1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <limits.h>
14 #include <math.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18
19 #include "aom_dsp/aom_dsp_common.h"
20 #include "aom_mem/aom_mem.h"
21 #include "aom_ports/mem.h"
22 #include "aom_ports/system_state.h"
23
24 #include "av1/common/alloccommon.h"
25 #include "av1/encoder/aq_cyclicrefresh.h"
26 #include "av1/common/common.h"
27 #include "av1/common/entropymode.h"
28 #include "av1/common/quant_common.h"
29 #include "av1/common/seg_common.h"
30
31 #include "av1/encoder/encodemv.h"
32 #include "av1/encoder/encode_strategy.h"
33 #include "av1/encoder/gop_structure.h"
34 #include "av1/encoder/random.h"
35 #include "av1/encoder/ratectrl.h"
36
37 // Max rate target for 1080P and below encodes under normal circumstances
38 // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
39 #define MAX_MB_RATE 250
40 #define MAXRATE_1080P 2025000
41
42 #define DEFAULT_KF_BOOST 2000
43 #define DEFAULT_GF_BOOST 2000
44
45 #define MIN_BPB_FACTOR 0.005
46 #define MAX_BPB_FACTOR 50
47
48 #define FRAME_OVERHEAD_BITS 200
49 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
50 do { \
51 switch (bit_depth) { \
52 case AOM_BITS_8: name = name##_8; break; \
53 case AOM_BITS_10: name = name##_10; break; \
54 case AOM_BITS_12: name = name##_12; break; \
55 default: \
56 assert(0 && \
57 "bit_depth should be AOM_BITS_8, AOM_BITS_10" \
58 " or AOM_BITS_12"); \
59 name = NULL; \
60 } \
61 } while (0)
62
63 // Tables relating active max Q to active min Q
64 static int kf_low_motion_minq_8[QINDEX_RANGE];
65 static int kf_high_motion_minq_8[QINDEX_RANGE];
66 static int arfgf_low_motion_minq_8[QINDEX_RANGE];
67 static int arfgf_high_motion_minq_8[QINDEX_RANGE];
68 static int inter_minq_8[QINDEX_RANGE];
69 static int rtc_minq_8[QINDEX_RANGE];
70
71 static int kf_low_motion_minq_10[QINDEX_RANGE];
72 static int kf_high_motion_minq_10[QINDEX_RANGE];
73 static int arfgf_low_motion_minq_10[QINDEX_RANGE];
74 static int arfgf_high_motion_minq_10[QINDEX_RANGE];
75 static int inter_minq_10[QINDEX_RANGE];
76 static int rtc_minq_10[QINDEX_RANGE];
77 static int kf_low_motion_minq_12[QINDEX_RANGE];
78 static int kf_high_motion_minq_12[QINDEX_RANGE];
79 static int arfgf_low_motion_minq_12[QINDEX_RANGE];
80 static int arfgf_high_motion_minq_12[QINDEX_RANGE];
81 static int inter_minq_12[QINDEX_RANGE];
82 static int rtc_minq_12[QINDEX_RANGE];
83
84 static int gf_high = 2000;
85 static int gf_low = 400;
86 static int kf_high = 5000;
87 static int kf_low = 400;
88
89 // How many times less pixels there are to encode given the current scaling.
90 // Temporary replacement for rcf_mult and rate_thresh_mult.
resize_rate_factor(const AV1_COMP * cpi,int width,int height)91 static double resize_rate_factor(const AV1_COMP *cpi, int width, int height) {
92 return (double)(cpi->oxcf.width * cpi->oxcf.height) / (width * height);
93 }
94
95 // Functions to compute the active minq lookup table entries based on a
96 // formulaic approach to facilitate easier adjustment of the Q tables.
97 // The formulae were derived from computing a 3rd order polynomial best
98 // fit to the original data (after plotting real maxq vs minq (not q index))
get_minq_index(double maxq,double x3,double x2,double x1,aom_bit_depth_t bit_depth)99 static int get_minq_index(double maxq, double x3, double x2, double x1,
100 aom_bit_depth_t bit_depth) {
101 const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
102
103 // Special case handling to deal with the step from q2.0
104 // down to lossless mode represented by q 1.0.
105 if (minqtarget <= 2.0) return 0;
106
107 return av1_find_qindex(minqtarget, bit_depth, 0, QINDEX_RANGE - 1);
108 }
109
init_minq_luts(int * kf_low_m,int * kf_high_m,int * arfgf_low,int * arfgf_high,int * inter,int * rtc,aom_bit_depth_t bit_depth)110 static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
111 int *arfgf_high, int *inter, int *rtc,
112 aom_bit_depth_t bit_depth) {
113 int i;
114 for (i = 0; i < QINDEX_RANGE; i++) {
115 const double maxq = av1_convert_qindex_to_q(i, bit_depth);
116 kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
117 kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth);
118 arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
119 arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
120 inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
121 rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
122 }
123 }
124
av1_rc_init_minq_luts(void)125 void av1_rc_init_minq_luts(void) {
126 init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
127 arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
128 inter_minq_8, rtc_minq_8, AOM_BITS_8);
129 init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
130 arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
131 inter_minq_10, rtc_minq_10, AOM_BITS_10);
132 init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
133 arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
134 inter_minq_12, rtc_minq_12, AOM_BITS_12);
135 }
136
137 // These functions use formulaic calculations to make playing with the
138 // quantizer tables easier. If necessary they can be replaced by lookup
139 // tables if and when things settle down in the experimental bitstream
av1_convert_qindex_to_q(int qindex,aom_bit_depth_t bit_depth)140 double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) {
141 // Convert the index to a real Q value (scaled down to match old Q values)
142 switch (bit_depth) {
143 case AOM_BITS_8: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 4.0;
144 case AOM_BITS_10: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 16.0;
145 case AOM_BITS_12: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 64.0;
146 default:
147 assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
148 return -1.0;
149 }
150 }
151
av1_rc_bits_per_mb(FRAME_TYPE frame_type,int qindex,double correction_factor,aom_bit_depth_t bit_depth)152 int av1_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
153 double correction_factor, aom_bit_depth_t bit_depth) {
154 const double q = av1_convert_qindex_to_q(qindex, bit_depth);
155 int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
156
157 assert(correction_factor <= MAX_BPB_FACTOR &&
158 correction_factor >= MIN_BPB_FACTOR);
159
160 // q based adjustment to baseline enumerator
161 enumerator += (int)(enumerator * q) >> 12;
162 return (int)(enumerator * correction_factor / q);
163 }
164
av1_estimate_bits_at_q(FRAME_TYPE frame_type,int q,int mbs,double correction_factor,aom_bit_depth_t bit_depth)165 int av1_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
166 double correction_factor,
167 aom_bit_depth_t bit_depth) {
168 const int bpm =
169 (int)(av1_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
170 return AOMMAX(FRAME_OVERHEAD_BITS,
171 (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
172 }
173
av1_rc_clamp_pframe_target_size(const AV1_COMP * const cpi,int target,FRAME_UPDATE_TYPE frame_update_type)174 int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target,
175 FRAME_UPDATE_TYPE frame_update_type) {
176 const RATE_CONTROL *rc = &cpi->rc;
177 const AV1EncoderConfig *oxcf = &cpi->oxcf;
178 const int min_frame_target =
179 AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
180 // Clip the frame target to the minimum setup value.
181 if (frame_update_type == OVERLAY_UPDATE ||
182 frame_update_type == INTNL_OVERLAY_UPDATE) {
183 // If there is an active ARF at this location use the minimum
184 // bits on this frame even if it is a constructed arf.
185 // The active maximum quantizer insures that an appropriate
186 // number of bits will be spent if needed for constructed ARFs.
187 target = min_frame_target;
188 } else if (target < min_frame_target) {
189 target = min_frame_target;
190 }
191
192 // Clip the frame target to the maximum allowed value.
193 if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
194 if (oxcf->rc_max_inter_bitrate_pct) {
195 const int max_rate =
196 rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
197 target = AOMMIN(target, max_rate);
198 }
199
200 return target;
201 }
202
av1_rc_clamp_iframe_target_size(const AV1_COMP * const cpi,int target)203 int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int target) {
204 const RATE_CONTROL *rc = &cpi->rc;
205 const AV1EncoderConfig *oxcf = &cpi->oxcf;
206 if (oxcf->rc_max_intra_bitrate_pct) {
207 const int max_rate =
208 rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
209 target = AOMMIN(target, max_rate);
210 }
211 if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
212 return target;
213 }
214
215 // Update the buffer level: leaky bucket model.
update_buffer_level(AV1_COMP * cpi,int encoded_frame_size)216 static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) {
217 const AV1_COMMON *const cm = &cpi->common;
218 RATE_CONTROL *const rc = &cpi->rc;
219
220 // Non-viewable frames are a special case and are treated as pure overhead.
221 if (!cm->show_frame)
222 rc->bits_off_target -= encoded_frame_size;
223 else
224 rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
225
226 // Clip the buffer level to the maximum specified buffer size.
