1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_eu_compact.c
25 *
26 * Instruction compaction is a feature of G45 and newer hardware that allows
27 * for a smaller instruction encoding.
28 *
29 * The instruction cache is on the order of 32KB, and many programs generate
30 * far more instructions than that. The instruction cache is built to barely
31 * keep up with instruction dispatch ability in cache hit cases -- L1
32 * instruction cache misses that still hit in the next level could limit
33 * throughput by around 50%.
34 *
35 * The idea of instruction compaction is that most instructions use a tiny
36 * subset of the GPU functionality, so we can encode what would be a 16 byte
37 * instruction in 8 bytes using some lookup tables for various fields.
38 *
39 *
40 * Instruction compaction capabilities vary subtly by generation.
41 *
42 * G45's support for instruction compaction is very limited. Jump counts on
43 * this generation are in units of 16-byte uncompacted instructions. As such,
44 * all jump targets must be 16-byte aligned. Also, all instructions must be
45 * naturally aligned, i.e. uncompacted instructions must be 16-byte aligned.
46 * A G45-only instruction, NENOP, must be used to provide padding to align
47 * uncompacted instructions.
48 *
49 * Gen5 removes these restrictions and changes jump counts to be in units of
50 * 8-byte compacted instructions, allowing jump targets to be only 8-byte
51 * aligned. Uncompacted instructions can also be placed on 8-byte boundaries.
52 *
53 * Gen6 adds the ability to compact instructions with a limited range of
54 * immediate values. Compactable immediates have 12 unrestricted bits, and a
55 * 13th bit that's replicated through the high 20 bits, to create the 32-bit
56 * value of DW3 in the uncompacted instruction word.
57 *
58 * On Gen7 we can compact some control flow instructions with a small positive
59 * immediate in the low bits of DW3, like ENDIF with the JIP field. Other
60 * control flow instructions with UIP cannot be compacted, because of the
61 * replicated 13th bit. No control flow instructions can be compacted on Gen6
62 * since the jump count field is not in DW3.
63 *
64 * break JIP/UIP
65 * cont JIP/UIP
66 * halt JIP/UIP
67 * if JIP/UIP
68 * else JIP (plus UIP on BDW+)
69 * endif JIP
70 * while JIP (must be negative)
71 *
72 * Gen 8 adds support for compacting 3-src instructions.
73 */
74
75 #include "brw_eu.h"
76 #include "brw_shader.h"
77 #include "brw_disasm_info.h"
78 #include "common/gen_debug.h"
79
80 static const uint32_t g45_control_index_table[32] = {
81 0b00000000000000000,
82 0b01000000000000000,
83 0b00110000000000000,
84 0b00000000000000010,
85 0b00100000000000000,
86 0b00010000000000000,
87 0b01000000000100000,
88 0b01000000100000000,
89 0b01010000000100000,
90 0b00000000100000010,
91 0b11000000000000000,
92 0b00001000100000010,
93 0b01001000100000000,
94 0b00000000100000000,
95 0b11000000000100000,
96 0b00001000100000000,
97 0b10110000000000000,
98 0b11010000000100000,
99 0b00110000100000000,
100 0b00100000100000000,
101 0b01000000000001000,
102 0b01000000000000100,
103 0b00111100000000000,
104 0b00101011000000000,
105 0b00110000000010000,
106 0b00010000100000000,
107 0b01000000000100100,
108 0b01000000000101000,
109 0b00110000000000110,
110 0b00000000000001010,
111 0b01010000000101000,
112 0b01010000000100100
113 };
114
115 static const uint32_t g45_datatype_table[32] = {
116 0b001000000000100001,
117 0b001011010110101101,
118 0b001000001000110001,
119 0b001111011110111101,
120 0b001011010110101100,
121 0b001000000110101101,
122 0b001000000000100000,
123 0b010100010110110001,
124 0b001100011000101101,
125 0b001000000000100010,
126 0b001000001000110110,
127 0b010000001000110001,
128 0b001000001000110010,
129 0b011000001000110010,
130 0b001111011110111100,
131 0b001000000100101000,
132 0b010100011000110001,
133 0b001010010100101001,
134 0b001000001000101001,
135 0b010000001000110110,
136 0b101000001000110001,
137 0b001011011000101101,
138 0b001000000100001001,
139 0b001011011000101100,
140 0b110100011000110001,
141 0b001000001110111101,
142 0b110000001000110001,
143 0b011000000100101010,
144 0b101000001000101001,
145 0b001011010110001100,
146 0b001000000110100001,
147 0b001010010100001000
148 };
149
150 static const uint16_t g45_subreg_table[32] = {
151 0b000000000000000,
152 0b000000010000000,
153 0b000001000000000,
154 0b000100000000000,
155 0b000000000100000,
156 0b100000000000000,
157 0b000000000010000,
158 0b001100000000000,
159 0b001010000000000,
160 0b000000100000000,
161 0b001000000000000,
162 0b000000000001000,
163 0b000000001000000,
164 0b000000000000001,
165 0b000010000000000,
166 0b000000010100000,
167 0b000000000000111,
168 0b000001000100000,
169 0b011000000000000,
170 0b000000110000000,
171 0b000000000000010,
172 0b000000000000100,
173 0b000000001100000,
174 0b000100000000010,
175 0b001110011000110,
176 0b001110100001000,
177 0b000110011000110,
178 0b000001000011000,
179 0b000110010000100,
180 0b001100000000110,
181 0b000000010000110,
182 0b000001000110000
183 };
184
185 static const uint16_t g45_src_index_table[32] = {
186 0b000000000000,
187 0b010001101000,
188 0b010110001000,
189 0b011010010000,
190 0b001101001000,
191 0b010110001010,
192 0b010101110000,
193 0b011001111000,
194 0b001000101000,
195 0b000000101000,
196 0b010001010000,
