1 /*
2 * Copyright (c) 2019, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <stdint.h>
13
14 #include "config/aom_config.h"
15 #include "config/aom_scale_rtcd.h"
16
17 #include "aom/aom_codec.h"
18 #include "aom/aom_encoder.h"
19
20 #include "aom_ports/system_state.h"
21
22 #include "av1/common/onyxc_int.h"
23
24 #include "av1/encoder/encoder.h"
25 #include "av1/encoder/firstpass.h"
26 #include "av1/encoder/gop_structure.h"
27
28 // Calculate an active area of the image that discounts formatting
29 // bars and partially discounts other 0 energy areas.
30 #define MIN_ACTIVE_AREA 0.5
31 #define MAX_ACTIVE_AREA 1.0
calculate_active_area(const AV1_COMP * cpi,const FIRSTPASS_STATS * this_frame)32 double calculate_active_area(const AV1_COMP *cpi,
33 const FIRSTPASS_STATS *this_frame) {
34 double active_pct;
35
36 active_pct =
37 1.0 -
38 ((this_frame->intra_skip_pct / 2) +
39 ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows));
40 return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
41 }
42
43 // Calculate a modified Error used in distributing bits between easier and
44 // harder frames.
45 #define ACT_AREA_CORRECTION 0.5
calculate_modified_err(const AV1_COMP * cpi,const TWO_PASS * twopass,const AV1EncoderConfig * oxcf,const FIRSTPASS_STATS * this_frame)46 double calculate_modified_err(const AV1_COMP *cpi, const TWO_PASS *twopass,
47 const AV1EncoderConfig *oxcf,
48 const FIRSTPASS_STATS *this_frame) {
49 const FIRSTPASS_STATS *const stats = &twopass->total_stats;
50 const double av_weight = stats->weight / stats->count;
51 const double av_err = (stats->coded_error * av_weight) / stats->count;
52 double modified_error =
53 av_err * pow(this_frame->coded_error * this_frame->weight /
54 DOUBLE_DIVIDE_CHECK(av_err),
55 oxcf->two_pass_vbrbias / 100.0);
56
57 // Correction for active area. Frames with a reduced active area
58 // (eg due to formatting bars) have a higher error per mb for the
59 // remaining active MBs. The correction here assumes that coding
60 // 0.5N blocks of complexity 2X is a little easier than coding N
61 // blocks of complexity X.
62 modified_error *=
63 pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION);
64
65 return fclamp(modified_error, twopass->modified_error_min,
66 twopass->modified_error_max);
67 }
68
69 // Resets the first pass file to the given position using a relative seek from
70 // the current position.
reset_fpf_position(TWO_PASS * p,const FIRSTPASS_STATS * position)71 static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) {
72 p->stats_in = position;
73 }
74
input_stats(TWO_PASS * p,FIRSTPASS_STATS * fps)75 static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
76 if (p->stats_in >= p->stats_in_end) return EOF;
77
78 *fps = *p->stats_in;
79 ++p->stats_in;
80 return 1;
81 }
82
83 // Read frame stats at an offset from the current position.
read_frame_stats(const TWO_PASS * p,int offset)84 static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
85 if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
86 (offset < 0 && p->stats_in + offset < p->stats_in_start)) {
87 return NULL;
88 }
89
90 return &p->stats_in[offset];
91 }
92
subtract_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)93 static void subtract_stats(FIRSTPASS_STATS *section,
94 const FIRSTPASS_STATS *frame) {
95 section->frame -= frame->frame;
96 section->weight -= frame->weight;
97 section->intra_error -= frame->intra_error;
98 section->frame_avg_wavelet_energy -= frame->frame_avg_wavelet_energy;
99 section->coded_error -= frame->coded_error;
100 section->sr_coded_error -= frame->sr_coded_error;
101 section->pcnt_inter -= frame->pcnt_inter;
102 section->pcnt_motion -= frame->pcnt_motion;
103 section->pcnt_second_ref -= frame->pcnt_second_ref;
104 section->pcnt_neutral -= frame->pcnt_neutral;
105 section->intra_skip_pct -= frame->intra_skip_pct;
106 section->inactive_zone_rows -= frame->inactive_zone_rows;
107 section->inactive_zone_cols -= frame->inactive_zone_cols;
108 section->MVr -= frame->MVr;
109 section->mvr_abs -= frame->mvr_abs;
110 section->MVc -= frame->MVc;
111 section->mvc_abs -= frame->mvc_abs;
112 section->MVrv -= frame->MVrv;
113 section->MVcv -= frame->MVcv;
114 section->mv_in_out_count -= frame->mv_in_out_count;
115 section->new_mv_count -= frame->new_mv_count;
116 section->count -= frame->count;
117 section->duration -= frame->duration;
118 }
119
120 // Calculate the linear size relative to a baseline of 1080P
121 #define BASE_SIZE 2073600.0 // 1920x1080
get_linear_size_factor(const AV1_COMP * cpi)122 static double get_linear_size_factor(const AV1_COMP *cpi) {
123 const double this_area = cpi->initial_width * cpi->initial_height;
124 return pow(this_area / BASE_SIZE, 0.5);
125 }
126
127 // This function returns the maximum target rate per frame.
frame_max_bits(const RATE_CONTROL * rc,const AV1EncoderConfig * oxcf)128 static int frame_max_bits(const RATE_CONTROL *rc,
129 const AV1EncoderConfig *oxcf) {
130 int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
131 (int64_t)oxcf->two_pass_vbrmax_section) /
132 100;
133 if (max_bits < 0)
134 max_bits = 0;
135 else if (max_bits > rc->max_frame_bandwidth)
136 max_bits = rc->max_frame_bandwidth;
137
138 return (int)max_bits;
139 }
140
calc_correction_factor(double err_per_mb,double err_divisor,double pt_low,double pt_high,int q,aom_bit_depth_t bit_depth)141 static double calc_correction_factor(double err_per_mb, double err_divisor,
142 double pt_low, double pt_high, int q,
143 aom_bit_depth_t bit_depth) {
144 const double error_term = err_per_mb / err_divisor;
145
146 // Adjustment based on actual quantizer to power term.
147 const double power_term =
148 AOMMIN(av1_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high);
149
150 // Calculate correction factor.
151 if (power_term < 1.0) assert(error_term >= 0.0);
152
153 return fclamp(pow(error_term, power_term), 0.05, 5.0);
154 }
155
156 #define ERR_DIVISOR 100.0
157 #define FACTOR_PT_LOW 0.70
158 #define FACTOR_PT_HIGH 0.90
159
160 // Similar to find_qindex_by_rate() function in ratectrl.c, but includes
161 // calculation of a correction_factor.
find_qindex_by_rate_with_correction(int desired_bits_per_mb,aom_bit_depth_t bit_depth,FRAME_TYPE frame_type,double error_per_mb,double ediv_size_correction,double group_weight_factor,int best_qindex,int worst_qindex)162 static int find_qindex_by_rate_with_correction(
163 int desired_bits_per_mb, aom_bit_depth_t bit_depth, FRAME_TYPE frame_type,
164 double error_per_mb, double ediv_size_correction,
165 double group_weight_factor, int best_qindex, int worst_qindex) {
166 assert(best_qindex <= worst_qindex);
167 int low = best_qindex;
168 int high = worst_qindex;
169 while (low < high) {
170 const int mid = (low + high) >> 1;
171 const double mid_factor =
172 calc_correction_factor(error_per_mb, ERR_DIVISOR - ediv_size_correction,
173 FACTOR_PT_LOW, FACTOR_PT_HIGH, mid, bit_depth);
174 const int mid_bits_per_mb = av1_rc_bits_per_mb(
175 frame_type, mid, mid_factor * group_weight_factor, bit_depth);
176 if (mid_bits_per_mb > desired_bits_per_mb) {
177 low = mid + 1;
178 } else {
179 high = mid;
180 }
181 }
182 #if CONFIG_DEBUG
183 assert(low == high);
184 const double low_factor =
185 calc_correction_factor(error_per_mb, ERR_DIVISOR - ediv_size_correction,
186 FACTOR_PT_LOW, FACTOR_PT_HIGH, low, bit_depth);
187 const int low_bits_per_mb = av1_rc_bits_per_mb(
188 frame_type, low, low_factor * group_weight_factor, bit_depth);
189 assert(low_bits_per_mb <= desired_bits_per_mb || low == worst_qindex);
190 #endif // CONFIG_DEBUG
191 return low;
192 }
193
get_twopass_worst_quality(const AV1_COMP * cpi,const double section_err,double inactive_zone,int section_target_bandwidth,double group_weight_factor)194 static int get_twopass_worst_quality(const AV1_COMP *cpi,
195 const double section_err,
196 double inactive_zone,
197 int section_target_bandwidth,
198 double group_weight_factor) {
199 const RATE_CONTROL *const rc = &cpi->rc;
200 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
201
202 inactive_zone = fclamp(inactive_zone, 0.0, 1.0);
203
204 if (section_target_bandwidth <= 0) {
205 return rc->worst_quality; // Highest value allowed
206 } else {
207 const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
208 ? cpi->initial_mbs
209 : cpi->common.MBs;
210 const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone));
211 const double av_err_per_mb = section_err / active_mbs;
212 const int target_norm_bits_per_mb =
213 (int)((uint64_t)section_target_bandwidth << BPER_MB_NORMBITS) /
214 active_mbs;
215
216 // Larger image formats are expected to be a little harder to code
217 // relatively given the same prediction error score. This in part at
218 // least relates to the increased size and hence coding overheads of
219 // motion vectors. Some account of this is made through adjustment of
220 // the error divisor.