227 rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size);
228 rc->buffer_level = rc->bits_off_target;
229 }
230
av1_rc_get_default_min_gf_interval(int width,int height,double framerate)231 int av1_rc_get_default_min_gf_interval(int width, int height,
232 double framerate) {
233 // Assume we do not need any constraint lower than 4K 20 fps
234 static const double factor_safe = 3840 * 2160 * 20.0;
235 const double factor = width * height * framerate;
236 const int default_interval =
237 clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
238
239 if (factor <= factor_safe)
240 return default_interval;
241 else
242 return AOMMAX(default_interval,
243 (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
244 // Note this logic makes:
245 // 4K24: 5
246 // 4K30: 6
247 // 4K60: 12
248 }
249
av1_rc_get_default_max_gf_interval(double framerate,int min_gf_interval)250 int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
251 int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
252 interval += (interval & 0x01); // Round to even value
253 interval = AOMMAX(MAX_GF_INTERVAL, interval);
254 return AOMMAX(interval, min_gf_interval);
255 }
256
av1_rc_init(const AV1EncoderConfig * oxcf,int pass,RATE_CONTROL * rc)257 void av1_rc_init(const AV1EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
258 int i;
259
260 if (pass == 0 && oxcf->rc_mode == AOM_CBR) {
261 rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
262 rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
263 } else {
264 rc->avg_frame_qindex[KEY_FRAME] =
265 (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
266 rc->avg_frame_qindex[INTER_FRAME] =
267 (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
268 }
269
270 rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
271 rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
272
273 rc->buffer_level = rc->starting_buffer_level;
274 rc->bits_off_target = rc->starting_buffer_level;
275
276 rc->rolling_target_bits = rc->avg_frame_bandwidth;
277 rc->rolling_actual_bits = rc->avg_frame_bandwidth;
278 rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
279 rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
280
281 rc->total_actual_bits = 0;
282 rc->total_target_bits = 0;
283 rc->total_target_vs_actual = 0;
284
285 rc->frames_since_key = 8; // Sensible default for first frame.
286 rc->this_key_frame_forced = 0;
287 rc->next_key_frame_forced = 0;
288 rc->source_alt_ref_pending = 0;
289 rc->source_alt_ref_active = 0;
290
291 rc->frames_till_gf_update_due = 0;
292 rc->ni_av_qi = oxcf->worst_allowed_q;
293 rc->ni_tot_qi = 0;
294 rc->ni_frames = 0;
295
296 rc->tot_q = 0.0;
297 rc->avg_q = av1_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
298
299 for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
300 rc->rate_correction_factors[i] = 0.7;
301 }
302 rc->rate_correction_factors[KF_STD] = 1.0;
303 rc->min_gf_interval = oxcf->min_gf_interval;
304 rc->max_gf_interval = oxcf->max_gf_interval;
305 if (rc->min_gf_interval == 0)
306 rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
307 oxcf->width, oxcf->height, oxcf->init_framerate);
308 if (rc->max_gf_interval == 0)
309 rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
310 oxcf->init_framerate, rc->min_gf_interval);
311 rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
312 }
313
av1_rc_drop_frame(AV1_COMP * cpi)314 int av1_rc_drop_frame(AV1_COMP *cpi) {
315 const AV1EncoderConfig *oxcf = &cpi->oxcf;
316 RATE_CONTROL *const rc = &cpi->rc;
317
318 if (!oxcf->drop_frames_water_mark) {
319 return 0;
320 } else {
321 if (rc->buffer_level < 0) {
322 // Always drop if buffer is below 0.
323 return 1;
324 } else {
325 // If buffer is below drop_mark, for now just drop every other frame
326 // (starting with the next frame) until it increases back over drop_mark.
327 int drop_mark =
328 (int)(oxcf->drop_frames_water_mark * rc->optimal_buffer_level / 100);
329 if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) {
330 --rc->decimation_factor;
331 } else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) {
332 rc->decimation_factor = 1;
333 }
334 if (rc->decimation_factor > 0) {
335 if (rc->decimation_count > 0) {
336 --rc->decimation_count;
337 return 1;
338 } else {
339 rc->decimation_count = rc->decimation_factor;
340 return 0;
341 }
342 } else {
343 rc->decimation_count = 0;
344 return 0;
345 }
346 }
347 }
348 }
349
350 static const RATE_FACTOR_LEVEL rate_factor_levels[FRAME_UPDATE_TYPES] = {
351 KF_STD, // KF_UPDATE
352 INTER_NORMAL, // LF_UPDATE
353 GF_ARF_STD, // GF_UPDATE
354 GF_ARF_STD, // ARF_UPDATE
355 INTER_NORMAL, // OVERLAY_UPDATE
356 INTER_NORMAL, // INTNL_OVERLAY_UPDATE
357 GF_ARF_LOW, // INTNL_ARF_UPDATE
358 };
359
get_rate_factor_level(const GF_GROUP * const gf_group)360 static RATE_FACTOR_LEVEL get_rate_factor_level(const GF_GROUP *const gf_group) {
361 const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_group->index];
362 assert(update_type < FRAME_UPDATE_TYPES);
363 return rate_factor_levels[update_type];
364 }
365
get_rate_correction_factor(const AV1_COMP * cpi,int width,int height)366 static double get_rate_correction_factor(const AV1_COMP *cpi, int width,
367 int height) {
368 const RATE_CONTROL *const rc = &cpi->rc;
369 double rcf;
370
371 if (cpi->common.current_frame.frame_type == KEY_FRAME) {
372 rcf = rc->rate_correction_factors[KF_STD];
373 } else if (cpi->oxcf.pass == 2) {
374 const RATE_FACTOR_LEVEL rf_lvl =
375 get_rate_factor_level(&cpi->twopass.gf_group);
376 rcf = rc->rate_correction_factors[rf_lvl];
377 } else {
378 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
379 !rc->is_src_frame_alt_ref &&
380 (cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
381 rcf = rc->rate_correction_factors[GF_ARF_STD];
382 else
383 rcf = rc->rate_correction_factors[INTER_NORMAL];
384 }
385 rcf *= resize_rate_factor(cpi, width, height);
386 return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
387 }
388
set_rate_correction_factor(AV1_COMP * cpi,double factor,int width,int height)389 static void set_rate_correction_factor(AV1_COMP *cpi, double factor, int width,
390 int height) {
391 RATE_CONTROL *const rc = &cpi->rc;
392
393 // Normalize RCF to account for the size-dependent scaling factor.
394 factor /= resize_rate_factor(cpi, width, height);
395
396 factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
397
398 if (cpi->common.current_frame.frame_type == KEY_FRAME) {
399 rc->rate_correction_factors[KF_STD] = factor;
400 } else if (cpi->oxcf.pass == 2) {
401 const RATE_FACTOR_LEVEL rf_lvl =
402 get_rate_factor_level(&cpi->twopass.gf_group);
403 rc->rate_correction_factors[rf_lvl] = factor;
404 } else {
405 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
406 !rc->is_src_frame_alt_ref &&
407 (cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
408 rc->rate_correction_factors[GF_ARF_STD] = factor;
409 else
410 rc->rate_correction_factors[INTER_NORMAL] = factor;
411 }
412 }
413
av1_rc_update_rate_correction_factors(AV1_COMP * cpi,int width,int height)414 void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int width,
415 int height) {
416 const AV1_COMMON *const cm = &cpi->common;
417 int correction_factor = 100;
418 double rate_correction_factor =
419 get_rate_correction_factor(cpi, width, height);
420 double adjustment_limit;
421 const int MBs = av1_get_MBs(width, height);
422
423 int projected_size_based_on_q = 0;
424
425 // Do not update the rate factors for arf overlay frames.
426 if (cpi->rc.is_src_frame_alt_ref) return;
427
428 // Clear down mmx registers to allow floating point in what follows
429 aom_clear_system_state();
430
431 // Work out how big we would have expected the frame to be at this Q given
432 // the current correction factor.
433 // Stay in double to avoid int overflow when values are large
434 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
435 projected_size_based_on_q =
436 av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
437 } else {
438 projected_size_based_on_q = av1_estimate_bits_at_q(
439 cpi->common.current_frame.frame_type, cm->base_qindex, MBs,
440 rate_correction_factor, cm->seq_params.bit_depth);
441 }
442 // Work out a size correction factor.
443 if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
444 correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
445 projected_size_based_on_q);
446
447 // More heavily damped adjustment used if we have been oscillating either side
448 // of target.
449 if (correction_factor > 0) {
450 adjustment_limit =
451 0.25 + 0.5 * AOMMIN(1, fabs(log10(0.01 * correction_factor)));
452 } else {
453 adjustment_limit = 0.75;
454 }
455
456 cpi->rc.q_2_frame = cpi->rc.q_1_frame;
457 cpi->rc.q_1_frame = cm->base_qindex;
458 cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
459 if (correction_factor > 110)
460 cpi->rc.rc_1_frame = -1;
461 else if (correction_factor < 90)
462 cpi->rc.rc_1_frame = 1;
463 else
464 cpi->rc.rc_1_frame = 0;
465
466 if (correction_factor > 102) {
467 // We are not already at the worst allowable quality
468 correction_factor =
469 (int)(100 + ((correction_factor - 100) * adjustment_limit));
470 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
471 // Keep rate_correction_factor within limits
472 if (rate_correction_factor > MAX_BPB_FACTOR)
473 rate_correction_factor = MAX_BPB_FACTOR;
474 } else if (correction_factor < 99) {
475 // We are not already at the best allowable quality
476 correction_factor =
477 (int)(100 - ((100 - correction_factor) * adjustment_limit));
478 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
479
480 // Keep rate_correction_factor within limits
481 if (rate_correction_factor < MIN_BPB_FACTOR)
482 rate_correction_factor = MIN_BPB_FACTOR;
483 }
484
485 set_rate_correction_factor(cpi, rate_correction_factor, width, height);
486 }
487
488 // Calculate rate for the given 'q'.
get_bits_per_mb(const AV1_COMP * cpi,int use_cyclic_refresh,double correction_factor,int q)489 static int get_bits_per_mb(const AV1_COMP *cpi, int use_cyclic_refresh,
490 double correction_factor, int q) {
491 const AV1_COMMON *const cm = &cpi->common;
492 return use_cyclic_refresh
493 ? av1_cyclic_refresh_rc_bits_per_mb(cpi, q, correction_factor)
494 : av1_rc_bits_per_mb(cm->current_frame.frame_type, q,
495 correction_factor, cm->seq_params.bit_depth);
496 }
497
498 // Similar to find_qindex_by_rate() function in ratectrl.c, but returns the q
499 // index with rate just above or below the desired rate, depending on which of
500 // the two rates is closer to the desired rate.
