumValues; }
714 
size()715   size_t         size () const { return NumValues;  }
empty()716   bool           empty() const { return NumValues == 0; }
717 
getBit(unsigned Bit)718   Init *getBit(unsigned Bit) const override {
719     llvm_unreachable("Illegal bit reference off list");
720   }
721 };
722 
723 /// Base class for operators
724 ///
725 class OpInit : public TypedInit {
726 protected:
OpInit(InitKind K,RecTy * Type,uint8_t Opc)727   explicit OpInit(InitKind K, RecTy *Type, uint8_t Opc)
728     : TypedInit(K, Type, Opc) {}
729 
730 public:
731   OpInit(const OpInit &) = delete;
732   OpInit &operator=(OpInit &) = delete;
733 
classof(const Init * I)734   static bool classof(const Init *I) {
735     return I->getKind() >= IK_FirstOpInit &&
736            I->getKind() <= IK_LastOpInit;
737   }
738 
739   // Clone - Clone this operator, replacing arguments with the new list
740   virtual OpInit *clone(ArrayRef<Init *> Operands) const = 0;
741 
742   virtual unsigned getNumOperands() const = 0;
743   virtual Init *getOperand(unsigned i) const = 0;
744 
745   Init *getBit(unsigned Bit) const override;
746 };
747 
748 /// !op (X) - Transform an init.
749 ///
750 class UnOpInit : public OpInit, public FoldingSetNode {
751 public:
752   enum UnaryOp : uint8_t { CAST, HEAD, TAIL, SIZE, EMPTY };
753 
754 private:
755   Init *LHS;
756 
UnOpInit(UnaryOp opc,Init * lhs,RecTy * Type)757   UnOpInit(UnaryOp opc, Init *lhs, RecTy *Type)
758     : OpInit(IK_UnOpInit, Type, opc), LHS(lhs) {}
759 
760 public:
761   UnOpInit(const UnOpInit &) = delete;
762   UnOpInit &operator=(const UnOpInit &) = delete;
763 
classof(const Init * I)764   static bool classof(const Init *I) {
765     return I->getKind() == IK_UnOpInit;
766   }
767 
768   static UnOpInit *get(UnaryOp opc, Init *lhs, RecTy *Type);
769 
770   void Profile(FoldingSetNodeID &ID) const;
771 
772   // Clone - Clone this operator, replacing arguments with the new list
clone(ArrayRef<Init * > Operands)773   OpInit *clone(ArrayRef<Init *> Operands) const override {
774     assert(Operands.size() == 1 &&
775            "Wrong number of operands for unary operation");
776     return UnOpInit::get(getOpcode(), *Operands.begin(), getType());
777   }
778 
getNumOperands()779   unsigned getNumOperands() const override { return 1; }
780 
getOperand(unsigned i)781   Init *getOperand(unsigned i) const override {
782     assert(i == 0 && "Invalid operand id for unary operator");
783     return getOperand();
784   }
785 
getOpcode()786   UnaryOp getOpcode() const { return (UnaryOp)Opc; }
getOperand()787   Init *getOperand() const { return LHS; }
788 
789   // Fold - If possible, fold this to a simpler init.  Return this if not
790   // possible to fold.
791   Init *Fold(Record *CurRec, bool IsFinal = false) const;
792 
793   Init *resolveReferences(Resolver &R) const override;
794 
795   std::string getAsString() const override;
796 };
797 
798 /// !op (X, Y) - Combine two inits.
799 class BinOpInit : public OpInit, public FoldingSetNode {
800 public:
801   enum BinaryOp : uint8_t { ADD, AND, OR, SHL, SRA, SRL, LISTCONCAT,
802                             STRCONCAT, CONCAT, EQ, NE, LE, LT, GE, GT };
803 
804 private:
805   Init *LHS, *RHS;
806 
BinOpInit(BinaryOp opc,Init * lhs,Init * rhs,RecTy * Type)807   BinOpInit(BinaryOp opc, Init *lhs, Init *rhs, RecTy *Type) :
808       OpInit(IK_BinOpInit, Type, opc), LHS(lhs), RHS(rhs) {}
809 
810 public:
811   BinOpInit(const BinOpInit &) = delete;
812   BinOpInit &operator=(const BinOpInit &) = delete;
813 
classof(const Init * I)814   static bool classof(const Init *I) {
815     return I->getKind() == IK_BinOpInit;
816   }
817 
818   static BinOpInit *get(BinaryOp opc, Init *lhs, Init *rhs,
819                         RecTy *Type);
820   static Init *getStrConcat(Init *lhs, Init *rhs);
821 
822   void Profile(FoldingSetNodeID &ID) const;
823 
824   // Clone - Clone this operator, replacing arguments with the new list
clone(ArrayRef<Init * > Operands)825   OpInit *clone(ArrayRef<Init *> Operands) const override {
826     assert(Operands.size() == 2 &&
827            "Wrong number of operands for binary operation");
828     return BinOpInit::get(getOpcode(), Operands[0], Operands[1], getType());
829   }
830 
getNumOperands()831   unsigned getNumOperands() const override { return 2; }
getOperand(unsigned i)832   Init *getOperand(unsigned i) const override {
833     switch (i) {
834     default: llvm_unreachable("Invalid operand id for binary operator");
835     case 0: return getLHS();
836     case 1: return getRHS();
837     }
838   }
839 
getOpcode()840   BinaryOp getOpcode() const { return (BinaryOp)Opc; }
getLHS()841   Init *getLHS() const { return LHS; }
getRHS()842   Init *getRHS() const { return RHS; }
843 
844   // Fold - If possible, fold this to a simpler init.  Return this if not
845   // possible to fold.
846   Init *Fold(Record *CurRec) const;
847 
848   Init *resolveReferences(Resolver &R) const override;
849 
850   std::string getAsString() const override;
851 };
852 
853 /// !op (X, Y, Z) - Combine two inits.