221 double ediv_size_correction =
222 AOMMAX(0.2, AOMMIN(5.0, get_linear_size_factor(cpi)));
223 if (ediv_size_correction < 1.0)
224 ediv_size_correction = -(1.0 / ediv_size_correction);
225 ediv_size_correction *= 4.0;
226
227 // Try and pick a max Q that will be high enough to encode the
228 // content at the given rate.
229 int q = find_qindex_by_rate_with_correction(
230 target_norm_bits_per_mb, cpi->common.seq_params.bit_depth, INTER_FRAME,
231 av_err_per_mb, ediv_size_correction, group_weight_factor,
232 rc->best_quality, rc->worst_quality);
233
234 // Restriction on active max q for constrained quality mode.
235 if (cpi->oxcf.rc_mode == AOM_CQ) q = AOMMAX(q, oxcf->cq_level);
236 return q;
237 }
238 }
239
240 #define SR_DIFF_PART 0.0015
241 #define MOTION_AMP_PART 0.003
242 #define INTRA_PART 0.005
243 #define DEFAULT_DECAY_LIMIT 0.75
244 #define LOW_SR_DIFF_TRHESH 0.1
245 #define SR_DIFF_MAX 128.0
246 #define NCOUNT_FRAME_II_THRESH 5.0
247
get_sr_decay_rate(const AV1_COMP * cpi,const FIRSTPASS_STATS * frame)248 static double get_sr_decay_rate(const AV1_COMP *cpi,
249 const FIRSTPASS_STATS *frame) {
250 const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
251 : cpi->common.MBs;
252 double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs;
253 double sr_decay = 1.0;
254 double modified_pct_inter;
255 double modified_pcnt_intra;
256 const double motion_amplitude_factor =
257 frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2);
258
259 modified_pct_inter = frame->pcnt_inter;
260 if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
261 (double)NCOUNT_FRAME_II_THRESH) {
262 modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral;
263 }
264 modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
265
266 if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
267 sr_diff = AOMMIN(sr_diff, SR_DIFF_MAX);
268 sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) -
269 (MOTION_AMP_PART * motion_amplitude_factor) -
270 (INTRA_PART * modified_pcnt_intra);
271 }
272 return AOMMAX(sr_decay, AOMMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter));
273 }
274
275 // This function gives an estimate of how badly we believe the prediction
276 // quality is decaying from frame to frame.
get_zero_motion_factor(const AV1_COMP * cpi,const FIRSTPASS_STATS * frame)277 static double get_zero_motion_factor(const AV1_COMP *cpi,
278 const FIRSTPASS_STATS *frame) {
279 const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion;
280 double sr_decay = get_sr_decay_rate(cpi, frame);
281 return AOMMIN(sr_decay, zero_motion_pct);
282 }
283
284 #define ZM_POWER_FACTOR 0.75
285
get_prediction_decay_rate(const AV1_COMP * cpi,const FIRSTPASS_STATS * next_frame)286 static double get_prediction_decay_rate(const AV1_COMP *cpi,
287 const FIRSTPASS_STATS *next_frame) {
288 const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame);
289 const double zero_motion_factor =
290 (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
291 ZM_POWER_FACTOR));
292
293 return AOMMAX(zero_motion_factor,
294 (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
295 }
296
297 // Function to test for a condition where a complex transition is followed
298 // by a static section. For example in slide shows where there is a fade
299 // between slides. This is to help with more optimal kf and gf positioning.
detect_transition_to_still(AV1_COMP * cpi,int frame_interval,int still_interval,double loop_decay_rate,double last_decay_rate)300 static int detect_transition_to_still(AV1_COMP *cpi, int frame_interval,
301 int still_interval,
302 double loop_decay_rate,
303 double last_decay_rate) {
304 TWO_PASS *const twopass = &cpi->twopass;
305 RATE_CONTROL *const rc = &cpi->rc;
306
307 // Break clause to detect very still sections after motion
308 // For example a static image after a fade or other transition
309 // instead of a clean scene cut.
310 if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 &&
311 last_decay_rate < 0.9) {
312 int j;
313
314 // Look ahead a few frames to see if static condition persists...
315 for (j = 0; j < still_interval; ++j) {
316 const FIRSTPASS_STATS *stats = &twopass->stats_in[j];
317 if (stats >= twopass->stats_in_end) break;
318
319 if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break;
320 }
321
322 // Only if it does do we signal a transition to still.
323 return j == still_interval;
324 }
325
326 return 0;
327 }
328
329 // This function detects a flash through the high relative pcnt_second_ref
330 // score in the frame following a flash frame. The offset passed in should
331 // reflect this.
detect_flash(const TWO_PASS * twopass,int offset)332 static int detect_flash(const TWO_PASS *twopass, int offset) {
333 const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
334
335 // What we are looking for here is a situation where there is a
336 // brief break in prediction (such as a flash) but subsequent frames
337 // are reasonably well predicted by an earlier (pre flash) frame.
338 // The recovery after a flash is indicated by a high pcnt_second_ref
339 // compared to pcnt_inter.
340 return next_frame != NULL &&
341 next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
342 next_frame->pcnt_second_ref >= 0.5;
343 }
344
345 // Update the motion related elements to the GF arf boost calculation.
accumulate_frame_motion_stats(const FIRSTPASS_STATS * stats,double * mv_in_out,double * mv_in_out_accumulator,double * abs_mv_in_out_accumulator,double * mv_ratio_accumulator)346 static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
347 double *mv_in_out,
348 double *mv_in_out_accumulator,
349 double *abs_mv_in_out_accumulator,
350 double *mv_ratio_accumulator) {
351 const double pct = stats->pcnt_motion;
352
353 // Accumulate Motion In/Out of frame stats.
354 *mv_in_out = stats->mv_in_out_count * pct;
355 *mv_in_out_accumulator += *mv_in_out;
356 *abs_mv_in_out_accumulator += fabs(*mv_in_out);
357
358 // Accumulate a measure of how uniform (or conversely how random) the motion
359 // field is (a ratio of abs(mv) / mv).
360 if (pct > 0.05) {
361 const double mvr_ratio =
362 fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
363 const double mvc_ratio =
364 fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
365
366 *mv_ratio_accumulator +=
367 pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs);
368 *mv_ratio_accumulator +=
369 pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs);
370 }
371 }
372
373 #define BASELINE_ERR_PER_MB 1000.0
374 #define BOOST_FACTOR 12.5
375
calc_frame_boost(AV1_COMP * cpi,const FIRSTPASS_STATS * this_frame,double this_frame_mv_in_out,double max_boost)376 static double calc_frame_boost(AV1_COMP *cpi, const FIRSTPASS_STATS *this_frame,
377 double this_frame_mv_in_out, double max_boost) {
378 double frame_boost;
379 const double lq = av1_convert_qindex_to_q(
380 cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.seq_params.bit_depth);
381 const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5);
382 int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
383 : cpi->common.MBs;
384
385 // Correct for any inactive region in the image
386 num_mbs = (int)AOMMAX(1, num_mbs * calculate_active_area(cpi, this_frame));
387
388 // Underlying boost factor is based on inter error ratio.
389 frame_boost = (BASELINE_ERR_PER_MB * num_mbs) /
390 DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
391 frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction;
392
393 // Increase boost for frames where new data coming into frame (e.g. zoom out).
394 // Slightly reduce boost if there is a net balance of motion out of the frame
395 // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
396 if (this_frame_mv_in_out > 0.0)
397 frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
398 // In the extreme case the boost is halved.
399 else
400 frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
401
402 return AOMMIN(frame_boost, max_boost * boost_q_correction);
403 }
404
405 #define GF_MAX_BOOST 90.0
406 #define MIN_ARF_GF_BOOST 240
407 #define MIN_DECAY_FACTOR 0.01
408
calc_arf_boost(AV1_COMP * cpi,int offset,int f_frames,int b_frames,int * f_boost,int * b_boost)409 static int calc_arf_boost(AV1_COMP *cpi, int offset, int f_frames, int b_frames,
410 int *f_boost, int *b_boost) {
411 TWO_PASS *const twopass = &cpi->twopass;
412 int i;
413 double boost_score = 0.0;
414 double mv_ratio_accumulator = 0.0;
415 double decay_accumulator = 1.0;
416 double this_frame_mv_in_out = 0.0;
417 double mv_in_out_accumulator = 0.0;
418 double abs_mv_in_out_accumulator = 0.0;
419 int arf_boost;
420 int flash_detected = 0;
421
422 // Search forward from the proposed arf/next gf position.
423 for (i = 0; i < f_frames; ++i) {
424 const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
425 if (this_frame == NULL) break;
426
427 // Update the motion related elements to the boost calculation.
428 accumulate_frame_motion_stats(
429 this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
430 &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
431
432 // We want to discount the flash frame itself and the recovery
433 // frame that follows as both will have poor scores.
434 flash_detected = detect_flash(twopass, i + offset) ||
435 detect_flash(twopass, i + offset + 1);
436
437 // Accumulate the effect of prediction quality decay.
