1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/audio_coding/neteq/delay_manager.h"
12
13 #include <assert.h>
14 #include <math.h>
15
16 #include <algorithm> // max, min
17
18 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
19 #include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h"
20 #include "webrtc/modules/include/module_common_types.h"
21 #include "webrtc/system_wrappers/include/logging.h"
22
23 namespace webrtc {
24
DelayManager(size_t max_packets_in_buffer,DelayPeakDetector * peak_detector)25 DelayManager::DelayManager(size_t max_packets_in_buffer,
26 DelayPeakDetector* peak_detector)
27 : first_packet_received_(false),
28 max_packets_in_buffer_(max_packets_in_buffer),
29 iat_vector_(kMaxIat + 1, 0),
30 iat_factor_(0),
31 packet_iat_count_ms_(0),
32 base_target_level_(4), // In Q0 domain.
33 target_level_(base_target_level_ << 8), // In Q8 domain.
34 packet_len_ms_(0),
35 streaming_mode_(false),
36 last_seq_no_(0),
37 last_timestamp_(0),
38 minimum_delay_ms_(0),
39 least_required_delay_ms_(target_level_),
40 maximum_delay_ms_(target_level_),
41 iat_cumulative_sum_(0),
42 max_iat_cumulative_sum_(0),
43 max_timer_ms_(0),
44 peak_detector_(*peak_detector),
45 last_pack_cng_or_dtmf_(1) {
46 assert(peak_detector); // Should never be NULL.
47 Reset();
48 }
49
~DelayManager()50 DelayManager::~DelayManager() {}
51
iat_vector() const52 const DelayManager::IATVector& DelayManager::iat_vector() const {
53 return iat_vector_;
54 }
55
56 // Set the histogram vector to an exponentially decaying distribution
57 // iat_vector_[i] = 0.5^(i+1), i = 0, 1, 2, ...
58 // iat_vector_ is in Q30.
ResetHistogram()59 void DelayManager::ResetHistogram() {
60 // Set temp_prob to (slightly more than) 1 in Q14. This ensures that the sum
61 // of iat_vector_ is 1.
62 uint16_t temp_prob = 0x4002; // 16384 + 2 = 100000000000010 binary.
63 IATVector::iterator it = iat_vector_.begin();
64 for (; it < iat_vector_.end(); it++) {
65 temp_prob >>= 1;
66 (*it) = temp_prob << 16;
67 }
68 base_target_level_ = 4;
69 target_level_ = base_target_level_ << 8;
70 }
71
Update(uint16_t sequence_number,uint32_t timestamp,int sample_rate_hz)72 int DelayManager::Update(uint16_t sequence_number,
73 uint32_t timestamp,
74 int sample_rate_hz) {
75 if (sample_rate_hz <= 0) {
76 return -1;
77 }
78
79 if (!first_packet_received_) {
80 // Prepare for next packet arrival.
81 packet_iat_count_ms_ = 0;
82 last_seq_no_ = sequence_number;
83 last_timestamp_ = timestamp;
84 first_packet_received_ = true;
85 return 0;
86 }
87
88 // Try calculating packet length from current and previous timestamps.
89 int packet_len_ms;
90 if (!IsNewerTimestamp(timestamp, last_timestamp_) ||
91 !IsNewerSequenceNumber(sequence_number, last_seq_no_)) {
92 // Wrong timestamp or sequence order; use stored value.
93 packet_len_ms = packet_len_ms_;
94 } else {
95 // Calculate timestamps per packet and derive packet length in ms.
96 int packet_len_samp =
97 static_cast<uint32_t>(timestamp - last_timestamp_) /
98 static_cast<uint16_t>(sequence_number - last_seq_no_);
99 packet_len_ms = (1000 * packet_len_samp) / sample_rate_hz;
100 }
101
102 if (packet_len_ms > 0) {
103 // Cannot update statistics unless |packet_len_ms| is valid.
104 // Calculate inter-arrival time (IAT) in integer "packet times"
105 // (rounding down). This is the value used as index to the histogram
106 // vector |iat_vector_|.