854 class TernOpInit : public OpInit, public FoldingSetNode {
855 public:
856   enum TernaryOp : uint8_t { SUBST, FOREACH, IF, DAG };
857 
858 private:
859   Init *LHS, *MHS, *RHS;
860 
TernOpInit(TernaryOp opc,Init * lhs,Init * mhs,Init * rhs,RecTy * Type)861   TernOpInit(TernaryOp opc, Init *lhs, Init *mhs, Init *rhs,
862              RecTy *Type) :
863       OpInit(IK_TernOpInit, Type, opc), LHS(lhs), MHS(mhs), RHS(rhs) {}
864 
865 public:
866   TernOpInit(const TernOpInit &) = delete;
867   TernOpInit &operator=(const TernOpInit &) = delete;
868 
classof(const Init * I)869   static bool classof(const Init *I) {
870     return I->getKind() == IK_TernOpInit;
871   }
872 
873   static TernOpInit *get(TernaryOp opc, Init *lhs,
874                          Init *mhs, Init *rhs,
875                          RecTy *Type);
876 
877   void Profile(FoldingSetNodeID &ID) const;
878 
879   // Clone - Clone this operator, replacing arguments with the new list
clone(ArrayRef<Init * > Operands)880   OpInit *clone(ArrayRef<Init *> Operands) const override {
881     assert(Operands.size() == 3 &&
882            "Wrong number of operands for ternary operation");
883     return TernOpInit::get(getOpcode(), Operands[0], Operands[1], Operands[2],
884                            getType());
885   }
886 
getNumOperands()887   unsigned getNumOperands() const override { return 3; }
getOperand(unsigned i)888   Init *getOperand(unsigned i) const override {
889     switch (i) {
890     default: llvm_unreachable("Invalid operand id for ternary operator");
891     case 0: return getLHS();
892     case 1: return getMHS();
893     case 2: return getRHS();
894     }
895   }
896 
getOpcode()897   TernaryOp getOpcode() const { return (TernaryOp)Opc; }
getLHS()898   Init *getLHS() const { return LHS; }
getMHS()899   Init *getMHS() const { return MHS; }
getRHS()900   Init *getRHS() const { return RHS; }
901 
902   // Fold - If possible, fold this to a simpler init.  Return this if not
903   // possible to fold.
904   Init *Fold(Record *CurRec) const;
905 
isComplete()906   bool isComplete() const override {
907     return LHS->isComplete() && MHS->isComplete() && RHS->isComplete();
908   }
909 
910   Init *resolveReferences(Resolver &R) const override;
911 
912   std::string getAsString() const override;
913 };
914 
915 /// !foldl (a, b, expr, start, lst) - Fold over a list.
916 class FoldOpInit : public TypedInit, public FoldingSetNode {
917 private:
918   Init *Start;
919   Init *List;
920   Init *A;
921   Init *B;
922   Init *Expr;
923 
FoldOpInit(Init * Start,Init * List,Init * A,Init * B,Init * Expr,RecTy * Type)924   FoldOpInit(Init *Start, Init *List, Init *A, Init *B, Init *Expr, RecTy *Type)
925       : TypedInit(IK_FoldOpInit, Type), Start(Start), List(List), A(A), B(B),
926         Expr(Expr) {}
927 
928 public:
929   FoldOpInit(const FoldOpInit &) = delete;
930   FoldOpInit &operator=(const FoldOpInit &) = delete;
931 
classof(const Init * I)932   static bool classof(const Init *I) { return I->getKind() == IK_FoldOpInit; }
933 
934   static FoldOpInit *get(Init *Start, Init *List, Init *A, Init *B, Init *Expr,
935                          RecTy *Type);
936 
937   void Profile(FoldingSetNodeID &ID) const;
938 
939   // Fold - If possible, fold this to a simpler init.  Return this if not
940   // possible to fold.
941   Init *Fold(Record *CurRec) const;
942 
isComplete()943   bool isComplete() const override { return false; }
944 
945   Init *resolveReferences(Resolver &R) const override;
946 
947   Init *getBit(unsigned Bit) const override;
948 
949   std::string getAsString() const override;
950 };
951 
952 /// !isa<type>(expr) - Dynamically determine the type of an expression.
953 class IsAOpInit : public TypedInit, public FoldingSetNode {
954 private:
955   RecTy *CheckType;
956   Init *Expr;
957 
IsAOpInit(RecTy * CheckType,Init * Expr)958   IsAOpInit(RecTy *CheckType, Init *Expr)
959       : TypedInit(IK_IsAOpInit, IntRecTy::get()), CheckType(CheckType),
960         Expr(Expr) {}
961 
962 public:
963   IsAOpInit(const IsAOpInit &) = delete;
964   IsAOpInit &operator=(const IsAOpInit &) = delete;
965 
classof(const Init * I)966   static bool classof(const Init *I) { return I->getKind() == IK_IsAOpInit; }
967 
968   static IsAOpInit *get(RecTy *CheckType, Init *Expr);
969 
970   void Profile(FoldingSetNodeID &ID) const;
971 
972   // Fold - If possible, fold this to a simpler init.  Return this if not
973   // possible to fold.
974   Init *Fold() const;
975 
isComplete()976   bool isComplete() const override { return false; }
977 
978   Init *resolveReferences(Resolver &R) const override;
979 
980   Init *getBit(unsigned Bit) const override;
981 
982   std::string getAsString() const override;
983 };
984 
985 /// 'Opcode' - Represent a reference to an entire variable object.
986 class VarInit : public TypedInit {
987   Init *VarName;
988 
VarInit(Init * VN,RecTy * T)989   explicit VarInit(Init *VN, RecTy *T)
990       : TypedInit(IK_VarInit, T), VarName(VN) {}
991 
992 public:
993   VarInit(const VarInit &) = delete;
994   VarInit &operator=(const VarInit &) = delete;
995 
classof(const Init * I)996   static bool classof(const Init *I) {
997     return I->getKind() == IK_VarInit;
998   }
999 
1000   static VarInit *get(StringRef VN, RecTy *T);
1001   static VarInit *get(Init *VN, RecTy *T);
1002 
1003   StringRef getName() const;
getNameInit()1004   Init *getNameInit() const { return VarName; }
1005 
getNameInitAsString()1006   std::string getNameInitAsString() const {
1007     return getNameInit()->getAsUnquotedString();
1008   }
1009 
1010   /// This method is used by classes that refer to other
1011   /// variables which may not be defined at the time they expression is formed.
1012   /// If a value is set for the variable later, this method will be called on
1013   /// users of the value to allow the value to propagate out.
1014   ///
1015   Init *resolveReferences(Resolver &R) const override;
1016 
1017   Init *getBit(unsigned Bit) const override;
1018 
getAsString()1019   std::string getAsString() const override { return getName(); }
1020 };
1021 
1022 /// Opcode{0} - Represent access to one bit of a variable or field.