438 if (!flash_detected) {
439 decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
440 decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
441 ? MIN_DECAY_FACTOR
442 : decay_accumulator;
443 }
444
445 boost_score +=
446 decay_accumulator *
447 calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST);
448 }
449
450 *f_boost = (int)boost_score;
451
452 // Reset for backward looking loop.
453 boost_score = 0.0;
454 mv_ratio_accumulator = 0.0;
455 decay_accumulator = 1.0;
456 this_frame_mv_in_out = 0.0;
457 mv_in_out_accumulator = 0.0;
458 abs_mv_in_out_accumulator = 0.0;
459
460 // Search backward towards last gf position.
461 for (i = -1; i >= -b_frames; --i) {
462 const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
463 if (this_frame == NULL) break;
464
465 // Update the motion related elements to the boost calculation.
466 accumulate_frame_motion_stats(
467 this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
468 &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
469
470 // We want to discount the the flash frame itself and the recovery
471 // frame that follows as both will have poor scores.
472 flash_detected = detect_flash(twopass, i + offset) ||
473 detect_flash(twopass, i + offset + 1);
474
475 // Cumulative effect of prediction quality decay.
476 if (!flash_detected) {
477 decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
478 decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
479 ? MIN_DECAY_FACTOR
480 : decay_accumulator;
481 }
482
483 boost_score +=
484 decay_accumulator *
485 calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST);
486 }
487 *b_boost = (int)boost_score;
488
489 arf_boost = (*f_boost + *b_boost);
490 if (arf_boost < ((b_frames + f_frames) * 20))
491 arf_boost = ((b_frames + f_frames) * 20);
492 arf_boost = AOMMAX(arf_boost, MIN_ARF_GF_BOOST);
493
494 return arf_boost;
495 }
496
497 // Calculate a section intra ratio used in setting max loop filter.
calculate_section_intra_ratio(const FIRSTPASS_STATS * begin,const FIRSTPASS_STATS * end,int section_length)498 static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
499 const FIRSTPASS_STATS *end,
500 int section_length) {
501 const FIRSTPASS_STATS *s = begin;
502 double intra_error = 0.0;
503 double coded_error = 0.0;
504 int i = 0;
505
506 while (s < end && i < section_length) {
507 intra_error += s->intra_error;
508 coded_error += s->coded_error;
509 ++s;
510 ++i;
511 }
512
513 return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
514 }
515
516 // Calculate the total bits to allocate in this GF/ARF group.
calculate_total_gf_group_bits(AV1_COMP * cpi,double gf_group_err)517 static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi,
518 double gf_group_err) {
519 const RATE_CONTROL *const rc = &cpi->rc;
520 const TWO_PASS *const twopass = &cpi->twopass;
521 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
522 int64_t total_group_bits;
523
524 // Calculate the bits to be allocated to the group as a whole.
525 if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
526 total_group_bits = (int64_t)(twopass->kf_group_bits *
527 (gf_group_err / twopass->kf_group_error_left));
528 } else {
529 total_group_bits = 0;
530 }
531
532 // Clamp odd edge cases.
533 total_group_bits = (total_group_bits < 0)
534 ? 0
535 : (total_group_bits > twopass->kf_group_bits)
536 ? twopass->kf_group_bits
537 : total_group_bits;
538
539 // Clip based on user supplied data rate variability limit.
540 if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
541 total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
542
543 return total_group_bits;
544 }
545
546 // Calculate the number bits extra to assign to boosted frames in a group.
calculate_boost_bits(int frame_count,int boost,int64_t total_group_bits)547 static int calculate_boost_bits(int frame_count, int boost,
548 int64_t total_group_bits) {
549 int allocation_chunks;
550
551 // return 0 for invalid inputs (could arise e.g. through rounding errors)
552 if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0;
553
554 allocation_chunks = (frame_count * 100) + boost;
555
556 // Prevent overflow.
557 if (boost > 1023) {
558 int divisor = boost >> 10;
559 boost /= divisor;
560 allocation_chunks /= divisor;
561 }
562
563 // Calculate the number of extra bits for use in the boosted frame or frames.
564 return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
565 0);
566 }
567
568 #define LEAF_REDUCTION_FACTOR 0.75
569 static double lvl_budget_factor[MAX_PYRAMID_LVL - 1][MAX_PYRAMID_LVL - 1] = {
570 { 1.0, 0.0, 0.0 }, { 0.6, 0.4, 0 }, { 0.45, 0.35, 0.20 }
571 };
allocate_gf_group_bits(AV1_COMP * cpi,int64_t gf_group_bits,double group_error,int gf_arf_bits,const EncodeFrameParams * const frame_params)572 static void allocate_gf_group_bits(
573 AV1_COMP *cpi, int64_t gf_group_bits, double group_error, int gf_arf_bits,
574 const EncodeFrameParams *const frame_params) {
575 RATE_CONTROL *const rc = &cpi->rc;
576 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
577 TWO_PASS *const twopass = &cpi->twopass;
578 GF_GROUP *const gf_group = &twopass->gf_group;
579 const int key_frame = (frame_params->frame_type == KEY_FRAME);
580 const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
581 int64_t total_group_bits = gf_group_bits;
582
583 // Check if GF group has any internal arfs.
584 int has_internal_arfs = 0;
585 for (int i = 0; i < gf_group->size; ++i) {
586 if (gf_group->update_type[i] == INTNL_ARF_UPDATE) {
587 has_internal_arfs = 1;
588 break;
589 }
590 }
591
592 // For key frames the frame target rate is already set and it
593 // is also the golden frame.
594 // === [frame_index == 0] ===
595 int frame_index = 0;
596 if (!key_frame) {
597 if (rc->source_alt_ref_active)
598 gf_group->bit_allocation[frame_index] = 0;
599 else
600 gf_group->bit_allocation[frame_index] = gf_arf_bits;
601
602 // Step over the golden frame / overlay frame
603 FIRSTPASS_STATS frame_stats;
604 if (EOF == input_stats(twopass, &frame_stats)) return;
605 }
606
607 // Deduct the boost bits for arf (or gf if it is not a key frame)
608 // from the group total.
609 if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits;
610
611 frame_index++;
612
613 // Store the bits to spend on the ARF if there is one.
614 // === [frame_index == 1] ===
615 if (rc->source_alt_ref_pending) {
616 gf_group->bit_allocation[frame_index] = gf_arf_bits;
617
618 ++frame_index;
619
620 // Skip all the internal ARFs right after ARF at the starting segment of
621 // the current GF group.
622 if (has_internal_arfs) {
623 while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE) {
624 ++frame_index;
625 }
626 }
627 }
628
629 // Save.
630 const int tmp_frame_index = frame_index;
631 int budget_reduced_from_leaf_level = 0;
632
633 // Allocate bits to frames other than first frame, which is either a keyframe,
634 // overlay frame or golden frame.
635 const int normal_frames = rc->baseline_gf_interval - 1;
636
637 for (int i = 0; i < normal_frames; ++i) {
638 FIRSTPASS_STATS frame_stats;
639 if (EOF == input_stats(twopass, &frame_stats)) break;
640
641 const double modified_err =
642 calculate_modified_err(cpi, twopass, oxcf, &frame_stats);
643 const double err_fraction =
644 (group_error > 0) ? modified_err / DOUBLE_DIVIDE_CHECK(group_error)
645 : 0.0;
646 const int target_frame_size =
647 clamp((int)((double)total_group_bits * err_fraction), 0,
648 AOMMIN(max_bits, (int)total_group_bits));
649
650 if (gf_group->update_type[frame_index] == INTNL_OVERLAY_UPDATE) {
651 assert(gf_group->pyramid_height <= MAX_PYRAMID_LVL &&
652 "non-valid height for a pyramid structure");
653
654 const int arf_pos = gf_group->arf_pos_in_gf[frame_index];
655 gf_group->bit_allocation[frame_index] = 0;
656
657 gf_group->bit_allocation[arf_pos] = target_frame_size;
658 // Note: Boost, if needed, is added in the next loop.
659 } else {
660 assert(gf_group->update_type[frame_index] == LF_UPDATE);
661 gf_group->bit_allocation[frame_index] = target_frame_size;
662 if (has_internal_arfs) {
663 const int this_budget_reduction =
664 (int)(target_frame_size * LEAF_REDUCTION_FACTOR);
665 gf_group->bit_allocation[frame_index] -= this_budget_reduction;
666 budget_reduced_from_leaf_level += this_budget_reduction;
667 }
668 }
669
670 ++frame_index;
671
672 // Skip all the internal ARFs.
673 if (has_internal_arfs) {
674 while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE)
675 ++frame_index;
676 }
677 }
678
679 if (budget_reduced_from_leaf_level > 0) {
680 assert(has_internal_arfs);
681 // Restore.
682 frame_index = tmp_frame_index;
683
684 // Re-distribute this extra budget to overlay frames in the group.
