1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "av1/encoder/av1_multi_thread.h"
13 #include "av1/encoder/encodeframe.h"
14 #include "av1/encoder/encoder.h"
15 #include "av1/encoder/ethread.h"
16 #include "av1/encoder/rdopt.h"
17 #include "aom_dsp/aom_dsp_common.h"
18
accumulate_rd_opt(ThreadData * td,ThreadData * td_t)19 static void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
20 for (int i = 0; i < REFERENCE_MODES; i++)
21 td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i];
22
23 for (int i = 0; i < REF_FRAMES; i++)
24 td->rd_counts.global_motion_used[i] +=
25 td_t->rd_counts.global_motion_used[i];
26
27 td->rd_counts.compound_ref_used_flag |=
28 td_t->rd_counts.compound_ref_used_flag;
29 td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag;
30 }
31
update_delta_lf_for_row_mt(AV1_COMP * cpi)32 static void update_delta_lf_for_row_mt(AV1_COMP *cpi) {
33 AV1_COMMON *cm = &cpi->common;
34 MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
35 const int mib_size = cm->seq_params.mib_size;
36 const int frame_lf_count =
37 av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
38 for (int row = 0; row < cm->tile_rows; row++) {
39 for (int col = 0; col < cm->tile_cols; col++) {
40 TileDataEnc *tile_data = &cpi->tile_data[row * cm->tile_cols + col];
41 const TileInfo *const tile_info = &tile_data->tile_info;
42 for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
43 mi_row += mib_size) {
44 if (mi_row == tile_info->mi_row_start)
45 av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
46 for (int mi_col = tile_info->mi_col_start;
47 mi_col < tile_info->mi_col_end; mi_col += mib_size) {
48 const int idx_str = cm->mi_stride * mi_row + mi_col;
49 MB_MODE_INFO **mi = cm->mi_grid_visible + idx_str;
50 MB_MODE_INFO *mbmi = mi[0];
51 if (mbmi->skip == 1 && (mbmi->sb_type == cm->seq_params.sb_size)) {
52 for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
53 mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
54 mbmi->delta_lf_from_base = xd->delta_lf_from_base;
55 } else {
56 if (cm->delta_q_info.delta_lf_multi) {
57 for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
58 xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
59 } else {
60 xd->delta_lf_from_base = mbmi->delta_lf_from_base;
61 }
62 }
63 }
64 }
65 }
66 }
67 }
68
av1_row_mt_sync_read_dummy(struct AV1RowMTSyncData * const row_mt_sync,int r,int c)69 void av1_row_mt_sync_read_dummy(struct AV1RowMTSyncData *const row_mt_sync,
70 int r, int c) {
71 (void)row_mt_sync;
72 (void)r;
73 (void)c;
74 return;
75 }
76
av1_row_mt_sync_write_dummy(struct AV1RowMTSyncData * const row_mt_sync,int r,int c,const int cols)77 void av1_row_mt_sync_write_dummy(struct AV1RowMTSyncData *const row_mt_sync,
78 int r, int c, const int cols) {
79 (void)row_mt_sync;
80 (void)r;
81 (void)c;
82 (void)cols;
83 return;
84 }
85
av1_row_mt_sync_read(AV1RowMTSync * const row_mt_sync,int r,int c)86 void av1_row_mt_sync_read(AV1RowMTSync *const row_mt_sync, int r, int c) {
87 #if CONFIG_MULTITHREAD
88 const int nsync = row_mt_sync->sync_range;
89
90 if (r) {
91 pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1];
92 pthread_mutex_lock(mutex);
93
94 while (c > row_mt_sync->cur_col[r - 1] - nsync) {
95 pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex);
96 }
97 pthread_mutex_unlock(mutex);
98 }
99 #else
100 (void)row_mt_sync;
101 (void)r;
102 (void)c;
103 #endif // CONFIG_MULTITHREAD
104 }
105
av1_row_mt_sync_write(AV1RowMTSync * const row_mt_sync,int r,int c,const int cols)106 void av1_row_mt_sync_write(AV1RowMTSync *const row_mt_sync, int r, int c,
107 const int cols) {
108 #if CONFIG_MULTITHREAD
109 const int nsync = row_mt_sync->sync_range;
110 int cur;
111 // Only signal when there are enough encoded blocks for next row to run.