1023 class VarBitInit final : public TypedInit {
1024   TypedInit *TI;
1025   unsigned Bit;
1026 
VarBitInit(TypedInit * T,unsigned B)1027   VarBitInit(TypedInit *T, unsigned B)
1028       : TypedInit(IK_VarBitInit, BitRecTy::get()), TI(T), Bit(B) {
1029     assert(T->getType() &&
1030            (isa<IntRecTy>(T->getType()) ||
1031             (isa<BitsRecTy>(T->getType()) &&
1032              cast<BitsRecTy>(T->getType())->getNumBits() > B)) &&
1033            "Illegal VarBitInit expression!");
1034   }
1035 
1036 public:
1037   VarBitInit(const VarBitInit &) = delete;
1038   VarBitInit &operator=(const VarBitInit &) = delete;
1039 
classof(const Init * I)1040   static bool classof(const Init *I) {
1041     return I->getKind() == IK_VarBitInit;
1042   }
1043 
1044   static VarBitInit *get(TypedInit *T, unsigned B);
1045 
getBitVar()1046   Init *getBitVar() const { return TI; }
getBitNum()1047   unsigned getBitNum() const { return Bit; }
1048 
1049   std::string getAsString() const override;
1050   Init *resolveReferences(Resolver &R) const override;
1051 
getBit(unsigned B)1052   Init *getBit(unsigned B) const override {
1053     assert(B < 1 && "Bit index out of range!");
1054     return const_cast<VarBitInit*>(this);
1055   }
1056 };
1057 
1058 /// List[4] - Represent access to one element of a var or
1059 /// field.
1060 class VarListElementInit : public TypedInit {
1061   TypedInit *TI;
1062   unsigned Element;
1063 
VarListElementInit(TypedInit * T,unsigned E)1064   VarListElementInit(TypedInit *T, unsigned E)
1065       : TypedInit(IK_VarListElementInit,
1066                   cast<ListRecTy>(T->getType())->getElementType()),
1067         TI(T), Element(E) {
1068     assert(T->getType() && isa<ListRecTy>(T->getType()) &&
1069            "Illegal VarBitInit expression!");
1070   }
1071 
1072 public:
1073   VarListElementInit(const VarListElementInit &) = delete;
1074   VarListElementInit &operator=(const VarListElementInit &) = delete;
1075 
classof(const Init * I)1076   static bool classof(const Init *I) {
1077     return I->getKind() == IK_VarListElementInit;
1078   }
1079 
1080   static VarListElementInit *get(TypedInit *T, unsigned E);
1081 
getVariable()1082   TypedInit *getVariable() const { return TI; }
getElementNum()1083   unsigned getElementNum() const { return Element; }
1084 
1085   std::string getAsString() const override;
1086   Init *resolveReferences(Resolver &R) const override;
1087 
1088   Init *getBit(unsigned Bit) const override;
1089 };
1090 
1091 /// AL - Represent a reference to a 'def' in the description
1092 class DefInit : public TypedInit {
1093   friend class Record;
1094 
1095   Record *Def;
1096 
1097   explicit DefInit(Record *D);
1098 
1099 public:
1100   DefInit(const DefInit &) = delete;
1101   DefInit &operator=(const DefInit &) = delete;
1102 
classof(const Init * I)1103   static bool classof(const Init *I) {
1104     return I->getKind() == IK_DefInit;
1105   }
1106 
1107   static DefInit *get(Record*);
1108 
1109   Init *convertInitializerTo(RecTy *Ty) const override;
1110 
getDef()1111   Record *getDef() const { return Def; }
1112 
1113   //virtual Init *convertInitializerBitRange(ArrayRef<unsigned> Bits);
1114 
1115   RecTy *getFieldType(StringInit *FieldName) const override;
1116 
isConcrete()1117   bool isConcrete() const override { return true; }
1118   std::string getAsString() const override;
1119 
getBit(unsigned Bit)1120   Init *getBit(unsigned Bit) const override {
1121     llvm_unreachable("Illegal bit reference off def");
1122   }
1123 };
1124 
1125 /// classname<targs...> - Represent an uninstantiated anonymous class
1126 /// instantiation.
1127 class VarDefInit final : public TypedInit, public FoldingSetNode,
1128                          public TrailingObjects<VarDefInit, Init *> {
1129   Record *Class;
1130   DefInit *Def = nullptr; // after instantiation
1131   unsigned NumArgs;
1132 
VarDefInit(Record * Class,unsigned N)1133   explicit VarDefInit(Record *Class, unsigned N)
1134     : TypedInit(IK_VarDefInit, RecordRecTy::get(Class)), Class(Class), NumArgs(N) {}
1135 
1136   DefInit *instantiate();
1137 
1138 public:
1139   VarDefInit(const VarDefInit &) = delete;
1140   VarDefInit &operator=(const VarDefInit &) = delete;
1141 
1142   // Do not use sized deallocation due to trailing objects.