107 int iat_packets = packet_iat_count_ms_ / packet_len_ms;
108
109 if (streaming_mode_) {
110 UpdateCumulativeSums(packet_len_ms, sequence_number);
111 }
112
113 // Check for discontinuous packet sequence and re-ordering.
114 if (IsNewerSequenceNumber(sequence_number, last_seq_no_ + 1)) {
115 // Compensate for gap in the sequence numbers. Reduce IAT with the
116 // expected extra time due to lost packets, but ensure that the IAT is
117 // not negative.
118 iat_packets -= static_cast<uint16_t>(sequence_number - last_seq_no_ - 1);
119 iat_packets = std::max(iat_packets, 0);
120 } else if (!IsNewerSequenceNumber(sequence_number, last_seq_no_)) {
121 iat_packets += static_cast<uint16_t>(last_seq_no_ + 1 - sequence_number);
122 }
123
124 // Saturate IAT at maximum value.
125 const int max_iat = kMaxIat;
126 iat_packets = std::min(iat_packets, max_iat);
127 UpdateHistogram(iat_packets);
128 // Calculate new |target_level_| based on updated statistics.
129 target_level_ = CalculateTargetLevel(iat_packets);
130 if (streaming_mode_) {
131 target_level_ = std::max(target_level_, max_iat_cumulative_sum_);
132 }
133
134 LimitTargetLevel();
135 } // End if (packet_len_ms > 0).
136
137 // Prepare for next packet arrival.
138 packet_iat_count_ms_ = 0;
139 last_seq_no_ = sequence_number;
140 last_timestamp_ = timestamp;
141 return 0;
142 }
143
UpdateCumulativeSums(int packet_len_ms,uint16_t sequence_number)144 void DelayManager::UpdateCumulativeSums(int packet_len_ms,
145 uint16_t sequence_number) {
146 // Calculate IAT in Q8, including fractions of a packet (i.e., more
147 // accurate than |iat_packets|.
148 int iat_packets_q8 = (packet_iat_count_ms_ << 8) / packet_len_ms;
149 // Calculate cumulative sum IAT with sequence number compensation. The sum
150 // is zero if there is no clock-drift.
151 iat_cumulative_sum_ += (iat_packets_q8 -
152 (static_cast<int>(sequence_number - last_seq_no_) << 8));
153 // Subtract drift term.
154 iat_cumulative_sum_ -= kCumulativeSumDrift;
155 // Ensure not negative.
156 iat_cumulative_sum_ = std::max(iat_cumulative_sum_, 0);
157 if (iat_cumulative_sum_ > max_iat_cumulative_sum_) {
158 // Found a new maximum.
159 max_iat_cumulative_sum_ = iat_cumulative_sum_;
160 max_timer_ms_ = 0;
161 }
162 if (max_timer_ms_ > kMaxStreamingPeakPeriodMs) {
163 // Too long since the last maximum was observed; decrease max value.
164 max_iat_cumulative_sum_ -= kCumulativeSumDrift;
165 }
166 }
167
168 // Each element in the vector is first multiplied by the forgetting factor
169 // |iat_factor_|. Then the vector element indicated by |iat_packets| is then
170 // increased (additive) by 1 - |iat_factor_|. This way, the probability of
171 // |iat_packets| is slightly increased, while the sum of the histogram remains
172 // constant (=1).
173 // Due to inaccuracies in the fixed-point arithmetic, the histogram may no
174 // longer sum up to 1 (in Q30) after the update. To correct this, a correction
175 // term is added or subtracted from the first element (or elements) of the
176 // vector.
177 // The forgetting factor |iat_factor_| is also updated. When the DelayManager
178 // is reset, the factor is set to 0 to facilitate rapid convergence in the
179 // beginning. With each update of the histogram, the factor is increased towards
180 // the steady-state value |kIatFactor_|.
UpdateHistogram(size_t iat_packets)181 void DelayManager::UpdateHistogram(size_t iat_packets) {
182 assert(iat_packets < iat_vector_.size());
183 int vector_sum = 0; // Sum up the vector elements as they are processed.