197 0b111101101100,
198 0b010110001100,
199 0b010001101100,
200 0b011010010100,
201 0b010001001100,
202 0b001100101000,
203 0b000000000010,
204 0b111101001100,
205 0b011001101000,
206 0b010101001000,
207 0b000000000100,
208 0b000000101100,
209 0b010001101010,
210 0b000000111000,
211 0b010101011000,
212 0b000100100000,
213 0b010110000000,
214 0b010000000100,
215 0b010000111000,
216 0b000101100000,
217 0b111101110100
218 };
219
220 static const uint32_t gen6_control_index_table[32] = {
221 0b00000000000000000,
222 0b01000000000000000,
223 0b00110000000000000,
224 0b00000000100000000,
225 0b00010000000000000,
226 0b00001000100000000,
227 0b00000000100000010,
228 0b00000000000000010,
229 0b01000000100000000,
230 0b01010000000000000,
231 0b10110000000000000,
232 0b00100000000000000,
233 0b11010000000000000,
234 0b11000000000000000,
235 0b01001000100000000,
236 0b01000000000001000,
237 0b01000000000000100,
238 0b00000000000001000,
239 0b00000000000000100,
240 0b00111000100000000,
241 0b00001000100000010,
242 0b00110000100000000,
243 0b00110000000000001,
244 0b00100000000000001,
245 0b00110000000000010,
246 0b00110000000000101,
247 0b00110000000001001,
248 0b00110000000010000,
249 0b00110000000000011,
250 0b00110000000000100,
251 0b00110000100001000,
252 0b00100000000001001
253 };
254
255 static const uint32_t gen6_datatype_table[32] = {
256 0b001001110000000000,
257 0b001000110000100000,
258 0b001001110000000001,
259 0b001000000001100000,
260 0b001010110100101001,
261 0b001000000110101101,
262 0b001100011000101100,
263 0b001011110110101101,
264 0b001000000111101100,
265 0b001000000001100001,
266 0b001000110010100101,
267 0b001000000001000001,
268 0b001000001000110001,
269 0b001000001000101001,
270 0b001000000000100000,
271 0b001000001000110010,
272 0b001010010100101001,
273 0b001011010010100101,
274 0b001000000110100101,
275 0b001100011000101001,
276 0b001011011000101100,
277 0b001011010110100101,
278 0b001011110110100101,
279 0b001111011110111101,
280 0b001111011110111100,
281 0b001111011110111101,
282 0b001111011110011101,
283 0b001111011110111110,
284 0b001000000000100001,
285 0b001000000000100010,
286 0b001001111111011101,
287 0b001000001110111110,
288 };
289
290 static const uint16_t gen6_subreg_table[32] = {
291 0b000000000000000,
292 0b000000000000100,
293 0b000000110000000,
294 0b111000000000000,
295 0b011110000001000,
296 0b000010000000000,
297 0b000000000010000,
298 0b000110000001100,
299 0b001000000000000,
300 0b000001000000000,
301 0b000001010010100,
302 0b000000001010110,
303 0b010000000000000,
304 0b110000000000000,
305 0b000100000000000,
306 0b000000010000000,
307 0b000000000001000,
308 0b100000000000000,
309 0b000001010000000,
310 0b001010000000000,
311 0b001100000000000,
312 0b000000001010100,
313 0b101101010010100,
314 0b010100000000000,
315 0b000000010001111,
316 0b011000000000000,
317 0b111110000000000,
318 0b101000000000000,
319 0b000000000001111,
320 0b000100010001111,
321 0b001000010001111,
322 0b000110000000000,
323 };
324
325 static const uint16_t gen6_src_index_table[32] = {
326 0b000000000000,
327 0b010110001000,
328 0b010001101000,
329 0b001000101000,
330 0b011010010000,
331 0b000100100000,
332 0b010001101100,
333 0b010101110000,
334 0b011001111000,
335 0b001100101000,
336 0b010110001100,
337 0b001000100000,
338 0b010110001010,
339 0b000000000010,
340 0b010101010000,
341 0b010101101000,
342 0b111101001100,
343 0b111100101100,
344 0b011001110000,
345 0b010110001001,
346 0b010101011000,
347 0b001101001000,
348 0b010000101100,
349 0b010000000000,
350 0b001101110000,
351 0b001100010000,
352 0b001100000000,
353 0b010001101010,
354 0b001101111000,
355 0b000001110000,
356 0b001100100000,
357 0b001101010000,
358 };
359
360 static const uint32_t gen7_control_index_table[32] = {
361 0b0000000000000000010,
362 0b0000100000000000000,
363 0b0000100000000000001,
364 0b0000100000000000010,
365 0b0000100000000000011,
366 0b0000100000000000100,
367 0b0000100000000000101,
368 0b0000100000000000111,
369 0b0000100000000001000,
370 0b0000100000000001001,
371 0b0000100000000001101,
372 0b0000110000000000000,
373 0b0000110000000000001,
374 0b0000110000000000010,
375 0b0000110000000000011,
376 0b0000110000000000100,
377 0b0000110000000000101,
378 0b0000110000000000111,
379 0b0000110000000001001,
380 0b0000110000000001101,
381 0b0000110000000010000,
382 0b0000110000100000000,
383 0b0001000000000000000,
384 0b0001000000000000010,
385 0b0001000000000000100,
386 0b0001000000100000000,
387 0b0010110000000000000,
388 0b0010110000000010000,
389 0b0011000000000000000,
390 0b0011000000100000000,
391 0b0101000000000000000,
392 0b0101000000100000000
393 };
394
395 static const uint32_t gen7_datatype_table[32] = {
396 0b001000000000000001,
397 0b001000000000100000,
398 0b001000000000100001,
399 0b001000000001100001,
400 0b001000000010111101,
401 0b001000001011111101,
402 0b001000001110100001,
403 0b001000001110100101,
404 0b001000001110111101,
405 0b001000010000100001,
406 0b001000110000100000,
407 0b001000110000100001,
408 0b001001010010100101,
409 0b001001110010100100,
410 0b001001110010100101,
411 0b001111001110111101,
412 0b001111011110011101,
413 0b001111011110111100,
414 0b001111011110111101,
415 0b001111111110111100,
416 0b000000001000001100,
417 0b001000000000111101,
418 0b001000000010100101,
419 0b001000010000100000,