delete(void * p)1143   void operator delete(void *p) { ::operator delete(p); }
1144 
classof(const Init * I)1145   static bool classof(const Init *I) {
1146     return I->getKind() == IK_VarDefInit;
1147   }
1148   static VarDefInit *get(Record *Class, ArrayRef<Init *> Args);
1149 
1150   void Profile(FoldingSetNodeID &ID) const;
1151 
1152   Init *resolveReferences(Resolver &R) const override;
1153   Init *Fold() const;
1154 
1155   std::string getAsString() const override;
1156 
getArg(unsigned i)1157   Init *getArg(unsigned i) const {
1158     assert(i < NumArgs && "Argument index out of range!");
1159     return getTrailingObjects<Init *>()[i];
1160   }
1161 
1162   using const_iterator = Init *const *;
1163 
args_begin()1164   const_iterator args_begin() const { return getTrailingObjects<Init *>(); }
args_end()1165   const_iterator args_end  () const { return args_begin() + NumArgs; }
1166 
args_size()1167   size_t         args_size () const { return NumArgs; }
args_empty()1168   bool           args_empty() const { return NumArgs == 0; }
1169 
args()1170   ArrayRef<Init *> args() const { return makeArrayRef(args_begin(), NumArgs); }
1171 
getBit(unsigned Bit)1172   Init *getBit(unsigned Bit) const override {
1173     llvm_unreachable("Illegal bit reference off anonymous def");
1174   }
1175 };
1176 
1177 /// X.Y - Represent a reference to a subfield of a variable
1178 class FieldInit : public TypedInit {
1179   Init *Rec;                // Record we are referring to
1180   StringInit *FieldName;    // Field we are accessing
1181 
FieldInit(Init * R,StringInit * FN)1182   FieldInit(Init *R, StringInit *FN)
1183       : TypedInit(IK_FieldInit, R->getFieldType(FN)), Rec(R), FieldName(FN) {
1184     assert(getType() && "FieldInit with non-record type!");
1185   }
1186 
1187 public:
1188   FieldInit(const FieldInit &) = delete;
1189   FieldInit &operator=(const FieldInit &) = delete;
1190 
classof(const Init * I)1191   static bool classof(const Init *I) {
1192     return I->getKind() == IK_FieldInit;
1193   }
1194 
1195   static FieldInit *get(Init *R, StringInit *FN);
1196 
getRecord()1197   Init *getRecord() const { return Rec; }
getFieldName()1198   StringInit *getFieldName() const { return FieldName; }
1199 
1200   Init *getBit(unsigned Bit) const override;
1201 
1202   Init *resolveReferences(Resolver &R) const override;
1203   Init *Fold(Record *CurRec) const;
1204 
getAsString()1205   std::string getAsString() const override {
1206     return Rec->getAsString() + "." + FieldName->getValue().str();
1207   }
1208 };
1209 
1210 /// (v a, b) - Represent a DAG tree value.  DAG inits are required
1211 /// to have at least one value then a (possibly empty) list of arguments.  Each
1212 /// argument can have a name associated with it.
1213 class DagInit final : public TypedInit, public FoldingSetNode,
1214                       public TrailingObjects<DagInit, Init *, StringInit *> {
1215   friend TrailingObjects;
1216 
1217   Init *Val;
1218   StringInit *ValName;
1219   unsigned NumArgs;
1220   unsigned NumArgNames;
1221 
DagInit(Init * V,StringInit * VN,unsigned NumArgs,unsigned NumArgNames)1222   DagInit(Init *V, StringInit *VN, unsigned NumArgs, unsigned NumArgNames)
1223       : TypedInit(IK_DagInit, DagRecTy::get()), Val(V), ValName(VN),
1224         NumArgs(NumArgs), NumArgNames(NumArgNames) {}
1225 
numTrailingObjects(OverloadToken<Init * >)1226   size_t numTrailingObjects(OverloadToken<Init *>) const { return NumArgs; }
1227 
1228 public:
1229   DagInit(const DagInit &) = delete;
1230   DagInit &operator=(const DagInit &) = delete;
1231 
classof(const Init * I)1232   static bool classof(const Init *I) {
1233     return I->getKind() == IK_DagInit;
1234   }
1235 
1236   static DagInit *get(Init *V, StringInit *VN, ArrayRef<Init *> ArgRange,
1237                       ArrayRef<StringInit*> NameRange);
1238   static DagInit *get(Init *V, StringInit *VN,
1239                       ArrayRef<std::pair<Init*, StringInit*>> Args);
1240 
1241   void Profile(FoldingSetNodeID &ID) const;
1242 
getOperator()1243   Init *getOperator() const { return Val; }
1244 
getName()1245   StringInit *getName() const { return ValName; }
1246 
getNameStr()1247   StringRef getNameStr() const {
1248     return ValName ? ValName->getValue() : StringRef();
1249   }
1250 
getNumArgs()1251   unsigned getNumArgs() const { return NumArgs; }
1252 
getArg(unsigned Num)1253   Init *getArg(unsigned Num) const {
1254     assert(Num < NumArgs && "Arg number out of range!");
1255     return getTrailingObjects<Init *>()[Num];
1256   }
1257 
getArgName(unsigned Num)1258   StringInit *getArgName(unsigned Num) const {
1259     assert(Num < NumArgNames && "Arg number out of range!");
1260     return getTrailingObjects<StringInit *>()[Num];
1261   }
1262 
getArgNameStr(unsigned Num)1263   StringRef getArgNameStr(unsigned Num) const {
1264     StringInit *Init = getArgName(Num);
1265     return Init ? Init->getValue() : StringRef();
1266   }
1267 
getArgs()1268   ArrayRef<Init *> getArgs() const {
1269     return makeArrayRef(getTrailingObjects<Init *>(), NumArgs);
1270   }
1271 
getArgNames()1272   ArrayRef<StringInit *> getArgNames() const {
1273     return makeArrayRef(getTrailingObjects<StringInit *>(), NumArgNames);
1274   }
1275 
1276   Init *resolveReferences(Resolver &R) const override;
1277 
1278   bool isConcrete() const override;
1279   std::string getAsString() const override;
1280 
1281   using const_arg_iterator = SmallVectorImpl<Init*>::const_iterator;
1282   using const_name_iterator = SmallVectorImpl<StringInit*>::const_iterator;
1283 
arg_begin()1284   inline const_arg_iterator  arg_begin() const { return getArgs().begin(); }
arg_end()1285   inline const_arg_iterator  arg_end  () const { return getArgs().end(); }
1286 
arg_size()1287   inline size_t              arg_size () const { return NumArgs; }
arg_empty()1288   inline bool                arg_empty() const { return NumArgs == 0; }
1289 
name_begin()1290   inline const_name_iterator name_begin() const { return getArgNames().begin();}
name_end()1291   inline const_name_iterator name_end  () const { return getArgNames().end(); }
1292 
name_size()1293   inline size_t              name_size () const { return NumArgNames; }
name_empty()1294   inline bool                name_empty() const { return NumArgNames == 0; }
1295 
getBit(unsigned Bit)1296   Init *getBit(unsigned Bit) const override {
1297     llvm_unreachable("Illegal bit reference off dag");
1298   }
1299 };
1300 
1301 //===----------------------------------------------------------------------===//
1302 //  High-Level Classes
1303 //===----------------------------------------------------------------------===//
1304 
1305 class RecordVal {
1306   friend class Record;
1307 
1308   Init *Name;
1309   PointerIntPair<RecTy *, 1, bool> TyAndPrefix;
1310   Init *Value;
1311 
1312 public:
1313   RecordVal(Init *N, RecTy *T, bool P);
1314 
1315   StringRef getName() const;
getNameInit()1316   Init *getNameInit() const { return Name; }
1317 
getNameInitAsString()1318   std::string getNameInitAsString() const {
1319     return getNameInit()->getAsUnquotedString();
1320   }
1321 
getPrefix()1322   bool getPrefix() const { return TyAndPrefix.getInt(); }
getType()1323   RecTy *getType() const { return TyAndPrefix.getPointer(); }
getValue()1324   Init *getValue() const { return Value; }
1325 
1326   bool setValue(Init *V);
1327 
1328   void dump() const;
1329   void print(raw_ostream &OS, bool PrintSem = true) const;
1330 };
1331 
1332 inline raw_ostream &operator<<(raw_ostream &OS, const RecordVal &RV) {
1333   RV.print(OS << "  ");
1334   return OS;
1335 }
1336 
1337 class Record {
1338   static unsigned LastID;
1339 
1340   Init *Name;
1341   // Location where record was instantiated, followed by the location of
1342   // multiclass prototypes used.
