1 /*******************************************************************************
2 * Copyright 2010-2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this software was obtained under the Intel Simplified Software License,
6 * the following terms apply:
7 *
8 * The source code, information and material ("Material") contained herein is
9 * owned by Intel Corporation or its suppliers or licensors, and title to such
10 * Material remains with Intel Corporation or its suppliers or licensors. The
11 * Material contains proprietary information of Intel or its suppliers and
12 * licensors. The Material is protected by worldwide copyright laws and treaty
13 * provisions. No part of the Material may be used, copied, reproduced,
14 * modified, published, uploaded, posted, transmitted, distributed or disclosed
15 * in any way without Intel's prior express written permission. No license under
16 * any patent, copyright or other intellectual property rights in the Material
17 * is granted to or conferred upon you, either expressly, by implication,
18 * inducement, estoppel or otherwise. Any license under such intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing, you may not remove or alter this
22 * notice or any other notice embedded in Materials by Intel or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this software was obtained under the Apache License, Version 2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may not use this file except in compliance with the License. You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless required by applicable law or agreed to in writing, software
34 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the License for the specific language governing permissions and
38 * limitations under the License.
39 *******************************************************************************/
40
41 /*
42 //
43 // Purpose:
44 // Intel(R) Integrated Performance Primitives. Cryptography Primitives.
45 // Internal EC over GF(p^m) basic Definitions & Function Prototypes
46 //
47 //
48 */
49
50 #if !defined(_CP_ECGFP_H_)
51 #define _CP_ECGFP_H_
52
53 #include "pcpgfpstuff.h"
54 #include "pcpgfpxstuff.h"
55 #include "pcpmask_ct.h"
56
57 #define _LEGACY_ECCP_SUPPORT_
58
59 /*
60 // EC over GF(p) Point context
61 */
62 typedef struct _cpGFpECPoint {
63 IppCtxId idCtx; /* EC Point identifier */
64 int flags; /* flags: affine */
65 int elementSize; /* size of each coordinate */
66 BNU_CHUNK_T* pData; /* coordinatex X, Y, Z */
67 } cpGFPECPoint;
68
69 /*
70 // Contetx Access Macros
71 */
72 #define ECP_POINT_ID(ctx) ((ctx)->idCtx)
73 #define ECP_POINT_FLAGS(ctx) ((ctx)->flags)
74 #define ECP_POINT_FELEN(ctx) ((ctx)->elementSize)
75 #define ECP_POINT_DATA(ctx) ((ctx)->pData)
76 #define ECP_POINT_X(ctx) ((ctx)->pData)
77 #define ECP_POINT_Y(ctx) ((ctx)->pData+(ctx)->elementSize)
78 #define ECP_POINT_Z(ctx) ((ctx)->pData+(ctx)->elementSize*2)
79 #define ECP_POINT_TEST_ID(ctx) (ECP_POINT_ID((ctx))==idCtxGFPPoint)
80
81 /* point flags */
82 #define ECP_AFFINE_POINT (1)
83 #define ECP_FINITE_POINT (2)