685 for (int i = 0; i < normal_frames; ++i) {
686 if (gf_group->update_type[frame_index] == INTNL_OVERLAY_UPDATE) {
687 assert(gf_group->pyramid_height <= MAX_PYRAMID_LVL &&
688 "non-valid height for a pyramid structure");
689 const int arf_pos = gf_group->arf_pos_in_gf[frame_index];
690 const int this_lvl = gf_group->pyramid_level[arf_pos];
691 const int dist2top = gf_group->pyramid_height - 1 - this_lvl;
692 const double lvl_boost_factor =
693 lvl_budget_factor[gf_group->pyramid_height - 2][dist2top];
694 const int extra_size =
695 (int)(budget_reduced_from_leaf_level * lvl_boost_factor /
696 gf_group->pyramid_lvl_nodes[this_lvl]);
697 gf_group->bit_allocation[arf_pos] += extra_size;
698 }
699 ++frame_index;
700
701 // Skip all the internal ARFs.
702 if (has_internal_arfs) {
703 while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE) {
704 ++frame_index;
705 }
706 }
707 }
708 }
709 }
710
711 // Given the maximum allowed height of the pyramid structure, return the fixed
712 // GF length to be used.
get_fixed_gf_length(int max_pyr_height)713 static INLINE int get_fixed_gf_length(int max_pyr_height) {
714 (void)max_pyr_height;
715 return MAX_GF_INTERVAL;
716 }
717
718 // Returns true if KF group and GF group both are almost completely static.
is_almost_static(double gf_zero_motion,int kf_zero_motion)719 static INLINE int is_almost_static(double gf_zero_motion, int kf_zero_motion) {
720 return (gf_zero_motion >= 0.995) &&
721 (kf_zero_motion >= STATIC_KF_GROUP_THRESH);
722 }
723
724 #define ARF_ABS_ZOOM_THRESH 4.4
725 #define GROUP_ADAPTIVE_MAXQ 1
726 #if GROUP_ADAPTIVE_MAXQ
727 #define RC_FACTOR_MIN 0.75
728 #define RC_FACTOR_MAX 1.75
729 #endif // GROUP_ADAPTIVE_MAXQ
730 #define MIN_FWD_KF_INTERVAL 8
731
732 // Analyse and define a gf/arf group.
define_gf_group(AV1_COMP * cpi,FIRSTPASS_STATS * this_frame,const EncodeFrameParams * const frame_params)733 static void define_gf_group(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame,
734 const EncodeFrameParams *const frame_params) {
735 AV1_COMMON *const cm = &cpi->common;
736 RATE_CONTROL *const rc = &cpi->rc;
737 AV1EncoderConfig *const oxcf = &cpi->oxcf;
738 TWO_PASS *const twopass = &cpi->twopass;
739 FIRSTPASS_STATS next_frame;
740 const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
741 int i;
742
743 double boost_score = 0.0;
744 double gf_group_err = 0.0;
745 #if GROUP_ADAPTIVE_MAXQ
746 double gf_group_raw_error = 0.0;
747 #endif
748 double gf_group_skip_pct = 0.0;
749 double gf_group_inactive_zone_rows = 0.0;
750 double gf_first_frame_err = 0.0;
751 double mod_frame_err = 0.0;
752
753 double mv_ratio_accumulator = 0.0;
754 double decay_accumulator = 1.0;
755 double zero_motion_accumulator = 1.0;
756
757 double loop_decay_rate = 1.00;
758 double last_loop_decay_rate = 1.00;
759
760 double this_frame_mv_in_out = 0.0;
761 double mv_in_out_accumulator = 0.0;
762 double abs_mv_in_out_accumulator = 0.0;
763
764 unsigned int allow_alt_ref = is_altref_enabled(cpi);
765
766 int f_boost = 0;
767 int b_boost = 0;
768 int flash_detected;
769 int64_t gf_group_bits;
770 double gf_group_error_left;
771 int gf_arf_bits;
772 const int is_intra_only = frame_params->frame_type == KEY_FRAME ||
773 frame_params->frame_type == INTRA_ONLY_FRAME;
774 const int arf_active_or_kf = is_intra_only || rc->source_alt_ref_active;
775
776 cpi->internal_altref_allowed = (oxcf->gf_max_pyr_height > 1);
777
778 // Reset the GF group data structures unless this is a key
779 // frame in which case it will already have been done.
780 if (!is_intra_only) {
781 av1_zero(twopass->gf_group);
782 }
783
784 aom_clear_system_state();
785 av1_zero(next_frame);
786
787 // Load stats for the current frame.
788 mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
789
790 // Note the error of the frame at the start of the group. This will be
791 // the GF frame error if we code a normal gf.
792 gf_first_frame_err = mod_frame_err;
793
794 // If this is a key frame or the overlay from a previous arf then
795 // the error score / cost of this frame has already been accounted for.
796 if (arf_active_or_kf) {
797 gf_group_err -= gf_first_frame_err;
798 #if GROUP_ADAPTIVE_MAXQ
799 gf_group_raw_error -= this_frame->coded_error;
800 #endif
801 gf_group_skip_pct -= this_frame->intra_skip_pct;
802 gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows;
803 }
804 // Motion breakout threshold for loop below depends on image size.
805 const double mv_ratio_accumulator_thresh =
806 (cpi->initial_height + cpi->initial_width) / 4.0;
807
808 // TODO(urvang): Try logic to vary min and max interval based on q.
809 const int active_min_gf_interval = rc->min_gf_interval;
810 const int active_max_gf_interval =
811 AOMMIN(rc->max_gf_interval, get_fixed_gf_length(oxcf->gf_max_pyr_height));
812
813 double avg_sr_coded_error = 0;
814 double avg_raw_err_stdev = 0;
815 int non_zero_stdev_count = 0;
816
817 i = 0;
818 while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
819 ++i;
820
821 // Accumulate error score of frames in this gf group.
822 mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
823 gf_group_err += mod_frame_err;
824 #if GROUP_ADAPTIVE_MAXQ
825 gf_group_raw_error += this_frame->coded_error;
826 #endif
827 gf_group_skip_pct += this_frame->intra_skip_pct;
828 gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
829
830 if (EOF == input_stats(twopass, &next_frame)) break;
831
832 // Test for the case where there is a brief flash but the prediction
833 // quality back to an earlier frame is then restored.
834 flash_detected = detect_flash(twopass, 0);
835
836 // Update the motion related elements to the boost calculation.
837 accumulate_frame_motion_stats(
838 &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
839 &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
840 // sum up the metric values of current gf group
841 avg_sr_coded_error += next_frame.sr_coded_error;
842 if (fabs(next_frame.raw_error_stdev) > 0.000001) {
843 non_zero_stdev_count++;
844 avg_raw_err_stdev += next_frame.raw_error_stdev;
845 }
846
847 // Accumulate the effect of prediction quality decay.
848 if (!flash_detected) {
849 last_loop_decay_rate = loop_decay_rate;
850 loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
851
852 decay_accumulator = decay_accumulator * loop_decay_rate;
853
854 // Monitor for static sections.
855 if ((rc->frames_since_key + i - 1) > 1) {
856 zero_motion_accumulator = AOMMIN(
857 zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
858 }
859
860 // Break clause to detect very still sections after motion. For example,
861 // a static image after a fade or other transition.
862 if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
863 last_loop_decay_rate)) {
864 allow_alt_ref = 0;
865 break;
866 }
867 }
868
869 // Calculate a boost number for this frame.
870 boost_score +=
871 decay_accumulator *
872 calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out, GF_MAX_BOOST);
873 // If almost totally static, we will not use the the max GF length later,
874 // so we can continue for more frames.
875 if ((i >= active_max_gf_interval + 1) &&
876 !is_almost_static(zero_motion_accumulator,
877 twopass->kf_zeromotion_pct)) {
878 break;
879 }
880
881 // Some conditions to breakout after min interval.
882 if (i >= active_min_gf_interval &&
883 // If possible don't break very close to a kf
884 (rc->frames_to_key - i >= rc->min_gf_interval) && (i & 0x01) &&
885 !flash_detected &&
886 (mv_ratio_accumulator > mv_ratio_accumulator_thresh ||
887 abs_mv_in_out_accumulator > ARF_ABS_ZOOM_THRESH)) {
888 break;
889 }
890 *this_frame = next_frame;
891 }
892
893 // Was the group length constrained by the requirement for a new KF?
894 rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0;
895
896 const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
897 : cpi->common.MBs;
898 assert(num_mbs > 0);
899 if (i) avg_sr_coded_error /= i;
900
901 if (non_zero_stdev_count) avg_raw_err_stdev /= non_zero_stdev_count;
902
903 // Disable internal ARFs for "still" gf groups.
904 // zero_motion_accumulator: minimum percentage of (0,0) motion;
905 // avg_sr_coded_error: average of the SSE per pixel of each frame;
906 // avg_raw_err_stdev: average of the standard deviation of (0,0)
907 // motion error per block of each frame.
908 if (zero_motion_accumulator > MIN_ZERO_MOTION &&
909 avg_sr_coded_error / num_mbs < MAX_SR_CODED_ERROR &&
910 avg_raw_err_stdev < MAX_RAW_ERR_VAR) {
911 cpi->internal_altref_allowed = 0;
912 }
913
914 const int use_alt_ref =
915 !is_almost_static(zero_motion_accumulator, twopass->kf_zeromotion_pct) &&
916 allow_alt_ref && (i < cpi->oxcf.lag_in_frames) &&
917 (i >= rc->min_gf_interval) &&
918 (cpi->oxcf.gf_max_pyr_height > MIN_PYRAMID_LVL);
919
920 #define REDUCE_GF_LENGTH_THRESH 4
921 #define REDUCE_GF_LENGTH_TO_KEY_THRESH 9
922 #define REDUCE_GF_LENGTH_BY 1
923 int alt_offset = 0;
924 // The length reduction strategy is tweaked for certain cases, and doesn't
925 // work well for certain other cases.
