1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4 © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6
7 1. INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33
34 2. COPYRIGHT LICENSE
35
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60
61 3. NO PATENT LICENSE
62
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70
71 4. DISCLAIMER
72
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83
84 5. CONTACT INFORMATION
85
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94
95 /**************************** AAC encoder library ******************************
96
97 Author(s): Alex Groeschel, Tobias Chalupka
98
99 Description: Temporal noise shaping
100
101 *******************************************************************************/
102
103 #include "aacenc_tns.h"
104 #include "psy_const.h"
105 #include "psy_configuration.h"
106 #include "tns_func.h"
107 #include "aacEnc_rom.h"
108 #include "aacenc_tns.h"
109 #include "FDK_lpc.h"
110
111 #define FILTER_DIRECTION 0 /* 0 = up, 1 = down */
112
113 static const FIXP_DBL acfWindowLong[12 + 3 + 1] = {
114 0x7fffffff, 0x7fb80000, 0x7ee00000, 0x7d780000, 0x7b800000, 0x78f80000,
115 0x75e00000, 0x72380000, 0x6e000000, 0x69380000, 0x63e00000, 0x5df80000,
116 0x57800000, 0x50780000, 0x48e00000, 0x40b80000};
117
118 static const FIXP_DBL acfWindowShort[4 + 3 + 1] = {
119 0x7fffffff, 0x7e000000, 0x78000000, 0x6e000000,
120 0x60000000, 0x4e000000, 0x38000000, 0x1e000000};
121
122 typedef struct {
123 INT bitRateFrom[2]; /* noneSbr=0, useSbr=1 */
124 INT bitRateTo[2]; /* noneSbr=0, useSbr=1 */
125 TNS_PARAMETER_TABULATED paramTab[2]; /* mono=0, stereo=1 */
126
127 } TNS_INFO_TAB;
128
129 #define TNS_TIMERES_SCALE (1)
130 #define FL2_TIMERES_FIX(a) (FL2FXCONST_DBL(a / (float)(1 << TNS_TIMERES_SCALE)))
131
132 static const TNS_INFO_TAB tnsInfoTab[] = {
133 {{16000, 13500},
134 {32000, 28000},
135 {{{1, 1},
136 {1437, 1500},
137 {1400, 600},
138 {12, 12},
139 {FILTER_DIRECTION, FILTER_DIRECTION},
140 {3, 1},
141 {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.2f)},
142 1},
143 {{1, 1},
144 {1437, 1500},
145 {1400, 600},
146 {12, 12},
147 {FILTER_DIRECTION, FILTER_DIRECTION},
148 {3, 1},
149 {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.2f)},
150 1}}},
151 {{32001, 28001},
152 {60000, 52000},
153 {{{1, 1},
154 {1437, 1500},
155 {1400, 600},
156 {12, 10},
157 {FILTER_DIRECTION, FILTER_DIRECTION},
158 {3, 1},
159 {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)},
160 1},
161 {{1, 1},
162 {1437, 1500},
163 {1400, 600},
164 {12, 10},
165 {FILTER_DIRECTION, FILTER_DIRECTION},
166 {3, 1},
167 {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)},
168 1}}},
169 {{60001, 52001},
170 {384000, 384000},
171 {{{1, 1},
172 {1437, 1500},
173 {1400, 600},
174 {12, 8},
175 {FILTER_DIRECTION, FILTER_DIRECTION},
176 {3, 1},
177 {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)},
178 1},
179 {{1, 1},
180 {1437, 1500},
181 {1400, 600},
182 {12, 8},
183 {FILTER_DIRECTION, FILTER_DIRECTION},
184 {3, 1},
185 {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)},
186 1}}}};
187
188 typedef struct {
189 INT samplingRate;
190 SCHAR maxBands[2]; /* long=0; short=1 */
191
192 } TNS_MAX_TAB_ENTRY;
193
194 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab1024[] = {
195 {96000, {31, 9}}, {88200, {31, 9}}, {64000, {34, 10}}, {48000, {40, 14}},
196 {44100, {42, 14}}, {32000, {51, 14}}, {24000, {46, 14}}, {22050, {46, 14}},
197 {16000, {42, 14}}, {12000, {42, 14}}, {11025, {42, 14}}, {8000, {39, 14}}};
198
199 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab120[] = {
200 {48000, {12, -1}}, /* 48000 */
201 {44100, {12, -1}}, /* 44100 */
202 {32000, {15, -1}}, /* 32000 */
203 {24000, {15, -1}}, /* 24000 */
204 {22050, {15, -1}} /* 22050 */
205 };
206
207 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab128[] = {
208 {48000, {12, -1}}, /* 48000 */
209 {44100, {12, -1}}, /* 44100 */
210 {32000, {15, -1}}, /* 32000 */
211 {24000, {15, -1}}, /* 24000 */
212 {22050, {15, -1}} /* 22050 */
213 };
214
215 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab240[] = {
216 {96000, {22, -1}}, /* 96000 */
217 {48000, {22, -1}}, /* 48000 */
218 {44100, {22, -1}}, /* 44100 */
219 {32000, {21, -1}}, /* 32000 */
220 {24000, {21, -1}}, /* 24000 */
221 {22050, {21, -1}} /* 22050 */
222 };
223
224 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab256[] = {
225 {96000, {25, -1}}, /* 96000 */
226 {48000, {25, -1}}, /* 48000 */
227 {44100, {25, -1}}, /* 44100 */
228 {32000, {24, -1}}, /* 32000 */
229 {24000, {24, -1}}, /* 24000 */
230 {22050, {24, -1}} /* 22050 */
231 };
232 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab480[] = {{48000, {31, -1}},
233 {44100, {32, -1}},
234 {32000, {37, -1}},
235 {24000, {30, -1}},
236 {22050, {30, -1}}};
237
238 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab512[] = {{48000, {31, -1}},
239 {44100, {32, -1}},
240 {32000, {37, -1}},
241 {24000, {31, -1}},
242 {22050, {31, -1}}};
243
244 static void FDKaacEnc_Parcor2Index(const FIXP_LPC *parcor, INT *RESTRICT index,
245 const INT order, const INT bitsPerCoeff);
246