112 int sig = 1;
113
114 if (c < cols - 1) {
115 cur = c;
116 if (c % nsync) sig = 0;
117 } else {
118 cur = cols + nsync;
119 }
120
121 if (sig) {
122 pthread_mutex_lock(&row_mt_sync->mutex_[r]);
123
124 row_mt_sync->cur_col[r] = cur;
125
126 pthread_cond_signal(&row_mt_sync->cond_[r]);
127 pthread_mutex_unlock(&row_mt_sync->mutex_[r]);
128 }
129 #else
130 (void)row_mt_sync;
131 (void)r;
132 (void)c;
133 (void)cols;
134 #endif // CONFIG_MULTITHREAD
135 }
136
137 // Allocate memory for row synchronization
av1_row_mt_sync_mem_alloc(AV1RowMTSync * row_mt_sync,AV1_COMMON * cm,int rows)138 void av1_row_mt_sync_mem_alloc(AV1RowMTSync *row_mt_sync, AV1_COMMON *cm,
139 int rows) {
140 row_mt_sync->rows = rows;
141 #if CONFIG_MULTITHREAD
142 {
143 int i;
144
145 CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
146 aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
147 if (row_mt_sync->mutex_) {
148 for (i = 0; i < rows; ++i) {
149 pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
150 }
151 }
152
153 CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
154 aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
155 if (row_mt_sync->cond_) {
156 for (i = 0; i < rows; ++i) {
157 pthread_cond_init(&row_mt_sync->cond_[i], NULL);
158 }
159 }
160 }
161 #endif // CONFIG_MULTITHREAD
162
163 CHECK_MEM_ERROR(cm, row_mt_sync->cur_col,
164 aom_malloc(sizeof(*row_mt_sync->cur_col) * rows));
165
166 // Set up nsync.
167 row_mt_sync->sync_range = 1;
168 }
169
170 // Deallocate row based multi-threading synchronization related mutex and data
av1_row_mt_sync_mem_dealloc(AV1RowMTSync * row_mt_sync)171 void av1_row_mt_sync_mem_dealloc(AV1RowMTSync *row_mt_sync) {
172 if (row_mt_sync != NULL) {
173 #if CONFIG_MULTITHREAD
174 int i;
175
176 if (row_mt_sync->mutex_ != NULL) {
177 for (i = 0; i < row_mt_sync->rows; ++i) {
178 pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
179 }
180 aom_free(row_mt_sync->mutex_);
181 }
182 if (row_mt_sync->cond_ != NULL) {
183 for (i = 0; i < row_mt_sync->rows; ++i) {
184 pthread_cond_destroy(&row_mt_sync->cond_[i]);
185 }
186 aom_free(row_mt_sync->cond_);
187 }
188 #endif // CONFIG_MULTITHREAD
189 aom_free(row_mt_sync->cur_col);
190 // clear the structure as the source of this call may be dynamic change
191 // in tiles in which case this call will be followed by an _alloc()
192 // which may fail.