926 const int allow_gf_length_reduction =
927 ((cpi->oxcf.rc_mode == AOM_Q && cpi->oxcf.cq_level <= 128) ||
928 !cpi->internal_altref_allowed) &&
929 !is_lossless_requested(&cpi->oxcf);
930
931 if (allow_gf_length_reduction && use_alt_ref) {
932 // adjust length of this gf group if one of the following condition met
933 // 1: only one overlay frame left and this gf is too long
934 // 2: next gf group is too short to have arf compared to the current gf
935
936 // maximum length of next gf group
937 const int next_gf_len = rc->frames_to_key - i;
938 const int single_overlay_left =
939 next_gf_len == 0 && i > REDUCE_GF_LENGTH_THRESH;
940 // the next gf is probably going to have a ARF but it will be shorter than
941 // this gf
942 const int unbalanced_gf =
943 i > REDUCE_GF_LENGTH_TO_KEY_THRESH &&
944 next_gf_len + 1 < REDUCE_GF_LENGTH_TO_KEY_THRESH &&
945 next_gf_len + 1 >= rc->min_gf_interval;
946
947 if (single_overlay_left || unbalanced_gf) {
948 const int roll_back = REDUCE_GF_LENGTH_BY;
949 // Reduce length only if active_min_gf_interval will be respected later.
950 if (i - roll_back >= active_min_gf_interval + 1) {
951 alt_offset = -roll_back;
952 i -= roll_back;
953 }
954 }
955 }
956
957 // Should we use the alternate reference frame.
958 if (use_alt_ref) {
959 // Calculate the boost for alt ref.
960 rc->gfu_boost =
961 calc_arf_boost(cpi, alt_offset, (i - 1), (i - 1), &f_boost, &b_boost);
962 rc->source_alt_ref_pending = 1;
963
964 // do not replace ARFs with overlay frames, and keep it as GOLDEN_REF
965 cpi->preserve_arf_as_gld = 1;
966 } else {
967 rc->gfu_boost = AOMMAX((int)boost_score, MIN_ARF_GF_BOOST);
968 rc->source_alt_ref_pending = 0;
969 cpi->preserve_arf_as_gld = 0;
970 }
971
972 // Set the interval until the next gf.
973 // If forward keyframes are enabled, ensure the final gf group obeys the
974 // MIN_FWD_KF_INTERVAL.
975 if (cpi->oxcf.fwd_kf_enabled &&
976 ((twopass->stats_in - i + rc->frames_to_key) < twopass->stats_in_end)) {
977 if (i == rc->frames_to_key) {
978 rc->baseline_gf_interval = i;
979 // if the last gf group will be smaller than MIN_FWD_KF_INTERVAL
980 } else if ((rc->frames_to_key - i <
981 AOMMAX(MIN_FWD_KF_INTERVAL, rc->min_gf_interval)) &&
982 (rc->frames_to_key != i)) {
983 // if possible, merge the last two gf groups
984 if (rc->frames_to_key <= active_max_gf_interval) {
985 rc->baseline_gf_interval = rc->frames_to_key;
986 // if merging the last two gf groups creates a group that is too long,
987 // split them and force the last gf group to be the MIN_FWD_KF_INTERVAL
988 } else {
989 rc->baseline_gf_interval = rc->frames_to_key - MIN_FWD_KF_INTERVAL;
990 }
991 } else {
992 rc->baseline_gf_interval = i - rc->source_alt_ref_pending;
993 }
994 } else {
995 rc->baseline_gf_interval = i - rc->source_alt_ref_pending;
996 }
997
998 #define LAST_ALR_BOOST_FACTOR 0.2f
999 rc->arf_boost_factor = 1.0;
1000 if (rc->source_alt_ref_pending && !is_lossless_requested(&cpi->oxcf)) {
1001 // Reduce the boost of altref in the last gf group
1002 if (rc->frames_to_key - i == REDUCE_GF_LENGTH_BY ||
1003 rc->frames_to_key - i == 0) {
1004 rc->arf_boost_factor = LAST_ALR_BOOST_FACTOR;
1005 }
1006 }
1007
1008 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1009
1010 // Reset the file position.
1011 reset_fpf_position(twopass, start_pos);
1012
1013 // Calculate the bits to be allocated to the gf/arf group as a whole
1014 gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
1015
1016 #if GROUP_ADAPTIVE_MAXQ
1017 // Calculate an estimate of the maxq needed for the group.
1018 // We are more agressive about correcting for sections
1019 // where there could be significant overshoot than for easier
1020 // sections where we do not wish to risk creating an overshoot
1021 // of the allocated bit budget.
1022 if ((cpi->oxcf.rc_mode != AOM_Q) && (rc->baseline_gf_interval > 1)) {
1023 const int vbr_group_bits_per_frame =
1024 (int)(gf_group_bits / rc->baseline_gf_interval);
1025 const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval;
1026 const double group_av_skip_pct =
1027 gf_group_skip_pct / rc->baseline_gf_interval;
1028 const double group_av_inactive_zone =
1029 ((gf_group_inactive_zone_rows * 2) /
1030 (rc->baseline_gf_interval * (double)cm->mb_rows));
1031
1032 int tmp_q;
1033 // rc factor is a weight factor that corrects for local rate control drift.
1034 double rc_factor = 1.0;
1035 if (rc->rate_error_estimate > 0) {
1036 rc_factor = AOMMAX(RC_FACTOR_MIN,
1037 (double)(100 - rc->rate_error_estimate) / 100.0);
1038 } else {
1039 rc_factor = AOMMIN(RC_FACTOR_MAX,
1040 (double)(100 - rc->rate_error_estimate) / 100.0);
1041 }
1042 tmp_q = get_twopass_worst_quality(
1043 cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone),
1044 vbr_group_bits_per_frame, twopass->kfgroup_inter_fraction * rc_factor);
1045 twopass->active_worst_quality =
1046 AOMMAX(tmp_q, twopass->active_worst_quality >> 1);
1047 }
1048 #endif
1049
1050 // Calculate the extra bits to be used for boosted frame(s)
1051 gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost,
1052 gf_group_bits);
1053
1054 // Adjust KF group bits and error remaining.
1055 twopass->kf_group_error_left -= (int64_t)gf_group_err;
1056
1057 // If this is an arf update we want to remove the score for the overlay
1058 // frame at the end which will usually be very cheap to code.
1059 // The overlay frame has already, in effect, been coded so we want to spread
1060 // the remaining bits among the other frames.
1061 // For normal GFs remove the score for the GF itself unless this is
1062 // also a key frame in which case it has already been accounted for.
1063 if (rc->source_alt_ref_pending) {
1064 gf_group_error_left = gf_group_err - mod_frame_err;
1065 } else if (!is_intra_only) {
1066 gf_group_error_left = gf_group_err - gf_first_frame_err;
1067 } else {
1068 gf_group_error_left = gf_group_err;
1069 }
1070
1071 // Set up the structure of this Group-Of-Pictures (same as GF_GROUP)
1072 av1_gop_setup_structure(cpi, frame_params);
1073
1074 // Allocate bits to each of the frames in the GF group.
1075 allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits,
1076 frame_params);
1077
1078 // Reset the file position.
1079 reset_fpf_position(twopass, start_pos);
1080
1081 // Calculate a section intra ratio used in setting max loop filter.
1082 if (frame_params->frame_type != KEY_FRAME) {
1083 twopass->section_intra_rating = calculate_section_intra_ratio(
1084 start_pos, twopass->stats_in_end, rc->baseline_gf_interval);
1085 }
1086 }
1087
1088 // Minimum % intra coding observed in first pass (1.0 = 100%)
1089 #define MIN_INTRA_LEVEL 0.25
1090 // Minimum ratio between the % of intra coding and inter coding in the first
1091 // pass after discounting neutral blocks (discounting neutral blocks in this
1092 // way helps catch scene cuts in clips with very flat areas or letter box
1093 // format clips with image padding.
1094 #define INTRA_VS_INTER_THRESH 2.0
1095 // Hard threshold where the first pass chooses intra for almost all blocks.
1096 // In such a case even if the frame is not a scene cut coding a key frame
1097 // may be a good option.
1098 #define VERY_LOW_INTER_THRESH 0.05
1099 // Maximum threshold for the relative ratio of intra error score vs best
1100 // inter error score.
1101 #define KF_II_ERR_THRESHOLD 2.5
1102 // In real scene cuts there is almost always a sharp change in the intra
1103 // or inter error score.
1104 #define ERR_CHANGE_THRESHOLD 0.4
1105 // For real scene cuts we expect an improvment in the intra inter error
1106 // ratio in the next frame.
1107 #define II_IMPROVEMENT_THRESHOLD 3.5
1108 #define KF_II_MAX 128.0
1109
1110 // Threshold for use of the lagging second reference frame. High second ref
1111 // usage may point to a transient event like a flash or occlusion rather than
1112 // a real scene cut.