247 static void FDKaacEnc_Index2Parcor(const INT *index, FIXP_LPC *RESTRICT parcor,
248 const INT order, const INT bitsPerCoeff);
249
250 static void FDKaacEnc_CalcGaussWindow(FIXP_DBL *win, const int winSize,
251 const INT samplingRate,
252 const INT transformResolution,
253 const FIXP_DBL timeResolution,
254 const INT timeResolution_e);
255
FDKaacEnc_GetTnsParam(const INT bitRate,const INT channels,const INT sbrLd)256 static const TNS_PARAMETER_TABULATED *FDKaacEnc_GetTnsParam(const INT bitRate,
257 const INT channels,
258 const INT sbrLd) {
259 int i;
260 const TNS_PARAMETER_TABULATED *tnsConfigTab = NULL;
261
262 for (i = 0; i < (int)(sizeof(tnsInfoTab) / sizeof(TNS_INFO_TAB)); i++) {
263 if ((bitRate >= tnsInfoTab[i].bitRateFrom[sbrLd ? 1 : 0]) &&
264 bitRate <= tnsInfoTab[i].bitRateTo[sbrLd ? 1 : 0]) {
265 tnsConfigTab = &tnsInfoTab[i].paramTab[(channels == 1) ? 0 : 1];
266 }
267 }
268
269 return tnsConfigTab;
270 }
271
getTnsMaxBands(const INT sampleRate,const INT granuleLength,const INT isShortBlock)272 static INT getTnsMaxBands(const INT sampleRate, const INT granuleLength,
273 const INT isShortBlock) {
274 int i;
275 INT numBands = -1;
276 const TNS_MAX_TAB_ENTRY *pMaxBandsTab = NULL;
277 int maxBandsTabSize = 0;
278
279 switch (granuleLength) {
280 case 960:
281 case 1024:
282 pMaxBandsTab = tnsMaxBandsTab1024;
283 maxBandsTabSize = sizeof(tnsMaxBandsTab1024) / sizeof(TNS_MAX_TAB_ENTRY);
284 break;
285 case 120:
286 pMaxBandsTab = tnsMaxBandsTab120;
287 maxBandsTabSize = sizeof(tnsMaxBandsTab120) / sizeof(TNS_MAX_TAB_ENTRY);
288 break;
289 case 128:
290 pMaxBandsTab = tnsMaxBandsTab128;
291 maxBandsTabSize = sizeof(tnsMaxBandsTab128) / sizeof(TNS_MAX_TAB_ENTRY);
292 break;
293 case 240:
294 pMaxBandsTab = tnsMaxBandsTab240;
295 maxBandsTabSize = sizeof(tnsMaxBandsTab240) / sizeof(TNS_MAX_TAB_ENTRY);
296 break;
297 case 256:
298 pMaxBandsTab = tnsMaxBandsTab256;
299 maxBandsTabSize = sizeof(tnsMaxBandsTab256) / sizeof(TNS_MAX_TAB_ENTRY);
300 break;
301 case 480:
302 pMaxBandsTab = tnsMaxBandsTab480;
303 maxBandsTabSize = sizeof(tnsMaxBandsTab480) / sizeof(TNS_MAX_TAB_ENTRY);
304 break;
305 case 512:
306 pMaxBandsTab = tnsMaxBandsTab512;
307 maxBandsTabSize = sizeof(tnsMaxBandsTab512) / sizeof(TNS_MAX_TAB_ENTRY);
308 break;
309 default:
310 numBands = -1;
311 }
312
313 if (pMaxBandsTab != NULL) {
314 for (i = 0; i < maxBandsTabSize; i++) {
315 numBands = pMaxBandsTab[i].maxBands[(!isShortBlock) ? 0 : 1];
316 if (sampleRate >= pMaxBandsTab[i].samplingRate) {
317 break;
318 }
319 }
320 }
321
322 return numBands;
323 }
324
325 /***************************************************************************/
326 /*!
327 \brief FDKaacEnc_FreqToBandWidthRounding
328
329 Returns index of nearest band border
330
331 \param frequency
332 \param sampling frequency
333 \param total number of bands
334 \param pointer to table of band borders
335
336 \return band border
337 ****************************************************************************/
338
FDKaacEnc_FreqToBandWidthRounding(const INT freq,const INT fs,const INT numOfBands,const INT * bandStartOffset)339 INT FDKaacEnc_FreqToBandWidthRounding(const INT freq, const INT fs,
340 const INT numOfBands,
341 const INT *bandStartOffset) {
342 INT lineNumber, band;
343
344 /* assert(freq >= 0); */
345 lineNumber = (freq * bandStartOffset[numOfBands] * 4 / fs + 1) / 2;
346
347 /* freq > fs/2 */
348 if (lineNumber >= bandStartOffset[numOfBands]) return numOfBands;
349
350 /* find band the line number lies in */
351 for (band = 0; band < numOfBands; band++) {
352 if (bandStartOffset[band + 1] > lineNumber) break;
353 }
354
355 /* round to nearest band border */
356 if (lineNumber - bandStartOffset[band] >
357 bandStartOffset[band + 1] - lineNumber) {
358 band++;
359 }
360
361 return (band);
362 }
363
364 /*****************************************************************************
365
366 functionname: FDKaacEnc_InitTnsConfiguration
367 description: fill TNS_CONFIG structure with sensible content
368 returns:
369 input: bitrate, samplerate, number of channels,
370 blocktype (long or short),
371 TNS Config struct (modified),
372 psy config struct,
373 tns active flag
374 output:
375
376 *****************************************************************************/
FDKaacEnc_InitTnsConfiguration(INT bitRate,INT sampleRate,INT channels,INT blockType,INT granuleLength,INT isLowDelay,INT ldSbrPresent,TNS_CONFIG * tC,PSY_CONFIGURATION * pC,INT active,INT useTnsPeak)377 AAC_ENCODER_ERROR FDKaacEnc_InitTnsConfiguration(
378 INT bitRate, INT sampleRate, INT channels, INT blockType, INT granuleLength,
379 INT isLowDelay, INT ldSbrPresent, TNS_CONFIG *tC, PSY_CONFIGURATION *pC,
380 INT active, INT useTnsPeak) {
381 int i;
382 // float acfTimeRes = (blockType == SHORT_WINDOW) ? 0.125f : 0.046875f;
383
384 if (channels <= 0) return (AAC_ENCODER_ERROR)1;
385
386 tC->isLowDelay = isLowDelay;
387
388 /* initialize TNS filter flag, order, and coefficient resolution (in bits per
389 * coeff) */
390 tC->tnsActive = (active) ? TRUE : FALSE;
391 tC->maxOrder = (blockType == SHORT_WINDOW) ? 5 : 12; /* maximum: 7, 20 */
392 if (bitRate < 16000) tC->maxOrder -= 2;