420 0b001001010010100100,
421 0b001001110010000100,
422 0b001010010100001001,
423 0b001101111110111101,
424 0b001111111110111101,
425 0b001011110110101100,
426 0b001010010100101000,
427 0b001010110100101000
428 };
429
430 static const uint16_t gen7_subreg_table[32] = {
431 0b000000000000000,
432 0b000000000000001,
433 0b000000000001000,
434 0b000000000001111,
435 0b000000000010000,
436 0b000000010000000,
437 0b000000100000000,
438 0b000000110000000,
439 0b000001000000000,
440 0b000001000010000,
441 0b000010100000000,
442 0b001000000000000,
443 0b001000000000001,
444 0b001000010000001,
445 0b001000010000010,
446 0b001000010000011,
447 0b001000010000100,
448 0b001000010000111,
449 0b001000010001000,
450 0b001000010001110,
451 0b001000010001111,
452 0b001000110000000,
453 0b001000111101000,
454 0b010000000000000,
455 0b010000110000000,
456 0b011000000000000,
457 0b011110010000111,
458 0b100000000000000,
459 0b101000000000000,
460 0b110000000000000,
461 0b111000000000000,
462 0b111000000011100
463 };
464
465 static const uint16_t gen7_src_index_table[32] = {
466 0b000000000000,
467 0b000000000010,
468 0b000000010000,
469 0b000000010010,
470 0b000000011000,
471 0b000000100000,
472 0b000000101000,
473 0b000001001000,
474 0b000001010000,
475 0b000001110000,
476 0b000001111000,
477 0b001100000000,
478 0b001100000010,
479 0b001100001000,
480 0b001100010000,
481 0b001100010010,
482 0b001100100000,
483 0b001100101000,
484 0b001100111000,
485 0b001101000000,
486 0b001101000010,
487 0b001101001000,
488 0b001101010000,
489 0b001101100000,
490 0b001101101000,
491 0b001101110000,
492 0b001101110001,
493 0b001101111000,
494 0b010001101000,
495 0b010001101001,
496 0b010001101010,
497 0b010110001000
498 };
499
500 static const uint32_t gen8_control_index_table[32] = {
501 0b0000000000000000010,
502 0b0000100000000000000,
503 0b0000100000000000001,
504 0b0000100000000000010,
505 0b0000100000000000011,
506 0b0000100000000000100,
507 0b0000100000000000101,
508 0b0000100000000000111,
509 0b0000100000000001000,
510 0b0000100000000001001,
511 0b0000100000000001101,
512 0b0000110000000000000,
513 0b0000110000000000001,
514 0b0000110000000000010,
515 0b0000110000000000011,
516 0b0000110000000000100,
517 0b0000110000000000101,
518 0b0000110000000000111,
519 0b0000110000000001001,
520 0b0000110000000001101,
521 0b0000110000000010000,
522 0b0000110000100000000,
523 0b0001000000000000000,
524 0b0001000000000000010,
525 0b0001000000000000100,
526 0b0001000000100000000,
527 0b0010110000000000000,
528 0b0010110000000010000,
529 0b0011000000000000000,
530 0b0011000000100000000,
531 0b0101000000000000000,
532 0b0101000000100000000
533 };
534
535 static const uint32_t gen8_datatype_table[32] = {
536 0b001000000000000000001,
537 0b001000000000001000000,
538 0b001000000000001000001,
539 0b001000000000011000001,
540 0b001000000000101011101,
541 0b001000000010111011101,
542 0b001000000011101000001,
543 0b001000000011101000101,
544 0b001000000011101011101,
545 0b001000001000001000001,
546 0b001000011000001000000,
547 0b001000011000001000001,
548 0b001000101000101000101,
549 0b001000111000101000100,
550 0b001000111000101000101,
551 0b001011100011101011101,
552 0b001011101011100011101,
553 0b001011101011101011100,
554 0b001011101011101011101,
555 0b001011111011101011100,
556 0b000000000010000001100,
557 0b001000000000001011101,
558 0b001000000000101000101,
559 0b001000001000001000000,
560 0b001000101000101000100,
561 0b001000111000100000100,
562 0b001001001001000001001,
563 0b001010111011101011101,
564 0b001011111011101011101,
565 0b001001111001101001100,
566 0b001001001001001001000,
567 0b001001011001001001000
568 };
569
570 static const uint16_t gen8_subreg_table[32] = {
571 0b000000000000000,
572 0b000000000000001,
573 0b000000000001000,
574 0b000000000001111,
575 0b000000000010000,
576 0b000000010000000,
577 0b000000100000000,
578 0b000000110000000,
579 0b000001000000000,
580 0b000001000010000,
581 0b000001010000000,
582 0b001000000000000,
583 0b001000000000001,
584 0b001000010000001,
585 0b001000010000010,
586 0b001000010000011,
587 0b001000010000100,
588 0b001000010000111,
589 0b001000010001000,
590 0b001000010001110,
591 0b001000010001111,
592 0b001000110000000,
593 0b001000111101000,
594 0b010000000000000,
595 0b010000110000000,
596 0b011000000000000,
597 0b011110010000111,
598 0b100000000000000,
599 0b101000000000000,
600 0b110000000000000,
601 0b111000000000000,
602 0b111000000011100
603 };
604
605 static const uint16_t gen8_src_index_table[32] = {
606 0b000000000000,
607 0b000000000010,
608 0b000000010000,
609 0b000000010010,
610 0b000000011000,
611 0b000000100000,
612 0b000000101000,
613 0b000001001000,
614 0b000001010000,
615 0b000001110000,
616 0b000001111000,
617 0b001100000000,
618 0b001100000010,
619 0b001100001000,
620 0b001100010000,
621 0b001100010010,
622 0b001100100000,
623 0b001100101000,
624 0b001100111000,
625 0b001101000000,
626 0b001101000010,
627 0b001101001000,
628 0b001101010000,
629 0b001101100000,
630 0b001101101000,
631 0b001101110000,
632 0b001101110001,
633 0b001101111000,
634 0b010001101000,
635 0b010001101001,
636 0b010001101010,
637 0b010110001000
638 };
639
640 /* This is actually the control index table for Cherryview (26 bits), but the
641 * only difference from Broadwell (24 bits) is that it has two extra 0-bits at
642 * the start.