84
85 #define IS_ECP_AFFINE_POINT(ctx) (ECP_POINT_FLAGS((ctx))&ECP_AFFINE_POINT)
86 #define SET_ECP_AFFINE_POINT(ctx) (ECP_POINT_FLAGS((ctx))|ECP_AFFINE_POINT)
87 #define SET_ECP_PROJECTIVE_POINT(ctx) (ECP_POINT_FLAGS((ctx))&~ECP_AFFINE_POINT)
88
89 #define IS_ECP_FINITE_POINT(ctx) (ECP_POINT_FLAGS((ctx))&ECP_FINITE_POINT)
90 #define SET_ECP_FINITE_POINT(ctx) (ECP_POINT_FLAGS((ctx))|ECP_FINITE_POINT)
91 #define SET_ECP_INFINITE_POINT(ctx) (ECP_POINT_FLAGS((ctx))&~ECP_FINITE_POINT)
92
93 /*
94 // define using projective coordinates
95 */
96 #define JACOBIAN (0)
97 #define HOMOGENEOUS (1)
98 #define ECP_PROJECTIVE_COORD JACOBIAN
99 //#define ECP_PROJECTIVE_COORD HOMOGENEOUS
100
101 #if (ECP_PROJECTIVE_COORD== JACOBIAN)
102 #pragma message ("ECP_PROJECTIVE_COORD = JACOBIAN")
103 #elif (ECP_PROJECTIVE_COORD== HOMOGENEOUS)
104 #pragma message ("ECP_PROJECTIVE_COORD = HOMOGENEOUS")
105 #else
106 #error ECP_PROJECTIVE_COORD should be either JACOBIAN or HOMOGENEOUS type
107 #endif
108
109
110 /*
111 // pre-computed Base Point descriptor
112 */
113 typedef void (*selectAP) (BNU_CHUNK_T* pAP, const BNU_CHUNK_T* pAPtbl, int index);
114
115 typedef struct _cpPrecompAP {
116 int w; /* scalar's window bitsize */
117 selectAP select_affine_point; /* get affine point function */
118 const BNU_CHUNK_T* pTbl; /* pre-computed table */
119 } cpPrecompAP;
120
121
122 /* EC over GF(p) context */
123 typedef struct _cpGFpEC {
124 IppCtxId idCtx; /* EC identifier */
125
126 IppsGFpState* pGF; /* arbitrary GF(p^d)*/
127
128 int subgroup; /* set up subgroup */
129 int elementSize; /* length of EC point */
130 int orderBitSize; /* base_point order bitsize */
131 BNU_CHUNK_T* pA; /* EC parameter A */
132 BNU_CHUNK_T* pB; /* B */
133 BNU_CHUNK_T* pG; /* base_point */
134 BNU_CHUNK_T* cofactor; /* cofactor = #E/base_point order */
135 int parmAspc; /* NIST's, EPIDv2.0 A-parameter specific */
136 int infinity; /* 0/1 if B !=0/==0 */
137 const cpPrecompAP* pBaseTbl; /* address of pre-computed [n]G tabble */
138 gsModEngine* pMontR; /* EC order montgomery engine */
139
140 BNU_CHUNK_T* pPool; /* pool of points */
141 #if defined(_LEGACY_ECCP_SUPPORT_)
142 BNU_CHUNK_T* pPublic; /* regular public key */
143 BNU_CHUNK_T* pPublicE; /* ephemeral public key */
144 BNU_CHUNK_T* pPrivat; /* regular private key */
145 BNU_CHUNK_T* pPrivatE; /* ephemeral private key */
146 BNU_CHUNK_T* pBuffer; /* pointer to scaratch buffer (for lagacy ECCP only) */
147 #endif
148 } cpGFPEC;
149
150 #define ECGFP_ALIGNMENT ((int)(sizeof(void*)))
151
152 /* Local definitions */
153 #define EC_POOL_SIZE (10) /* num of points into the pool */
154
155 #define EC_MONT_POOL_SIZE (4) /* num of temp values for modular arithmetic */
156
157 #define ECP_ID(pCtx) ((pCtx)->idCtx)
158 #define ECP_GFP(pCtx) ((pCtx)->pGF)
159 #define ECP_SUBGROUP(pCtx) ((pCtx)->subgroup)
160 #define ECP_POINTLEN(pCtx) ((pCtx)->elementSize)
161 #define ECP_ORDBITSIZE(pCtx) ((pCtx)->orderBitSize)
162 #define ECP_COFACTOR(pCtx) ((pCtx)->cofactor)
163 #define ECP_SPECIFIC(pCtx) ((pCtx)->parmAspc)