501 // Also, respects the selected aq_mode when computing the rate.
find_closest_qindex_by_rate(int desired_bits_per_mb,const AV1_COMP * cpi,double correction_factor,int best_qindex,int worst_qindex)502 static int find_closest_qindex_by_rate(int desired_bits_per_mb,
503 const AV1_COMP *cpi,
504 double correction_factor,
505 int best_qindex, int worst_qindex) {
506 const int use_cyclic_refresh =
507 cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled;
508
509 // Find 'qindex' based on 'desired_bits_per_mb'.
510 assert(best_qindex <= worst_qindex);
511 int low = best_qindex;
512 int high = worst_qindex;
513 while (low < high) {
514 const int mid = (low + high) >> 1;
515 const int mid_bits_per_mb =
516 get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, mid);
517 if (mid_bits_per_mb > desired_bits_per_mb) {
518 low = mid + 1;
519 } else {
520 high = mid;
521 }
522 }
523 assert(low == high);
524
525 // Calculate rate difference of this q index from the desired rate.
526 const int curr_q = low;
527 const int curr_bits_per_mb =
528 get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, curr_q);
529 const int curr_bit_diff = (curr_bits_per_mb <= desired_bits_per_mb)
530 ? desired_bits_per_mb - curr_bits_per_mb
531 : INT_MAX;
532 assert((curr_bit_diff != INT_MAX && curr_bit_diff >= 0) ||
533 curr_q == worst_qindex);
534
535 // Calculate rate difference for previous q index too.
536 const int prev_q = curr_q - 1;
537 int prev_bit_diff;
538 if (curr_bit_diff == INT_MAX || curr_q == best_qindex) {
539 prev_bit_diff = INT_MAX;
540 } else {
541 const int prev_bits_per_mb =
542 get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, prev_q);
543 assert(prev_bits_per_mb > desired_bits_per_mb);
544 prev_bit_diff = prev_bits_per_mb - desired_bits_per_mb;
545 }
546
547 // Pick one of the two q indices, depending on which one has rate closer to
548 // the desired rate.
549 return (curr_bit_diff <= prev_bit_diff) ? curr_q : prev_q;
550 }
551
av1_rc_regulate_q(const AV1_COMP * cpi,int target_bits_per_frame,int active_best_quality,int active_worst_quality,int width,int height)552 int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame,
553 int active_best_quality, int active_worst_quality,
554 int width, int height) {
555 const int MBs = av1_get_MBs(width, height);
556 const double correction_factor =
557 get_rate_correction_factor(cpi, width, height);
558 const int target_bits_per_mb =
559 (int)((uint64_t)(target_bits_per_frame) << BPER_MB_NORMBITS) / MBs;
560
561 int q =
562 find_closest_qindex_by_rate(target_bits_per_mb, cpi, correction_factor,
563 active_best_quality, active_worst_quality);
564
565 // In CBR mode, this makes sure q is between oscillating Qs to prevent
566 // resonance.
567 if (cpi->oxcf.rc_mode == AOM_CBR &&
568 (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
569 cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
570 q = clamp(q, AOMMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
571 AOMMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
572 }
573 return q;
574 }
575
get_active_quality(int q,int gfu_boost,int low,int high,int * low_motion_minq,int * high_motion_minq)576 static int get_active_quality(int q, int gfu_boost, int low, int high,
577 int *low_motion_minq, int *high_motion_minq) {
578 if (gfu_boost > high) {
579 return low_motion_minq[q];
580 } else if (gfu_boost < low) {
581 return high_motion_minq[q];
582 } else {
583 const int gap = high - low;
584 const int offset = high - gfu_boost;
585 const int qdiff = high_motion_minq[q] - low_motion_minq[q];
586 const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
587 return low_motion_minq[q] + adjustment;
588 }
589 }
590
get_kf_active_quality(const RATE_CONTROL * const rc,int q,aom_bit_depth_t bit_depth)591 static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
592 aom_bit_depth_t bit_depth) {
593 int *kf_low_motion_minq;
594 int *kf_high_motion_minq;
595 ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
596 ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
597 return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
598 kf_low_motion_minq, kf_high_motion_minq);
599 }
600
get_gf_active_quality(const RATE_CONTROL * const rc,int q,aom_bit_depth_t bit_depth)601 static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
602 aom_bit_depth_t bit_depth) {
603 int *arfgf_low_motion_minq;
604 int *arfgf_high_motion_minq;
605 ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
606 ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
607 return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
608 arfgf_low_motion_minq, arfgf_high_motion_minq);
609 }
610
get_gf_high_motion_quality(int q,aom_bit_depth_t bit_depth)611 static int get_gf_high_motion_quality(int q, aom_bit_depth_t bit_depth) {
612 int *arfgf_high_motion_minq;
613 ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
614 return arfgf_high_motion_minq[q];
615 }
616
calc_active_worst_quality_one_pass_vbr(const AV1_COMP * cpi)617 static int calc_active_worst_quality_one_pass_vbr(const AV1_COMP *cpi) {
618 const RATE_CONTROL *const rc = &cpi->rc;
619 const unsigned int curr_frame = cpi->common.current_frame.frame_number;
620 int active_worst_quality;
621
622 if (cpi->common.current_frame.frame_type == KEY_FRAME) {
623 active_worst_quality =
624 curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] * 2;
625 } else {
626 if (!rc->is_src_frame_alt_ref &&
627 (cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame ||
628 cpi->refresh_alt_ref_frame)) {
629 active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
630 : rc->last_q[INTER_FRAME];
631 } else {
632 active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
633 : rc->last_q[INTER_FRAME] * 2;
634 }
635 }
636 return AOMMIN(active_worst_quality, rc->worst_quality);
637 }
638
639 // Adjust active_worst_quality level based on buffer level.
calc_active_worst_quality_one_pass_cbr(const AV1_COMP * cpi)640 static int calc_active_worst_quality_one_pass_cbr(const AV1_COMP *cpi) {
641 // Adjust active_worst_quality: If buffer is above the optimal/target level,
642 // bring active_worst_quality down depending on fullness of buffer.
643 // If buffer is below the optimal level, let the active_worst_quality go from
644 // ambient Q (at buffer = optimal level) to worst_quality level
645 // (at buffer = critical level).
646 const AV1_COMMON *const cm = &cpi->common;
647 const RATE_CONTROL *rc = &cpi->rc;
648 // Buffer level below which we push active_worst to worst_quality.
649 int64_t critical_level = rc->optimal_buffer_level >> 3;
650 int64_t buff_lvl_step = 0;
651 int adjustment = 0;
652 int active_worst_quality;
653 int ambient_qp;
654 if (cm->current_frame.frame_type == KEY_FRAME) return rc->worst_quality;
655 // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
656 // for the first few frames following key frame. These are both initialized
657 // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
658 // So for first few frames following key, the qp of that key frame is weighted
659 // into the active_worst_quality setting.
660 ambient_qp = (cm->current_frame.frame_number < 5)
661 ? AOMMIN(rc->avg_frame_qindex[INTER_FRAME],
662 rc->avg_frame_qindex[KEY_FRAME])
663 : rc->avg_frame_qindex[INTER_FRAME];
664 active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4);
665 if (rc->buffer_level > rc->optimal_buffer_level) {
666 // Adjust down.
667 // Maximum limit for down adjustment, ~30%.
668 int max_adjustment_down = active_worst_quality / 3;
669 if (max_adjustment_down) {
670 buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
671 max_adjustment_down);
672 if (buff_lvl_step)
673 adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
674 buff_lvl_step);
675 active_worst_quality -= adjustment;
676 }
677 } else if (rc->buffer_level > critical_level) {
678 // Adjust up from ambient Q.
679 if (critical_level) {
680 buff_lvl_step = (rc->optimal_buffer_level - critical_level);
681 if (buff_lvl_step) {
682 adjustment = (int)((rc->worst_quality - ambient_qp) *
683 (rc->optimal_buffer_level - rc->buffer_level) /
684 buff_lvl_step);
685 }
686 active_worst_quality = ambient_qp + adjustment;
687 }
688 } else {
689 // Set to worst_quality if buffer is below critical level.
690 active_worst_quality = rc->worst_quality;
691 }
692 return active_worst_quality;
693 }
694
rc_pick_q_and_bounds_one_pass_cbr(const AV1_COMP * cpi,int width,int height,int * bottom_index,int * top_index)695 static int rc_pick_q_and_bounds_one_pass_cbr(const AV1_COMP *cpi, int width,
696 int height, int *bottom_index,
697 int *top_index) {
698 const AV1_COMMON *const cm = &cpi->common;
699 const RATE_CONTROL *const rc = &cpi->rc;
700 const CurrentFrame *const current_frame = &cm->current_frame;
701 int active_best_quality;
702 int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
703 int q;
704 int *rtc_minq;
705 const int bit_depth = cm->seq_params.bit_depth;
706 ASSIGN_MINQ_TABLE(bit_depth, rtc_minq);
707
708 if (frame_is_intra_only(cm)) {
709 active_best_quality = rc->best_quality;
710 // Handle the special case for key frames forced when we have reached
711 // the maximum key frame interval. Here force the Q to a range
712 // based on the ambient Q to reduce the risk of popping.
713 if (rc->this_key_frame_forced) {
714 int qindex = rc->last_boosted_qindex;
715 double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
716 int delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
717 (last_boosted_q * 0.75), bit_depth);
718 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
719 } else if (current_frame->frame_number > 0) {
720 // not first frame of one pass and kf_boost is set
721 double q_adj_factor = 1.0;
722 double q_val;
723
724 active_best_quality =
725 get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth);
726
727 // Allow somewhat lower kf minq with small image formats.