643 *
644 * The low 24 bits have the same mappings on both hardware.
645 */
646 static const uint32_t gen8_3src_control_index_table[4] = {
647 0b00100000000110000000000001,
648 0b00000000000110000000000001,
649 0b00000000001000000000000001,
650 0b00000000001000000000100001
651 };
652
653 /* This is actually the control index table for Cherryview (49 bits), but the
654 * only difference from Broadwell (46 bits) is that it has three extra 0-bits
655 * at the start.
656 *
657 * The low 44 bits have the same mappings on both hardware, and since the high
658 * three bits on Broadwell are zero, we can reuse Cherryview's table.
659 */
660 static const uint64_t gen8_3src_source_index_table[4] = {
661 0b0000001110010011100100111001000001111000000000000,
662 0b0000001110010011100100111001000001111000000000010,
663 0b0000001110010011100100111001000001111000000001000,
664 0b0000001110010011100100111001000001111000000100000
665 };
666
667 static const uint32_t *control_index_table;
668 static const uint32_t *datatype_table;
669 static const uint16_t *subreg_table;
670 static const uint16_t *src_index_table;
671
672 static bool
set_control_index(const struct gen_device_info * devinfo,brw_compact_inst * dst,const brw_inst * src)673 set_control_index(const struct gen_device_info *devinfo,
674 brw_compact_inst *dst, const brw_inst *src)
675 {
676 uint32_t uncompacted = devinfo->gen >= 8 /* 17b/G45; 19b/IVB+ */
677 ? (brw_inst_bits(src, 33, 31) << 16) | /* 3b */
678 (brw_inst_bits(src, 23, 12) << 4) | /* 12b */
679 (brw_inst_bits(src, 10, 9) << 2) | /* 2b */
680 (brw_inst_bits(src, 34, 34) << 1) | /* 1b */
681 (brw_inst_bits(src, 8, 8)) /* 1b */
682 : (brw_inst_bits(src, 31, 31) << 16) | /* 1b */
683 (brw_inst_bits(src, 23, 8)); /* 16b */
684
685 /* On gen7, the flag register and subregister numbers are integrated into
686 * the control index.
687 */
688 if (devinfo->gen == 7)
689 uncompacted |= brw_inst_bits(src, 90, 89) << 17; /* 2b */
690
691 for (int i = 0; i < 32; i++) {
692 if (control_index_table[i] == uncompacted) {
693 brw_compact_inst_set_control_index(devinfo, dst, i);
694 return true;
695 }
696 }
697
698 return false;
699 }
700
701 static bool
set_datatype_index(const struct gen_device_info * devinfo,brw_compact_inst * dst,const brw_inst * src)702 set_datatype_index(const struct gen_device_info *devinfo, brw_compact_inst *dst,
703 const brw_inst *src)
704 {
705 uint32_t uncompacted = devinfo->gen >= 8 /* 18b/G45+; 21b/BDW+ */
706 ? (brw_inst_bits(src, 63, 61) << 18) | /* 3b */
707 (brw_inst_bits(src, 94, 89) << 12) | /* 6b */
708 (brw_inst_bits(src, 46, 35)) /* 12b */
709 : (brw_inst_bits(src, 63, 61) << 15) | /* 3b */
710 (brw_inst_bits(src, 46, 32)); /* 15b */
711
712 for (int i = 0; i < 32; i++) {
713 if (datatype_table[i] == uncompacted) {
714 brw_compact_inst_set_datatype_index(devinfo, dst, i);
715 return true;
716 }
717 }
718
719 return false;
720 }
721
722 static bool
set_subreg_index(const struct gen_device_info * devinfo,brw_compact_inst * dst,const brw_inst * src,bool is_immediate)723 set_subreg_index(const struct gen_device_info *devinfo, brw_compact_inst *dst,
724 const brw_inst *src, bool is_immediate)
725 {
726 uint16_t uncompacted = /* 15b */
727 (brw_inst_bits(src, 52, 48) << 0) | /* 5b */
728 (brw_inst_bits(src, 68, 64) << 5); /* 5b */
729
730 if (!is_immediate)
731 uncompacted |= brw_inst_bits(src, 100, 96) << 10; /* 5b */
732
733 for (int i = 0; i < 32; i++) {
734 if (subreg_table[i] == uncompacted) {
735 brw_compact_inst_set_subreg_index(devinfo, dst, i);
736 return true;
737 }
738 }
739
740 return false;
741 }
742
743 static bool
get_src_index(uint16_t uncompacted,uint16_t * compacted)744 get_src_index(uint16_t uncompacted,
745 uint16_t *compacted)
746 {
747 for (int i = 0; i < 32; i++) {
748 if (src_index_table[i] == uncompacted) {
749 *compacted = i;
750 return true;
751 }
752 }
753
754 return false;
755 }
756
757 static bool
set_src0_index(const struct gen_device_info * devinfo,brw_compact_inst * dst,const brw_inst * src)758 set_src0_index(const struct gen_device_info *devinfo,
759 brw_compact_inst *dst, const brw_inst *src)
760 {
761 uint16_t compacted;
762 uint16_t uncompacted = brw_inst_bits(src, 88, 77); /* 12b */
763
764 if (!get_src_index(uncompacted, &compacted))
765 return false;
766
767 brw_compact_inst_set_src0_index(devinfo, dst, compacted);
768
769 return true;
770 }
771
772 static bool
set_src1_index(const struct gen_device_info * devinfo,brw_compact_inst * dst,const brw_inst * src,bool is_immediate)773 set_src1_index(const struct gen_device_info *devinfo, brw_compact_inst *dst,
774 const brw_inst *src, bool is_immediate)
775 {
776 uint16_t compacted;
777
778 if (is_immediate) {
779 compacted = (brw_inst_imm_ud(devinfo, src) >> 8) & 0x1f;
780 } else {
781 uint16_t uncompacted = brw_inst_bits(src, 120, 109); /* 12b */
782
783 if (!get_src_index(uncompacted, &compacted))
784 return false;
785 }
786
787 brw_compact_inst_set_src1_index(devinfo, dst, compacted);
788
789 return true;
790 }
791
792 static bool
set_3src_control_index(const struct gen_device_info * devinfo,brw_compact_inst * dst,const brw_inst * src)793 set_3src_control_index(const struct gen_device_info *devinfo,