193 av1_zero(*row_mt_sync);
194 }
195 }
196
assign_tile_to_thread(MultiThreadHandle * multi_thread_ctxt,int num_tiles,int num_workers)197 static void assign_tile_to_thread(MultiThreadHandle *multi_thread_ctxt,
198 int num_tiles, int num_workers) {
199 int tile_id = 0;
200 int i;
201
202 for (i = 0; i < num_workers; i++) {
203 multi_thread_ctxt->thread_id_to_tile_id[i] = tile_id++;
204 if (tile_id == num_tiles) tile_id = 0;
205 }
206 }
207
get_next_job(AV1_COMP * const cpi,int * current_mi_row,int cur_tile_id)208 static int get_next_job(AV1_COMP *const cpi, int *current_mi_row,
209 int cur_tile_id) {
210 AV1_COMMON *const cm = &cpi->common;
211 TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
212 AV1RowMTInfo *row_mt_info = &this_tile->row_mt_info;
213
214 if (row_mt_info->current_mi_row < this_tile->tile_info.mi_row_end) {
215 *current_mi_row = row_mt_info->current_mi_row;
216 row_mt_info->num_threads_working++;
217 row_mt_info->current_mi_row += cm->seq_params.mib_size;
218 return 1;
219 }
220 return 0;
221 }
222
switch_tile_and_get_next_job(AV1_COMP * const cpi,int * cur_tile_id,int * current_mi_row,int * end_of_frame)223 static void switch_tile_and_get_next_job(AV1_COMP *const cpi, int *cur_tile_id,
224 int *current_mi_row,
225 int *end_of_frame) {
226 AV1_COMMON *const cm = &cpi->common;
227 const int tile_cols = cm->tile_cols;
228 const int tile_rows = cm->tile_rows;
229
230 int tile_id = -1; // Stores the tile ID with minimum proc done
231 int max_mis_to_encode = 0;
232 int min_num_threads_working = INT_MAX;
233
234 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
235 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
236 int tile_index = tile_row * tile_cols + tile_col;
237 TileDataEnc *this_tile = &cpi->tile_data[tile_index];
238 AV1RowMTInfo *row_mt_info = &this_tile->row_mt_info;
239 int num_sb_rows_in_tile =
240 av1_get_sb_rows_in_tile(cm, this_tile->tile_info);
241 int num_sb_cols_in_tile =
242 av1_get_sb_cols_in_tile(cm, this_tile->tile_info);
243 int theoretical_limit_on_threads =
244 AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile);
245 int num_threads_working = row_mt_info->num_threads_working;
246 if (num_threads_working < theoretical_limit_on_threads) {
247 int num_mis_to_encode =
248 this_tile->tile_info.mi_row_end - row_mt_info->current_mi_row;
249
250 // Tile to be processed by this thread is selected on the basis of
251 // availability of jobs:
252 // 1) If jobs are available, tile to be processed is chosen on the
253 // basis of minimum number of threads working for that tile. If two or
254 // more tiles have same number of threads working for them, then the
255 // tile with maximum number of jobs available will be chosen.
256 // 2) If no jobs are available, then end_of_frame is reached.
257 if (num_mis_to_encode > 0) {
258 if (num_threads_working < min_num_threads_working) {
259 min_num_threads_working = num_threads_working;
260 max_mis_to_encode = 0;
261 }
262 if (num_threads_working == min_num_threads_working &&
263 num_mis_to_encode > max_mis_to_encode) {
264 tile_id = tile_index;
265 max_mis_to_encode = num_mis_to_encode;
266 }
267 }
268 }
269 }
270 }
271 if (tile_id == -1) {
272 *end_of_frame = 1;
273 } else {
274 // Update the cur ID to the next tile ID that will be processed,
275 // which will be the least processed tile
276 *cur_tile_id = tile_id;
277 get_next_job(cpi, current_mi_row, *cur_tile_id);
278 }
279 }
280
enc_row_mt_worker_hook(void * arg1,void * unused)281 static int enc_row_mt_worker_hook(void *arg1, void *unused) {
282 EncWorkerData *const thread_data = (EncWorkerData *)arg1;
283 AV1_COMP *const cpi = thread_data->cpi;
284 AV1_COMMON *const cm = &cpi->common;
285
286 MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt;
287 int thread_id = thread_data->thread_id;
288 int cur_tile_id = multi_thread_ctxt->thread_id_to_tile_id[thread_id];
289 (void)unused;
290
291 assert(cur_tile_id != -1);
292
293 int end_of_frame = 0;
294 while (1) {
295 int current_mi_row = -1;
296 #if CONFIG_MULTITHREAD
297 pthread_mutex_lock(cpi->row_mt_mutex_);
298 #endif
299 if (!get_next_job(cpi, ¤t_mi_row, cur_tile_id)) {
300 // No jobs are available for the current tile. Query for the status of
301 // other tiles and get the next job if available
302 switch_tile_and_get_next_job(cpi, &cur_tile_id, ¤t_mi_row,
303 &end_of_frame);
304 }
305 #if CONFIG_MULTITHREAD
306 pthread_mutex_unlock(cpi->row_mt_mutex_);
307 #endif
308 if (end_of_frame == 1) break;
309
310 TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
311 int tile_row = this_tile->tile_info.tile_row;
312 int tile_col = this_tile->tile_info.tile_col;
313
314 assert(current_mi_row != -1 &&
315 current_mi_row <= this_tile->tile_info.mi_row_end);
316
317 ThreadData *td = thread_data->td;
318
319 td->mb.e_mbd.tile_ctx = td->tctx;
320 td->mb.tile_pb_ctx = &this_tile->tctx;
321 if (this_tile->allow_update_cdf) {
322 td->mb.row_ctx = this_tile->row_ctx;
323 if (current_mi_row == this_tile->tile_info.mi_row_start)
324 memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
325 } else {
326 memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
327 }
328
329 av1_init_above_context(cm, &td->mb.e_mbd, tile_row);
330
331 // Disable exhaustive search speed features for row based multi-threading of
332 // encoder.