393 tC->coefRes = (blockType == SHORT_WINDOW) ? 3 : 4;
394
395 /* LPC stop line: highest MDCT line to be coded, but do not go beyond
396 * TNS_MAX_BANDS! */
397 tC->lpcStopBand = getTnsMaxBands(sampleRate, granuleLength,
398 (blockType == SHORT_WINDOW) ? 1 : 0);
399
400 if (tC->lpcStopBand < 0) {
401 return (AAC_ENCODER_ERROR)1;
402 }
403
404 tC->lpcStopBand = fMin(tC->lpcStopBand, pC->sfbActive);
405 tC->lpcStopLine = pC->sfbOffset[tC->lpcStopBand];
406
407 switch (granuleLength) {
408 case 960:
409 case 1024:
410 /* TNS start line: skip lower MDCT lines to prevent artifacts due to
411 * filter mismatch */
412 if (blockType == SHORT_WINDOW) {
413 tC->lpcStartBand[LOFILT] = 0;
414 } else {
415 tC->lpcStartBand[LOFILT] =
416 (sampleRate < 9391) ? 2 : ((sampleRate < 18783) ? 4 : 8);
417 }
418 tC->lpcStartLine[LOFILT] = pC->sfbOffset[tC->lpcStartBand[LOFILT]];
419
420 i = tC->lpcStopBand;
421 while (pC->sfbOffset[i] >
422 (tC->lpcStartLine[LOFILT] +
423 (tC->lpcStopLine - tC->lpcStartLine[LOFILT]) / 4))
424 i--;
425 tC->lpcStartBand[HIFILT] = i;
426 tC->lpcStartLine[HIFILT] = pC->sfbOffset[i];
427
428 tC->confTab.threshOn[HIFILT] = 1437;
429 tC->confTab.threshOn[LOFILT] = 1500;
430
431 tC->confTab.tnsLimitOrder[HIFILT] = tC->maxOrder;
432 tC->confTab.tnsLimitOrder[LOFILT] = fMax(0, tC->maxOrder - 7);
433
434 tC->confTab.tnsFilterDirection[HIFILT] = FILTER_DIRECTION;
435 tC->confTab.tnsFilterDirection[LOFILT] = FILTER_DIRECTION;
436
437 tC->confTab.acfSplit[HIFILT] =
438 -1; /* signal Merged4to2QuartersAutoCorrelation in
439 FDKaacEnc_MergedAutoCorrelation*/
440 tC->confTab.acfSplit[LOFILT] =
441 -1; /* signal Merged4to2QuartersAutoCorrelation in
442 FDKaacEnc_MergedAutoCorrelation */
443
444 tC->confTab.filterEnabled[HIFILT] = 1;
445 tC->confTab.filterEnabled[LOFILT] = 1;
446 tC->confTab.seperateFiltersAllowed = 1;
447
448 /* compute autocorrelation window based on maximum filter order for given
449 * block type */
450 /* for (i = 0; i <= tC->maxOrder + 3; i++) {
451 float acfWinTemp = acfTimeRes * i;
452 acfWindow[i] = FL2FXCONST_DBL(1.0f - acfWinTemp * acfWinTemp);
453 }
454 */
455 if (blockType == SHORT_WINDOW) {
456 FDKmemcpy(tC->acfWindow[HIFILT], acfWindowShort,
457 fMin((LONG)sizeof(acfWindowShort),
458 (LONG)sizeof(tC->acfWindow[HIFILT])));
459 FDKmemcpy(tC->acfWindow[LOFILT], acfWindowShort,
460 fMin((LONG)sizeof(acfWindowShort),
461 (LONG)sizeof(tC->acfWindow[HIFILT])));
462 } else {
463 FDKmemcpy(tC->acfWindow[HIFILT], acfWindowLong,
464 fMin((LONG)sizeof(acfWindowLong),
465 (LONG)sizeof(tC->acfWindow[HIFILT])));
466 FDKmemcpy(tC->acfWindow[LOFILT], acfWindowLong,
467 fMin((LONG)sizeof(acfWindowLong),
468 (LONG)sizeof(tC->acfWindow[HIFILT])));
469 }
470 break;
471 case 480:
472 case 512: {
473 const TNS_PARAMETER_TABULATED *pCfg =
474 FDKaacEnc_GetTnsParam(bitRate, channels, ldSbrPresent);
475 if (pCfg != NULL) {
476 FDKmemcpy(&(tC->confTab), pCfg, sizeof(tC->confTab));
477
478 tC->lpcStartBand[HIFILT] = FDKaacEnc_FreqToBandWidthRounding(
479 pCfg->filterStartFreq[HIFILT], sampleRate, pC->sfbCnt,
480 pC->sfbOffset);
481 tC->lpcStartLine[HIFILT] = pC->sfbOffset[tC->lpcStartBand[HIFILT]];
482 tC->lpcStartBand[LOFILT] = FDKaacEnc_FreqToBandWidthRounding(
483 pCfg->filterStartFreq[LOFILT], sampleRate, pC->sfbCnt,
484 pC->sfbOffset);
485 tC->lpcStartLine[LOFILT] = pC->sfbOffset[tC->lpcStartBand[LOFILT]];
486
487 FDKaacEnc_CalcGaussWindow(
488 tC->acfWindow[HIFILT], tC->maxOrder + 1, sampleRate, granuleLength,
489 pCfg->tnsTimeResolution[HIFILT], TNS_TIMERES_SCALE);
490 FDKaacEnc_CalcGaussWindow(
491 tC->acfWindow[LOFILT], tC->maxOrder + 1, sampleRate, granuleLength,
492 pCfg->tnsTimeResolution[LOFILT], TNS_TIMERES_SCALE);
493 } else {
494 tC->tnsActive =
495 FALSE; /* no configuration available, disable tns tool */
496 }
497 } break;
498 default:
499 tC->tnsActive = FALSE; /* no configuration available, disable tns tool */
500 }
501
502 return AAC_ENC_OK;
503 }
504
505 /***************************************************************************/
506 /*!
507 \brief FDKaacEnc_ScaleUpSpectrum
508
509 Scales up spectrum lines in a given frequency section
510
511 \param scaled spectrum
512 \param original spectrum
513 \param frequency line to start scaling
514 \param frequency line to enc scaling
515
516 \return scale factor
517
518 ****************************************************************************/
FDKaacEnc_ScaleUpSpectrum(FIXP_DBL * dest,const FIXP_DBL * src,const INT startLine,const INT stopLine)519 static inline INT FDKaacEnc_ScaleUpSpectrum(FIXP_DBL *dest, const FIXP_DBL *src,
520 const INT startLine,
521 const INT stopLine) {
522 INT i, scale;
523
524 FIXP_DBL maxVal = FL2FXCONST_DBL(0.f);
525
526 /* Get highest value in given spectrum */
527 for (i = startLine; i < stopLine; i++) {
528 maxVal = fixMax(maxVal, fixp_abs(src[i]));
529 }
530 scale = CountLeadingBits(maxVal);
531
532 /* Scale spectrum according to highest value */
533 for (i = startLine; i < stopLine; i++) {
534 dest[i] = src[i] << scale;
535 }
536
537 return scale;
538 }
539
540 /***************************************************************************/
541 /*!
