• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 //
12 //  Specifies helper classes for intelligibility enhancement.
13 //
14 
15 #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
16 #define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
17 
18 #include <complex>
19 
20 #include "webrtc/base/scoped_ptr.h"
21 
22 namespace webrtc {
23 
24 namespace intelligibility {
25 
26 // Return |current| changed towards |target|, with the change being at most
27 // |limit|.
28 float UpdateFactor(float target, float current, float limit);
29 
30 // Apply a small fudge to degenerate complex values. The numbers in the array
31 // were chosen randomly, so that even a series of all zeroes has some small
32 // variability.
33 std::complex<float> zerofudge(std::complex<float> c);
34 
35 // Incremental mean computation. Return the mean of the series with the
36 // mean |mean| with added |data|.
37 std::complex<float> NewMean(std::complex<float> mean,
38                             std::complex<float> data,
39                             size_t count);
40 
41 // Updates |mean| with added |data|;
42 void AddToMean(std::complex<float> data,
43                size_t count,
44                std::complex<float>* mean);
45 
46 // Internal helper for computing the variances of a stream of arrays.
47 // The result is an array of variances per position: the i-th variance
48 // is the variance of the stream of data on the i-th positions in the
49 // input arrays.
50 // There are four methods of computation:
51 //  * kStepInfinite computes variances from the beginning onwards
52 //  * kStepDecaying uses a recursive exponential decay formula with a
53 //    settable forgetting factor
54 //  * kStepWindowed computes variances within a moving window
55 //  * kStepBlocked is similar to kStepWindowed, but history is kept
56 //    as a rolling window of blocks: multiple input elements are used for
57 //    one block and the history then consists of the variances of these blocks
58 //    with the same effect as kStepWindowed, but less storage, so the window
59 //    can be longer
60 class VarianceArray {
61  public:
62   enum StepType {
63     kStepInfinite = 0,
64     kStepDecaying,
65     kStepWindowed,
66     kStepBlocked,
67     kStepBlockBasedMovingAverage
68   };
69 
70   // Construct an instance for the given input array length (|freqs|) and
71   // computation algorithm (|type|), with the appropriate parameters.
72   // |window_size| is the number of samples for kStepWindowed and
73   // the number of blocks for kStepBlocked. |decay| is the forgetting factor
74   // for kStepDecaying.
75   VarianceArray(size_t freqs, StepType type, size_t window_size, float decay);
76 
77   // Add a new data point to the series and compute the new variances.
78   // TODO(bercic) |skip_fudge| is a flag for kStepWindowed and kStepDecaying,
79   // whether they should skip adding some small dummy values to the input
80   // to prevent problems with all-zero inputs. Can probably be removed.
81   void Step(const std::complex<float>* data, bool skip_fudge = false) {
82     (this->*step_func_)(data, skip_fudge);
83   }
84   // Reset variances to zero and forget all history.
85   void Clear();
86   // Scale the input data by |scale|. Effectively multiply variances
87   // by |scale^2|.
88   void ApplyScale(float scale);
89 
90   // The current set of variances.
variance()91   const float* variance() const { return variance_.get(); }
92 
93   // The mean value of the current set of variances.
array_mean()94   float array_mean() const { return array_mean_; }
95 
96  private:
97   void InfiniteStep(const std::complex<float>* data, bool dummy);
98   void DecayStep(const std::complex<float>* data, bool dummy);
99   void WindowedStep(const std::complex<float>* data, bool dummy);
100   void BlockedStep(const std::complex<float>* data, bool dummy);
101   void BlockBasedMovingAverage(const std::complex<float>* data, bool dummy);
102 
103   // TODO(ekmeyerson): Switch the following running means
104   // and histories from rtc::scoped_ptr to std::vector.
105 
106   // The current average X and X^2.
107   rtc::scoped_ptr<std::complex<float>[]> running_mean_;
108   rtc::scoped_ptr<std::complex<float>[]> running_mean_sq_;
109 
110   // Average X and X^2 for the current block in kStepBlocked.
111   rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_;
112   rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_sq_;
113 
114   // Sample history for the rolling window in kStepWindowed and block-wise
115   // histories for kStepBlocked.
116   rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> history_;
117   rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_;
118   rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_sq_;
119 
120   // The current set of variances and sums for Welford's algorithm.
121   rtc::scoped_ptr<float[]> variance_;
122   rtc::scoped_ptr<float[]> conj_sum_;
123 
124   const size_t num_freqs_;
125   const size_t window_size_;
126   const float decay_;
127   size_t history_cursor_;
128   size_t count_;
129   float array_mean_;
130   bool buffer_full_;
131   void (VarianceArray::*step_func_)(const std::complex<float>*, bool);
132 };
133 
134 // Helper class for smoothing gain changes. On each applicatiion step, the
135 // currently used gains are changed towards a set of settable target gains,
136 // constrained by a limit on the magnitude of the changes.
137 class GainApplier {
138  public:
139   GainApplier(size_t freqs, float change_limit);
140 
141   // Copy |in_block| to |out_block|, multiplied by the current set of gains,
142   // and step the current set of gains towards the target set.
143   void Apply(const std::complex<float>* in_block,
144              std::complex<float>* out_block);
145 
146   // Return the current target gain set. Modify this array to set the targets.
target()147   float* target() const { return target_.get(); }
148 
149  private:
150   const size_t num_freqs_;
151   const float change_limit_;
152   rtc::scoped_ptr<float[]> target_;
153   rtc::scoped_ptr<float[]> current_;
154 };
155 
156 }  // namespace intelligibility
157 
158 }  // namespace webrtc
159 
160 #endif  // WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
161