728 if ((width * height) <= (352 * 288)) {
729 q_adj_factor -= 0.25;
730 }
731
732 // Convert the adjustment factor to a qindex delta
733 // on active_best_quality.
734 q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
735 active_best_quality +=
736 av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
737 }
738 } else if (!rc->is_src_frame_alt_ref &&
739 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
740 // Use the lower of active_worst_quality and recent
741 // average Q as basis for GF/ARF best Q limit unless last frame was
742 // a key frame.
743 if (rc->frames_since_key > 1 &&
744 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
745 q = rc->avg_frame_qindex[INTER_FRAME];
746 } else {
747 q = active_worst_quality;
748 }
749 active_best_quality = get_gf_active_quality(rc, q, bit_depth);
750 } else {
751 // Use the lower of active_worst_quality and recent/average Q.
752 if (current_frame->frame_number > 1) {
753 if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
754 active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
755 else
756 active_best_quality = rtc_minq[active_worst_quality];
757 } else {
758 if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
759 active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
760 else
761 active_best_quality = rtc_minq[active_worst_quality];
762 }
763 }
764
765 // Clip the active best and worst quality values to limits
766 active_best_quality =
767 clamp(active_best_quality, rc->best_quality, rc->worst_quality);
768 active_worst_quality =
769 clamp(active_worst_quality, active_best_quality, rc->worst_quality);
770
771 *top_index = active_worst_quality;
772 *bottom_index = active_best_quality;
773
774 // Limit Q range for the adaptive loop.
775 if (current_frame->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
776 !(current_frame->frame_number == 0)) {
777 int qdelta = 0;
778 aom_clear_system_state();
779 qdelta = av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type,
780 active_worst_quality, 2.0, bit_depth);
781 *top_index = active_worst_quality + qdelta;
782 *top_index = AOMMAX(*top_index, *bottom_index);
783 }
784
785 // Special case code to try and match quality with forced key frames
786 if (current_frame->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
787 q = rc->last_boosted_qindex;
788 } else {
789 q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
790 active_worst_quality, width, height);
791 if (q > *top_index) {
792 // Special case when we are targeting the max allowed rate
793 if (rc->this_frame_target >= rc->max_frame_bandwidth)
794 *top_index = q;
795 else
796 q = *top_index;
797 }
798 }
799
800 assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
801 assert(*bottom_index <= rc->worst_quality &&
802 *bottom_index >= rc->best_quality);
803 assert(q <= rc->worst_quality && q >= rc->best_quality);
804 return q;
805 }
806
gf_group_pyramid_level(const AV1_COMP * cpi)807 static int gf_group_pyramid_level(const AV1_COMP *cpi) {
808 const GF_GROUP *gf_group = &cpi->twopass.gf_group;
809 int this_height = gf_group->pyramid_level[gf_group->index];
810 return this_height;
811 }
812
get_active_cq_level(const RATE_CONTROL * rc,const AV1EncoderConfig * const oxcf,int intra_only,int superres_denom)813 static int get_active_cq_level(const RATE_CONTROL *rc,
814 const AV1EncoderConfig *const oxcf,
815 int intra_only, int superres_denom) {
816 static const double cq_adjust_threshold = 0.1;
817 int active_cq_level = oxcf->cq_level;
818 (void)intra_only;
819 if (oxcf->rc_mode == AOM_CQ || oxcf->rc_mode == AOM_Q) {
820 // printf("Superres %d %d %d = %d\n", superres_denom, intra_only,
821 // rc->frames_to_key, !(intra_only && rc->frames_to_key <= 1));
822 if (oxcf->superres_mode == SUPERRES_QTHRESH &&
823 superres_denom != SCALE_NUMERATOR &&
824 !(intra_only && rc->frames_to_key <= 1)) {
825 active_cq_level =
826 AOMMAX(active_cq_level - ((superres_denom - SCALE_NUMERATOR) * 4), 0);
827 }
828 }
829 if (oxcf->rc_mode == AOM_CQ && rc->total_target_bits > 0) {
830 const double x = (double)rc->total_actual_bits / rc->total_target_bits;
831 if (x < cq_adjust_threshold) {
832 active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
833 }
834 }
835 return active_cq_level;
836 }
837
rc_pick_q_and_bounds_one_pass_vbr(const AV1_COMP * cpi,int width,int height,int * bottom_index,int * top_index)838 static int rc_pick_q_and_bounds_one_pass_vbr(const AV1_COMP *cpi, int width,
839 int height, int *bottom_index,
840 int *top_index) {
841 const AV1_COMMON *const cm = &cpi->common;
842 const RATE_CONTROL *const rc = &cpi->rc;
843 const CurrentFrame *const current_frame = &cm->current_frame;
844 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
845 const int cq_level = get_active_cq_level(rc, oxcf, frame_is_intra_only(cm),
846 cm->superres_scale_denominator);
847 int active_best_quality;
848 int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
849 int q;
850 int *inter_minq;
851 const int bit_depth = cm->seq_params.bit_depth;
852 ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
853
854 if (frame_is_intra_only(cm)) {
855 if (oxcf->rc_mode == AOM_Q) {
856 const int qindex = cq_level;
857 const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
858 const int delta_qindex =
859 av1_compute_qdelta(rc, q_val, q_val * 0.25, bit_depth);
860 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
861 } else if (rc->this_key_frame_forced) {
862 const int qindex = rc->last_boosted_qindex;
863 const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
864 const int delta_qindex = av1_compute_qdelta(
865 rc, last_boosted_q, last_boosted_q * 0.75, bit_depth);
866 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
867 } else { // not first frame of one pass and kf_boost is set
868 double q_adj_factor = 1.0;
869
870 active_best_quality =
871 get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth);
872
873 // Allow somewhat lower kf minq with small image formats.
874 if ((width * height) <= (352 * 288)) {
875 q_adj_factor -= 0.25;
876 }
877
878 // Convert the adjustment factor to a qindex delta on active_best_quality.
879 {
880 const double q_val =
881 av1_convert_qindex_to_q(active_best_quality, bit_depth);
882 active_best_quality +=
883 av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
884 }
885 }
886 } else if (!rc->is_src_frame_alt_ref &&
887 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
888 // Use the lower of active_worst_quality and recent
889 // average Q as basis for GF/ARF best Q limit unless last frame was
890 // a key frame.
891 q = (rc->frames_since_key > 1 &&
892 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
893 ? rc->avg_frame_qindex[INTER_FRAME]
894 : rc->avg_frame_qindex[KEY_FRAME];
895 // For constrained quality dont allow Q less than the cq level
896 if (oxcf->rc_mode == AOM_CQ) {
897 if (q < cq_level) q = cq_level;
898 active_best_quality = get_gf_active_quality(rc, q, bit_depth);
899 // Constrained quality use slightly lower active best.
900 active_best_quality = active_best_quality * 15 / 16;
901 } else if (oxcf->rc_mode == AOM_Q) {
902 const int qindex = cq_level;
903 const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
904 const int delta_qindex =
905 (cpi->refresh_alt_ref_frame)
906 ? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth)
907 : av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth);
908 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
909 } else {
910 active_best_quality = get_gf_active_quality(rc, q, bit_depth);
911 }
912 } else {
913 if (oxcf->rc_mode == AOM_Q) {
914 const int qindex = cq_level;
915 const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
916 const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
917 0.70, 1.0, 0.85, 1.0 };
918 const int delta_qindex = av1_compute_qdelta(
919 rc, q_val,
920 q_val * delta_rate[current_frame->frame_number % FIXED_GF_INTERVAL],
921 bit_depth);
922 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
923 } else {
924 // Use the lower of active_worst_quality and recent/average Q.
925 active_best_quality = (current_frame->frame_number > 1)
926 ? inter_minq[rc->avg_frame_qindex[INTER_FRAME]]
927 : inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
928 // For the constrained quality mode we don't want
929 // q to fall below the cq level.
930 if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
931 active_best_quality = cq_level;
932 }
933 }
934 }
935
936 // Clip the active best and worst quality values to limits
937 active_best_quality =
938 clamp(active_best_quality, rc->best_quality, rc->worst_quality);
939 active_worst_quality =
940 clamp(active_worst_quality, active_best_quality, rc->worst_quality);
941
942 *top_index = active_worst_quality;
943 *bottom_index = active_best_quality;
944
945 // Limit Q range for the adaptive loop.