184 // Multiply each element in |iat_vector_| with |iat_factor_|.
185 for (IATVector::iterator it = iat_vector_.begin();
186 it != iat_vector_.end(); ++it) {
187 *it = (static_cast<int64_t>(*it) * iat_factor_) >> 15;
188 vector_sum += *it;
189 }
190
191 // Increase the probability for the currently observed inter-arrival time
192 // by 1 - |iat_factor_|. The factor is in Q15, |iat_vector_| in Q30.
193 // Thus, left-shift 15 steps to obtain result in Q30.
194 iat_vector_[iat_packets] += (32768 - iat_factor_) << 15;
195 vector_sum += (32768 - iat_factor_) << 15; // Add to vector sum.
196
197 // |iat_vector_| should sum up to 1 (in Q30), but it may not due to
198 // fixed-point rounding errors.
199 vector_sum -= 1 << 30; // Should be zero. Compensate if not.
200 if (vector_sum != 0) {
201 // Modify a few values early in |iat_vector_|.
202 int flip_sign = vector_sum > 0 ? -1 : 1;
203 IATVector::iterator it = iat_vector_.begin();
204 while (it != iat_vector_.end() && abs(vector_sum) > 0) {
205 // Add/subtract 1/16 of the element, but not more than |vector_sum|.
206 int correction = flip_sign * std::min(abs(vector_sum), (*it) >> 4);
207 *it += correction;
208 vector_sum += correction;
209 ++it;
210 }
211 }
212 assert(vector_sum == 0); // Verify that the above is correct.
213
214 // Update |iat_factor_| (changes only during the first seconds after a reset).
215 // The factor converges to |kIatFactor_|.
216 iat_factor_ += (kIatFactor_ - iat_factor_ + 3) >> 2;
217 }
218
219 // Enforces upper and lower limits for |target_level_|. The upper limit is
220 // chosen to be minimum of i) 75% of |max_packets_in_buffer_|, to leave some
221 // headroom for natural fluctuations around the target, and ii) equivalent of
222 // |maximum_delay_ms_| in packets. Note that in practice, if no
223 // |maximum_delay_ms_| is specified, this does not have any impact, since the
224 // target level is far below the buffer capacity in all reasonable cases.
225 // The lower limit is equivalent of |minimum_delay_ms_| in packets. We update
226 // |least_required_level_| while the above limits are applied.
227 // TODO(hlundin): Move this check to the buffer logistics class.
LimitTargetLevel()228 void DelayManager::LimitTargetLevel() {
229 least_required_delay_ms_ = (target_level_ * packet_len_ms_) >> 8;
230
231 if (packet_len_ms_ > 0 && minimum_delay_ms_ > 0) {
232 int minimum_delay_packet_q8 = (minimum_delay_ms_ << 8) / packet_len_ms_;
233 target_level_ = std::max(target_level_, minimum_delay_packet_q8);
234 }
235
236 if (maximum_delay_ms_ > 0 && packet_len_ms_ > 0) {
237 int maximum_delay_packet_q8 = (maximum_delay_ms_ << 8) / packet_len_ms_;
238 target_level_ = std::min(target_level_, maximum_delay_packet_q8);
239 }
240
241 // Shift to Q8, then 75%.;
242 int max_buffer_packets_q8 =
243 static_cast<int>((3 * (max_packets_in_buffer_ << 8)) / 4);
244 target_level_ = std::min(target_level_, max_buffer_packets_q8);
245
246 // Sanity check, at least 1 packet (in Q8).
247 target_level_ = std::max(target_level_, 1 << 8);
248 }
249
CalculateTargetLevel(int iat_packets)250 int DelayManager::CalculateTargetLevel(int iat_packets) {
251 int limit_probability = kLimitProbability;
252 if (streaming_mode_) {
253 limit_probability = kLimitProbabilityStreaming;
254 }
255
256 // Calculate target buffer level from inter-arrival time histogram.