794 brw_compact_inst *dst, const brw_inst *src)
795 {
796 assert(devinfo->gen >= 8);
797
798 uint32_t uncompacted = /* 24b/BDW; 26b/CHV */
799 (brw_inst_bits(src, 34, 32) << 21) | /* 3b */
800 (brw_inst_bits(src, 28, 8)); /* 21b */
801
802 if (devinfo->gen >= 9 || devinfo->is_cherryview)
803 uncompacted |= brw_inst_bits(src, 36, 35) << 24; /* 2b */
804
805 for (unsigned i = 0; i < ARRAY_SIZE(gen8_3src_control_index_table); i++) {
806 if (gen8_3src_control_index_table[i] == uncompacted) {
807 brw_compact_inst_set_3src_control_index(devinfo, dst, i);
808 return true;
809 }
810 }
811
812 return false;
813 }
814
815 static bool
set_3src_source_index(const struct gen_device_info * devinfo,brw_compact_inst * dst,const brw_inst * src)816 set_3src_source_index(const struct gen_device_info *devinfo,
817 brw_compact_inst *dst, const brw_inst *src)
818 {
819 assert(devinfo->gen >= 8);
820
821 uint64_t uncompacted = /* 46b/BDW; 49b/CHV */
822 (brw_inst_bits(src, 83, 83) << 43) | /* 1b */
823 (brw_inst_bits(src, 114, 107) << 35) | /* 8b */
824 (brw_inst_bits(src, 93, 86) << 27) | /* 8b */
825 (brw_inst_bits(src, 72, 65) << 19) | /* 8b */
826 (brw_inst_bits(src, 55, 37)); /* 19b */
827
828 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
829 uncompacted |=
830 (brw_inst_bits(src, 126, 125) << 47) | /* 2b */
831 (brw_inst_bits(src, 105, 104) << 45) | /* 2b */
832 (brw_inst_bits(src, 84, 84) << 44); /* 1b */
833 } else {
834 uncompacted |=
835 (brw_inst_bits(src, 125, 125) << 45) | /* 1b */
836 (brw_inst_bits(src, 104, 104) << 44); /* 1b */
837 }
838
839 for (unsigned i = 0; i < ARRAY_SIZE(gen8_3src_source_index_table); i++) {
840 if (gen8_3src_source_index_table[i] == uncompacted) {
841 brw_compact_inst_set_3src_source_index(devinfo, dst, i);
842 return true;
843 }
844 }
845
846 return false;
847 }
848
849 static bool
has_unmapped_bits(const struct gen_device_info * devinfo,const brw_inst * src)850 has_unmapped_bits(const struct gen_device_info *devinfo, const brw_inst *src)
851 {
852 /* EOT can only be mapped on a send if the src1 is an immediate */
853 if ((brw_inst_opcode(devinfo, src) == BRW_OPCODE_SENDC ||
854 brw_inst_opcode(devinfo, src) == BRW_OPCODE_SEND) &&
855 brw_inst_eot(devinfo, src))
856 return true;
857
858 /* Check for instruction bits that don't map to any of the fields of the
859 * compacted instruction. The instruction cannot be compacted if any of
860 * them are set. They overlap with:
861 * - NibCtrl (bit 47 on Gen7, bit 11 on Gen8)
862 * - Dst.AddrImm[9] (bit 47 on Gen8)
863 * - Src0.AddrImm[9] (bit 95 on Gen8)
864 * - Imm64[27:31] (bits 91-95 on Gen7, bit 95 on Gen8)
865 * - UIP[31] (bit 95 on Gen8)
866 */
867 if (devinfo->gen >= 8) {
868 assert(!brw_inst_bits(src, 7, 7));
869 return brw_inst_bits(src, 95, 95) ||
870 brw_inst_bits(src, 47, 47) ||
871 brw_inst_bits(src, 11, 11);
872 } else {
873 assert(!brw_inst_bits(src, 7, 7) &&
874 !(devinfo->gen < 7 && brw_inst_bits(src, 90, 90)));
875 return brw_inst_bits(src, 95, 91) ||
876 brw_inst_bits(src, 47, 47);
877 }
878 }
879
880 static bool
has_3src_unmapped_bits(const struct gen_device_info * devinfo,const brw_inst * src)881 has_3src_unmapped_bits(const struct gen_device_info *devinfo,
882 const brw_inst *src)
883 {
884 /* Check for three-source instruction bits that don't map to any of the
885 * fields of the compacted instruction. All of them seem to be reserved
886 * bits currently.
887 */
888 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
889 assert(!brw_inst_bits(src, 127, 127) &&
890 !brw_inst_bits(src, 7, 7));
891 } else {
892 assert(devinfo->gen >= 8);
893 assert(!brw_inst_bits(src, 127, 126) &&
894 !brw_inst_bits(src, 105, 105) &&
895 !brw_inst_bits(src, 84, 84) &&
896 !brw_inst_bits(src, 36, 35) &&
897 !brw_inst_bits(src, 7, 7));
898 }
899
900 return false;
901 }
902
903 static bool
brw_try_compact_3src_instruction(const struct gen_device_info * devinfo,brw_compact_inst * dst,const brw_inst * src)904 brw_try_compact_3src_instruction(const struct gen_device_info *devinfo,
905 brw_compact_inst *dst, const brw_inst *src)
906 {
907 assert(devinfo->gen >= 8);
908
909 if (has_3src_unmapped_bits(devinfo, src))
910 return false;
911
912 #define compact(field) \
913 brw_compact_inst_set_3src_##field(devinfo, dst, brw_inst_3src_##field(devinfo, src))
914 #define compact_a16(field) \
915 brw_compact_inst_set_3src_##field(devinfo, dst, brw_inst_3src_a16_##field(devinfo, src))
916
917 compact(opcode);
918
919 if (!set_3src_control_index(devinfo, dst, src))
920 return false;
921
922 if (!set_3src_source_index(devinfo, dst, src))
923 return false;
924
925 compact(dst_reg_nr);
926 compact_a16(src0_rep_ctrl);
927 brw_compact_inst_set_3src_cmpt_control(devinfo, dst, true);
928 compact(debug_control);
929 compact(saturate);
930 compact_a16(src1_rep_ctrl);
931 compact_a16(src2_rep_ctrl);
932 compact(src0_reg_nr);
933 compact(src1_reg_nr);
934 compact(src2_reg_nr);
935 compact_a16(src0_subreg_nr);
936 compact_a16(src1_subreg_nr);
937 compact_a16(src2_subreg_nr);
938
939 #undef compact
940 #undef compact_a16
941
942 return true;
943 }
944
945 /* Compacted instructions have 12-bits for immediate sources, and a 13th bit
946 * that's replicated through the high 20 bits.