946 {
947 int qdelta = 0;
948 aom_clear_system_state();
949 if (current_frame->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
950 !(current_frame->frame_number == 0)) {
951 qdelta = av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type,
952 active_worst_quality, 2.0, bit_depth);
953 } else if (!rc->is_src_frame_alt_ref &&
954 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
955 qdelta =
956 av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type,
957 active_worst_quality, 1.75, bit_depth);
958 }
959 *top_index = active_worst_quality + qdelta;
960 *top_index = AOMMAX(*top_index, *bottom_index);
961 }
962
963 if (oxcf->rc_mode == AOM_Q) {
964 q = active_best_quality;
965 // Special case code to try and match quality with forced key frames
966 } else if ((current_frame->frame_type == KEY_FRAME) &&
967 rc->this_key_frame_forced) {
968 q = rc->last_boosted_qindex;
969 } else {
970 q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
971 active_worst_quality, width, height);
972 if (q > *top_index) {
973 // Special case when we are targeting the max allowed rate
974 if (rc->this_frame_target >= rc->max_frame_bandwidth)
975 *top_index = q;
976 else
977 q = *top_index;
978 }
979 }
980
981 assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
982 assert(*bottom_index <= rc->worst_quality &&
983 *bottom_index >= rc->best_quality);
984 assert(q <= rc->worst_quality && q >= rc->best_quality);
985 return q;
986 }
987
988 static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
989 1.00, // INTER_NORMAL
990 1.25, // GF_ARF_LOW
991 2.00, // GF_ARF_STD
992 2.00, // KF_STD
993 };
994
av1_frame_type_qdelta(const AV1_COMP * cpi,int q)995 int av1_frame_type_qdelta(const AV1_COMP *cpi, int q) {
996 const RATE_FACTOR_LEVEL rf_lvl =
997 get_rate_factor_level(&cpi->twopass.gf_group);
998 const FRAME_TYPE frame_type = (rf_lvl == KF_STD) ? KEY_FRAME : INTER_FRAME;
999 return av1_compute_qdelta_by_rate(&cpi->rc, frame_type, q,
1000 rate_factor_deltas[rf_lvl],
1001 cpi->common.seq_params.bit_depth);
1002 }
1003
1004 #define STATIC_MOTION_THRESH 95
rc_pick_q_and_bounds_two_pass(const AV1_COMP * cpi,int width,int height,int * bottom_index,int * top_index,int * arf_q)1005 static int rc_pick_q_and_bounds_two_pass(const AV1_COMP *cpi, int width,
1006 int height, int *bottom_index,
1007 int *top_index, int *arf_q) {
1008 const AV1_COMMON *const cm = &cpi->common;
1009 const RATE_CONTROL *const rc = &cpi->rc;
1010 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
1011 const GF_GROUP *gf_group = &cpi->twopass.gf_group;
1012 const int cq_level = get_active_cq_level(rc, oxcf, frame_is_intra_only(cm),
1013 cm->superres_scale_denominator);
1014 int active_best_quality;
1015 int active_worst_quality = cpi->twopass.active_worst_quality;
1016 int q;
1017 int *inter_minq;
1018 const int bit_depth = cm->seq_params.bit_depth;
1019 ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
1020
1021 const int is_intrl_arf_boost =
1022 gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE;
1023
1024 if (frame_is_intra_only(cm)) {
1025 if (rc->frames_to_key == 1 && oxcf->rc_mode == AOM_Q) {
1026 // If the next frame is also a key frame or the current frame is the
1027 // only frame in the sequence in AOM_Q mode, just use the cq_level
1028 // as q.
1029 active_best_quality = cq_level;
1030 active_worst_quality = cq_level;
1031 } else if (cm->current_frame.frame_type == KEY_FRAME &&
1032 cm->show_frame == 0) {
1033 // Handle the special case for forward reference key frames.
1034 // Increase the boost because this keyframe is used as a forward and
1035 // backward reference.
1036 const int qindex = rc->last_boosted_qindex;
1037 const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
1038 const int delta_qindex = av1_compute_qdelta(
1039 rc, last_boosted_q, last_boosted_q * 0.25, bit_depth);
1040 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
1041 // Update the arf_q since the forward keyframe is replacing the ALTREF
1042 *arf_q = active_best_quality;
1043 } else if (rc->this_key_frame_forced) {
1044 // Handle the special case for key frames forced when we have reached
1045 // the maximum key frame interval. Here force the Q to a range
1046 // based on the ambient Q to reduce the risk of popping.
1047 double last_boosted_q;
1048 int delta_qindex;
1049 int qindex;
1050
1051 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1052 qindex = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1053 active_best_quality = qindex;
1054 last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
1055 delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
1056 last_boosted_q * 1.25, bit_depth);
1057 active_worst_quality =
1058 AOMMIN(qindex + delta_qindex, active_worst_quality);
1059 } else {
1060 qindex = rc->last_boosted_qindex;
1061 last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
1062 delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
1063 last_boosted_q * 0.50, bit_depth);
1064 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
1065 }
1066 } else {
1067 // Not forced keyframe.
1068 double q_adj_factor = 1.0;
1069 double q_val;
1070
1071 // Baseline value derived from cpi->active_worst_quality and kf boost.
1072 active_best_quality =
1073 get_kf_active_quality(rc, active_worst_quality, bit_depth);
1074
1075 if (cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) {
1076 active_best_quality /= 3;
1077 }
1078
1079 // Allow somewhat lower kf minq with small image formats.
1080 if ((width * height) <= (352 * 288)) {
1081 q_adj_factor -= 0.25;
1082 }
1083
1084 // Make a further adjustment based on the kf zero motion measure.
1085 q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
1086
1087 // Convert the adjustment factor to a qindex delta
1088 // on active_best_quality.
1089 q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
1090 active_best_quality +=
1091 av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
1092 }
1093 } else if (!rc->is_src_frame_alt_ref &&
1094 (cpi->refresh_golden_frame || is_intrl_arf_boost ||
1095 cpi->refresh_alt_ref_frame)) {
1096 // Use the lower of active_worst_quality and recent
1097 // average Q as basis for GF/ARF best Q limit unless last frame was
1098 // a key frame.
1099 if (rc->frames_since_key > 1 &&
1100 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1101 q = rc->avg_frame_qindex[INTER_FRAME];
1102 } else {
1103 q = active_worst_quality;
1104 }
1105 // For constrained quality dont allow Q less than the cq level
1106 if (oxcf->rc_mode == AOM_CQ) {
1107 if (q < cq_level) q = cq_level;
1108
1109 active_best_quality = get_gf_active_quality(rc, q, bit_depth);
1110
1111 // Constrained quality use slightly lower active best.
1112 active_best_quality = active_best_quality * 15 / 16;
1113
1114 if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
1115 const int min_boost = get_gf_high_motion_quality(q, bit_depth);
1116 const int boost = min_boost - active_best_quality;
1117
1118 active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor);
1119 *arf_q = active_best_quality;
1120 } else if (is_intrl_arf_boost) {
1121 assert(rc->arf_q >= 0); // Ensure it is set to a valid value.
1122 active_best_quality = rc->arf_q;
1123 int this_height = gf_group_pyramid_level(cpi);
1124 while (this_height < gf_group->pyramid_height) {
1125 active_best_quality = (active_best_quality + cq_level + 1) / 2;
1126 ++this_height;
1127 }
1128 }
1129 } else if (oxcf->rc_mode == AOM_Q) {
1130 if (!cpi->refresh_alt_ref_frame && !is_intrl_arf_boost) {
1131 active_best_quality = cq_level;
1132 } else {
1133 if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
1134 active_best_quality = get_gf_active_quality(rc, q, bit_depth);
1135 const int min_boost = get_gf_high_motion_quality(q, bit_depth);
1136 const int boost = min_boost - active_best_quality;
1137
1138 active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor);
1139 *arf_q = active_best_quality;
1140 } else {
1141 assert(rc->arf_q >= 0); // Ensure it is set to a valid value.
1142 assert(is_intrl_arf_boost);
1143 active_best_quality = rc->arf_q;
1144 int this_height = gf_group_pyramid_level(cpi);
1145 while (this_height < gf_group->pyramid_height) {
1146 active_best_quality = (active_best_quality + cq_level + 1) / 2;
1147 ++this_height;
1148 }
1149 }
1150 }
1151 } else {
1152 active_best_quality = get_gf_active_quality(rc, q, bit_depth);
1153 const int min_boost = get_gf_high_motion_quality(q, bit_depth);
1154 const int boost = min_boost - active_best_quality;
1155
1156 active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor);
1157 if (is_intrl_arf_boost) {
1158 int this_height = gf_group_pyramid_level(cpi);
1159 while (this_height < gf_group->pyramid_height) {
1160 active_best_quality =
1161 (active_best_quality + active_worst_quality + 1) / 2;
1162 ++this_height;
1163 }
1164 }
1165 }
1166 } else {
1167 if (oxcf->rc_mode == AOM_Q) {
1168 active_best_quality = cq_level;
1169 } else {
1170 active_best_quality = inter_minq[active_worst_quality];
1171
1172 // For the constrained quality mode we don't want
1173 // q to fall below the cq level.
1174 if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
1175 active_best_quality = cq_level;
1176 }
1177 }
1178 }
1179
1180 // Extension to max or min Q if undershoot or overshoot is outside
1181 // the permitted range.
1182 if (cpi->oxcf.rc_mode != AOM_Q) {
1183 if (frame_is_intra_only(cm) ||
1184 (!rc->is_src_frame_alt_ref &&
1185 (cpi->refresh_golden_frame || is_intrl_arf_boost ||
1186 cpi->refresh_alt_ref_frame))) {
1187 active_best_quality -=
1188 (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
1189 active_worst_quality += (cpi->twopass.extend_maxq / 2);
1190 } else {
1191 active_best_quality -=
1192 (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
1193 active_worst_quality += cpi->twopass.extend_maxq;
1194 }
1195 }
1196
1197 aom_clear_system_state();
1198 // Static forced key frames Q restrictions dealt with elsewhere.
1199 if (!(frame_is_intra_only(cm)) || !rc->this_key_frame_forced ||
1200 (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
1201 const int qdelta = av1_frame_type_qdelta(cpi, active_worst_quality);
1202 active_worst_quality =
1203 AOMMAX(active_worst_quality + qdelta, active_best_quality);
1204 }
1205
1206 // Modify active_best_quality for downscaled normal frames.
1207 if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) {
1208 int qdelta = av1_compute_qdelta_by_rate(
1209 rc, cm->current_frame.frame_type, active_best_quality, 2.0, bit_depth);
1210 active_best_quality =
1211 AOMMAX(active_best_quality + qdelta, rc->best_quality);
1212 }
1213
1214 active_best_quality =
1215 clamp(active_best_quality, rc->best_quality, rc->worst_quality);
1216 active_worst_quality =
1217 clamp(active_worst_quality, active_best_quality, rc->worst_quality);
1218
1219 if (oxcf->rc_mode == AOM_Q ||
1220 (frame_is_intra_only(cm) && !rc->this_key_frame_forced &&
1221 cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH &&
1222 rc->frames_to_key > 1)) {
1223 q = active_best_quality;
1224 // Special case code to try and match quality with forced key frames.