257 // Find the |iat_index| for which the probability of observing an
258 // inter-arrival time larger than or equal to |iat_index| is less than or
259 // equal to |limit_probability|. The sought probability is estimated using
260 // the histogram as the reverse cumulant PDF, i.e., the sum of elements from
261 // the end up until |iat_index|. Now, since the sum of all elements is 1
262 // (in Q30) by definition, and since the solution is often a low value for
263 // |iat_index|, it is more efficient to start with |sum| = 1 and subtract
264 // elements from the start of the histogram.
265 size_t index = 0; // Start from the beginning of |iat_vector_|.
266 int sum = 1 << 30; // Assign to 1 in Q30.
267 sum -= iat_vector_[index]; // Ensure that target level is >= 1.
268
269 do {
270 // Subtract the probabilities one by one until the sum is no longer greater
271 // than limit_probability.
272 ++index;
273 sum -= iat_vector_[index];
274 } while ((sum > limit_probability) && (index < iat_vector_.size() - 1));
275
276 // This is the base value for the target buffer level.
277 int target_level = static_cast<int>(index);
278 base_target_level_ = static_cast<int>(index);
279
280 // Update detector for delay peaks.
281 bool delay_peak_found = peak_detector_.Update(iat_packets, target_level);
282 if (delay_peak_found) {
283 target_level = std::max(target_level, peak_detector_.MaxPeakHeight());
284 }
285
286 // Sanity check. |target_level| must be strictly positive.
287 target_level = std::max(target_level, 1);
288 // Scale to Q8 and assign to member variable.
289 target_level_ = target_level << 8;
290 return target_level_;
291 }
292
SetPacketAudioLength(int length_ms)293 int DelayManager::SetPacketAudioLength(int length_ms) {
294 if (length_ms <= 0) {
295 LOG_F(LS_ERROR) << "length_ms = " << length_ms;
296 return -1;
297 }
298 packet_len_ms_ = length_ms;
299 peak_detector_.SetPacketAudioLength(packet_len_ms_);
300 packet_iat_count_ms_ = 0;
301 last_pack_cng_or_dtmf_ = 1; // TODO(hlundin): Legacy. Remove?
302 return 0;
303 }
304
305
Reset()306 void DelayManager::Reset() {
307 packet_len_ms_ = 0; // Packet size unknown.
308 streaming_mode_ = false;
309 peak_detector_.Reset();
310 ResetHistogram(); // Resets target levels too.
311 iat_factor_ = 0; // Adapt the histogram faster for the first few packets.
312 packet_iat_count_ms_ = 0;
313 max_timer_ms_ = 0;
314 iat_cumulative_sum_ = 0;
315 max_iat_cumulative_sum_ = 0;
316 last_pack_cng_or_dtmf_ = 1;
317 }
318
AverageIAT() const319 int DelayManager::AverageIAT() const {
320 int32_t sum_q24 = 0;
321 // Using an int for the upper limit of the following for-loop so the
322 // loop-counter can be int. Otherwise we need a cast where |sum_q24| is
323 // updated.
324 const int iat_vec_size = static_cast<int>(iat_vector_.size());
325 assert(iat_vector_.size() == 65); // Algorithm is hard-coded for this size.
326 for (int i = 0; i < iat_vec_size; ++i) {
327 // Shift 6 to fit worst case: 2^30 * 64.
328 sum_q24 += (iat_vector_[i] >> 6) * i;
329 }
330 // Subtract the nominal inter-arrival time 1 = 2^24 in Q24.
331 sum_q24 -= (1 << 24);
332 // Multiply with 1000000 / 2^24 = 15625 / 2^18 to get in parts-per-million.
333 // Shift 7 to Q17 first, then multiply with 15625 and shift another 11.
334 return ((sum_q24 >> 7) * 15625) >> 11;
335 }
336
PeakFound() const337 bool DelayManager::PeakFound() const {
338 return peak_detector_.peak_found();
339 }
340
UpdateCounters(int elapsed_time_ms)341 void DelayManager::UpdateCounters(int elapsed_time_ms) {
342 packet_iat_count_ms_ += elapsed_time_ms;
343 peak_detector_.IncrementCounter(elapsed_time_ms);
344 max_timer_ms_ += elapsed_time_ms;
345 }
346
ResetPacketIatCount()347 void DelayManager::ResetPacketIatCount() { packet_iat_count_ms_ = 0; }
348
349 // Note that |low_limit| and |higher_limit| are not assigned to
350 // |minimum_delay_ms_| and |maximum_delay_ms_| defined by the client of this
351 // class. They are computed from |target_level_| and used for decision making.
