1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_context.h"
25 #include "brw_defines.h"
26 #include "intel_fbo.h"
27 #include "brw_meta_util.h"
28 #include "brw_state.h"
29 #include "main/blend.h"
30 #include "main/fbobject.h"
31 #include "util/format_srgb.h"
32
33 /**
34 * Helper function for handling mirror image blits.
35 *
36 * If coord0 > coord1, swap them and invert the "mirror" boolean.
37 */
38 static inline void
fixup_mirroring(bool * mirror,float * coord0,float * coord1)39 fixup_mirroring(bool *mirror, float *coord0, float *coord1)
40 {
41 if (*coord0 > *coord1) {
42 *mirror = !*mirror;
43 float tmp = *coord0;
44 *coord0 = *coord1;
45 *coord1 = tmp;
46 }
47 }
48
49 /**
50 * Compute the number of pixels to clip for each side of a rect
51 *
52 * \param x0 The rect's left coordinate
53 * \param y0 The rect's bottom coordinate
54 * \param x1 The rect's right coordinate
55 * \param y1 The rect's top coordinate
56 * \param min_x The clipping region's left coordinate
57 * \param min_y The clipping region's bottom coordinate
58 * \param max_x The clipping region's right coordinate
59 * \param max_y The clipping region's top coordinate
60 * \param clipped_x0 The number of pixels to clip from the left side
61 * \param clipped_y0 The number of pixels to clip from the bottom side
62 * \param clipped_x1 The number of pixels to clip from the right side
63 * \param clipped_y1 The number of pixels to clip from the top side
64 *
65 * \return false if we clip everything away, true otherwise
66 */
67 static inline bool
compute_pixels_clipped(float x0,float y0,float x1,float y1,float min_x,float min_y,float max_x,float max_y,float * clipped_x0,float * clipped_y0,float * clipped_x1,float * clipped_y1)68 compute_pixels_clipped(float x0, float y0, float x1, float y1,
69 float min_x, float min_y, float max_x, float max_y,
70 float *clipped_x0, float *clipped_y0, float *clipped_x1, float *clipped_y1)
71 {
72 /* If we are going to clip everything away, stop. */
73 if (!(min_x <= max_x &&
74 min_y <= max_y &&
75 x0 <= max_x &&
76 y0 <= max_y &&
77 min_x <= x1 &&
78 min_y <= y1 &&
79 x0 <= x1 &&
80 y0 <= y1)) {
81 return false;
82 }
83
84 if (x0 < min_x)
85 *clipped_x0 = min_x - x0;
86 else
87 *clipped_x0 = 0;
88 if (max_x < x1)
89 *clipped_x1 = x1 - max_x;
90 else
91 *clipped_x1 = 0;
92
93 if (y0 < min_y)
94 *clipped_y0 = min_y - y0;
95 else
96 *clipped_y0 = 0;
97 if (max_y < y1)
98 *clipped_y1 = y1 - max_y;
99 else
100 *clipped_y1 = 0;
101
102 return true;
103 }
104
105 /**
106 * Clips a coordinate (left, right, top or bottom) for the src or dst rect
107 * (whichever requires the largest clip) and adjusts the coordinate
108 * for the other rect accordingly.
109 *
110 * \param mirror true if mirroring is required
111 * \param src the source rect coordinate (for example srcX0)
112 * \param dst0 the dst rect coordinate (for example dstX0)
113 * \param dst1 the opposite dst rect coordinate (for example dstX1)
114 * \param clipped_src0 number of pixels to clip from the src coordinate
115 * \param clipped_dst0 number of pixels to clip from the dst coordinate
116 * \param clipped_dst1 number of pixels to clip from the opposite dst coordinate
117 * \param scale the src vs dst scale involved for that coordinate
118 * \param isLeftOrBottom true if we are clipping the left or bottom sides
119 * of the rect.
120 */
121 static inline void
clip_coordinates(bool mirror,float * src,float * dst0,float * dst1,float clipped_src0,float clipped_dst0,float clipped_dst1,float scale,bool isLeftOrBottom)122 clip_coordinates(bool mirror,
123 float *src, float *dst0, float *dst1,
124 float clipped_src0,
125 float clipped_dst0,
126 float clipped_dst1,
127 float scale,
128 bool isLeftOrBottom)
129 {
130 /* When clipping we need to add or subtract pixels from the original
131 * coordinates depending on whether we are acting on the left/bottom
132 * or right/top sides of the rect respectively. We assume we have to
133 * add them in the code below, and multiply by -1 when we should
134 * subtract.