1225 } else if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
1226 // If static since last kf use better of last boosted and last kf q.
1227 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1228 q = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1229 } else {
1230 q = AOMMIN(rc->last_boosted_qindex,
1231 (active_best_quality + active_worst_quality) / 2);
1232 }
1233 } else {
1234 q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
1235 active_worst_quality, width, height);
1236 if (q > active_worst_quality) {
1237 // Special case when we are targeting the max allowed rate.
1238 if (rc->this_frame_target >= rc->max_frame_bandwidth)
1239 active_worst_quality = q;
1240 else
1241 q = active_worst_quality;
1242 }
1243 }
1244 clamp(q, active_best_quality, active_worst_quality);
1245
1246 *top_index = active_worst_quality;
1247 *bottom_index = active_best_quality;
1248
1249 assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
1250 assert(*bottom_index <= rc->worst_quality &&
1251 *bottom_index >= rc->best_quality);
1252 assert(q <= rc->worst_quality && q >= rc->best_quality);
1253 return q;
1254 }
1255
av1_rc_pick_q_and_bounds(AV1_COMP * cpi,int width,int height,int * bottom_index,int * top_index)1256 int av1_rc_pick_q_and_bounds(AV1_COMP *cpi, int width, int height,
1257 int *bottom_index, int *top_index) {
1258 int q;
1259 if (cpi->oxcf.pass == 0) {
1260 if (cpi->oxcf.rc_mode == AOM_CBR)
1261 q = rc_pick_q_and_bounds_one_pass_cbr(cpi, width, height, bottom_index,
1262 top_index);
1263 else
1264 q = rc_pick_q_and_bounds_one_pass_vbr(cpi, width, height, bottom_index,
1265 top_index);
1266 } else {
1267 assert(cpi->oxcf.pass == 2 && "invalid encode pass");
1268
1269 GF_GROUP *gf_group = &cpi->twopass.gf_group;
1270 int arf_q = -1; // Initialize to invalid value, for sanity check later.
1271
1272 q = rc_pick_q_and_bounds_two_pass(cpi, width, height, bottom_index,
1273 top_index, &arf_q);
1274
1275 if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
1276 cpi->rc.arf_q = arf_q;
1277 }
1278 }
1279
1280 return q;
1281 }
1282
av1_rc_compute_frame_size_bounds(const AV1_COMP * cpi,int frame_target,int * frame_under_shoot_limit,int * frame_over_shoot_limit)1283 void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target,
1284 int *frame_under_shoot_limit,
1285 int *frame_over_shoot_limit) {
1286 if (cpi->oxcf.rc_mode == AOM_Q) {
1287 *frame_under_shoot_limit = 0;
1288 *frame_over_shoot_limit = INT_MAX;
1289 } else {
1290 // For very small rate targets where the fractional adjustment
1291 // may be tiny make sure there is at least a minimum range.
1292 const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
1293 *frame_under_shoot_limit = AOMMAX(frame_target - tolerance - 200, 0);
1294 *frame_over_shoot_limit =
1295 AOMMIN(frame_target + tolerance + 200, cpi->rc.max_frame_bandwidth);
1296 }
1297 }
1298
rc_set_frame_target(AV1_COMP * cpi,int target,int width,int height)1299 static void rc_set_frame_target(AV1_COMP *cpi, int target, int width,
1300 int height) {
1301 const AV1_COMMON *const cm = &cpi->common;
1302 RATE_CONTROL *const rc = &cpi->rc;
1303
1304 rc->this_frame_target = target;
1305
1306 // Modify frame size target when down-scaled.
1307 if (av1_frame_scaled(cm))
1308 rc->this_frame_target =
1309 (int)(rc->this_frame_target * resize_rate_factor(cpi, width, height));
1310
1311 // Target rate per SB64 (including partial SB64s.
1312 rc->sb64_target_rate =
1313 (int)((int64_t)rc->this_frame_target * 64 * 64) / (width * height);
1314 }
1315
update_alt_ref_frame_stats(AV1_COMP * cpi)1316 static void update_alt_ref_frame_stats(AV1_COMP *cpi) {
1317 // this frame refreshes means next frames don't unless specified by user
1318 RATE_CONTROL *const rc = &cpi->rc;
1319 rc->frames_since_golden = 0;
1320
1321 // Mark the alt ref as done (setting to 0 means no further alt refs pending).
1322 rc->source_alt_ref_pending = 0;
1323
1324 // Set the alternate reference frame active flag
1325 rc->source_alt_ref_active = 1;
1326 }
1327
update_golden_frame_stats(AV1_COMP * cpi)1328 static void update_golden_frame_stats(AV1_COMP *cpi) {
1329 RATE_CONTROL *const rc = &cpi->rc;
1330 const TWO_PASS *const twopass = &cpi->twopass;
1331 const GF_GROUP *const gf_group = &twopass->gf_group;
1332 const int is_intrnl_arf =
1333 cpi->oxcf.pass == 2
1334 ? gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE
1335 : cpi->refresh_alt2_ref_frame;
1336
1337 // Update the Golden frame usage counts.
1338 // NOTE(weitinglin): If we use show_existing_frame for an OVERLAY frame,
1339 // only the virtual indices for the reference frame will be
1340 // updated and cpi->refresh_golden_frame will still be zero.
1341 if (cpi->refresh_golden_frame || rc->is_src_frame_alt_ref) {
1342 // We will not use internal overlay frames to replace the golden frame
1343 if (!rc->is_src_frame_internal_arf) {
1344 // this frame refreshes means next frames don't unless specified by user
1345 rc->frames_since_golden = 0;
1346 }
1347
1348 // If we are not using alt ref in the up and coming group clear the arf
1349 // active flag. In multi arf group case, if the index is not 0 then
1350 // we are overlaying a mid group arf so should not reset the flag.
1351 if (cpi->oxcf.pass == 2) {
1352 if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
1353 rc->source_alt_ref_active = 0;
1354 } else if (!rc->source_alt_ref_pending) {
1355 rc->source_alt_ref_active = 0;
1356 }
1357 } else if (!cpi->refresh_alt_ref_frame && !is_intrnl_arf) {
1358 rc->frames_since_golden++;
1359 }
1360 }
1361
av1_rc_postencode_update(AV1_COMP * cpi,uint64_t bytes_used)1362 void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) {
1363 const AV1_COMMON *const cm = &cpi->common;
1364 const CurrentFrame *const current_frame = &cm->current_frame;
1365 RATE_CONTROL *const rc = &cpi->rc;
1366 const TWO_PASS *const twopass = &cpi->twopass;
1367 const GF_GROUP *const gf_group = &twopass->gf_group;
1368 const int is_intrnl_arf =
1369 cpi->oxcf.pass == 2
1370 ? gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE
1371 : cpi->refresh_alt2_ref_frame;
1372
1373 const int qindex = cm->base_qindex;
1374
1375 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
1376 av1_cyclic_refresh_postencode(cpi);
1377 }
1378
1379 // Update rate control heuristics
1380 rc->projected_frame_size = (int)(bytes_used << 3);
1381
1382 // Post encode loop adjustment of Q prediction.
1383 av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
1384
1385 // Keep a record of last Q and ambient average Q.
1386 if (current_frame->frame_type == KEY_FRAME) {
1387 rc->last_q[KEY_FRAME] = qindex;
1388 rc->avg_frame_qindex[KEY_FRAME] =
1389 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
1390 } else {
1391 if (!rc->is_src_frame_alt_ref &&
1392 !(cpi->refresh_golden_frame || is_intrnl_arf ||
1393 cpi->refresh_alt_ref_frame)) {
1394 rc->last_q[INTER_FRAME] = qindex;
1395 rc->avg_frame_qindex[INTER_FRAME] =
1396 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
1397 rc->ni_frames++;
1398 rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params.bit_depth);
1399 rc->avg_q = rc->tot_q / rc->ni_frames;
1400 // Calculate the average Q for normal inter frames (not key or GFU
1401 // frames).
1402 rc->ni_tot_qi += qindex;
1403 rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
1404 }
1405 }
1406
1407 // Keep record of last boosted (KF/GF/ARF) Q value.
1408 // If the current frame is coded at a lower Q then we also update it.
1409 // If all mbs in this group are skipped only update if the Q value is
1410 // better than that already stored.
1411 // This is used to help set quality in forced key frames to reduce popping
1412 if ((qindex < rc->last_boosted_qindex) ||
1413 (current_frame->frame_type == KEY_FRAME) ||
1414 (!rc->constrained_gf_group &&
1415 (cpi->refresh_alt_ref_frame || is_intrnl_arf ||
1416 (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
1417 rc->last_boosted_qindex = qindex;
1418 }
1419 if (current_frame->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex;
1420
1421 update_buffer_level(cpi, rc->projected_frame_size);
1422
1423 // Rolling monitors of whether we are over or underspending used to help
1424 // regulate min and Max Q in two pass.
1425 if (av1_frame_scaled(cm))
1426 rc->this_frame_target =
1427 (int)(rc->this_frame_target /
1428 resize_rate_factor(cpi, cm->width, cm->height));
1429 if (current_frame->frame_type != KEY_FRAME) {
1430 rc->rolling_target_bits = ROUND_POWER_OF_TWO(
1431 rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
1432 rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
1433 rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
1434 rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
1435 rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
1436 rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
1437 rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
1438 }
1439
1440 // Actual bits spent
1441 rc->total_actual_bits += rc->projected_frame_size;
1442 rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
1443
1444 rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
1445
1446 if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
1447 (current_frame->frame_type != KEY_FRAME))
1448 // Update the alternate reference frame stats as appropriate.