947 *
948 * Effectively this means we get 12-bit integers, 0.0f, and some limited uses
949 * of packed vectors as compactable immediates.
950 */
951 static bool
is_compactable_immediate(unsigned imm)952 is_compactable_immediate(unsigned imm)
953 {
954 /* We get the low 12 bits as-is. */
955 imm &= ~0xfff;
956
957 /* We get one bit replicated through the top 20 bits. */
958 return imm == 0 || imm == 0xfffff000;
959 }
960
961 /**
962 * Applies some small changes to instruction types to increase chances of
963 * compaction.
964 */
965 static brw_inst
precompact(const struct gen_device_info * devinfo,brw_inst inst)966 precompact(const struct gen_device_info *devinfo, brw_inst inst)
967 {
968 if (brw_inst_src0_reg_file(devinfo, &inst) != BRW_IMMEDIATE_VALUE)
969 return inst;
970
971 /* The Bspec's section titled "Non-present Operands" claims that if src0
972 * is an immediate that src1's type must be the same as that of src0.
973 *
974 * The SNB+ DataTypeIndex instruction compaction tables contain mappings
975 * that do not follow this rule. E.g., from the IVB/HSW table:
976 *
977 * DataTypeIndex 18-Bit Mapping Mapped Meaning
978 * 3 001000001011111101 r:f | i:vf | a:ud | <1> | dir |
979 *
980 * And from the SNB table:
981 *
982 * DataTypeIndex 18-Bit Mapping Mapped Meaning
983 * 8 001000000111101100 a:w | i:w | a:ud | <1> | dir |
984 *
985 * Neither of these cause warnings from the simulator when used,
986 * compacted or otherwise. In fact, all compaction mappings that have an
987 * immediate in src0 use a:ud for src1.
988 *
989 * The GM45 instruction compaction tables do not contain mapped meanings
990 * so it's not clear whether it has the restriction. We'll assume it was
991 * lifted on SNB. (FINISHME: decode the GM45 tables and check.)
992 *
993 * Don't do any of this for 64-bit immediates, since the src1 fields
994 * overlap with the immediate and setting them would overwrite the
995 * immediate we set.
996 */
997 if (devinfo->gen >= 6 &&
998 !(devinfo->is_haswell &&
999 brw_inst_opcode(devinfo, &inst) == BRW_OPCODE_DIM) &&
1000 !(devinfo->gen >= 8 &&
1001 (brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_DF ||
1002 brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_UQ ||
1003 brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_Q))) {
1004 enum brw_reg_file file = brw_inst_src1_reg_file(devinfo, &inst);
1005 brw_inst_set_src1_file_type(devinfo, &inst, file, BRW_REGISTER_TYPE_UD);
1006 }
1007
1008 /* Compacted instructions only have 12-bits (plus 1 for the other 20)
1009 * for immediate values. Presumably the hardware engineers realized
1010 * that the only useful floating-point value that could be represented
1011 * in this format is 0.0, which can also be represented as a VF-typed
1012 * immediate, so they gave us the previously mentioned mapping on IVB+.
1013 *
1014 * Strangely, we do have a mapping for imm:f in src1, so we don't need
1015 * to do this there.
1016 *
1017 * If we see a 0.0:F, change the type to VF so that it can be compacted.
1018 */
1019 if (brw_inst_imm_ud(devinfo, &inst) == 0x0 &&
1020 brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_F &&
1021 brw_inst_dst_type(devinfo, &inst) == BRW_REGISTER_TYPE_F &&
1022 brw_inst_dst_hstride(devinfo, &inst) == BRW_HORIZONTAL_STRIDE_1) {
1023 enum brw_reg_file file = brw_inst_src0_reg_file(devinfo, &inst);
1024 brw_inst_set_src0_file_type(devinfo, &inst, file, BRW_REGISTER_TYPE_VF);
1025 }
1026
1027 /* There are no mappings for dst:d | i:d, so if the immediate is suitable
1028 * set the types to :UD so the instruction can be compacted.
1029 */
1030 if (is_compactable_immediate(brw_inst_imm_ud(devinfo, &inst)) &&
1031 brw_inst_cond_modifier(devinfo, &inst) == BRW_CONDITIONAL_NONE &&
1032 brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_D &&
1033 brw_inst_dst_type(devinfo, &inst) == BRW_REGISTER_TYPE_D) {
1034 enum brw_reg_file src_file = brw_inst_src0_reg_file(devinfo, &inst);
1035 enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, &inst);
1036
1037 brw_inst_set_src0_file_type(devinfo, &inst, src_file, BRW_REGISTER_TYPE_UD);
1038 brw_inst_set_dst_file_type(devinfo, &inst, dst_file, BRW_REGISTER_TYPE_UD);
1039 }
1040
1041 return inst;
1042 }
1043
1044 /**
1045 * Tries to compact instruction src into dst.
1046 *
1047 * It doesn't modify dst unless src is compactable, which is relied on by
1048 * brw_compact_instructions().