542 \brief FDKaacEnc_CalcAutoCorrValue
543
544 Calculate autocorellation value for one lag
545
546 \param pointer to spectrum
547 \param start line
548 \param stop line
549 \param lag to be calculated
550 \param scaling of the lag
551
552 ****************************************************************************/
FDKaacEnc_CalcAutoCorrValue(const FIXP_DBL * spectrum,const INT startLine,const INT stopLine,const INT lag,const INT scale)553 static inline FIXP_DBL FDKaacEnc_CalcAutoCorrValue(const FIXP_DBL *spectrum,
554 const INT startLine,
555 const INT stopLine,
556 const INT lag,
557 const INT scale) {
558 int i;
559 FIXP_DBL result = FL2FXCONST_DBL(0.f);
560
561 /* This versions allows to save memory accesses, when computing pow2 */
562 /* It is of interest for ARM, XTENSA without parallel memory access */
563 if (lag == 0) {
564 for (i = startLine; i < stopLine; i++) {
565 result += (fPow2(spectrum[i]) >> scale);
566 }
567 } else {
568 for (i = startLine; i < (stopLine - lag); i++) {
569 result += (fMult(spectrum[i], spectrum[i + lag]) >> scale);
570 }
571 }
572
573 return result;
574 }
575
576 /***************************************************************************/
577 /*!
578 \brief FDKaacEnc_AutoCorrNormFac
579
580 Autocorrelation function for 1st and 2nd half of the spectrum
581
582 \param pointer to spectrum
583 \param pointer to autocorrelation window
584 \param filter start line
585
586 ****************************************************************************/
FDKaacEnc_AutoCorrNormFac(const FIXP_DBL value,const INT scale,INT * sc)587 static inline FIXP_DBL FDKaacEnc_AutoCorrNormFac(const FIXP_DBL value,
588 const INT scale, INT *sc) {
589 #define HLM_MIN_NRG 0.0000000037252902984619140625f /* 2^-28 */
590 #define MAX_INV_NRGFAC (1.f / HLM_MIN_NRG)
591
592 FIXP_DBL retValue;
593 FIXP_DBL A, B;
594
595 if (scale >= 0) {
596 A = value;
597 B = FL2FXCONST_DBL(HLM_MIN_NRG) >> fixMin(DFRACT_BITS - 1, scale);
598 } else {
599 A = value >> fixMin(DFRACT_BITS - 1, (-scale));
600 B = FL2FXCONST_DBL(HLM_MIN_NRG);
601 }
602
603 if (A > B) {
604 int shift = 0;
605 FIXP_DBL tmp = invSqrtNorm2(value, &shift);
606
607 retValue = fMult(tmp, tmp);
608 *sc += (2 * shift);
609 } else {
610 /* MAX_INV_NRGFAC*FDKpow(2,-28) = 1/2^-28 * 2^-28 = 1.0 */
611 retValue =
612 /*FL2FXCONST_DBL(MAX_INV_NRGFAC*FDKpow(2,-28))*/ (FIXP_DBL)MAXVAL_DBL;
613 *sc += scale + 28;
614 }
615
616 return retValue;
617 }
618
FDKaacEnc_MergedAutoCorrelation(const FIXP_DBL * spectrum,const INT isLowDelay,const FIXP_DBL acfWindow[MAX_NUM_OF_FILTERS][TNS_MAX_ORDER+3+1],const INT lpcStartLine[MAX_NUM_OF_FILTERS],const INT lpcStopLine,const INT maxOrder,const INT acfSplit[MAX_NUM_OF_FILTERS],FIXP_DBL * _rxx1,FIXP_DBL * _rxx2)619 static void FDKaacEnc_MergedAutoCorrelation(
620 const FIXP_DBL *spectrum, const INT isLowDelay,
621 const FIXP_DBL acfWindow[MAX_NUM_OF_FILTERS][TNS_MAX_ORDER + 3 + 1],
622 const INT lpcStartLine[MAX_NUM_OF_FILTERS], const INT lpcStopLine,
623 const INT maxOrder, const INT acfSplit[MAX_NUM_OF_FILTERS], FIXP_DBL *_rxx1,
624 FIXP_DBL *_rxx2) {
625 int i, idx0, idx1, idx2, idx3, idx4, lag;
626 FIXP_DBL rxx1_0, rxx2_0, rxx3_0, rxx4_0;
627
628 /* buffer for temporal spectrum */
629 C_ALLOC_SCRATCH_START(pSpectrum, FIXP_DBL, (1024))
630
631 /* MDCT line indices separating the 1st, 2nd, 3rd, and 4th analysis quarters
632 */
633 if ((acfSplit[LOFILT] == -1) || (acfSplit[HIFILT] == -1)) {
634 /* autocorrelation function for 1st, 2nd, 3rd, and 4th quarter of the
635 * spectrum */
636 idx0 = lpcStartLine[LOFILT];
637 i = lpcStopLine - lpcStartLine[LOFILT];
638 idx1 = idx0 + i / 4;
639 idx2 = idx0 + i / 2;
640 idx3 = idx0 + i * 3 / 4;
641 idx4 = lpcStopLine;
642 } else {
643 FDK_ASSERT(acfSplit[LOFILT] == 1);
644 FDK_ASSERT(acfSplit[HIFILT] == 3);
645 i = (lpcStopLine - lpcStartLine[HIFILT]) / 3;
646 idx0 = lpcStartLine[LOFILT];
647 idx1 = lpcStartLine[HIFILT];
648 idx2 = idx1 + i;
649 idx3 = idx2 + i;
650 idx4 = lpcStopLine;
651 }
652
653 /* copy spectrum to temporal buffer and scale up as much as possible */
654 INT sc1 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx0, idx1);
655 INT sc2 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx1, idx2);
656 INT sc3 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx2, idx3);
657 INT sc4 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx3, idx4);
658
659 /* get scaling values for summation */
660 INT nsc1, nsc2, nsc3, nsc4;
661 for (nsc1 = 1; (1 << nsc1) < (idx1 - idx0); nsc1++)
662 ;
663 for (nsc2 = 1; (1 << nsc2) < (idx2 - idx1); nsc2++)
664 ;
665 for (nsc3 = 1; (1 << nsc3) < (idx3 - idx2); nsc3++)
666 ;
667 for (nsc4 = 1; (1 << nsc4) < (idx4 - idx3); nsc4++)
668 ;
669
670 /* compute autocorrelation value at lag zero, i. e. energy, for each quarter
671 */
672 rxx1_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx0, idx1, 0, nsc1);