1343   SmallVector<SMLoc, 4> Locs;
1344   SmallVector<Init *, 0> TemplateArgs;
1345   SmallVector<RecordVal, 0> Values;
1346 
1347   // All superclasses in the inheritance forest in reverse preorder (yes, it
1348   // must be a forest; diamond-shaped inheritance is not allowed).
1349   SmallVector<std::pair<Record *, SMRange>, 0> SuperClasses;
1350 
1351   // Tracks Record instances. Not owned by Record.
1352   RecordKeeper &TrackedRecords;
1353 
1354   DefInit *TheInit = nullptr;
1355 
1356   // Unique record ID.
1357   unsigned ID;
1358 
1359   bool IsAnonymous;
1360   bool IsClass;
1361 
1362   void checkName();
1363 
1364 public:
1365   // Constructs a record.
1366   explicit Record(Init *N, ArrayRef<SMLoc> locs, RecordKeeper &records,
1367                   bool Anonymous = false, bool Class = false)
Name(N)1368     : Name(N), Locs(locs.begin(), locs.end()), TrackedRecords(records),
1369       ID(LastID++), IsAnonymous(Anonymous), IsClass(Class) {
1370     checkName();
1371   }
1372 
1373   explicit Record(StringRef N, ArrayRef<SMLoc> locs, RecordKeeper &records,
1374                   bool Class = false)
Record(StringInit::get (N),locs,records,false,Class)1375       : Record(StringInit::get(N), locs, records, false, Class) {}
1376 
1377   // When copy-constructing a Record, we must still guarantee a globally unique
1378   // ID number.  Don't copy TheInit either since it's owned by the original
1379   // record. All other fields can be copied normally.
Record(const Record & O)1380   Record(const Record &O)
1381     : Name(O.Name), Locs(O.Locs), TemplateArgs(O.TemplateArgs),
1382       Values(O.Values), SuperClasses(O.SuperClasses),
1383       TrackedRecords(O.TrackedRecords), ID(LastID++),
1384       IsAnonymous(O.IsAnonymous), IsClass(O.IsClass) { }
1385 
getNewUID()1386   static unsigned getNewUID() { return LastID++; }
1387 
getID()1388   unsigned getID() const { return ID; }
1389 
getName()1390   StringRef getName() const { return cast<StringInit>(Name)->getValue(); }
1391 
getNameInit()1392   Init *getNameInit() const {
1393     return Name;
1394   }
1395 
getNameInitAsString()1396   const std::string getNameInitAsString() const {
1397     return getNameInit()->getAsUnquotedString();
1398   }
1399 
1400   void setName(Init *Name);      // Also updates RecordKeeper.
1401 
getLoc()1402   ArrayRef<SMLoc> getLoc() const { return Locs; }
appendLoc(SMLoc Loc)1403   void appendLoc(SMLoc Loc) { Locs.push_back(Loc); }
1404 
1405   // Make the type that this record should have based on its superclasses.
1406   RecordRecTy *getType();
1407 
1408   /// get the corresponding DefInit.
1409   DefInit *getDefInit();
1410 
isClass()1411   bool isClass() const { return IsClass; }
1412 
getTemplateArgs()1413   ArrayRef<Init *> getTemplateArgs() const {
1414     return TemplateArgs;
1415   }
1416 
getValues()1417   ArrayRef<RecordVal> getValues() const { return Values; }
1418 
getSuperClasses()1419   ArrayRef<std::pair<Record *, SMRange>>  getSuperClasses() const {
1420     return SuperClasses;
1421   }
1422 
1423   /// Append the direct super classes of this record to Classes.
1424   void getDirectSuperClasses(SmallVectorImpl<Record *> &Classes) const;
1425 
isTemplateArg(Init * Name)1426   bool isTemplateArg(Init *Name) const {
1427     for (Init *TA : TemplateArgs)
1428       if (TA == Name) return true;
1429     return false;
1430   }
1431 
getValue(const Init * Name)1432   const RecordVal *getValue(const Init *Name) const {
1433     for (const RecordVal &Val : Values)
1434       if (Val.Name == Name) return &Val;
1435     return nullptr;
1436   }
1437 
getValue(StringRef Name)1438   const RecordVal *getValue(StringRef Name) const {
1439     return getValue(StringInit::get(Name));
1440   }
1441 
getValue(const Init * Name)1442   RecordVal *getValue(const Init *Name) {
1443     return const_cast<RecordVal *>(static_cast<const Record *>(this)->getValue(Name));
1444   }
1445 
getValue(StringRef Name)1446   RecordVal *getValue(StringRef Name) {
1447     return const_cast<RecordVal *>(static_cast<const Record *>(this)->getValue(Name));
1448   }
1449 
addTemplateArg(Init * Name)1450   void addTemplateArg(Init *Name) {
1451     assert(!isTemplateArg(Name) && "Template arg already defined!");
1452     TemplateArgs.push_back(Name);
1453   }
1454 
addValue(const RecordVal & RV)1455   void addValue(const RecordVal &RV) {
1456     assert(getValue(RV.getNameInit()) == nullptr && "Value already added!");
1457     Values.push_back(RV);
1458   }
1459 
removeValue(Init * Name)1460   void removeValue(Init *Name) {
1461     for (unsigned i = 0, e = Values.size(); i != e; ++i)
1462       if (Values[i].getNameInit() == Name) {
1463         Values.erase(Values.begin()+i);
1464         return;
1465       }
1466     llvm_unreachable("Cannot remove an entry that does not exist!");
1467   }
1468 
removeValue(StringRef Name)1469   void removeValue(StringRef Name) {
1470     removeValue(StringInit::get(Name));
1471   }
1472 
isSubClassOf(const Record * R)1473   bool isSubClassOf(const Record *R) const {
1474     for (const auto &SCPair : SuperClasses)
1475       if (SCPair.first == R)
1476         return true;
1477     return false;
1478   }
1479 
isSubClassOf(StringRef Name)1480   bool isSubClassOf(StringRef Name) const {
1481     for (const auto &SCPair : SuperClasses) {
1482       if (const auto *SI = dyn_cast<StringInit>(SCPair.first->getNameInit())) {
1483         if (SI->getValue() == Name)
1484           return true;
1485       } else if (SCPair.first->getNameInitAsString() == Name) {
1486         return true;
1487       }
1488     }
1489     return false;
1490   }
1491 
addSuperClass(Record * R,SMRange Range)1492   void addSuperClass(Record *R, SMRange Range) {
1493     assert(!TheInit && "changing type of record after it has been referenced");
1494     assert(!isSubClassOf(R) && "Already subclassing record!");
1495     SuperClasses.push_back(std::make_pair(R, Range));
1496   }
1497 
1498   /// If there are any field references that refer to fields
1499   /// that have been filled in, we can propagate the values now.