1113 // We adapt the threshold based on number of frames in this key-frame group so
1114 // far.
get_second_ref_usage_thresh(int frame_count_so_far)1115 static double get_second_ref_usage_thresh(int frame_count_so_far) {
1116 const int adapt_upto = 32;
1117 const double min_second_ref_usage_thresh = 0.085;
1118 const double second_ref_usage_thresh_max_delta = 0.035;
1119 if (frame_count_so_far >= adapt_upto) {
1120 return min_second_ref_usage_thresh + second_ref_usage_thresh_max_delta;
1121 }
1122 return min_second_ref_usage_thresh +
1123 ((double)frame_count_so_far / (adapt_upto - 1)) *
1124 second_ref_usage_thresh_max_delta;
1125 }
1126
test_candidate_kf(TWO_PASS * twopass,const FIRSTPASS_STATS * last_frame,const FIRSTPASS_STATS * this_frame,const FIRSTPASS_STATS * next_frame,int frame_count_so_far)1127 static int test_candidate_kf(TWO_PASS *twopass,
1128 const FIRSTPASS_STATS *last_frame,
1129 const FIRSTPASS_STATS *this_frame,
1130 const FIRSTPASS_STATS *next_frame,
1131 int frame_count_so_far) {
1132 int is_viable_kf = 0;
1133 double pcnt_intra = 1.0 - this_frame->pcnt_inter;
1134 double modified_pcnt_inter =
1135 this_frame->pcnt_inter - this_frame->pcnt_neutral;
1136 const double second_ref_usage_thresh =
1137 get_second_ref_usage_thresh(frame_count_so_far);
1138
1139 // Does the frame satisfy the primary criteria of a key frame?
1140 // See above for an explanation of the test criteria.
1141 // If so, then examine how well it predicts subsequent frames.
1142 if ((this_frame->pcnt_second_ref < second_ref_usage_thresh) &&
1143 (next_frame->pcnt_second_ref < second_ref_usage_thresh) &&
1144 ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
1145 ((pcnt_intra > MIN_INTRA_LEVEL) &&
1146 (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) &&
1147 ((this_frame->intra_error /
1148 DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) <
1149 KF_II_ERR_THRESHOLD) &&
1150 ((fabs(last_frame->coded_error - this_frame->coded_error) /
1151 DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
1152 ERR_CHANGE_THRESHOLD) ||
1153 (fabs(last_frame->intra_error - this_frame->intra_error) /
1154 DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
1155 ERR_CHANGE_THRESHOLD) ||
1156 ((next_frame->intra_error /
1157 DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) >
1158 II_IMPROVEMENT_THRESHOLD))))) {
1159 int i;
1160 const FIRSTPASS_STATS *start_pos = twopass->stats_in;
1161 FIRSTPASS_STATS local_next_frame = *next_frame;
1162 double boost_score = 0.0;
1163 double old_boost_score = 0.0;
1164 double decay_accumulator = 1.0;
1165
1166 // Examine how well the key frame predicts subsequent frames.
1167 for (i = 0; i < 16; ++i) {
1168 double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error /
1169 DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
1170
1171 if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX;
1172
1173 // Cumulative effect of decay in prediction quality.
1174 if (local_next_frame.pcnt_inter > 0.85)
1175 decay_accumulator *= local_next_frame.pcnt_inter;
1176 else
1177 decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
1178
1179 // Keep a running total.
1180 boost_score += (decay_accumulator * next_iiratio);
1181
1182 // Test various breakout clauses.
1183 if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
1184 (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) <
1185 0.20) &&
1186 (next_iiratio < 3.0)) ||
1187 ((boost_score - old_boost_score) < 3.0) ||
1188 (local_next_frame.intra_error < 200)) {
1189 break;
1190 }
1191
1192 old_boost_score = boost_score;
1193
1194 // Get the next frame details
1195 if (EOF == input_stats(twopass, &local_next_frame)) break;
1196 }
1197
1198 // If there is tolerable prediction for at least the next 3 frames then
1199 // break out else discard this potential key frame and move on
1200 if (boost_score > 30.0 && (i > 3)) {
1201 is_viable_kf = 1;
1202 } else {
1203 // Reset the file position
1204 reset_fpf_position(twopass, start_pos);
1205
1206 is_viable_kf = 0;
1207 }
1208 }
1209
1210 return is_viable_kf;
1211 }
1212
1213 #define FRAMES_TO_CHECK_DECAY 8
1214 #define KF_MIN_FRAME_BOOST 80.0
1215 #define KF_MAX_FRAME_BOOST 128.0
1216 #define MIN_KF_BOOST 300 // Minimum boost for non-static KF interval
1217 #define MIN_STATIC_KF_BOOST 5400 // Minimum boost for static KF interval
1218
find_next_key_frame(AV1_COMP * cpi,FIRSTPASS_STATS * this_frame)1219 static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) {
1220 int i, j;
1221 RATE_CONTROL *const rc = &cpi->rc;
1222 TWO_PASS *const twopass = &cpi->twopass;
1223 GF_GROUP *const gf_group = &twopass->gf_group;
1224 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
1225 const FIRSTPASS_STATS first_frame = *this_frame;
1226 const FIRSTPASS_STATS *const start_position = twopass->stats_in;
1227 FIRSTPASS_STATS next_frame;
1228 FIRSTPASS_STATS last_frame;
1229 int kf_bits = 0;
1230 int loop_decay_counter = 0;
1231 double decay_accumulator = 1.0;
1232 double av_decay_accumulator = 0.0;
1233 double zero_motion_accumulator = 1.0;
1234 double boost_score = 0.0;
1235 double kf_mod_err = 0.0;
1236 double kf_group_err = 0.0;
1237 double recent_loop_decay[FRAMES_TO_CHECK_DECAY];
1238
1239 av1_zero(next_frame);
1240
1241 rc->frames_since_key = 0;
1242
1243 // Reset the GF group data structures.
1244 av1_zero(*gf_group);
1245
1246 // Is this a forced key frame by interval.
1247 rc->this_key_frame_forced = rc->next_key_frame_forced;
1248
1249 // Clear the alt ref active flag and last group multi arf flags as they
1250 // can never be set for a key frame.
1251 rc->source_alt_ref_active = 0;
1252
1253 // KF is always a GF so clear frames till next gf counter.
1254 rc->frames_till_gf_update_due = 0;
1255
1256 rc->frames_to_key = 1;
1257
1258 twopass->kf_group_bits = 0; // Total bits available to kf group
1259 twopass->kf_group_error_left = 0; // Group modified error score.
1260
1261 kf_mod_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
1262
1263 // Initialize the decay rates for the recent frames to check
1264 for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0;
1265
1266 // Find the next keyframe.
1267 i = 0;
1268 while (twopass->stats_in < twopass->stats_in_end &&
1269 rc->frames_to_key < cpi->oxcf.key_freq) {
1270 // Accumulate kf group error.
1271 kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
1272
1273 // Load the next frame's stats.
1274 last_frame = *this_frame;
1275 input_stats(twopass, this_frame);
1276
1277 // Provided that we are not at the end of the file...
1278 if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) {
1279 double loop_decay_rate;
1280
1281 // Check for a scene cut.
1282 if (test_candidate_kf(twopass, &last_frame, this_frame, twopass->stats_in,
1283 rc->frames_to_key))
1284 break;
1285
1286 // How fast is the prediction quality decaying?
1287 loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in);
1288
1289 // We want to know something about the recent past... rather than
1290 // as used elsewhere where we are concerned with decay in prediction
1291 // quality since the last GF or KF.
1292 recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate;
1293 decay_accumulator = 1.0;
1294 for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j)
1295 decay_accumulator *= recent_loop_decay[j];
1296
1297 // Special check for transition or high motion followed by a
1298 // static scene.
1299 if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i,
1300 loop_decay_rate, decay_accumulator))
1301 break;
1302
1303 // Step on to the next frame.
1304 ++rc->frames_to_key;
1305
1306 // If we don't have a real key frame within the next two
1307 // key_freq intervals then break out of the loop.
1308 if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break;
1309 } else {
1310 ++rc->frames_to_key;
1311 }
1312 ++i;
1313 }
1314
1315 // If there is a max kf interval set by the user we must obey it.
1316 // We already breakout of the loop above at 2x max.
1317 // This code centers the extra kf if the actual natural interval
1318 // is between 1x and 2x.
1319 if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) {
1320 FIRSTPASS_STATS tmp_frame = first_frame;
1321
1322 rc->frames_to_key /= 2;
1323
1324 // Reset to the start of the group.
1325 reset_fpf_position(twopass, start_position);
1326
1327 kf_group_err = 0.0;
1328
1329 // Rescan to get the correct error data for the forced kf group.
1330 for (i = 0; i < rc->frames_to_key; ++i) {
1331 kf_group_err += calculate_modified_err(cpi, twopass, oxcf, &tmp_frame);
1332 input_stats(twopass, &tmp_frame);
1333 }
1334 rc->next_key_frame_forced = 1;
1335 } else if (twopass->stats_in == twopass->stats_in_end ||
1336 rc->frames_to_key >= cpi->oxcf.key_freq) {
1337 rc->next_key_frame_forced = 1;
1338 } else {
1339 rc->next_key_frame_forced = 0;
1340 }
1341
1342 // Special case for the last key frame of the file.