333 td->mb.m_search_count_ptr = NULL;
334 td->mb.ex_search_count_ptr = NULL;
335
336 cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params);
337 av1_crc32c_calculator_init(&td->mb.mb_rd_record.crc_calculator);
338
339 av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row);
340 #if CONFIG_MULTITHREAD
341 pthread_mutex_lock(cpi->row_mt_mutex_);
342 #endif
343 this_tile->row_mt_info.num_threads_working--;
344 #if CONFIG_MULTITHREAD
345 pthread_mutex_unlock(cpi->row_mt_mutex_);
346 #endif
347 }
348
349 return 1;
350 }
351
enc_worker_hook(void * arg1,void * unused)352 static int enc_worker_hook(void *arg1, void *unused) {
353 EncWorkerData *const thread_data = (EncWorkerData *)arg1;
354 AV1_COMP *const cpi = thread_data->cpi;
355 const AV1_COMMON *const cm = &cpi->common;
356 const int tile_cols = cm->tile_cols;
357 const int tile_rows = cm->tile_rows;
358 int t;
359
360 (void)unused;
361
362 for (t = thread_data->start; t < tile_rows * tile_cols;
363 t += cpi->num_workers) {
364 int tile_row = t / tile_cols;
365 int tile_col = t % tile_cols;
366
367 TileDataEnc *const this_tile =
368 &cpi->tile_data[tile_row * cm->tile_cols + tile_col];
369 thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
370 thread_data->td->mb.tile_pb_ctx = &this_tile->tctx;
371 av1_encode_tile(cpi, thread_data->td, tile_row, tile_col);
372 }
373
374 return 1;
375 }
376
create_enc_workers(AV1_COMP * cpi,int num_workers)377 static void create_enc_workers(AV1_COMP *cpi, int num_workers) {
378 AV1_COMMON *const cm = &cpi->common;
379 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
380
381 CHECK_MEM_ERROR(cm, cpi->workers,
382 aom_malloc(num_workers * sizeof(*cpi->workers)));
383
384 CHECK_MEM_ERROR(cm, cpi->tile_thr_data,
385 aom_calloc(num_workers, sizeof(*cpi->tile_thr_data)));
386
387 #if CONFIG_MULTITHREAD
388 if (cpi->row_mt == 1) {
389 if (cpi->row_mt_mutex_ == NULL) {
390 CHECK_MEM_ERROR(cm, cpi->row_mt_mutex_,
391 aom_malloc(sizeof(*(cpi->row_mt_mutex_))));
392 if (cpi->row_mt_mutex_) pthread_mutex_init(cpi->row_mt_mutex_, NULL);
393 }
394 }
395 #endif
396
397 for (int i = num_workers - 1; i >= 0; i--) {
398 AVxWorker *const worker = &cpi->workers[i];
399 EncWorkerData *const thread_data = &cpi->tile_thr_data[i];
400
401 ++cpi->num_workers;
402 winterface->init(worker);
403 worker->thread_name = "aom enc worker";
404
405 thread_data->cpi = cpi;
406 thread_data->thread_id = i;
407
408 if (i > 0) {
409 // Allocate thread data.
410 CHECK_MEM_ERROR(cm, thread_data->td,
411 aom_memalign(32, sizeof(*thread_data->td)));
412 av1_zero(*thread_data->td);
413
414 // Set up pc_tree.