135 */
136 int mult = isLeftOrBottom ? 1 : -1;
137
138 if (!mirror) {
139 if (clipped_src0 >= clipped_dst0 * scale) {
140 *src += clipped_src0 * mult;
141 *dst0 += clipped_src0 / scale * mult;
142 } else {
143 *dst0 += clipped_dst0 * mult;
144 *src += clipped_dst0 * scale * mult;
145 }
146 } else {
147 if (clipped_src0 >= clipped_dst1 * scale) {
148 *src += clipped_src0 * mult;
149 *dst1 -= clipped_src0 / scale * mult;
150 } else {
151 *dst1 -= clipped_dst1 * mult;
152 *src += clipped_dst1 * scale * mult;
153 }
154 }
155 }
156
157 bool
brw_meta_mirror_clip_and_scissor(const struct gl_context * ctx,const struct gl_framebuffer * read_fb,const struct gl_framebuffer * draw_fb,GLfloat * srcX0,GLfloat * srcY0,GLfloat * srcX1,GLfloat * srcY1,GLfloat * dstX0,GLfloat * dstY0,GLfloat * dstX1,GLfloat * dstY1,bool * mirror_x,bool * mirror_y)158 brw_meta_mirror_clip_and_scissor(const struct gl_context *ctx,
159 const struct gl_framebuffer *read_fb,
160 const struct gl_framebuffer *draw_fb,
161 GLfloat *srcX0, GLfloat *srcY0,
162 GLfloat *srcX1, GLfloat *srcY1,
163 GLfloat *dstX0, GLfloat *dstY0,
164 GLfloat *dstX1, GLfloat *dstY1,
165 bool *mirror_x, bool *mirror_y)
166 {
167 *mirror_x = false;
168 *mirror_y = false;
169
170 /* Detect if the blit needs to be mirrored */
171 fixup_mirroring(mirror_x, srcX0, srcX1);
172 fixup_mirroring(mirror_x, dstX0, dstX1);
173 fixup_mirroring(mirror_y, srcY0, srcY1);
174 fixup_mirroring(mirror_y, dstY0, dstY1);
175
176 /* Compute number of pixels to clip for each side of both rects. Return
177 * early if we are going to clip everything away.
178 */
179 float clip_src_x0;
180 float clip_src_x1;
181 float clip_src_y0;
182 float clip_src_y1;
183 float clip_dst_x0;
184 float clip_dst_x1;
185 float clip_dst_y0;
186 float clip_dst_y1;
187
188 if (!compute_pixels_clipped(*srcX0, *srcY0, *srcX1, *srcY1,
189 0, 0, read_fb->Width, read_fb->Height,
190 &clip_src_x0, &clip_src_y0, &clip_src_x1, &clip_src_y1))
191 return true;
192
193 if (!compute_pixels_clipped(*dstX0, *dstY0, *dstX1, *dstY1,
194 draw_fb->_Xmin, draw_fb->_Ymin, draw_fb->_Xmax, draw_fb->_Ymax,
195 &clip_dst_x0, &clip_dst_y0, &clip_dst_x1, &clip_dst_y1))
196 return true;
197
198 /* When clipping any of the two rects we need to adjust the coordinates in
199 * the other rect considering the scaling factor involved. To obtain the best
200 * precision we want to make sure that we only clip once per side to avoid
201 * accumulating errors due to the scaling adjustment.
202 *
203 * For example, if srcX0 and dstX0 need both to be clipped we want to avoid
204 * the situation where we clip srcX0 first, then adjust dstX0 accordingly
205 * but then we realize that the resulting dstX0 still needs to be clipped,
206 * so we clip dstX0 and adjust srcX0 again. Because we are applying scaling
207 * factors to adjust the coordinates in each clipping pass we lose some
208 * precision and that can affect the results of the blorp blit operation
209 * slightly. What we want to do here is detect the rect that we should
210 * clip first for each side so that when we adjust the other rect we ensure
211 * the resulting coordinate does not need to be clipped again.