1049 */
1050 bool
brw_try_compact_instruction(const struct gen_device_info * devinfo,brw_compact_inst * dst,const brw_inst * src)1051 brw_try_compact_instruction(const struct gen_device_info *devinfo,
1052 brw_compact_inst *dst, const brw_inst *src)
1053 {
1054 brw_compact_inst temp;
1055
1056 assert(brw_inst_cmpt_control(devinfo, src) == 0);
1057
1058 if (is_3src(devinfo, brw_inst_opcode(devinfo, src))) {
1059 if (devinfo->gen >= 8) {
1060 memset(&temp, 0, sizeof(temp));
1061 if (brw_try_compact_3src_instruction(devinfo, &temp, src)) {
1062 *dst = temp;
1063 return true;
1064 } else {
1065 return false;
1066 }
1067 } else {
1068 return false;
1069 }
1070 }
1071
1072 bool is_immediate =
1073 brw_inst_src0_reg_file(devinfo, src) == BRW_IMMEDIATE_VALUE ||
1074 brw_inst_src1_reg_file(devinfo, src) == BRW_IMMEDIATE_VALUE;
1075 if (is_immediate &&
1076 (devinfo->gen < 6 ||
1077 !is_compactable_immediate(brw_inst_imm_ud(devinfo, src)))) {
1078 return false;
1079 }
1080
1081 if (has_unmapped_bits(devinfo, src))
1082 return false;
1083
1084 memset(&temp, 0, sizeof(temp));
1085
1086 #define compact(field) \
1087 brw_compact_inst_set_##field(devinfo, &temp, brw_inst_##field(devinfo, src))
1088
1089 compact(opcode);
1090 compact(debug_control);
1091
1092 if (!set_control_index(devinfo, &temp, src))
1093 return false;
1094 if (!set_datatype_index(devinfo, &temp, src))
1095 return false;
1096 if (!set_subreg_index(devinfo, &temp, src, is_immediate))
1097 return false;
1098
1099 if (devinfo->gen >= 6) {
1100 compact(acc_wr_control);
1101 } else {
1102 compact(mask_control_ex);
1103 }
1104
1105 compact(cond_modifier);
1106
1107 if (devinfo->gen <= 6)
1108 compact(flag_subreg_nr);
1109
1110 brw_compact_inst_set_cmpt_control(devinfo, &temp, true);
1111
1112 if (!set_src0_index(devinfo, &temp, src))
1113 return false;
1114 if (!set_src1_index(devinfo, &temp, src, is_immediate))
1115 return false;
1116
1117 brw_compact_inst_set_dst_reg_nr(devinfo, &temp,
1118 brw_inst_dst_da_reg_nr(devinfo, src));
1119 brw_compact_inst_set_src0_reg_nr(devinfo, &temp,
1120 brw_inst_src0_da_reg_nr(devinfo, src));
1121
1122 if (is_immediate) {
1123 brw_compact_inst_set_src1_reg_nr(devinfo, &temp,
1124 brw_inst_imm_ud(devinfo, src) & 0xff);
1125 } else {
1126 brw_compact_inst_set_src1_reg_nr(devinfo, &temp,
1127 brw_inst_src1_da_reg_nr(devinfo, src));
1128 }
1129
1130 #undef compact
1131
1132 *dst = temp;
1133
1134 return true;
1135 }
1136
1137 static void
set_uncompacted_control(const struct gen_device_info * devinfo,brw_inst * dst,brw_compact_inst * src)1138 set_uncompacted_control(const struct gen_device_info *devinfo, brw_inst *dst,
1139 brw_compact_inst *src)
1140 {
1141 uint32_t uncompacted =
1142 control_index_table[brw_compact_inst_control_index(devinfo, src)];
1143
1144 if (devinfo->gen >= 8) {
1145 brw_inst_set_bits(dst, 33, 31, (uncompacted >> 16));
1146 brw_inst_set_bits(dst, 23, 12, (uncompacted >> 4) & 0xfff);
1147 brw_inst_set_bits(dst, 10, 9, (uncompacted >> 2) & 0x3);
1148 brw_inst_set_bits(dst, 34, 34, (uncompacted >> 1) & 0x1);
1149 brw_inst_set_bits(dst, 8, 8, (uncompacted >> 0) & 0x1);
1150 } else {
1151 brw_inst_set_bits(dst, 31, 31, (uncompacted >> 16) & 0x1);
1152 brw_inst_set_bits(dst, 23, 8, (uncompacted & 0xffff));
1153
1154 if (devinfo->gen == 7)
1155 brw_inst_set_bits(dst, 90, 89, uncompacted >> 17);
1156 }
1157 }
1158
1159 static void
set_uncompacted_datatype(const struct gen_device_info * devinfo,brw_inst * dst,brw_compact_inst * src)1160 set_uncompacted_datatype(const struct gen_device_info *devinfo, brw_inst *dst,
1161 brw_compact_inst *src)
1162 {
1163 uint32_t uncompacted =
1164 datatype_table[brw_compact_inst_datatype_index(devinfo, src)];
1165
1166 if (devinfo->gen >= 8) {
1167 brw_inst_set_bits(dst, 63, 61, (uncompacted >> 18));
1168 brw_inst_set_bits(dst, 94, 89, (uncompacted >> 12) & 0x3f);
1169 brw_inst_set_bits(dst, 46, 35, (uncompacted >> 0) & 0xfff);
1170 } else {
1171 brw_inst_set_bits(dst, 63, 61, (uncompacted >> 15));
1172 brw_inst_set_bits(dst, 46, 32, (uncompacted & 0x7fff));
1173 }
1174 }
1175
1176 static void
set_uncompacted_subreg(const struct gen_device_info * devinfo,brw_inst * dst,brw_compact_inst * src)1177 set_uncompacted_subreg(const struct gen_device_info *devinfo, brw_inst *dst,
1178 brw_compact_inst *src)
1179 {
1180 uint16_t uncompacted =
1181 subreg_table[brw_compact_inst_subreg_index(devinfo, src)];
1182
1183 brw_inst_set_bits(dst, 100, 96, (uncompacted >> 10));
1184 brw_inst_set_bits(dst, 68, 64, (uncompacted >> 5) & 0x1f);