1500   ///
1501   /// This is a final resolve: any error messages, e.g. due to undefined
1502   /// !cast references, are generated now.
1503   void resolveReferences();
1504 
1505   /// Apply the resolver to the name of the record as well as to the
1506   /// initializers of all fields of the record except SkipVal.
1507   ///
1508   /// The resolver should not resolve any of the fields itself, to avoid
1509   /// recursion / infinite loops.
1510   void resolveReferences(Resolver &R, const RecordVal *SkipVal = nullptr);
1511 
1512   /// If anything in this record refers to RV, replace the
1513   /// reference to RV with the RHS of RV.  If RV is null, we resolve all
1514   /// possible references.
1515   void resolveReferencesTo(const RecordVal *RV);
1516 
getRecords()1517   RecordKeeper &getRecords() const {
1518     return TrackedRecords;
1519   }
1520 
isAnonymous()1521   bool isAnonymous() const {
1522     return IsAnonymous;
1523   }
1524 
1525   void print(raw_ostream &OS) const;
1526   void dump() const;
1527 
1528   //===--------------------------------------------------------------------===//
1529   // High-level methods useful to tablegen back-ends
1530   //
1531 
1532   /// Return the initializer for a value with the specified name,
1533   /// or throw an exception if the field does not exist.
1534   Init *getValueInit(StringRef FieldName) const;
1535 
1536   /// Return true if the named field is unset.
isValueUnset(StringRef FieldName)1537   bool isValueUnset(StringRef FieldName) const {
1538     return isa<UnsetInit>(getValueInit(FieldName));
1539   }
1540 
1541   /// This method looks up the specified field and returns
1542   /// its value as a string, throwing an exception if the field does not exist
1543   /// or if the value is not a string.
1544   StringRef getValueAsString(StringRef FieldName) const;
1545 
1546   /// This method looks up the specified field and returns
1547   /// its value as a BitsInit, throwing an exception if the field does not exist
1548   /// or if the value is not the right type.
1549   BitsInit *getValueAsBitsInit(StringRef FieldName) const;
1550 
1551   /// This method looks up the specified field and returns
1552   /// its value as a ListInit, throwing an exception if the field does not exist
1553   /// or if the value is not the right type.
1554   ListInit *getValueAsListInit(StringRef FieldName) const;
1555 
1556   /// This method looks up the specified field and
1557   /// returns its value as a vector of records, throwing an exception if the
1558   /// field does not exist or if the value is not the right type.
1559   std::vector<Record*> getValueAsListOfDefs(StringRef FieldName) const;
1560 
1561   /// This method looks up the specified field and
1562   /// returns its value as a vector of integers, throwing an exception if the
1563   /// field does not exist or if the value is not the right type.
1564   std::vector<int64_t> getValueAsListOfInts(StringRef FieldName) const;
1565 
1566   /// This method looks up the specified field and
1567   /// returns its value as a vector of strings, throwing an exception if the
1568   /// field does not exist or if the value is not the right type.
1569   std::vector<StringRef> getValueAsListOfStrings(StringRef FieldName) const;
1570 
1571   /// This method looks up the specified field and returns its
1572   /// value as a Record, throwing an exception if the field does not exist or if
1573   /// the value is not the right type.
1574   Record *getValueAsDef(StringRef FieldName) const;
1575 
1576   /// This method looks up the specified field and returns its
1577   /// value as a bit, throwing an exception if the field does not exist or if
1578   /// the value is not the right type.
1579   bool getValueAsBit(StringRef FieldName) const;
1580 
1581   /// This method looks up the specified field and
1582   /// returns its value as a bit. If the field is unset, sets Unset to true and
1583   /// returns false.
1584   bool getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const;
1585 
1586   /// This method looks up the specified field and returns its
1587   /// value as an int64_t, throwing an exception if the field does not exist or
1588   /// if the value is not the right type.
1589   int64_t getValueAsInt(StringRef FieldName) const;
1590 
1591   /// This method looks up the specified field and returns its
1592   /// value as an Dag, throwing an exception if the field does not exist or if
1593   /// the value is not the right type.