212 *
213 * The code below implements this by comparing the number of pixels that
214 * we need to clip for each side of both rects considering the scales
215 * involved. For example, clip_src_x0 represents the number of pixels to be
216 * clipped for the src rect's left side, so if clip_src_x0 = 5,
217 * clip_dst_x0 = 4 and scaleX = 2 it means that we are clipping more from
218 * the dst rect so we should clip dstX0 only and adjust srcX0. This is
219 * because clipping 4 pixels in the dst is equivalent to clipping
220 * 4 * 2 = 8 > 5 in the src.
221 */
222
223 float scaleX = (float) (*srcX1 - *srcX0) / (*dstX1 - *dstX0);
224 float scaleY = (float) (*srcY1 - *srcY0) / (*dstY1 - *dstY0);
225
226 /* Clip left side */
227 clip_coordinates(*mirror_x,
228 srcX0, dstX0, dstX1,
229 clip_src_x0, clip_dst_x0, clip_dst_x1,
230 scaleX, true);
231
232 /* Clip right side */
233 clip_coordinates(*mirror_x,
234 srcX1, dstX1, dstX0,
235 clip_src_x1, clip_dst_x1, clip_dst_x0,
236 scaleX, false);
237
238 /* Clip bottom side */
239 clip_coordinates(*mirror_y,
240 srcY0, dstY0, dstY1,
241 clip_src_y0, clip_dst_y0, clip_dst_y1,
242 scaleY, true);
243
244 /* Clip top side */
245 clip_coordinates(*mirror_y,
246 srcY1, dstY1, dstY0,
247 clip_src_y1, clip_dst_y1, clip_dst_y0,
248 scaleY, false);
249
250 /* Account for the fact that in the system framebuffer, the origin is at
251 * the lower left.
252 */
253 if (_mesa_is_winsys_fbo(read_fb)) {
254 GLint tmp = read_fb->Height - *srcY0;
255 *srcY0 = read_fb->Height - *srcY1;
256 *srcY1 = tmp;
257 *mirror_y = !*mirror_y;
258 }
259 if (_mesa_is_winsys_fbo(draw_fb)) {
260 GLint tmp = draw_fb->Height - *dstY0;
261 *dstY0 = draw_fb->Height - *dstY1;
262 *dstY1 = tmp;
263 *mirror_y = !*mirror_y;
264 }
265
266 return false;
267 }
268
269 /**
270 * Determine if fast color clear supports the given clear color.
271 *
272 * Fast color clear can only clear to color values of 1.0 or 0.0. At the
273 * moment we only support floating point, unorm, and snorm buffers.
274 */
275 bool
brw_is_color_fast_clear_compatible(struct brw_context * brw,const struct intel_mipmap_tree * mt,const union gl_color_union * color)276 brw_is_color_fast_clear_compatible(struct brw_context *brw,
277 const struct intel_mipmap_tree *mt,
278 const union gl_color_union *color)
279 {
280 const struct gen_device_info *devinfo = &brw->screen->devinfo;
281 const struct gl_context *ctx = &brw->ctx;
282
283 /* If we're mapping the render format to a different format than the
284 * format we use for texturing then it is a bit questionable whether it
285 * should be possible to use a fast clear. Although we only actually
286 * render using a renderable format, without the override workaround it
287 * wouldn't be possible to have a non-renderable surface in a fast clear
288 * state so the hardware probably legitimately doesn't need to support
289 * this case. At least on Gen9 this really does seem to cause problems.
290 */
291 if (devinfo->gen >= 9 &&
292 brw_isl_format_for_mesa_format(mt->format) !=
293 brw->mesa_to_isl_render_format[mt->format])
294 return false;
295
296 const bool srgb_rb = _mesa_get_srgb_format_linear(mt->format) != mt->format;
297 /* Gen10 doesn't automatically decode the clear color of sRGB buffers. Since
298 * we currently don't perform this decode in software, avoid a fast-clear
299 * altogether. TODO: Do this in software.