1449 update_alt_ref_frame_stats(cpi);
1450 else
1451 // Update the Golden frame stats as appropriate.
1452 update_golden_frame_stats(cpi);
1453
1454 if (current_frame->frame_type == KEY_FRAME) rc->frames_since_key = 0;
1455 // if (current_frame->frame_number == 1 && cm->show_frame)
1456 /*
1457 rc->this_frame_target =
1458 (int)(rc->this_frame_target / resize_rate_factor(cpi, cm->width,
1459 cm->height));
1460 */
1461 }
1462
av1_rc_postencode_update_drop_frame(AV1_COMP * cpi)1463 void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) {
1464 // Update buffer level with zero size, update frame counters, and return.
1465 update_buffer_level(cpi, 0);
1466 cpi->rc.frames_since_key++;
1467 cpi->rc.frames_to_key--;
1468 cpi->rc.rc_2_frame = 0;
1469 cpi->rc.rc_1_frame = 0;
1470 }
1471
1472 // Use this macro to turn on/off use of alt-refs in one-pass mode.
1473 #define USE_ALTREF_FOR_ONE_PASS 1
1474
calc_pframe_target_size_one_pass_vbr(const AV1_COMP * const cpi,FRAME_UPDATE_TYPE frame_update_type)1475 static int calc_pframe_target_size_one_pass_vbr(
1476 const AV1_COMP *const cpi, FRAME_UPDATE_TYPE frame_update_type) {
1477 static const int af_ratio = 10;
1478 const RATE_CONTROL *const rc = &cpi->rc;
1479 int target;
1480 #if USE_ALTREF_FOR_ONE_PASS
1481 if (frame_update_type == KF_UPDATE || frame_update_type == GF_UPDATE ||
1482 frame_update_type == ARF_UPDATE) {
1483 target = (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
1484 (rc->baseline_gf_interval + af_ratio - 1);
1485 } else {
1486 target = (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
1487 (rc->baseline_gf_interval + af_ratio - 1);
1488 }
1489 #else
1490 target = rc->avg_frame_bandwidth;
1491 #endif
1492 return av1_rc_clamp_pframe_target_size(cpi, target, frame_update_type);
1493 }
1494
calc_iframe_target_size_one_pass_vbr(const AV1_COMP * const cpi)1495 static int calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) {
1496 static const int kf_ratio = 25;
1497 const RATE_CONTROL *rc = &cpi->rc;
1498 const int target = rc->avg_frame_bandwidth * kf_ratio;
1499 return av1_rc_clamp_iframe_target_size(cpi, target);
1500 }
1501
av1_rc_get_one_pass_vbr_params(AV1_COMP * cpi,FRAME_UPDATE_TYPE * const frame_update_type,EncodeFrameParams * const frame_params,unsigned int frame_flags)1502 void av1_rc_get_one_pass_vbr_params(AV1_COMP *cpi,
1503 FRAME_UPDATE_TYPE *const frame_update_type,
1504 EncodeFrameParams *const frame_params,
1505 unsigned int frame_flags) {
1506 AV1_COMMON *const cm = &cpi->common;
1507 RATE_CONTROL *const rc = &cpi->rc;
1508 CurrentFrame *const current_frame = &cm->current_frame;
1509 int target;
1510 int altref_enabled = is_altref_enabled(cpi);
1511 int sframe_dist = cpi->oxcf.sframe_dist;
1512 int sframe_mode = cpi->oxcf.sframe_mode;
1513 int sframe_enabled = cpi->oxcf.sframe_enabled;
1514 // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
1515 if (*frame_update_type != ARF_UPDATE &&
1516 (current_frame->frame_number == 0 || (frame_flags & FRAMEFLAGS_KEY) ||
1517 rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) {
1518 frame_params->frame_type = KEY_FRAME;
1519 rc->this_key_frame_forced =
1520 current_frame->frame_number != 0 && rc->frames_to_key == 0;
1521 rc->frames_to_key = cpi->oxcf.key_freq;
1522 rc->kf_boost = DEFAULT_KF_BOOST;
1523 rc->source_alt_ref_active = 0;
1524 } else {
1525 frame_params->frame_type = INTER_FRAME;
1526 if (sframe_enabled) {
1527 if (altref_enabled) {
1528 if (sframe_mode == 1) {
1529 // sframe_mode == 1: insert sframe if it matches altref frame.
1530
1531 if (current_frame->frame_number % sframe_dist == 0 &&
1532 current_frame->frame_number != 0 &&
1533 *frame_update_type == ARF_UPDATE) {
1534 frame_params->frame_type = S_FRAME;
1535 }
1536 } else {
1537 // sframe_mode != 1: if sframe will be inserted at the next available
1538 // altref frame
1539
1540 if (current_frame->frame_number % sframe_dist == 0 &&
1541 current_frame->frame_number != 0) {
1542 rc->sframe_due = 1;
1543 }
1544
1545 if (rc->sframe_due && *frame_update_type == ARF_UPDATE) {
1546 frame_params->frame_type = S_FRAME;
1547 rc->sframe_due = 0;
1548 }
1549 }
1550 } else {
1551 if (current_frame->frame_number % sframe_dist == 0 &&
1552 current_frame->frame_number != 0) {
1553 frame_params->frame_type = S_FRAME;
1554 }
1555 }
1556 }
1557 }
1558 if (rc->frames_till_gf_update_due == 0) {
1559 rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
1560 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1561 // NOTE: frames_till_gf_update_due must be <= frames_to_key.
1562 if (rc->frames_till_gf_update_due > rc->frames_to_key) {
1563 rc->frames_till_gf_update_due = rc->frames_to_key;
1564 rc->constrained_gf_group = 1;
1565 } else {
1566 rc->constrained_gf_group = 0;
1567 }
1568 if (*frame_update_type == LF_UPDATE) *frame_update_type = GF_UPDATE;
1569 rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
1570 rc->gfu_boost = DEFAULT_GF_BOOST;
1571 }
1572
1573 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1574 av1_cyclic_refresh_update_parameters(cpi);
1575
1576 if (frame_params->frame_type == KEY_FRAME)
1577 target = calc_iframe_target_size_one_pass_vbr(cpi);
1578 else
1579 target = calc_pframe_target_size_one_pass_vbr(cpi, *frame_update_type);
1580 rc_set_frame_target(cpi, target, cm->width, cm->height);
1581 }
1582
calc_pframe_target_size_one_pass_cbr(const AV1_COMP * cpi,FRAME_UPDATE_TYPE frame_update_type)1583 static int calc_pframe_target_size_one_pass_cbr(
1584 const AV1_COMP *cpi, FRAME_UPDATE_TYPE frame_update_type) {
1585 const AV1EncoderConfig *oxcf = &cpi->oxcf;
1586 const RATE_CONTROL *rc = &cpi->rc;
1587 const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
1588 const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
1589 int min_frame_target =
1590 AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
1591 int target;
1592
1593 if (oxcf->gf_cbr_boost_pct) {
1594 const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
1595 if (frame_update_type == GF_UPDATE || frame_update_type == OVERLAY_UPDATE) {
1596 target =
1597 (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) /
1598 (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
1599 } else {
1600 target = (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
1601 (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
1602 }
1603 } else {
1604 target = rc->avg_frame_bandwidth;
1605 }
1606
1607 if (diff > 0) {
1608 // Lower the target bandwidth for this frame.
1609 const int pct_low = (int)AOMMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
1610 target -= (target * pct_low) / 200;
1611 } else if (diff < 0) {
1612 // Increase the target bandwidth for this frame.
1613 const int pct_high =
1614 (int)AOMMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
1615 target += (target * pct_high) / 200;
1616 }
1617 if (oxcf->rc_max_inter_bitrate_pct) {
1618 const int max_rate =
1619 rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
1620 target = AOMMIN(target, max_rate);
1621 }
1622 return AOMMAX(min_frame_target, target);
1623 }
1624
calc_iframe_target_size_one_pass_cbr(const AV1_COMP * cpi)1625 static int calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) {
1626 const RATE_CONTROL *rc = &cpi->rc;
1627 int target;
1628 if (cpi->common.current_frame.frame_number == 0) {
1629 target = ((rc->starting_buffer_level / 2) > INT_MAX)
1630 ? INT_MAX
1631 : (int)(rc->starting_buffer_level / 2);
1632 } else {
1633 int kf_boost = 32;
1634 double framerate = cpi->framerate;
1635
1636 kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16));
1637 if (rc->frames_since_key < framerate / 2) {
1638 kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
1639 }
1640 target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
1641 }
1642 return av1_rc_clamp_iframe_target_size(cpi, target);
1643 }
1644
av1_rc_get_one_pass_cbr_params(AV1_COMP * cpi,FRAME_UPDATE_TYPE * const frame_update_type,EncodeFrameParams * const frame_params,unsigned int frame_flags)1645 void av1_rc_get_one_pass_cbr_params(AV1_COMP *cpi,
1646 FRAME_UPDATE_TYPE *const frame_update_type,
1647 EncodeFrameParams *const frame_params,
1648 unsigned int frame_flags) {
1649 AV1_COMMON *const cm = &cpi->common;
1650 RATE_CONTROL *const rc = &cpi->rc;
1651 CurrentFrame *const current_frame = &cm->current_frame;
1652 int target;
1653 // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
1654 if ((current_frame->frame_number == 0 || (frame_flags & FRAMEFLAGS_KEY) ||
1655 rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) {
1656 frame_params->frame_type = KEY_FRAME;
1657 rc->this_key_frame_forced =
1658 current_frame->frame_number != 0 && rc->frames_to_key == 0;
1659 rc->frames_to_key = cpi->oxcf.key_freq;
1660 rc->kf_boost = DEFAULT_KF_BOOST;
1661 rc->source_alt_ref_active = 0;
1662 } else {
1663 frame_params->frame_type = INTER_FRAME;
1664 }
1665 if (rc->frames_till_gf_update_due == 0) {
1666 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1667 av1_cyclic_refresh_set_golden_update(cpi);
1668 else
1669 rc->baseline_gf_interval =
1670 (rc->min_gf_interval + rc->max_gf_interval) / 2;
1671 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1672 // NOTE: frames_till_gf_update_due must be <= frames_to_key.