BufferLimits(int * lower_limit,int * higher_limit) const352 void DelayManager::BufferLimits(int* lower_limit, int* higher_limit) const {
353 if (!lower_limit || !higher_limit) {
354 LOG_F(LS_ERROR) << "NULL pointers supplied as input";
355 assert(false);
356 return;
357 }
358
359 int window_20ms = 0x7FFF; // Default large value for legacy bit-exactness.
360 if (packet_len_ms_ > 0) {
361 window_20ms = (20 << 8) / packet_len_ms_;
362 }
363
364 // |target_level_| is in Q8 already.
365 *lower_limit = (target_level_ * 3) / 4;
366 // |higher_limit| is equal to |target_level_|, but should at
367 // least be 20 ms higher than |lower_limit_|.
368 *higher_limit = std::max(target_level_, *lower_limit + window_20ms);
369 }
370
TargetLevel() const371 int DelayManager::TargetLevel() const {
372 return target_level_;
373 }
374
LastDecoderType(NetEqDecoder decoder_type)375 void DelayManager::LastDecoderType(NetEqDecoder decoder_type) {
376 if (decoder_type == NetEqDecoder::kDecoderAVT ||
377 decoder_type == NetEqDecoder::kDecoderCNGnb ||
378 decoder_type == NetEqDecoder::kDecoderCNGwb ||
379 decoder_type == NetEqDecoder::kDecoderCNGswb32kHz ||
380 decoder_type == NetEqDecoder::kDecoderCNGswb48kHz) {
381 last_pack_cng_or_dtmf_ = 1;
382 } else if (last_pack_cng_or_dtmf_ != 0) {
383 last_pack_cng_or_dtmf_ = -1;
384 }
385 }
386
SetMinimumDelay(int delay_ms)387 bool DelayManager::SetMinimumDelay(int delay_ms) {
388 // Minimum delay shouldn't be more than maximum delay, if any maximum is set.
389 // Also, if possible check |delay| to less than 75% of
390 // |max_packets_in_buffer_|.
391 if ((maximum_delay_ms_ > 0 && delay_ms > maximum_delay_ms_) ||
392 (packet_len_ms_ > 0 &&
393 delay_ms >
394 static_cast<int>(3 * max_packets_in_buffer_ * packet_len_ms_ / 4))) {
395 return false;
396 }
397 minimum_delay_ms_ = delay_ms;
398 return true;
399 }
400
SetMaximumDelay(int delay_ms)401 bool DelayManager::SetMaximumDelay(int delay_ms) {
402 if (delay_ms == 0) {
403 // Zero input unsets the maximum delay.
404 maximum_delay_ms_ = 0;
405 return true;
406 } else if (delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_) {
407 // Maximum delay shouldn't be less than minimum delay or less than a packet.
408 return false;
409 }
410 maximum_delay_ms_ = delay_ms;
411 return true;
412 }
413
least_required_delay_ms() const414 int DelayManager::least_required_delay_ms() const {
415 return least_required_delay_ms_;
416 }
417
base_target_level() const418 int DelayManager::base_target_level() const { return base_target_level_; }
set_streaming_mode(bool value)419 void DelayManager::set_streaming_mode(bool value) { streaming_mode_ = value; }
last_pack_cng_or_dtmf() const420 int DelayManager::last_pack_cng_or_dtmf() const {
421 return last_pack_cng_or_dtmf_;
422 }
423
set_last_pack_cng_or_dtmf(int value)424 void DelayManager::set_last_pack_cng_or_dtmf(int value) {
425 last_pack_cng_or_dtmf_ = value;
426 }
427 } // namespace webrtc
428