673 rxx2_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx1, idx2, 0, nsc2);
674 rxx3_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx2, idx3, 0, nsc3);
675 rxx4_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx3, idx4, 0, nsc4);
676
677 /* compute energy normalization factors, i. e. 1/energy (saves some divisions)
678 */
679 if (rxx1_0 != FL2FXCONST_DBL(0.f)) {
680 INT sc_fac1 = -1;
681 FIXP_DBL fac1 =
682 FDKaacEnc_AutoCorrNormFac(rxx1_0, ((-2 * sc1) + nsc1), &sc_fac1);
683 _rxx1[0] = scaleValue(fMult(rxx1_0, fac1), sc_fac1);
684
685 if (isLowDelay) {
686 for (lag = 1; lag <= maxOrder; lag++) {
687 /* compute energy-normalized and windowed autocorrelation values at this
688 * lag */
689 FIXP_DBL x1 =
690 FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx0, idx1, lag, nsc1);
691 _rxx1[lag] =
692 fMult(scaleValue(fMult(x1, fac1), sc_fac1), acfWindow[LOFILT][lag]);
693 }
694 } else {
695 for (lag = 1; lag <= maxOrder; lag++) {
696 if ((3 * lag) <= maxOrder + 3) {
697 FIXP_DBL x1 =
698 FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx0, idx1, lag, nsc1);
699 _rxx1[lag] = fMult(scaleValue(fMult(x1, fac1), sc_fac1),
700 acfWindow[LOFILT][3 * lag]);
701 }
702 }
703 }
704 }
705
706 /* auto corr over upper 3/4 of spectrum */
707 if (!((rxx2_0 == FL2FXCONST_DBL(0.f)) && (rxx3_0 == FL2FXCONST_DBL(0.f)) &&
708 (rxx4_0 == FL2FXCONST_DBL(0.f)))) {
709 FIXP_DBL fac2, fac3, fac4;
710 fac2 = fac3 = fac4 = FL2FXCONST_DBL(0.f);
711 INT sc_fac2, sc_fac3, sc_fac4;
712 sc_fac2 = sc_fac3 = sc_fac4 = 0;
713
714 if (rxx2_0 != FL2FXCONST_DBL(0.f)) {
715 fac2 = FDKaacEnc_AutoCorrNormFac(rxx2_0, ((-2 * sc2) + nsc2), &sc_fac2);
716 sc_fac2 -= 2;
717 }
718 if (rxx3_0 != FL2FXCONST_DBL(0.f)) {
719 fac3 = FDKaacEnc_AutoCorrNormFac(rxx3_0, ((-2 * sc3) + nsc3), &sc_fac3);
720 sc_fac3 -= 2;
721 }
722 if (rxx4_0 != FL2FXCONST_DBL(0.f)) {
723 fac4 = FDKaacEnc_AutoCorrNormFac(rxx4_0, ((-2 * sc4) + nsc4), &sc_fac4);
724 sc_fac4 -= 2;
725 }
726
727 _rxx2[0] = scaleValue(fMult(rxx2_0, fac2), sc_fac2) +
728 scaleValue(fMult(rxx3_0, fac3), sc_fac3) +
729 scaleValue(fMult(rxx4_0, fac4), sc_fac4);
730
731 for (lag = 1; lag <= maxOrder; lag++) {
732 /* merge quarters 2, 3, 4 into one autocorrelation; quarter 1 stays
733 * separate */
734 FIXP_DBL x2 = scaleValue(fMult(FDKaacEnc_CalcAutoCorrValue(
735 pSpectrum, idx1, idx2, lag, nsc2),
736 fac2),
737 sc_fac2) +
738 scaleValue(fMult(FDKaacEnc_CalcAutoCorrValue(
739 pSpectrum, idx2, idx3, lag, nsc3),
740 fac3),
741 sc_fac3) +
742 scaleValue(fMult(FDKaacEnc_CalcAutoCorrValue(
743 pSpectrum, idx3, idx4, lag, nsc4),
744 fac4),
745 sc_fac4);
746
747 _rxx2[lag] = fMult(x2, acfWindow[HIFILT][lag]);
748 }
749 }
750
751 C_ALLOC_SCRATCH_END(pSpectrum, FIXP_DBL, (1024))
752 }
753
754 /*****************************************************************************
755 functionname: FDKaacEnc_TnsDetect
756 description: do decision, if TNS shall be used or not
757 returns:
758 input: tns data structure (modified),
759 tns config structure,
760 scalefactor size and table,
761 spectrum,
762 subblock num, blocktype,
763 sfb-wise energy.
764
765 *****************************************************************************/
FDKaacEnc_TnsDetect(TNS_DATA * tnsData,const TNS_CONFIG * tC,TNS_INFO * tnsInfo,INT sfbCnt,const FIXP_DBL * spectrum,INT subBlockNumber,INT blockType)766 INT FDKaacEnc_TnsDetect(TNS_DATA *tnsData, const TNS_CONFIG *tC,
767 TNS_INFO *tnsInfo, INT sfbCnt, const FIXP_DBL *spectrum,
768 INT subBlockNumber, INT blockType) {
769 /* autocorrelation function for 1st, 2nd, 3rd, and 4th quarter of the
770 * spectrum. */
771 FIXP_DBL rxx1[TNS_MAX_ORDER + 1]; /* higher part */
772 FIXP_DBL rxx2[TNS_MAX_ORDER + 1]; /* lower part */
773 FIXP_LPC parcor_tmp[TNS_MAX_ORDER];
774
775 int i;
776
777 FDKmemclear(rxx1, sizeof(rxx1));
778 FDKmemclear(rxx2, sizeof(rxx2));
779
780 TNS_SUBBLOCK_INFO *tsbi =
781 (blockType == SHORT_WINDOW)
782 ? &tnsData->dataRaw.Short.subBlockInfo[subBlockNumber]
783 : &tnsData->dataRaw.Long.subBlockInfo;
784
785 tnsData->filtersMerged = FALSE;
786
787 tsbi->tnsActive[HIFILT] = FALSE;
788 tsbi->predictionGain[HIFILT] = 1000;
789 tsbi->tnsActive[LOFILT] = FALSE;
790 tsbi->predictionGain[LOFILT] = 1000;
791
792 tnsInfo->numOfFilters[subBlockNumber] = 0;
793 tnsInfo->coefRes[subBlockNumber] = tC->coefRes;
794 for (i = 0; i < tC->maxOrder; i++) {
795 tnsInfo->coef[subBlockNumber][HIFILT][i] =
796 tnsInfo->coef[subBlockNumber][LOFILT][i] = 0;
797 }
798
799 tnsInfo->length[subBlockNumber][HIFILT] =
800 tnsInfo->length[subBlockNumber][LOFILT] = 0;
801 tnsInfo->order[subBlockNumber][HIFILT] =
802 tnsInfo->order[subBlockNumber][LOFILT] = 0;
803
804 if ((tC->tnsActive) && (tC->maxOrder > 0)) {
805 int sumSqrCoef;
806
807 FDKaacEnc_MergedAutoCorrelation(
808 spectrum, tC->isLowDelay, tC->acfWindow, tC->lpcStartLine,