1343 if (twopass->stats_in >= twopass->stats_in_end) {
1344 // Accumulate kf group error.
1345 kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
1346 }
1347
1348 // Calculate the number of bits that should be assigned to the kf group.
1349 if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) {
1350 // Maximum number of bits for a single normal frame (not key frame).
1351 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
1352
1353 // Maximum number of bits allocated to the key frame group.
1354 int64_t max_grp_bits;
1355
1356 // Default allocation based on bits left and relative
1357 // complexity of the section.
1358 twopass->kf_group_bits = (int64_t)(
1359 twopass->bits_left * (kf_group_err / twopass->modified_error_left));
1360
1361 // Clip based on maximum per frame rate defined by the user.
1362 max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
1363 if (twopass->kf_group_bits > max_grp_bits)
1364 twopass->kf_group_bits = max_grp_bits;
1365 } else {
1366 twopass->kf_group_bits = 0;
1367 }
1368 twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits);
1369
1370 // Reset the first pass file position.
1371 reset_fpf_position(twopass, start_position);
1372
1373 // Scan through the kf group collating various stats used to determine
1374 // how many bits to spend on it.
1375 decay_accumulator = 1.0;
1376 boost_score = 0.0;
1377 const double kf_max_boost =
1378 cpi->oxcf.rc_mode == AOM_Q
1379 ? AOMMIN(AOMMAX(rc->frames_to_key * 2.0, KF_MIN_FRAME_BOOST),
1380 KF_MAX_FRAME_BOOST)
1381 : KF_MAX_FRAME_BOOST;
1382 for (i = 0; i < (rc->frames_to_key - 1); ++i) {
1383 if (EOF == input_stats(twopass, &next_frame)) break;
1384
1385 // Monitor for static sections.
1386 // For the first frame in kf group, the second ref indicator is invalid.
1387 if (i > 0) {
1388 zero_motion_accumulator = AOMMIN(
1389 zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
1390 } else {
1391 zero_motion_accumulator = next_frame.pcnt_inter - next_frame.pcnt_motion;
1392 }
1393
1394 // Not all frames in the group are necessarily used in calculating boost.
1395 if ((i <= rc->max_gf_interval) ||
1396 ((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) {
1397 const double frame_boost =
1398 calc_frame_boost(cpi, this_frame, 0, kf_max_boost);
1399
1400 // How fast is prediction quality decaying.
1401 if (!detect_flash(twopass, 0)) {
1402 const double loop_decay_rate =
1403 get_prediction_decay_rate(cpi, &next_frame);
1404 decay_accumulator *= loop_decay_rate;
1405 decay_accumulator = AOMMAX(decay_accumulator, MIN_DECAY_FACTOR);
1406 av_decay_accumulator += decay_accumulator;
1407 ++loop_decay_counter;
1408 }
1409 boost_score += (decay_accumulator * frame_boost);
1410 }
1411 }
1412 if (loop_decay_counter > 0)
1413 av_decay_accumulator /= (double)loop_decay_counter;
1414
1415 reset_fpf_position(twopass, start_position);
1416
1417 // Store the zero motion percentage
1418 twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
1419
1420 // Calculate a section intra ratio used in setting max loop filter.
1421 twopass->section_intra_rating = calculate_section_intra_ratio(
1422 start_position, twopass->stats_in_end, rc->frames_to_key);
1423
1424 rc->kf_boost = (int)(av_decay_accumulator * boost_score);
1425
1426 // Special case for static / slide show content but don't apply
1427 // if the kf group is very short.
1428 if ((zero_motion_accumulator > STATIC_KF_GROUP_FLOAT_THRESH) &&
1429 (rc->frames_to_key > 8)) {
1430 rc->kf_boost = AOMMAX(rc->kf_boost, MIN_STATIC_KF_BOOST);
1431 } else {
1432 // Apply various clamps for min and max boost
1433 rc->kf_boost = AOMMAX(rc->kf_boost, (rc->frames_to_key * 3));
1434 rc->kf_boost = AOMMAX(rc->kf_boost, MIN_KF_BOOST);
1435 }
1436
1437 // Work out how many bits to allocate for the key frame itself.
1438 kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost,
1439 twopass->kf_group_bits);
1440 // printf("kf boost = %d kf_bits = %d kf_zeromotion_pct = %d\n", rc->kf_boost,
1441 // kf_bits, twopass->kf_zeromotion_pct);
1442
1443 // Work out the fraction of the kf group bits reserved for the inter frames
1444 // within the group after discounting the bits for the kf itself.
1445 if (twopass->kf_group_bits) {
1446 twopass->kfgroup_inter_fraction =
1447 (double)(twopass->kf_group_bits - kf_bits) /
1448 (double)twopass->kf_group_bits;
1449 } else {
1450 twopass->kfgroup_inter_fraction = 1.0;
1451 }
1452
1453 twopass->kf_group_bits -= kf_bits;
1454
1455 // Save the bits to spend on the key frame.
1456 gf_group->bit_allocation[0] = kf_bits;
1457 gf_group->update_type[0] = KF_UPDATE;
1458
1459 // Note the total error score of the kf group minus the key frame itself.
1460 twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
1461
1462 // Adjust the count of total modified error left.
1463 // The count of bits left is adjusted elsewhere based on real coded frame
1464 // sizes.
1465 twopass->modified_error_left -= kf_group_err;
1466 }
1467
is_skippable_frame(const AV1_COMP * cpi)1468 static int is_skippable_frame(const AV1_COMP *cpi) {
1469 // If the current frame does not have non-zero motion vector detected in the
1470 // first pass, and so do its previous and forward frames, then this frame
1471 // can be skipped for partition check, and the partition size is assigned
1472 // according to the variance
1473 const TWO_PASS *const twopass = &cpi->twopass;
1474
1475 return (!frame_is_intra_only(&cpi->common) &&
1476 twopass->stats_in - 2 > twopass->stats_in_start &&
1477 twopass->stats_in < twopass->stats_in_end &&
1478 (twopass->stats_in - 1)->pcnt_inter -
1479 (twopass->stats_in - 1)->pcnt_motion ==
1480 1 &&
1481 (twopass->stats_in - 2)->pcnt_inter -
1482 (twopass->stats_in - 2)->pcnt_motion ==
1483 1 &&
1484 twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1);
1485 }
1486
1487 #define ARF_STATS_OUTPUT 0
1488 #if ARF_STATS_OUTPUT
1489 unsigned int arf_count = 0;
1490 #endif
1491 #define DEFAULT_GRP_WEIGHT 1.0
1492
av1_get_second_pass_params(AV1_COMP * cpi,EncodeFrameParams * const frame_params,unsigned int frame_flags)1493 void av1_get_second_pass_params(AV1_COMP *cpi,
1494 EncodeFrameParams *const frame_params,
1495 unsigned int frame_flags) {
1496 AV1_COMMON *const cm = &cpi->common;
1497 CurrentFrame *const current_frame = &cm->current_frame;
1498 RATE_CONTROL *const rc = &cpi->rc;
1499 TWO_PASS *const twopass = &cpi->twopass;
1500 GF_GROUP *const gf_group = &twopass->gf_group;
1501 int frames_left;
1502 FIRSTPASS_STATS this_frame;
1503
1504 int target_rate;
1505
1506 frames_left = (int)(twopass->total_stats.count - current_frame->frame_number);
1507
1508 if (!twopass->stats_in) return;
1509
1510 // If this is an arf frame then we dont want to read the stats file or
1511 // advance the input pointer as we already have what we need.
1512 if (gf_group->update_type[gf_group->index] == ARF_UPDATE ||
1513 gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) {
1514 target_rate = gf_group->bit_allocation[gf_group->index];
1515 target_rate = av1_rc_clamp_pframe_target_size(
1516 cpi, target_rate, gf_group->update_type[gf_group->index]);
1517 rc->base_frame_target = target_rate;
1518
1519 if (cpi->no_show_kf) {
1520 assert(gf_group->update_type[gf_group->index] == ARF_UPDATE);
1521 frame_params->frame_type = KEY_FRAME;
1522 } else {
1523 frame_params->frame_type = INTER_FRAME;
1524 }
1525
1526 // Do the firstpass stats indicate that this frame is skippable for the
1527 // partition search?
1528 if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
1529 cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
1530 }
1531
1532 return;
1533 }
1534
1535 aom_clear_system_state();
1536
1537 if (cpi->oxcf.rc_mode == AOM_Q) {
1538 twopass->active_worst_quality = cpi->oxcf.cq_level;
1539 } else if (current_frame->frame_number == 0) {
1540 // Special case code for first frame.
1541 const int section_target_bandwidth =
1542 (int)(twopass->bits_left / frames_left);
1543 const double section_length = twopass->total_left_stats.count;
1544 const double section_error =
1545 twopass->total_left_stats.coded_error / section_length;
1546 const double section_intra_skip =
1547 twopass->total_left_stats.intra_skip_pct / section_length;
1548 const double section_inactive_zone =
1549 (twopass->total_left_stats.inactive_zone_rows * 2) /
1550 ((double)cm->mb_rows * section_length);
1551 const int tmp_q = get_twopass_worst_quality(
1552 cpi, section_error, section_intra_skip + section_inactive_zone,
1553 section_target_bandwidth, DEFAULT_GRP_WEIGHT);
1554
1555 twopass->active_worst_quality = tmp_q;
1556 twopass->baseline_active_worst_quality = tmp_q;
1557 rc->ni_av_qi = tmp_q;
1558 rc->last_q[INTER_FRAME] = tmp_q;
1559 rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->seq_params.bit_depth);
1560 rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
1561 rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2;
1562 rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME];
1563 }
1564
1565 av1_zero(this_frame);
1566 if (EOF == input_stats(twopass, &this_frame)) return;
1567
1568 // Set the frame content type flag.