164 #define ECP_INFINITY(pCtx) ((pCtx)->infinity)
165 #define ECP_A(pCtx) ((pCtx)->pA)
166 #define ECP_B(pCtx) ((pCtx)->pB)
167 #define ECP_G(pCtx) ((pCtx)->pG)
168 #define ECP_PREMULBP(pCtx) ((pCtx)->pBaseTbl)
169 #define ECP_MONT_R(pCtx) ((pCtx)->pMontR)
170 #define ECP_POOL(pCtx) ((pCtx)->pPool)
171 #if defined(_LEGACY_ECCP_SUPPORT_)
172 #define ECP_PUBLIC(pCtx) ((pCtx)->pPublic)
173 #define ECP_PUBLIC_E(pCtx) ((pCtx)->pPublicE)
174 #define ECP_PRIVAT(pCtx) ((pCtx)->pPrivat)
175 #define ECP_PRIVAT_E(pCtx) ((pCtx)->pPrivatE)
176 #define ECP_SBUFFER(pCtx) ((pCtx)->pBuffer)
177 #endif
178
179 #define ECP_TEST_ID(pCtx) (ECP_ID((pCtx))==idCtxGFPEC)
180
181 /* EC curve specific (a-parameter) */
182 #define ECP_Acom (0) /* commont case */
183 #define ECP_Ami3 (1) /* a=-3 NIST's and SM2 curve */
184 #define ECP_Aeq0 (2) /* a=0 EPIDv2.0 curve */
185
186 #define ECP_ARB ECP_Acom
187 #define ECP_STD ECP_Ami3
188 #define ECP_EPID2 ECP_Aeq0
189
190 /* std ec pre-computed tables */
191 #define gfpec_precom_nistP192r1_fun OWNAPI(gfpec_precom_nistP192r1_fun)
192 #define gfpec_precom_nistP224r1_fun OWNAPI(gfpec_precom_nistP224r1_fun)
193 #define gfpec_precom_nistP256r1_fun OWNAPI(gfpec_precom_nistP256r1_fun)
194 #define gfpec_precom_nistP384r1_fun OWNAPI(gfpec_precom_nistP384r1_fun)
195 #define gfpec_precom_nistP521r1_fun OWNAPI(gfpec_precom_nistP521r1_fun)
196 #define gfpec_precom_sm2_fun OWNAPI(gfpec_precom_sm2_fun)
197
198 const cpPrecompAP* gfpec_precom_nistP192r1_fun(void);
199 const cpPrecompAP* gfpec_precom_nistP224r1_fun(void);
200 const cpPrecompAP* gfpec_precom_nistP256r1_fun(void);
201 const cpPrecompAP* gfpec_precom_nistP384r1_fun(void);
202 const cpPrecompAP* gfpec_precom_nistP521r1_fun(void);
203 const cpPrecompAP* gfpec_precom_sm2_fun(void);
204
205 /*
206 // get/release n points from/to the pool
207 */
cpEcGFpGetPool(int n,IppsGFpECState * pEC)208 __INLINE BNU_CHUNK_T* cpEcGFpGetPool(int n, IppsGFpECState* pEC)
209 {
210 BNU_CHUNK_T* pPool = ECP_POOL(pEC);
211 ECP_POOL(pEC) += n*GFP_FELEN(GFP_PMA(ECP_GFP(pEC)))*3;
212 return pPool;
213 }
cpEcGFpReleasePool(int n,IppsGFpECState * pEC)214 __INLINE void cpEcGFpReleasePool(int n, IppsGFpECState* pEC)
215 {
216 ECP_POOL(pEC) -= n*GFP_FELEN(GFP_PMA(ECP_GFP(pEC)))*3;
217 }
218
cpEcGFpInitPoint(IppsGFpECPoint * pPoint,BNU_CHUNK_T * pData,int flags,const IppsGFpECState * pEC)219 __INLINE IppsGFpECPoint* cpEcGFpInitPoint(IppsGFpECPoint* pPoint, BNU_CHUNK_T* pData, int flags, const IppsGFpECState* pEC)
220 {
221 ECP_POINT_ID(pPoint) = idCtxGFPPoint;
222 ECP_POINT_FLAGS(pPoint) = flags;
223 ECP_POINT_FELEN(pPoint) = GFP_FELEN(GFP_PMA(ECP_GFP(pEC)));
224 ECP_POINT_DATA(pPoint) = pData;
225 return pPoint;
226 }
227
228 /* copy one point into another */
gfec_CopyPoint(IppsGFpECPoint * pPointR,const IppsGFpECPoint * pPointA,int elemLen)229 __INLINE IppsGFpECPoint* gfec_CopyPoint(IppsGFpECPoint* pPointR, const IppsGFpECPoint* pPointA, int elemLen)
230 {
231 cpGFpElementCopy(ECP_POINT_DATA(pPointR), ECP_POINT_DATA(pPointA), 3*elemLen);
232 ECP_POINT_FLAGS(pPointR) = ECP_POINT_FLAGS(pPointA);