415 thread_data->td->pc_tree = NULL;
416 av1_setup_pc_tree(cm, thread_data->td);
417
418 CHECK_MEM_ERROR(cm, thread_data->td->above_pred_buf,
419 (uint8_t *)aom_memalign(
420 16, MAX_MB_PLANE * MAX_SB_SQUARE *
421 sizeof(*thread_data->td->above_pred_buf)));
422 CHECK_MEM_ERROR(cm, thread_data->td->left_pred_buf,
423 (uint8_t *)aom_memalign(
424 16, MAX_MB_PLANE * MAX_SB_SQUARE *
425 sizeof(*thread_data->td->left_pred_buf)));
426
427 CHECK_MEM_ERROR(
428 cm, thread_data->td->wsrc_buf,
429 (int32_t *)aom_memalign(
430 16, MAX_SB_SQUARE * sizeof(*thread_data->td->wsrc_buf)));
431
432 CHECK_MEM_ERROR(cm, thread_data->td->inter_modes_info,
433 (InterModesInfo *)aom_malloc(
434 sizeof(*thread_data->td->inter_modes_info)));
435
436 for (int x = 0; x < 2; x++)
437 for (int y = 0; y < 2; y++)
438 CHECK_MEM_ERROR(
439 cm, thread_data->td->hash_value_buffer[x][y],
440 (uint32_t *)aom_malloc(
441 AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
442 sizeof(*thread_data->td->hash_value_buffer[0][0])));
443
444 CHECK_MEM_ERROR(
445 cm, thread_data->td->mask_buf,
446 (int32_t *)aom_memalign(
447 16, MAX_SB_SQUARE * sizeof(*thread_data->td->mask_buf)));
448 // Allocate frame counters in thread data.
449 CHECK_MEM_ERROR(cm, thread_data->td->counts,
450 aom_calloc(1, sizeof(*thread_data->td->counts)));
451
452 // Allocate buffers used by palette coding mode.
453 CHECK_MEM_ERROR(
454 cm, thread_data->td->palette_buffer,
455 aom_memalign(16, sizeof(*thread_data->td->palette_buffer)));
456
457 CHECK_MEM_ERROR(
458 cm, thread_data->td->tmp_conv_dst,
459 aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
460 sizeof(*thread_data->td->tmp_conv_dst)));
461 for (int j = 0; j < 2; ++j) {
462 CHECK_MEM_ERROR(
463 cm, thread_data->td->tmp_obmc_bufs[j],
464 aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
465 sizeof(*thread_data->td->tmp_obmc_bufs[j])));
466 }
467
468 // Create threads
469 if (!winterface->reset(worker))
470 aom_internal_error(&cm->error, AOM_CODEC_ERROR,
471 "Tile encoder thread creation failed");
472 } else {
473 // Main thread acts as a worker and uses the thread data in cpi.
474 thread_data->td = &cpi->td;
475 }
476 if (cpi->row_mt == 1)
477 CHECK_MEM_ERROR(
478 cm, thread_data->td->tctx,
479 (FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx)));
480 winterface->sync(worker);
481 }
482 }
483
launch_enc_workers(AV1_COMP * cpi,int num_workers)484 static void launch_enc_workers(AV1_COMP *cpi, int num_workers) {
485 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
486 // Encode a frame
487 for (int i = num_workers - 1; i >= 0; i--) {
488 AVxWorker *const worker = &cpi->workers[i];
489 EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
490
491 // Set the starting tile for each thread.
492 thread_data->start = i;
493
494 if (i == 0)
495 winterface->execute(worker);
496 else
497 winterface->launch(worker);
498 }
499 }
500
sync_enc_workers(AV1_COMP * cpi,int num_workers)501 static void sync_enc_workers(AV1_COMP *cpi, int num_workers) {
502 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
503 int had_error = 0;
504
505 // Encoding ends.