809 tC->lpcStopLine, tC->maxOrder, tC->confTab.acfSplit, rxx1, rxx2);
810
811 /* compute higher TNS filter coefficients in lattice form (ParCor) with
812 * LeRoux-Gueguen/Schur algorithm */
813 {
814 FIXP_DBL predictionGain_m;
815 INT predictionGain_e;
816
817 CLpc_AutoToParcor(rxx2, 0, parcor_tmp, tC->confTab.tnsLimitOrder[HIFILT],
818 &predictionGain_m, &predictionGain_e);
819 tsbi->predictionGain[HIFILT] =
820 (INT)fMultNorm(predictionGain_m, predictionGain_e, 1000, 31, 31);
821 }
822
823 /* non-linear quantization of TNS lattice coefficients with given resolution
824 */
825 FDKaacEnc_Parcor2Index(parcor_tmp, tnsInfo->coef[subBlockNumber][HIFILT],
826 tC->confTab.tnsLimitOrder[HIFILT], tC->coefRes);
827
828 /* reduce filter order by truncating trailing zeros, compute sum(abs(coefs))
829 */
830 for (i = tC->confTab.tnsLimitOrder[HIFILT] - 1; i >= 0; i--) {
831 if (tnsInfo->coef[subBlockNumber][HIFILT][i] != 0) {
832 break;
833 }
834 }
835
836 tnsInfo->order[subBlockNumber][HIFILT] = i + 1;
837
838 sumSqrCoef = 0;
839 for (; i >= 0; i--) {
840 sumSqrCoef += tnsInfo->coef[subBlockNumber][HIFILT][i] *
841 tnsInfo->coef[subBlockNumber][HIFILT][i];
842 }
843
844 tnsInfo->direction[subBlockNumber][HIFILT] =
845 tC->confTab.tnsFilterDirection[HIFILT];
846 tnsInfo->length[subBlockNumber][HIFILT] = sfbCnt - tC->lpcStartBand[HIFILT];
847
848 /* disable TNS if predictionGain is less than 3dB or sumSqrCoef is too small
849 */
850 if ((tsbi->predictionGain[HIFILT] > tC->confTab.threshOn[HIFILT]) ||
851 (sumSqrCoef > (tC->confTab.tnsLimitOrder[HIFILT] / 2 + 2))) {
852 tsbi->tnsActive[HIFILT] = TRUE;
853 tnsInfo->numOfFilters[subBlockNumber]++;
854
855 /* compute second filter for lower quarter; only allowed for long windows!
856 */
857 if ((blockType != SHORT_WINDOW) && (tC->confTab.filterEnabled[LOFILT]) &&
858 (tC->confTab.seperateFiltersAllowed)) {
859 /* compute second filter for lower frequencies */
860
861 /* compute TNS filter in lattice (ParCor) form with LeRoux-Gueguen
862 * algorithm */
863 INT predGain;
864 {
865 FIXP_DBL predictionGain_m;
866 INT predictionGain_e;
867
868 CLpc_AutoToParcor(rxx1, 0, parcor_tmp,
869 tC->confTab.tnsLimitOrder[LOFILT],
870 &predictionGain_m, &predictionGain_e);
871 predGain =
872 (INT)fMultNorm(predictionGain_m, predictionGain_e, 1000, 31, 31);
873 }
874
875 /* non-linear quantization of TNS lattice coefficients with given
876 * resolution */
877 FDKaacEnc_Parcor2Index(parcor_tmp,
878 tnsInfo->coef[subBlockNumber][LOFILT],
879 tC->confTab.tnsLimitOrder[LOFILT], tC->coefRes);
880
881 /* reduce filter order by truncating trailing zeros, compute
882 * sum(abs(coefs)) */
883 for (i = tC->confTab.tnsLimitOrder[LOFILT] - 1; i >= 0; i--) {
884 if (tnsInfo->coef[subBlockNumber][LOFILT][i] != 0) {
885 break;
886 }
887 }
888 tnsInfo->order[subBlockNumber][LOFILT] = i + 1;
889
890 sumSqrCoef = 0;
891 for (; i >= 0; i--) {
892 sumSqrCoef += tnsInfo->coef[subBlockNumber][LOFILT][i] *
893 tnsInfo->coef[subBlockNumber][LOFILT][i];
894 }
895
896 tnsInfo->direction[subBlockNumber][LOFILT] =
897 tC->confTab.tnsFilterDirection[LOFILT];
898 tnsInfo->length[subBlockNumber][LOFILT] =
899 tC->lpcStartBand[HIFILT] - tC->lpcStartBand[LOFILT];
900
901 /* filter lower quarter if gain is high enough, but not if it's too high
902 */
903 if (((predGain > tC->confTab.threshOn[LOFILT]) &&
904 (predGain < (16000 * tC->confTab.tnsLimitOrder[LOFILT]))) ||
905 ((sumSqrCoef > 9) &&
906 (sumSqrCoef < 22 * tC->confTab.tnsLimitOrder[LOFILT]))) {
907 /* compare lower to upper filter; if they are very similar, merge them
908 */
909 tsbi->tnsActive[LOFILT] = TRUE;
910 sumSqrCoef = 0;
911 for (i = 0; i < tC->confTab.tnsLimitOrder[LOFILT]; i++) {
912 sumSqrCoef += fAbs(tnsInfo->coef[subBlockNumber][HIFILT][i] -
913 tnsInfo->coef[subBlockNumber][LOFILT][i]);
914 }
915 if ((sumSqrCoef < 2) &&
916 (tnsInfo->direction[subBlockNumber][LOFILT] ==
917 tnsInfo->direction[subBlockNumber][HIFILT])) {
918 tnsData->filtersMerged = TRUE;
919 tnsInfo->length[subBlockNumber][HIFILT] =
920 sfbCnt - tC->lpcStartBand[LOFILT];
921 for (; i < tnsInfo->order[subBlockNumber][HIFILT]; i++) {
922 if (fAbs(tnsInfo->coef[subBlockNumber][HIFILT][i]) > 1) {
923 break;
924 }
925 }
926 for (i--; i >= 0; i--) {
927 if (tnsInfo->coef[subBlockNumber][HIFILT][i] != 0) {
928 break;
929 }
930 }
931 if (i < tnsInfo->order[subBlockNumber][HIFILT]) {
932 tnsInfo->order[subBlockNumber][HIFILT] = i + 1;
933 }
934 } else {
935 tnsInfo->numOfFilters[subBlockNumber]++;
936 }
937 } /* filter lower part */
938 tsbi->predictionGain[LOFILT] = predGain;
939
940 } /* second filter allowed */
941 } /* if predictionGain > 1437 ... */
942 } /* maxOrder > 0 && tnsActive */
943
944 return 0;
945 }
946
947 /***************************************************************************/
948 /*!