233 return pPointR;
234 }
235
236
gfec_SetPointAtInfinity(IppsGFpECPoint * pPoint)237 __INLINE IppsGFpECPoint* gfec_SetPointAtInfinity(IppsGFpECPoint* pPoint)
238 {
239 int elemLen = ECP_POINT_FELEN(pPoint);
240 cpGFpElementPadd(ECP_POINT_X(pPoint), elemLen, 0);
241 cpGFpElementPadd(ECP_POINT_Y(pPoint), elemLen, 0);
242 cpGFpElementPadd(ECP_POINT_Z(pPoint), elemLen, 0);
243 ECP_POINT_FLAGS(pPoint) = 0;
244 return pPoint;
245 }
246
247 /*
248 // test infinity:
249 // IsProjectivePointAtInfinity
250 */
gfec_IsPointAtInfinity(const IppsGFpECPoint * pPoint)251 __INLINE int gfec_IsPointAtInfinity(const IppsGFpECPoint* pPoint)
252 {
253 return GFP_IS_ZERO( ECP_POINT_Z(pPoint), ECP_POINT_FELEN(pPoint));
254 }
255
256
257
258 /* signed encode */
booth_recode(Ipp8u * sign,Ipp8u * digit,Ipp8u in,int w)259 __INLINE void booth_recode(Ipp8u* sign, Ipp8u* digit, Ipp8u in, int w)
260 {
261 Ipp8u s = (Ipp8u)(~((in >> w) - 1));
262 int d = (1 << (w+1)) - in - 1;
263 d = (d & s) | (in & ~s);
264 d = (d >> 1) + (d & 1);
265 *sign = s & 1;
266 *digit = (Ipp8u)d;
267 }
268
269
270 #define gfec_point_add OWNAPI(gfec_point_add)
271 void gfec_point_add (BNU_CHUNK_T* pRdata,
272 const BNU_CHUNK_T* pPdata,
273 const BNU_CHUNK_T* pQdata, IppsGFpECState* pEC);
274 #define gfec_affine_point_add OWNAPI(gfec_affine_point_add)
275 void gfec_affine_point_add(BNU_CHUNK_T* pRdata,
276 const BNU_CHUNK_T* pPdata,
277 const BNU_CHUNK_T* pAdata, IppsGFpECState* pEC);
278 #define gfec_point_double OWNAPI(gfec_point_double)
279 void gfec_point_double (BNU_CHUNK_T* pRdata,
280 const BNU_CHUNK_T* pPdata, IppsGFpECState* pEC);
281 #define gfec_point_mul OWNAPI(gfec_point_mul)
282 void gfec_point_mul (BNU_CHUNK_T* pRdata,
283 const BNU_CHUNK_T* pPdata, const Ipp8u* pScalar8, int scalarBitSize, IppsGFpECState* pEC, Ipp8u* pScratchBuffer);
284 #define gfec_point_prod OWNAPI(gfec_point_prod)
285 void gfec_point_prod (BNU_CHUNK_T* pointR,
286 const BNU_CHUNK_T* pointA, const Ipp8u* pScalarA,
287 const BNU_CHUNK_T* pointB, const Ipp8u* pScalarB, int scalarBitSize, IppsGFpECState* pEC, Ipp8u* pScratchBuffer);
288 #define gfec_base_point_mul OWNAPI(gfec_base_point_mul)
289 void gfec_base_point_mul (BNU_CHUNK_T* pRdata, const Ipp8u* pScalarB, int scalarBitSize, IppsGFpECState* pEC);
290 #define setupTable OWNAPI(setupTable)
291 void setupTable (BNU_CHUNK_T* pTbl,
292 const BNU_CHUNK_T* pPdata, IppsGFpECState* pEC);
293
294
295 /* size of context */
296 #define cpGFpECGetSize OWNAPI(cpGFpECGetSize)
297 int cpGFpECGetSize(int deg, int basicElmBitSize);
298
299 /* point operations */
300 #define gfec_GetPoint OWNAPI(gfec_GetPoint)
301 int gfec_GetPoint(BNU_CHUNK_T* pX, BNU_CHUNK_T* pY, const IppsGFpECPoint* pPoint, IppsGFpECState* pEC);
302 #define gfec_SetPoint OWNAPI(gfec_SetPoint)
303 int gfec_SetPoint(BNU_CHUNK_T* pP, const BNU_CHUNK_T* pX, const BNU_CHUNK_T* pY, IppsGFpECState* pEC);
304 #define gfec_MakePoint OWNAPI(gfec_MakePoint)
305 int gfec_MakePoint(IppsGFpECPoint* pPoint, const BNU_CHUNK_T* pElm, IppsGFpECState* pEC);
306 #define gfec_ComparePoint OWNAPI(gfec_ComparePoint)