506 for (int i = num_workers - 1; i >= 0; i--) {
507 AVxWorker *const worker = &cpi->workers[i];
508 had_error |= !winterface->sync(worker);
509 }
510
511 if (had_error)
512 aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR,
513 "Failed to encode tile data");
514 }
515
accumulate_counters_enc_workers(AV1_COMP * cpi,int num_workers)516 static void accumulate_counters_enc_workers(AV1_COMP *cpi, int num_workers) {
517 for (int i = num_workers - 1; i >= 0; i--) {
518 AVxWorker *const worker = &cpi->workers[i];
519 EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
520 cpi->intrabc_used |= thread_data->td->intrabc_used;
521 // Accumulate counters.
522 if (i > 0) {
523 av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts);
524 accumulate_rd_opt(&cpi->td, thread_data->td);
525 cpi->td.mb.txb_split_count += thread_data->td->mb.txb_split_count;
526 #if CONFIG_SPEED_STATS
527 cpi->td.mb.tx_search_count += thread_data->td->mb.tx_search_count;
528 #endif // CONFIG_SPEED_STATS
529 }
530 }
531 }
532
prepare_enc_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)533 static void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
534 int num_workers) {
535 for (int i = num_workers - 1; i >= 0; i--) {
536 AVxWorker *const worker = &cpi->workers[i];
537 EncWorkerData *const thread_data = &cpi->tile_thr_data[i];
538
539 worker->hook = hook;
540 worker->data1 = thread_data;
541 worker->data2 = NULL;
542
543 thread_data->td->intrabc_used = 0;
544
545 // Before encoding a frame, copy the thread data from cpi.
546 if (thread_data->td != &cpi->td) {
547 thread_data->td->mb = cpi->td.mb;
548 thread_data->td->rd_counts = cpi->td.rd_counts;
549 thread_data->td->mb.above_pred_buf = thread_data->td->above_pred_buf;
550 thread_data->td->mb.left_pred_buf = thread_data->td->left_pred_buf;
551 thread_data->td->mb.wsrc_buf = thread_data->td->wsrc_buf;
552
553 thread_data->td->mb.inter_modes_info = thread_data->td->inter_modes_info;
554 for (int x = 0; x < 2; x++) {
555 for (int y = 0; y < 2; y++) {
556 memcpy(thread_data->td->hash_value_buffer[x][y],
557 cpi->td.mb.hash_value_buffer[x][y],
558 AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
559 sizeof(*thread_data->td->hash_value_buffer[0][0]));
560 thread_data->td->mb.hash_value_buffer[x][y] =
561 thread_data->td->hash_value_buffer[x][y];
562 }
563 }
564 thread_data->td->mb.mask_buf = thread_data->td->mask_buf;
565 }
566 if (thread_data->td->counts != &cpi->counts) {
567 memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts));
568 }
569
570 if (i > 0) {
571 thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer;
572 thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
573 for (int j = 0; j < 2; ++j) {
574 thread_data->td->mb.tmp_obmc_bufs[j] =
575 thread_data->td->tmp_obmc_bufs[j];
576 }
577
578 thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
579 for (int j = 0; j < 2; ++j) {
580 thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] =
581 thread_data->td->mb.tmp_obmc_bufs[j];
582 }
583 }
584 }
585 }
586
av1_encode_tiles_mt(AV1_COMP * cpi)587 void av1_encode_tiles_mt(AV1_COMP *cpi) {
588 AV1_COMMON *const cm = &cpi->common;
589 const int tile_cols = cm->tile_cols;
590 const int tile_rows = cm->tile_rows;
591 int num_workers = AOMMIN(cpi->oxcf.max_threads, tile_cols * tile_rows);
592
593 if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows)
594 av1_alloc_tile_data(cpi);
595
596 av1_init_tile_data(cpi);
597 // Only run once to create threads and allocate thread data.