949 \brief FDKaacLdEnc_TnsSync
950
951 synchronize TNS parameters when TNS gain difference small (relative)
952
953 \param pointer to TNS data structure (destination)
954 \param pointer to TNS data structure (source)
955 \param pointer to TNS config structure
956 \param number of sub-block
957 \param block type
958
959 \return void
960 ****************************************************************************/
FDKaacEnc_TnsSync(TNS_DATA * tnsDataDest,const TNS_DATA * tnsDataSrc,TNS_INFO * tnsInfoDest,TNS_INFO * tnsInfoSrc,const INT blockTypeDest,const INT blockTypeSrc,const TNS_CONFIG * tC)961 void FDKaacEnc_TnsSync(TNS_DATA *tnsDataDest, const TNS_DATA *tnsDataSrc,
962 TNS_INFO *tnsInfoDest, TNS_INFO *tnsInfoSrc,
963 const INT blockTypeDest, const INT blockTypeSrc,
964 const TNS_CONFIG *tC) {
965 int i, w, absDiff, nWindows;
966 TNS_SUBBLOCK_INFO *sbInfoDest;
967 const TNS_SUBBLOCK_INFO *sbInfoSrc;
968
969 /* if one channel contains short blocks and the other not, do not synchronize
970 */
971 if ((blockTypeSrc == SHORT_WINDOW && blockTypeDest != SHORT_WINDOW) ||
972 (blockTypeDest == SHORT_WINDOW && blockTypeSrc != SHORT_WINDOW)) {
973 return;
974 }
975
976 if (blockTypeDest != SHORT_WINDOW) {
977 sbInfoDest = &tnsDataDest->dataRaw.Long.subBlockInfo;
978 sbInfoSrc = &tnsDataSrc->dataRaw.Long.subBlockInfo;
979 nWindows = 1;
980 } else {
981 sbInfoDest = &tnsDataDest->dataRaw.Short.subBlockInfo[0];
982 sbInfoSrc = &tnsDataSrc->dataRaw.Short.subBlockInfo[0];
983 nWindows = 8;
984 }
985
986 for (w = 0; w < nWindows; w++) {
987 const TNS_SUBBLOCK_INFO *pSbInfoSrcW = sbInfoSrc + w;
988 TNS_SUBBLOCK_INFO *pSbInfoDestW = sbInfoDest + w;
989 INT doSync = 1, absDiffSum = 0;
990
991 /* if TNS is active in at least one channel, check if ParCor coefficients of
992 * higher filter are similar */
993 if (pSbInfoDestW->tnsActive[HIFILT] || pSbInfoSrcW->tnsActive[HIFILT]) {
994 for (i = 0; i < tC->maxOrder; i++) {
995 absDiff = fAbs(tnsInfoDest->coef[w][HIFILT][i] -
996 tnsInfoSrc->coef[w][HIFILT][i]);
997 absDiffSum += absDiff;
998 /* if coefficients diverge too much between channels, do not synchronize
999 */
1000 if ((absDiff > 1) || (absDiffSum > 2)) {
1001 doSync = 0;
1002 break;
1003 }
1004 }
1005
1006 if (doSync) {
1007 /* if no significant difference was detected, synchronize coefficient
1008 * sets */
1009 if (pSbInfoSrcW->tnsActive[HIFILT]) {
1010 /* no dest filter, or more dest than source filters: use one dest
1011 * filter */
1012 if ((!pSbInfoDestW->tnsActive[HIFILT]) ||
1013 ((pSbInfoDestW->tnsActive[HIFILT]) &&
1014 (tnsInfoDest->numOfFilters[w] > tnsInfoSrc->numOfFilters[w]))) {
1015 pSbInfoDestW->tnsActive[HIFILT] = tnsInfoDest->numOfFilters[w] = 1;
1016 }
1017 tnsDataDest->filtersMerged = tnsDataSrc->filtersMerged;
1018 tnsInfoDest->order[w][HIFILT] = tnsInfoSrc->order[w][HIFILT];
1019 tnsInfoDest->length[w][HIFILT] = tnsInfoSrc->length[w][HIFILT];
1020 tnsInfoDest->direction[w][HIFILT] = tnsInfoSrc->direction[w][HIFILT];
1021 tnsInfoDest->coefCompress[w][HIFILT] =
1022 tnsInfoSrc->coefCompress[w][HIFILT];
1023
1024 for (i = 0; i < tC->maxOrder; i++) {
1025 tnsInfoDest->coef[w][HIFILT][i] = tnsInfoSrc->coef[w][HIFILT][i];
1026 }
1027 } else
1028 pSbInfoDestW->tnsActive[HIFILT] = tnsInfoDest->numOfFilters[w] = 0;
1029 }
1030 }
1031 }
1032 }
1033
1034 /***************************************************************************/
1035 /*!