300 */
301 const mesa_format format = _mesa_get_render_format(ctx, mt->format);
302 if (devinfo->gen >= 10 && srgb_rb) {
303 perf_debug("sRGB fast clear not enabled for (%s)",
304 _mesa_get_format_name(format));
305 return false;
306 }
307
308 if (_mesa_is_format_integer_color(format)) {
309 if (devinfo->gen >= 8) {
310 perf_debug("Integer fast clear not enabled for (%s)",
311 _mesa_get_format_name(format));
312 }
313 return false;
314 }
315
316 for (int i = 0; i < 4; i++) {
317 if (!_mesa_format_has_color_component(format, i)) {
318 continue;
319 }
320
321 if (devinfo->gen < 9 &&
322 color->f[i] != 0.0f && color->f[i] != 1.0f) {
323 return false;
324 }
325 }
326 return true;
327 }
328
329 /**
330 * Convert the given color to a bitfield suitable for ORing into DWORD 7 of
331 * SURFACE_STATE (DWORD 12-15 on SKL+).
332 */
333 union isl_color_value
brw_meta_convert_fast_clear_color(const struct brw_context * brw,const struct intel_mipmap_tree * mt,const union gl_color_union * color)334 brw_meta_convert_fast_clear_color(const struct brw_context *brw,
335 const struct intel_mipmap_tree *mt,
336 const union gl_color_union *color)
337 {
338 union isl_color_value override_color = {
339 .u32 = {
340 color->ui[0],
341 color->ui[1],
342 color->ui[2],
343 color->ui[3],
344 },
345 };
346
347 /* The sampler doesn't look at the format of the surface when the fast
348 * clear color is used so we need to implement luminance, intensity and
349 * missing components manually.
350 */
351 switch (_mesa_get_format_base_format(mt->format)) {
352 case GL_INTENSITY:
353 override_color.u32[3] = override_color.u32[0];
354 /* flow through */
355 case GL_LUMINANCE:
356 case GL_LUMINANCE_ALPHA:
357 override_color.u32[1] = override_color.u32[0];
358 override_color.u32[2] = override_color.u32[0];
359 break;
360 default:
361 for (int i = 0; i < 3; i++) {
362 if (!_mesa_format_has_color_component(mt->format, i))
363 override_color.u32[i] = 0;
364 }
365 break;
366 }
367
368 switch (_mesa_get_format_datatype(mt->format)) {
369 case GL_UNSIGNED_NORMALIZED:
370 for (int i = 0; i < 4; i++)
371 override_color.f32[i] = CLAMP(override_color.f32[i], 0.0f, 1.0f);
372 break;
373
374 case GL_SIGNED_NORMALIZED:
375 for (int i = 0; i < 4; i++)
376 override_color.f32[i] = CLAMP(override_color.f32[i], -1.0f, 1.0f);
377 break;
378
379 case GL_UNSIGNED_INT:
380 for (int i = 0; i < 4; i++) {
381 unsigned bits = _mesa_get_format_bits(mt->format, GL_RED_BITS + i);
382 if (bits < 32) {
383 uint32_t max = (1u << bits) - 1;
384 override_color.u32[i] = MIN2(override_color.u32[i], max);
385 }
386 }
387 break;
388
389 case GL_INT:
390 for (int i = 0; i < 4; i++) {
391 unsigned bits = _mesa_get_format_bits(mt->format, GL_RED_BITS + i);
392 if (bits < 32) {
393 int32_t max = (1 << (bits - 1)) - 1;
394 int32_t min = -(1 << (bits - 1));
395 override_color.i32[i] = CLAMP(override_color.i32[i], min, max);
396 }
397 }
398 break;
399
400 case GL_FLOAT:
401 if (!_mesa_is_format_signed(mt->format)) {
402 for (int i = 0; i < 4; i++)
403 override_color.f32[i] = MAX2(override_color.f32[i], 0.0f);
404 }
405 break;
406 }
407
408 if (!_mesa_format_has_color_component(mt->format, 3)) {
409 if (_mesa_is_format_integer_color(mt->format))
410 override_color.u32[3] = 1;
411 else
412 override_color.f32[3] = 1.0f;
413 }
414
415 /* Handle linear to SRGB conversion */
416 if (brw->ctx.Color.sRGBEnabled &&
417 _mesa_get_srgb_format_linear(mt->format) != mt->format) {
418 for (int i = 0; i < 3; i++) {
419 override_color.f32[i] =
420 util_format_linear_to_srgb_float(override_color.f32[i]);
421 }
422 }
423
424 return override_color;
425 }
426