1594   DagInit *getValueAsDag(StringRef FieldName) const;
1595 };
1596 
1597 raw_ostream &operator<<(raw_ostream &OS, const Record &R);
1598 
1599 class RecordKeeper {
1600   friend class RecordRecTy;
1601   using RecordMap = std::map<std::string, std::unique_ptr<Record>>;
1602   RecordMap Classes, Defs;
1603   FoldingSet<RecordRecTy> RecordTypePool;
1604   std::map<std::string, Init *> ExtraGlobals;
1605   unsigned AnonCounter = 0;
1606 
1607 public:
getClasses()1608   const RecordMap &getClasses() const { return Classes; }
getDefs()1609   const RecordMap &getDefs() const { return Defs; }
1610 
getClass(StringRef Name)1611   Record *getClass(StringRef Name) const {
1612     auto I = Classes.find(Name);
1613     return I == Classes.end() ? nullptr : I->second.get();
1614   }
1615 
getDef(StringRef Name)1616   Record *getDef(StringRef Name) const {
1617     auto I = Defs.find(Name);
1618     return I == Defs.end() ? nullptr : I->second.get();
1619   }
1620 
getGlobal(StringRef Name)1621   Init *getGlobal(StringRef Name) const {
1622     if (Record *R = getDef(Name))
1623       return R->getDefInit();
1624     auto It = ExtraGlobals.find(Name);
1625     return It == ExtraGlobals.end() ? nullptr : It->second;
1626   }
1627 
addClass(std::unique_ptr<Record> R)1628   void addClass(std::unique_ptr<Record> R) {
1629     bool Ins = Classes.insert(std::make_pair(R->getName(),
1630                                              std::move(R))).second;
1631     (void)Ins;
1632     assert(Ins && "Class already exists");
1633   }
1634 
addDef(std::unique_ptr<Record> R)1635   void addDef(std::unique_ptr<Record> R) {
1636     bool Ins = Defs.insert(std::make_pair(R->getName(),
1637                                           std::move(R))).second;
1638     (void)Ins;
1639     assert(Ins && "Record already exists");
1640   }
1641 
addExtraGlobal(StringRef Name,Init * I)1642   void addExtraGlobal(StringRef Name, Init *I) {
1643     bool Ins = ExtraGlobals.insert(std::make_pair(Name, I)).second;
1644     (void)Ins;
1645     assert(!getDef(Name));
1646     assert(Ins && "Global already exists");
1647   }
1648 
1649   Init *getNewAnonymousName();
1650 
1651   //===--------------------------------------------------------------------===//
1652   // High-level helper methods, useful for tablegen backends...
1653 
1654   /// This method returns all concrete definitions
1655   /// that derive from the specified class name.  A class with the specified
1656   /// name must exist.
1657   std::vector<Record *> getAllDerivedDefinitions(StringRef ClassName) const;
1658 
1659   void dump() const;
1660 };
1661 
1662 /// Sorting predicate to sort record pointers by name.
1663 struct LessRecord {
operatorLessRecord1664   bool operator()(const Record *Rec1, const Record *Rec2) const {
1665     return StringRef(Rec1->getName()).compare_numeric(Rec2->getName()) < 0;
1666   }
1667 };
1668 
1669 /// Sorting predicate to sort record pointers by their
1670 /// unique ID. If you just need a deterministic order, use this, since it
1671 /// just compares two `unsigned`; the other sorting predicates require
1672 /// string manipulation.
1673 struct LessRecordByID {
operatorLessRecordByID1674   bool operator()(const Record *LHS, const Record *RHS) const {
1675     return LHS->getID() < RHS->getID();
1676   }
1677 };
1678 
1679 /// Sorting predicate to sort record pointers by their
1680 /// name field.
1681 struct LessRecordFieldName {
operatorLessRecordFieldName1682   bool operator()(const Record *Rec1, const Record *Rec2) const {
1683     return Rec1->getValueAsString("Name") < Rec2->getValueAsString("Name");
1684   }
1685 };
1686 
1687 struct LessRecordRegister {
ascii_isdigitLessRecordRegister1688   static bool ascii_isdigit(char x) { return x >= '0' && x <= '9'; }
1689 
1690   struct RecordParts {
1691     SmallVector<std::pair< bool, StringRef>, 4> Parts;
1692 
RecordPartsLessRecordRegister::RecordParts1693     RecordParts(StringRef Rec) {
1694       if (Rec.empty())
1695         return;
1696 
1697       size_t Len = 0;
1698       const char *Start = Rec.data();
1699       const char *Curr = Start;
1700       bool isDigitPart = ascii_isdigit(Curr[0]);
1701       for (size_t I = 0, E = Rec.size(); I != E; ++I, ++Len) {
1702         bool isDigit = ascii_isdigit(Curr[I]);
1703         if (isDigit != isDigitPart) {
1704           Parts.push_back(std::make_pair(isDigitPart, StringRef(Start, Len)));
1705           Len = 0;
1706           Start = &Curr[I];
1707           isDigitPart = ascii_isdigit(Curr[I]);
1708         }
1709       }
1710       // Push the last part.
1711       Parts.push_back(std::make_pair(isDigitPart, StringRef(Start, Len)));
1712     }
1713 
sizeLessRecordRegister::RecordParts1714     size_t size() { return Parts.size(); }
1715 
getPartLessRecordRegister::RecordParts1716     std::pair<bool, StringRef> getPart(size_t i) {
1717       assert (i < Parts.size() && "Invalid idx!");
1718       return Parts[i];
1719     }
1720   };
1721 
operatorLessRecordRegister1722   bool operator()(const Record *Rec1, const Record *Rec2) const {
1723     RecordParts LHSParts(StringRef(Rec1->getName()));
1724     RecordParts RHSParts(StringRef(Rec2->getName()));
1725 
1726     size_t LHSNumParts = LHSParts.size();
1727     size_t RHSNumParts = RHSParts.size();
1728     assert (LHSNumParts && RHSNumParts && "Expected at least one part!");
1729 
1730     if (LHSNumParts != RHSNumParts)
1731       return LHSNumParts < RHSNumParts;
1732 
1733     // We expect the registers to be of the form [_a-zA-Z]+([0-9]*[_a-zA-Z]*)*.
1734     for (size_t I = 0, E = LHSNumParts; I < E; I+=2) {
1735       std::pair<bool, StringRef> LHSPart = LHSParts.getPart(I);
1736       std::pair<bool, StringRef> RHSPart = RHSParts.getPart(I);
1737       // Expect even part to always be alpha.
1738       assert (LHSPart.first == false && RHSPart.first == false &&
1739               "Expected both parts to be alpha.");
1740       if (int Res = LHSPart.second.compare(RHSPart.second))
1741         return Res < 0;
1742     }
1743     for (size_t I = 1, E = LHSNumParts; I < E; I+=2) {
1744       std::pair<bool, StringRef> LHSPart = LHSParts.getPart(I);
1745       std::pair<bool, StringRef> RHSPart = RHSParts.getPart(I);
1746       // Expect odd part to always be numeric.