1036 \brief FDKaacEnc_TnsEncode
1037
1038 perform TNS encoding
1039
1040 \param pointer to TNS info structure
1041 \param pointer to TNS data structure
1042 \param number of sfbs
1043 \param pointer to TNS config structure
1044 \param low-pass line
1045 \param pointer to spectrum
1046 \param number of sub-block
1047 \param block type
1048
1049 \return ERROR STATUS
1050 ****************************************************************************/
FDKaacEnc_TnsEncode(TNS_INFO * tnsInfo,TNS_DATA * tnsData,const INT numOfSfb,const TNS_CONFIG * tC,const INT lowPassLine,FIXP_DBL * spectrum,const INT subBlockNumber,const INT blockType)1051 INT FDKaacEnc_TnsEncode(TNS_INFO *tnsInfo, TNS_DATA *tnsData,
1052 const INT numOfSfb, const TNS_CONFIG *tC,
1053 const INT lowPassLine, FIXP_DBL *spectrum,
1054 const INT subBlockNumber, const INT blockType) {
1055 INT i, startLine, stopLine;
1056
1057 if (((blockType == SHORT_WINDOW) &&
1058 (!tnsData->dataRaw.Short.subBlockInfo[subBlockNumber]
1059 .tnsActive[HIFILT])) ||
1060 ((blockType != SHORT_WINDOW) &&
1061 (!tnsData->dataRaw.Long.subBlockInfo.tnsActive[HIFILT]))) {
1062 return 1;
1063 }
1064
1065 startLine = (tnsData->filtersMerged) ? tC->lpcStartLine[LOFILT]
1066 : tC->lpcStartLine[HIFILT];
1067 stopLine = tC->lpcStopLine;
1068
1069 for (i = 0; i < tnsInfo->numOfFilters[subBlockNumber]; i++) {
1070 INT lpcGainFactor;
1071 FIXP_LPC LpcCoeff[TNS_MAX_ORDER];
1072 FIXP_DBL workBuffer[TNS_MAX_ORDER];
1073 FIXP_LPC parcor_tmp[TNS_MAX_ORDER];
1074
1075 FDKaacEnc_Index2Parcor(tnsInfo->coef[subBlockNumber][i], parcor_tmp,
1076 tnsInfo->order[subBlockNumber][i], tC->coefRes);
1077
1078 lpcGainFactor = CLpc_ParcorToLpc(
1079 parcor_tmp, LpcCoeff, tnsInfo->order[subBlockNumber][i], workBuffer);
1080
1081 FDKmemclear(workBuffer, TNS_MAX_ORDER * sizeof(FIXP_DBL));
1082 CLpc_Analysis(&spectrum[startLine], stopLine - startLine, LpcCoeff,
1083 lpcGainFactor, tnsInfo->order[subBlockNumber][i], workBuffer,
1084 NULL);
1085
1086 /* update for second filter */
1087 startLine = tC->lpcStartLine[LOFILT];
1088 stopLine = tC->lpcStartLine[HIFILT];
1089 }
1090
1091 return (0);
1092 }
1093
FDKaacEnc_CalcGaussWindow(FIXP_DBL * win,const int winSize,const INT samplingRate,const INT transformResolution,const FIXP_DBL timeResolution,const INT timeResolution_e)1094 static void FDKaacEnc_CalcGaussWindow(FIXP_DBL *win, const int winSize,
1095 const INT samplingRate,
1096 const INT transformResolution,
1097 const FIXP_DBL timeResolution,
1098 const INT timeResolution_e) {
1099 #define PI_E (2)
1100 #define PI_M FL2FXCONST_DBL(3.1416f / (float)(1 << PI_E))
1101
1102 #define EULER_E (2)
1103 #define EULER_M FL2FXCONST_DBL(2.7183 / (float)(1 << EULER_E))
1104
1105 #define COEFF_LOOP_SCALE (4)
1106
1107 INT i, e1, e2, gaussExp_e;
1108 FIXP_DBL gaussExp_m;
1109
1110 /* calc. window exponent from time resolution:
1111 *
1112 * gaussExp = PI * samplingRate * 0.001f * timeResolution /
1113 * transformResolution; gaussExp = -0.5f * gaussExp * gaussExp;
1114 */
1115 gaussExp_m = fMultNorm(
1116 timeResolution,
1117 fMult(PI_M,
1118 fDivNorm((FIXP_DBL)(samplingRate),
1119 (FIXP_DBL)(LONG)(transformResolution * 1000.f), &e1)),
1120 &e2);
1121 gaussExp_m = -fPow2Div2(gaussExp_m);
1122 gaussExp_e = 2 * (e1 + e2 + timeResolution_e + PI_E);
1123
1124 FDK_ASSERT(winSize < (1 << COEFF_LOOP_SCALE));
1125
1126 /* calc. window coefficients
1127 * win[i] = (float)exp( gaussExp * (i+0.5) * (i+0.5) );
1128 */
1129 for (i = 0; i < winSize; i++) {
1130 win[i] = fPow(
1131 EULER_M, EULER_E,
1132 fMult(gaussExp_m,
1133 fPow2((i * FL2FXCONST_DBL(1.f / (float)(1 << COEFF_LOOP_SCALE)) +
1134 FL2FXCONST_DBL(.5f / (float)(1 << COEFF_LOOP_SCALE))))),
1135 gaussExp_e + 2 * COEFF_LOOP_SCALE, &e1);
1136
1137 win[i] = scaleValueSaturate(win[i], e1);
1138 }
1139 }
1140
FDKaacEnc_Search3(FIXP_LPC parcor)1141 static INT FDKaacEnc_Search3(FIXP_LPC parcor) {
1142 INT i, index = 0;
1143
1144 for (i = 0; i < 8; i++) {
1145 if (parcor > FDKaacEnc_tnsCoeff3Borders[i]) index = i;
1146 }
1147 return (index - 4);
1148 }
1149
FDKaacEnc_Search4(FIXP_LPC parcor)1150 static INT FDKaacEnc_Search4(FIXP_LPC parcor) {
1151 INT i, index = 0;
1152
1153 for (i = 0; i < 16; i++) {
1154 if (parcor > FDKaacEnc_tnsCoeff4Borders[i]) index = i;
1155 }
1156 return (index - 8);
1157 }
1158
1159 /*****************************************************************************
1160
1161 functionname: FDKaacEnc_Parcor2Index
1162
1163 *****************************************************************************/
FDKaacEnc_Parcor2Index(const FIXP_LPC * parcor,INT * RESTRICT index,const INT order,const INT bitsPerCoeff)1164 static void FDKaacEnc_Parcor2Index(const FIXP_LPC *parcor, INT *RESTRICT index,
1165 const INT order, const INT bitsPerCoeff) {
1166 INT i;
1167 for (i = 0; i < order; i++) {
1168 if (bitsPerCoeff == 3)
1169 index[i] = FDKaacEnc_Search3(parcor[i]);
1170 else
1171 index[i] = FDKaacEnc_Search4(parcor[i]);
1172 }
1173 }
1174
1175 /*****************************************************************************
1176
1177 functionname: FDKaacEnc_Index2Parcor
1178 description: inverse quantization for reflection coefficients
1179 returns: -
1180 input: quantized values, ptr. to reflection coefficients,
1181 no. of coefficients, resolution
1182 output: reflection coefficients
1183
1184 *****************************************************************************/
FDKaacEnc_Index2Parcor(const INT * index,FIXP_LPC * RESTRICT parcor,const INT order,const INT bitsPerCoeff)1185 static void FDKaacEnc_Index2Parcor(const INT *index, FIXP_LPC *RESTRICT parcor,
1186 const INT order, const INT bitsPerCoeff) {
1187 INT i;
1188 for (i = 0; i < order; i++)
1189 parcor[i] = bitsPerCoeff == 4 ? FDKaacEnc_tnsEncCoeff4[index[i] + 8]
1190 : FDKaacEnc_tnsEncCoeff3[index[i] + 4];
1191 }
1192