1673 if (rc->frames_till_gf_update_due > rc->frames_to_key)
1674 rc->frames_till_gf_update_due = rc->frames_to_key;
1675 if (*frame_update_type == LF_UPDATE) *frame_update_type = GF_UPDATE;
1676 rc->gfu_boost = DEFAULT_GF_BOOST;
1677 }
1678
1679 // Any update/change of global cyclic refresh parameters (amount/delta-qp)
1680 // should be done here, before the frame qp is selected.
1681 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1682 av1_cyclic_refresh_update_parameters(cpi);
1683
1684 if (frame_params->frame_type == KEY_FRAME)
1685 target = calc_iframe_target_size_one_pass_cbr(cpi);
1686 else
1687 target = calc_pframe_target_size_one_pass_cbr(cpi, *frame_update_type);
1688
1689 rc_set_frame_target(cpi, target, cm->width, cm->height);
1690 // TODO(afergs): Decide whether to scale up, down, or not at all
1691 }
1692
av1_find_qindex(double desired_q,aom_bit_depth_t bit_depth,int best_qindex,int worst_qindex)1693 int av1_find_qindex(double desired_q, aom_bit_depth_t bit_depth,
1694 int best_qindex, int worst_qindex) {
1695 assert(best_qindex <= worst_qindex);
1696 int low = best_qindex;
1697 int high = worst_qindex;
1698 while (low < high) {
1699 const int mid = (low + high) >> 1;
1700 const double mid_q = av1_convert_qindex_to_q(mid, bit_depth);
1701 if (mid_q < desired_q) {
1702 low = mid + 1;
1703 } else {
1704 high = mid;
1705 }
1706 }
1707 assert(low == high);
1708 assert(av1_convert_qindex_to_q(low, bit_depth) >= desired_q ||
1709 low == worst_qindex);
1710 return low;
1711 }
1712
av1_compute_qdelta(const RATE_CONTROL * rc,double qstart,double qtarget,aom_bit_depth_t bit_depth)1713 int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
1714 aom_bit_depth_t bit_depth) {
1715 const int start_index =
1716 av1_find_qindex(qstart, bit_depth, rc->best_quality, rc->worst_quality);
1717 const int target_index =
1718 av1_find_qindex(qtarget, bit_depth, rc->best_quality, rc->worst_quality);
1719 return target_index - start_index;
1720 }
1721
1722 // Find q_index for the desired_bits_per_mb, within [best_qindex, worst_qindex],
1723 // assuming 'correction_factor' is 1.0.
1724 // To be precise, 'q_index' is the smallest integer, for which the corresponding
1725 // bits per mb <= desired_bits_per_mb.
1726 // If no such q index is found, returns 'worst_qindex'.
find_qindex_by_rate(int desired_bits_per_mb,aom_bit_depth_t bit_depth,FRAME_TYPE frame_type,int best_qindex,int worst_qindex)1727 static int find_qindex_by_rate(int desired_bits_per_mb,
1728 aom_bit_depth_t bit_depth, FRAME_TYPE frame_type,
1729 int best_qindex, int worst_qindex) {
1730 assert(best_qindex <= worst_qindex);
1731 int low = best_qindex;
1732 int high = worst_qindex;
1733 while (low < high) {
1734 const int mid = (low + high) >> 1;
1735 const int mid_bits_per_mb =
1736 av1_rc_bits_per_mb(frame_type, mid, 1.0, bit_depth);
1737 if (mid_bits_per_mb > desired_bits_per_mb) {
1738 low = mid + 1;
1739 } else {
1740 high = mid;
1741 }
1742 }
1743 assert(low == high);
1744 assert(av1_rc_bits_per_mb(frame_type, low, 1.0, bit_depth) <=
1745 desired_bits_per_mb ||
1746 low == worst_qindex);
1747 return low;
1748 }
1749
av1_compute_qdelta_by_rate(const RATE_CONTROL * rc,FRAME_TYPE frame_type,int qindex,double rate_target_ratio,aom_bit_depth_t bit_depth)1750 int av1_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
1751 int qindex, double rate_target_ratio,
1752 aom_bit_depth_t bit_depth) {
1753 // Look up the current projected bits per block for the base index
1754 const int base_bits_per_mb =
1755 av1_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
1756
1757 // Find the target bits per mb based on the base value and given ratio.
1758 const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
1759
1760 const int target_index =
1761 find_qindex_by_rate(target_bits_per_mb, bit_depth, frame_type,
1762 rc->best_quality, rc->worst_quality);
1763 return target_index - qindex;
1764 }
1765
av1_rc_set_gf_interval_range(const AV1_COMP * const cpi,RATE_CONTROL * const rc)1766 void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi,
1767 RATE_CONTROL *const rc) {
1768 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
1769
1770 // Special case code for 1 pass fixed Q mode tests
1771 if ((oxcf->pass == 0) && (oxcf->rc_mode == AOM_Q)) {
1772 rc->max_gf_interval = FIXED_GF_INTERVAL;
1773 rc->min_gf_interval = FIXED_GF_INTERVAL;
1774 rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
1775 } else {
1776 // Set Maximum gf/arf interval
1777 rc->max_gf_interval = oxcf->max_gf_interval;
1778 rc->min_gf_interval = oxcf->min_gf_interval;
1779 if (rc->min_gf_interval == 0)
1780 rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
1781 oxcf->width, oxcf->height, cpi->framerate);
1782 if (rc->max_gf_interval == 0)
1783 rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
1784 cpi->framerate, rc->min_gf_interval);
1785
1786 // Extended max interval for genuinely static scenes like slide shows.
1787 rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
1788
1789 if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
1790 rc->max_gf_interval = rc->static_scene_max_gf_interval;
1791
1792 // Clamp min to max
1793 rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval);
1794 }
1795 }
1796
av1_rc_update_framerate(AV1_COMP * cpi,int width,int height)1797 void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) {
1798 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
1799 RATE_CONTROL *const rc = &cpi->rc;
1800 int vbr_max_bits;
1801 const int MBs = av1_get_MBs(width, height);
1802
1803 rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
1804 rc->min_frame_bandwidth =
1805 (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100);
1806
1807 rc->min_frame_bandwidth =
1808 AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
1809
1810 // A maximum bitrate for a frame is defined.
1811 // The baseline for this aligns with HW implementations that
1812 // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
1813 // per 16x16 MB (averaged over a frame). However this limit is extended if
1814 // a very high rate is given on the command line or the the rate cannnot
1815 // be acheived because of a user specificed max q (e.g. when the user
1816 // specifies lossless encode.
1817 vbr_max_bits =
1818 (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) /
1819 100);
1820 rc->max_frame_bandwidth =
1821 AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
1822
1823 av1_rc_set_gf_interval_range(cpi, rc);
1824 }
1825
1826 #define VBR_PCT_ADJUSTMENT_LIMIT 50
1827 // For VBR...adjustment to the frame target based on error from previous frames
vbr_rate_correction(AV1_COMP * cpi,int * this_frame_target)1828 static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) {
1829 RATE_CONTROL *const rc = &cpi->rc;
1830 int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
1831 int max_delta;
1832 double position_factor = 1.0;
1833
1834 // How far through the clip are we.
1835 // This number is used to damp the per frame rate correction.
1836 // Range 0 - 1.0
1837 if (cpi->twopass.total_stats.count != 0.) {
1838 position_factor = sqrt((double)cpi->common.current_frame.frame_number /
1839 cpi->twopass.total_stats.count);
1840 }
1841 max_delta = (int)(position_factor *
1842 ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
1843
1844 // vbr_bits_off_target > 0 means we have extra bits to spend
1845 if (vbr_bits_off_target > 0) {
1846 *this_frame_target += (vbr_bits_off_target > max_delta)
1847 ? max_delta
1848 : (int)vbr_bits_off_target;
1849 } else {
1850 *this_frame_target -= (vbr_bits_off_target < -max_delta)
1851 ? max_delta
1852 : (int)-vbr_bits_off_target;
1853 }
1854
1855 // Fast redistribution of bits arising from massive local undershoot.
1856 // Dont do it for kf,arf,gf or overlay frames.
1857 if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
1858 rc->vbr_bits_off_target_fast) {
1859 int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target);
1860 int fast_extra_bits;
1861 fast_extra_bits = (int)AOMMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
1862 fast_extra_bits = (int)AOMMIN(
1863 fast_extra_bits,
1864 AOMMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
1865 *this_frame_target += (int)fast_extra_bits;
1866 rc->vbr_bits_off_target_fast -= fast_extra_bits;
1867 }
1868 }
1869
av1_set_target_rate(AV1_COMP * cpi,int width,int height)1870 void av1_set_target_rate(AV1_COMP *cpi, int width, int height) {
1871 RATE_CONTROL *const rc = &cpi->rc;
1872 int target_rate = rc->base_frame_target;
1873
1874 // Correction to rate target based on prior over or under shoot.
1875 if (cpi->oxcf.rc_mode == AOM_VBR || cpi->oxcf.rc_mode == AOM_CQ)
1876 vbr_rate_correction(cpi, &target_rate);
1877 rc_set_frame_target(cpi, target_rate, width, height);
1878 }
1879