1747       assert (LHSPart.first == true && RHSPart.first == true &&
1748               "Expected both parts to be numeric.");
1749       if (LHSPart.second.size() != RHSPart.second.size())
1750         return LHSPart.second.size() < RHSPart.second.size();
1751 
1752       unsigned LHSVal, RHSVal;
1753 
1754       bool LHSFailed = LHSPart.second.getAsInteger(10, LHSVal); (void)LHSFailed;
1755       assert(!LHSFailed && "Unable to convert LHS to integer.");
1756       bool RHSFailed = RHSPart.second.getAsInteger(10, RHSVal); (void)RHSFailed;
1757       assert(!RHSFailed && "Unable to convert RHS to integer.");
1758 
1759       if (LHSVal != RHSVal)
1760         return LHSVal < RHSVal;
1761     }
1762     return LHSNumParts < RHSNumParts;
1763   }
1764 };
1765 
1766 raw_ostream &operator<<(raw_ostream &OS, const RecordKeeper &RK);
1767 
1768 //===----------------------------------------------------------------------===//
1769 //  Resolvers
1770 //===----------------------------------------------------------------------===//
1771 
1772 /// Interface for looking up the initializer for a variable name, used by
1773 /// Init::resolveReferences.
1774 class Resolver {
1775   Record *CurRec;
1776   bool IsFinal = false;
1777 
1778 public:
Resolver(Record * CurRec)1779   explicit Resolver(Record *CurRec) : CurRec(CurRec) {}
~Resolver()1780   virtual ~Resolver() {}
1781 
getCurrentRecord()1782   Record *getCurrentRecord() const { return CurRec; }
1783 
1784   /// Return the initializer for the given variable name (should normally be a
1785   /// StringInit), or nullptr if the name could not be resolved.
1786   virtual Init *resolve(Init *VarName) = 0;
1787 
1788   // Whether bits in a BitsInit should stay unresolved if resolving them would
1789   // result in a ? (UnsetInit). This behavior is used to represent instruction
1790   // encodings by keeping references to unset variables within a record.
keepUnsetBits()1791   virtual bool keepUnsetBits() const { return false; }
1792 
1793   // Whether this is the final resolve step before adding a record to the
1794   // RecordKeeper. Error reporting during resolve and related constant folding
1795   // should only happen when this is true.
isFinal()1796   bool isFinal() const { return IsFinal; }
1797 
setFinal(bool Final)1798   void setFinal(bool Final) { IsFinal = Final; }
1799 };
1800 
1801 /// Resolve arbitrary mappings.
1802 class MapResolver final : public Resolver {
1803   struct MappedValue {
1804     Init *V;
1805     bool Resolved;
1806 
MappedValueMappedValue1807     MappedValue() : V(nullptr), Resolved(false) {}
MappedValueMappedValue1808     MappedValue(Init *V, bool Resolved) : V(V), Resolved(Resolved) {}
1809   };
1810 
1811   DenseMap<Init *, MappedValue> Map;
1812 
1813 public:
Resolver(CurRec)1814   explicit MapResolver(Record *CurRec = nullptr) : Resolver(CurRec) {}
1815 
set(Init * Key,Init * Value)1816   void set(Init *Key, Init *Value) { Map[Key] = {Value, false}; }
1817 
1818   Init *resolve(Init *VarName) override;
1819 };
1820 
1821 /// Resolve all variables from a record except for unset variables.
1822 class RecordResolver final : public Resolver {
1823   DenseMap<Init *, Init *> Cache;
1824   SmallVector<Init *, 4> Stack;
1825 
1826 public:
RecordResolver(Record & R)1827   explicit RecordResolver(Record &R) : Resolver(&R) {}
1828 
1829   Init *resolve(Init *VarName) override;
1830 
keepUnsetBits()1831   bool keepUnsetBits() const override { return true; }
1832 };
1833 
1834 /// Resolve all references to a specific RecordVal.
1835 //
1836 // TODO: This is used for resolving references to template arguments, in a
1837 //       rather inefficient way. Change those uses to resolve all template
1838 //       arguments simultaneously and get rid of this class.
1839 class RecordValResolver final : public Resolver {
1840   const RecordVal *RV;
1841 
1842 public:
RecordValResolver(Record & R,const RecordVal * RV)1843   explicit RecordValResolver(Record &R, const RecordVal *RV)
1844       : Resolver(&R), RV(RV) {}
1845 
resolve(Init * VarName)1846   Init *resolve(Init *VarName) override {
1847     if (VarName == RV->getNameInit())
1848       return RV->getValue();
1849     return nullptr;
1850   }
1851 };
1852 
1853 /// Delegate resolving to a sub-resolver, but shadow some variable names.
1854 class ShadowResolver final : public Resolver {
1855   Resolver &R;
1856   DenseSet<Init *> Shadowed;
1857 
1858 public:
ShadowResolver(Resolver & R)1859   explicit ShadowResolver(Resolver &R)
1860       : Resolver(R.getCurrentRecord()), R(R) {
1861     setFinal(R.isFinal());
1862   }
1863 
addShadow(Init * Key)1864   void addShadow(Init *Key) { Shadowed.insert(Key); }
1865 
resolve(Init * VarName)1866   Init *resolve(Init *VarName) override {
1867     if (Shadowed.count(VarName))
1868       return nullptr;
1869     return R.resolve(VarName);
1870   }
1871 };
1872 
1873 /// (Optionally) delegate resolving to a sub-resolver, and keep track whether
1874 /// there were unresolved references.
1875 class TrackUnresolvedResolver final : public Resolver {
1876   Resolver *R;
1877   bool FoundUnresolved = false;
1878 
1879 public:
1880   explicit TrackUnresolvedResolver(Resolver *R = nullptr)
1881       : Resolver(R ? R->getCurrentRecord() : nullptr), R(R) {}
1882 
foundUnresolved()1883   bool foundUnresolved() const { return FoundUnresolved; }
1884 
1885   Init *resolve(Init *VarName) override;
1886 };
1887 
1888 /// Do not resolve anything, but keep track of whether a given variable was
1889 /// referenced.
1890 class HasReferenceResolver final : public Resolver {
1891   Init *VarNameToTrack;
1892   bool Found = false;
1893 
1894 public:
HasReferenceResolver(Init * VarNameToTrack)1895   explicit HasReferenceResolver(Init *VarNameToTrack)
1896       : Resolver(nullptr), VarNameToTrack(VarNameToTrack) {}
1897 
found()1898   bool found() const { return Found; }
1899 
1900   Init *resolve(Init *VarName) override;
1901 };
1902 
1903 void EmitJSON(RecordKeeper &RK, raw_ostream &OS);
1904 
1905 } // end namespace llvm
1906 
1907 #endif // LLVM_TABLEGEN_RECORD_H
1908