307 int gfec_ComparePoint(const IppsGFpECPoint* pP, const IppsGFpECPoint* pQ, IppsGFpECState* pEC);
308 #define gfec_IsPointOnCurve OWNAPI(gfec_IsPointOnCurve)
309 int gfec_IsPointOnCurve(const IppsGFpECPoint* pP, IppsGFpECState* pEC);
310
gfec_DblPoint(IppsGFpECPoint * pR,const IppsGFpECPoint * pP,IppsGFpECState * pEC)311 __INLINE IppsGFpECPoint* gfec_DblPoint(IppsGFpECPoint* pR,
312 const IppsGFpECPoint* pP, IppsGFpECState* pEC)
313 {
314 gfec_point_double(ECP_POINT_X(pR), ECP_POINT_X(pP), pEC);
315 ECP_POINT_FLAGS(pR) = gfec_IsPointAtInfinity(pR)? 0 : ECP_FINITE_POINT;
316 return pR;
317 }
318
gfec_AddPoint(IppsGFpECPoint * pR,const IppsGFpECPoint * pP,const IppsGFpECPoint * pQ,IppsGFpECState * pEC)319 __INLINE IppsGFpECPoint* gfec_AddPoint(IppsGFpECPoint* pR,
320 const IppsGFpECPoint* pP, const IppsGFpECPoint* pQ,
321 IppsGFpECState* pEC)
322 {
323 gfec_point_add(ECP_POINT_X(pR), ECP_POINT_X(pP), ECP_POINT_X(pQ), pEC);
324 ECP_POINT_FLAGS(pR) = gfec_IsPointAtInfinity(pR)? 0 : ECP_FINITE_POINT;
325 return pR;
326 }
327
328
329 #define gfec_NegPoint OWNAPI(gfec_NegPoint)
330 IppsGFpECPoint* gfec_NegPoint(IppsGFpECPoint* pR,
331 const IppsGFpECPoint* pP, IppsGFpECState* pEC);
332 #define gfec_MulPoint OWNAPI(gfec_MulPoint)
333 IppsGFpECPoint* gfec_MulPoint(IppsGFpECPoint* pR,
334 const IppsGFpECPoint* pP, const BNU_CHUNK_T* pScalar, int scalarLen,
335 IppsGFpECState* pEC, Ipp8u* pScratchBuffer);
336 #define gfec_MulBasePoint OWNAPI(gfec_MulBasePoint)
337 IppsGFpECPoint* gfec_MulBasePoint(IppsGFpECPoint* pR,
338 const BNU_CHUNK_T* pScalar, int scalarLen,
339 IppsGFpECState* pEC, Ipp8u* pScratchBuffer);
340 //#define gfec_PointProduct OWNAPI(gfec_PointProduct)
341 //IppsGFpECPoint* gfec_PointProduct(IppsGFpECPoint* pR,
342 // const IppsGFpECPoint* pP, const BNU_CHUNK_T* pScalarP, int scalarPlen,
343 // const IppsGFpECPoint* pQ, const BNU_CHUNK_T* pScalarQ, int scalarQlen,
344 // IppsGFpECState* pEC, Ipp8u* pScratchBuffer);
345 #define gfec_BasePointProduct OWNAPI(gfec_BasePointProduct)
346 IppsGFpECPoint* gfec_BasePointProduct(IppsGFpECPoint* pR,
347 const BNU_CHUNK_T* pScalarG, int scalarGlen,
348 const IppsGFpECPoint* pP, const BNU_CHUNK_T* pScalarP, int scalarPlen,
349 IppsGFpECState* pEC, Ipp8u* pScratchBuffer);
350
351 #define p192r1_select_ap_w7 OWNAPI(p192r1_select_ap_w7)
352 void p192r1_select_ap_w7(BNU_CHUNK_T* pAffinePoint, const BNU_CHUNK_T* pTable, int index);
353 #define p224r1_select_ap_w7 OWNAPI(p224r1_select_ap_w7)
354 void p224r1_select_ap_w7(BNU_CHUNK_T* pAffinePoint, const BNU_CHUNK_T* pTable, int index);
355 #define p256r1_select_ap_w7 OWNAPI(p256r1_select_ap_w7)
356 void p256r1_select_ap_w7(BNU_CHUNK_T* pAffinePoint, const BNU_CHUNK_T* pTable, int index);
357 #define p384r1_select_ap_w5 OWNAPI(p384r1_select_ap_w5)
358 void p384r1_select_ap_w5(BNU_CHUNK_T* pAffinePoint, const BNU_CHUNK_T* pTable, int index);
359 #define p521r1_select_ap_w5 OWNAPI(p521r1_select_ap_w5)
360 void p521r1_select_ap_w5(BNU_CHUNK_T* pAffinePoint, const BNU_CHUNK_T* pTable, int index);
361
362 #endif /* _CP_ECGFP_H_ */
363