598 if (cpi->num_workers == 0) {
599 create_enc_workers(cpi, num_workers);
600 } else {
601 num_workers = AOMMIN(num_workers, cpi->num_workers);
602 }
603 prepare_enc_workers(cpi, enc_worker_hook, num_workers);
604 launch_enc_workers(cpi, num_workers);
605 sync_enc_workers(cpi, num_workers);
606 accumulate_counters_enc_workers(cpi, num_workers);
607 }
608
609 // Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
610 // members, so we treat it as an array, and sum over the whole length.
av1_accumulate_frame_counts(FRAME_COUNTS * acc_counts,const FRAME_COUNTS * counts)611 void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
612 const FRAME_COUNTS *counts) {
613 unsigned int *const acc = (unsigned int *)acc_counts;
614 const unsigned int *const cnt = (const unsigned int *)counts;
615
616 const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);
617
618 for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i];
619 }
620
av1_encode_tiles_row_mt(AV1_COMP * cpi)621 void av1_encode_tiles_row_mt(AV1_COMP *cpi) {
622 AV1_COMMON *const cm = &cpi->common;
623 const int tile_cols = cm->tile_cols;
624 const int tile_rows = cm->tile_rows;
625 MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt;
626 int num_workers = 0;
627 int total_num_threads_row_mt = 0;
628 int max_sb_rows = 0;
629
630 if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
631 av1_row_mt_mem_dealloc(cpi);
632 av1_alloc_tile_data(cpi);
633 }
634
635 av1_init_tile_data(cpi);
636
637 for (int row = 0; row < tile_rows; row++) {
638 for (int col = 0; col < tile_cols; col++) {
639 TileDataEnc *tile_data = &cpi->tile_data[row * cm->tile_cols + col];
640 int num_sb_rows_in_tile =
641 av1_get_sb_rows_in_tile(cm, tile_data->tile_info);
642 int num_sb_cols_in_tile =
643 av1_get_sb_cols_in_tile(cm, tile_data->tile_info);
644 total_num_threads_row_mt +=
645 AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile);
646 max_sb_rows = AOMMAX(max_sb_rows, num_sb_rows_in_tile);
647 }
648 }
649 // TODO(ravi.chaudhary@ittiam.com): Currently the percentage of
650 // post-processing stages in encoder is quiet low, so limiting the number of
651 // threads to the theoretical limit in row-mt does not have much impact on
652 // post-processing multi-threading stage. Need to revisit this when
653 // post-processing time starts shooting up.
654 num_workers = AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt);
655
656 if (multi_thread_ctxt->allocated_tile_cols != tile_cols ||
657 multi_thread_ctxt->allocated_tile_rows != tile_rows ||
658 multi_thread_ctxt->allocated_sb_rows != max_sb_rows) {
659 av1_row_mt_mem_dealloc(cpi);
660 av1_row_mt_mem_alloc(cpi, max_sb_rows);
661 }
662
663 memset(multi_thread_ctxt->thread_id_to_tile_id, -1,
664 sizeof(*multi_thread_ctxt->thread_id_to_tile_id) * MAX_NUM_THREADS);
665
666 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
667 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
668 int tile_id = tile_row * tile_cols + tile_col;
669 TileDataEnc *this_tile = &cpi->tile_data[tile_id];
670
671 // Initialize cur_col to -1 for all rows.
672 memset(this_tile->row_mt_sync.cur_col, -1,
673 sizeof(*this_tile->row_mt_sync.cur_col) * max_sb_rows);
674 this_tile->row_mt_info.current_mi_row = this_tile->tile_info.mi_row_start;
675 this_tile->row_mt_info.num_threads_working = 0;
676
677 av1_inter_mode_data_init(this_tile);
678 av1_zero_above_context(cm, &cpi->td.mb.e_mbd,
679 this_tile->tile_info.mi_col_start,
680 this_tile->tile_info.mi_col_end, tile_row);
681 this_tile->m_search_count = 0; // Count of motion search hits.
682 this_tile->ex_search_count = 0; // Exhaustive mesh search hits.
683 }
684 }
685
686 // Only run once to create threads and allocate thread data.
687 if (cpi->num_workers == 0) {
688 create_enc_workers(cpi, num_workers);
689 } else {
690 num_workers = AOMMIN(num_workers, cpi->num_workers);
691 }
692 assign_tile_to_thread(multi_thread_ctxt, tile_cols * tile_rows, num_workers);
693 prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers);
694 launch_enc_workers(cpi, num_workers);
695 sync_enc_workers(cpi, num_workers);
696 if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi);
697 accumulate_counters_enc_workers(cpi, num_workers);
698 }
699