1569 if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH)
1570 twopass->fr_content_type = FC_GRAPHICS_ANIMATION;
1571 else
1572 twopass->fr_content_type = FC_NORMAL;
1573
1574 // Keyframe and section processing.
1575 if (rc->frames_to_key == 0 || (frame_flags & FRAMEFLAGS_KEY)) {
1576 FIRSTPASS_STATS this_frame_copy;
1577 this_frame_copy = this_frame;
1578 frame_params->frame_type = KEY_FRAME;
1579 // Define next KF group and assign bits to it.
1580 find_next_key_frame(cpi, &this_frame);
1581 this_frame = this_frame_copy;
1582 } else {
1583 frame_params->frame_type = INTER_FRAME;
1584 }
1585
1586 // Define a new GF/ARF group. (Should always enter here for key frames).
1587 if (rc->frames_till_gf_update_due == 0) {
1588 define_gf_group(cpi, &this_frame, frame_params);
1589
1590 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1591
1592 #if ARF_STATS_OUTPUT
1593 {
1594 FILE *fpfile;
1595 fpfile = fopen("arf.stt", "a");
1596 ++arf_count;
1597 fprintf(fpfile, "%10d %10d %10d %10d %10d\n", current_frame->frame_number,
1598 rc->frames_till_gf_update_due, rc->kf_boost, arf_count,
1599 rc->gfu_boost);
1600
1601 fclose(fpfile);
1602 }
1603 #endif
1604 }
1605
1606 // Do the firstpass stats indicate that this frame is skippable for the
1607 // partition search?
1608 if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
1609 cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
1610 }
1611
1612 target_rate = gf_group->bit_allocation[gf_group->index];
1613
1614 if (frame_params->frame_type == KEY_FRAME) {
1615 target_rate = av1_rc_clamp_iframe_target_size(cpi, target_rate);
1616 } else {
1617 target_rate = av1_rc_clamp_pframe_target_size(
1618 cpi, target_rate, gf_group->update_type[gf_group->index]);
1619 }
1620
1621 rc->base_frame_target = target_rate;
1622
1623 {
1624 const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
1625 ? cpi->initial_mbs
1626 : cpi->common.MBs;
1627 // The multiplication by 256 reverses a scaling factor of (>> 8)
1628 // applied when combining MB error values for the frame.
1629 twopass->mb_av_energy = log((this_frame.intra_error / num_mbs) + 1.0);
1630 twopass->frame_avg_haar_energy =
1631 log((this_frame.frame_avg_wavelet_energy / num_mbs) + 1.0);
1632 }
1633
1634 // Update the total stats remaining structure.
1635 subtract_stats(&twopass->total_left_stats, &this_frame);
1636 }
1637
av1_init_second_pass(AV1_COMP * cpi)1638 void av1_init_second_pass(AV1_COMP *cpi) {
1639 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
1640 TWO_PASS *const twopass = &cpi->twopass;
1641 double frame_rate;
1642 FIRSTPASS_STATS *stats;
1643
1644 av1_twopass_zero_stats(&twopass->total_stats);
1645 av1_twopass_zero_stats(&twopass->total_left_stats);
1646
1647 if (!twopass->stats_in_end) return;
1648
1649 stats = &twopass->total_stats;
1650
1651 *stats = *twopass->stats_in_end;
1652 twopass->total_left_stats = *stats;
1653
1654 frame_rate = 10000000.0 * stats->count / stats->duration;
1655 // Each frame can have a different duration, as the frame rate in the source
1656 // isn't guaranteed to be constant. The frame rate prior to the first frame
1657 // encoded in the second pass is a guess. However, the sum duration is not.
1658 // It is calculated based on the actual durations of all frames from the
1659 // first pass.
1660 av1_new_framerate(cpi, frame_rate);
1661 twopass->bits_left =
1662 (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0);
1663
1664 // This variable monitors how far behind the second ref update is lagging.
1665 twopass->sr_update_lag = 1;
1666
1667 // Scan the first pass file and calculate a modified total error based upon
1668 // the bias/power function used to allocate bits.
1669 {
1670 const double avg_error =
1671 stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count);
1672 const FIRSTPASS_STATS *s = twopass->stats_in;
1673 double modified_error_total = 0.0;
1674 twopass->modified_error_min =
1675 (avg_error * oxcf->two_pass_vbrmin_section) / 100;
1676 twopass->modified_error_max =
1677 (avg_error * oxcf->two_pass_vbrmax_section) / 100;
1678 while (s < twopass->stats_in_end) {
1679 modified_error_total += calculate_modified_err(cpi, twopass, oxcf, s);
1680 ++s;
1681 }
1682 twopass->modified_error_left = modified_error_total;
1683 }
1684
1685 // Reset the vbr bits off target counters
1686 cpi->rc.vbr_bits_off_target = 0;
1687 cpi->rc.vbr_bits_off_target_fast = 0;
1688
1689 cpi->rc.rate_error_estimate = 0;
1690
1691 // Static sequence monitor variables.
1692 twopass->kf_zeromotion_pct = 100;
1693 twopass->last_kfgroup_zeromotion_pct = 100;
1694 }
1695
1696 #define MINQ_ADJ_LIMIT 48
1697 #define MINQ_ADJ_LIMIT_CQ 20
1698 #define HIGH_UNDERSHOOT_RATIO 2
av1_twopass_postencode_update(AV1_COMP * cpi)1699 void av1_twopass_postencode_update(AV1_COMP *cpi) {
1700 TWO_PASS *const twopass = &cpi->twopass;
1701 RATE_CONTROL *const rc = &cpi->rc;
1702 const int bits_used = rc->base_frame_target;
1703
1704 // VBR correction is done through rc->vbr_bits_off_target. Based on the
1705 // sign of this value, a limited % adjustment is made to the target rate
1706 // of subsequent frames, to try and push it back towards 0. This method
1707 // is designed to prevent extreme behaviour at the end of a clip
1708 // or group of frames.
1709 rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
1710 twopass->bits_left = AOMMAX(twopass->bits_left - bits_used, 0);
1711
1712 // Calculate the pct rc error.
1713 if (rc->total_actual_bits) {
1714 rc->rate_error_estimate =
1715 (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits);
1716 rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100);
1717 } else {
1718 rc->rate_error_estimate = 0;
1719 }
1720
1721 if (cpi->common.current_frame.frame_type != KEY_FRAME) {
1722 twopass->kf_group_bits -= bits_used;
1723 twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
1724 }
1725 twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0);
1726
1727 // If the rate control is drifting consider adjustment to min or maxq.
1728 if ((cpi->oxcf.rc_mode != AOM_Q) && !cpi->rc.is_src_frame_alt_ref) {
1729 const int maxq_adj_limit =
1730 rc->worst_quality - twopass->active_worst_quality;
1731 const int minq_adj_limit =
1732 (cpi->oxcf.rc_mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
1733
1734 // Undershoot.
1735 if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) {
1736 --twopass->extend_maxq;
1737 if (rc->rolling_target_bits >= rc->rolling_actual_bits)
1738 ++twopass->extend_minq;
1739 // Overshoot.
1740 } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) {
1741 --twopass->extend_minq;
1742 if (rc->rolling_target_bits < rc->rolling_actual_bits)
1743 ++twopass->extend_maxq;
1744 } else {
1745 // Adjustment for extreme local overshoot.
1746 if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
1747 rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
1748 ++twopass->extend_maxq;
1749
1750 // Unwind undershoot or overshoot adjustment.
1751 if (rc->rolling_target_bits < rc->rolling_actual_bits)
1752 --twopass->extend_minq;
1753 else if (rc->rolling_target_bits > rc->rolling_actual_bits)
1754 --twopass->extend_maxq;
1755 }
1756
1757 twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit);
1758 twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit);
1759
1760 // If there is a big and undexpected undershoot then feed the extra
1761 // bits back in quickly. One situation where this may happen is if a
1762 // frame is unexpectedly almost perfectly predicted by the ARF or GF
1763 // but not very well predcited by the previous frame.
1764 if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
1765 int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
1766 if (rc->projected_frame_size < fast_extra_thresh) {
1767 rc->vbr_bits_off_target_fast +=
1768 fast_extra_thresh - rc->projected_frame_size;
1769 rc->vbr_bits_off_target_fast =
1770 AOMMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
1771
1772 // Fast adaptation of minQ if necessary to use up the extra bits.
1773 if (rc->avg_frame_bandwidth) {
1774 twopass->extend_minq_fast =
1775 (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
1776 }
1777 twopass->extend_minq_fast = AOMMIN(
1778 twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
1779 } else if (rc->vbr_bits_off_target_fast) {
1780 twopass->extend_minq_fast = AOMMIN(
1781 twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
1782 } else {
1783 twopass->extend_minq_fast = 0;
1784 }
1785 }
1786 }
1787 }
1788