1185 brw_inst_set_bits(dst, 52, 48, (uncompacted >> 0) & 0x1f);
1186 }
1187
1188 static void
set_uncompacted_src0(const struct gen_device_info * devinfo,brw_inst * dst,brw_compact_inst * src)1189 set_uncompacted_src0(const struct gen_device_info *devinfo, brw_inst *dst,
1190 brw_compact_inst *src)
1191 {
1192 uint32_t compacted = brw_compact_inst_src0_index(devinfo, src);
1193 uint16_t uncompacted = src_index_table[compacted];
1194
1195 brw_inst_set_bits(dst, 88, 77, uncompacted);
1196 }
1197
1198 static void
set_uncompacted_src1(const struct gen_device_info * devinfo,brw_inst * dst,brw_compact_inst * src,bool is_immediate)1199 set_uncompacted_src1(const struct gen_device_info *devinfo, brw_inst *dst,
1200 brw_compact_inst *src, bool is_immediate)
1201 {
1202 if (is_immediate) {
1203 signed high5 = brw_compact_inst_src1_index(devinfo, src);
1204 /* Replicate top bit of src1_index into high 20 bits of the immediate. */
1205 brw_inst_set_imm_ud(devinfo, dst, (high5 << 27) >> 19);
1206 } else {
1207 uint16_t uncompacted =
1208 src_index_table[brw_compact_inst_src1_index(devinfo, src)];
1209
1210 brw_inst_set_bits(dst, 120, 109, uncompacted);
1211 }
1212 }
1213
1214 static void
set_uncompacted_3src_control_index(const struct gen_device_info * devinfo,brw_inst * dst,brw_compact_inst * src)1215 set_uncompacted_3src_control_index(const struct gen_device_info *devinfo,
1216 brw_inst *dst, brw_compact_inst *src)
1217 {
1218 assert(devinfo->gen >= 8);
1219
1220 uint32_t compacted = brw_compact_inst_3src_control_index(devinfo, src);
1221 uint32_t uncompacted = gen8_3src_control_index_table[compacted];
1222
1223 brw_inst_set_bits(dst, 34, 32, (uncompacted >> 21) & 0x7);
1224 brw_inst_set_bits(dst, 28, 8, (uncompacted >> 0) & 0x1fffff);
1225
1226 if (devinfo->gen >= 9 || devinfo->is_cherryview)
1227 brw_inst_set_bits(dst, 36, 35, (uncompacted >> 24) & 0x3);
1228 }
1229
1230 static void
set_uncompacted_3src_source_index(const struct gen_device_info * devinfo,brw_inst * dst,brw_compact_inst * src)1231 set_uncompacted_3src_source_index(const struct gen_device_info *devinfo,
1232 brw_inst *dst, brw_compact_inst *src)
1233 {
1234 assert(devinfo->gen >= 8);
1235
1236 uint32_t compacted = brw_compact_inst_3src_source_index(devinfo, src);
1237 uint64_t uncompacted = gen8_3src_source_index_table[compacted];
1238
1239 brw_inst_set_bits(dst, 83, 83, (uncompacted >> 43) & 0x1);
1240 brw_inst_set_bits(dst, 114, 107, (uncompacted >> 35) & 0xff);
1241 brw_inst_set_bits(dst, 93, 86, (uncompacted >> 27) & 0xff);
1242 brw_inst_set_bits(dst, 72, 65, (uncompacted >> 19) & 0xff);
1243 brw_inst_set_bits(dst, 55, 37, (uncompacted >> 0) & 0x7ffff);
1244
1245 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
1246 brw_inst_set_bits(dst, 126, 125, (uncompacted >> 47) & 0x3);
1247 brw_inst_set_bits(dst, 105, 104, (uncompacted >> 45) & 0x3);
1248 brw_inst_set_bits(dst, 84, 84, (uncompacted >> 44) & 0x1);
1249 } else {
1250 brw_inst_set_bits(dst, 125, 125, (uncompacted >> 45) & 0x1);
1251 brw_inst_set_bits(dst, 104, 104, (uncompacted >> 44) & 0x1);
1252 }
1253 }
1254
1255 static void
brw_uncompact_3src_instruction(const struct gen_device_info * devinfo,brw_inst * dst,brw_compact_inst * src)1256 brw_uncompact_3src_instruction(const struct gen_device_info *devinfo,
1257 brw_inst *dst, brw_compact_inst *src)
1258 {
1259 assert(devinfo->gen >= 8);
1260
1261 #define uncompact(field) \
1262 brw_inst_set_3src_##field(devinfo, dst, brw_compact_inst_3src_##field(devinfo, src))
1263 #define uncompact_a16(field) \
1264 brw_inst_set_3src_a16_##field(devinfo, dst, brw_compact_inst_3src_##field(devinfo, src))
1265
1266 uncompact(opcode);
1267
1268 set_uncompacted_3src_control_index(devinfo, dst, src);
1269 set_uncompacted_3src_source_index(devinfo, dst, src);
1270
1271 uncompact(dst_reg_nr);
1272 uncompact_a16(src0_rep_ctrl);
1273 brw_inst_set_3src_cmpt_control(devinfo, dst, false);
1274 uncompact(debug_control);
1275 uncompact(saturate);
1276 uncompact_a16(src1_rep_ctrl);
1277 uncompact_a16(src2_rep_ctrl);
1278 uncompact(src0_reg_nr);
1279 uncompact(src1_reg_nr);
1280 uncompact(src2_reg_nr);
1281 uncompact_a16(src0_subreg_nr);
1282 uncompact_a16(src1_subreg_nr);
1283 uncompact_a16(src2_subreg_nr);
1284
1285 #undef uncompact
1286 #undef uncompact_a16
1287 }
1288
1289 void
brw_uncompact_instruction(const struct gen_device_info * devinfo,brw_inst * dst,brw_compact_inst * src)1290 brw_uncompact_instruction(const struct gen_device_info *devinfo, brw_inst *dst,
1291 brw_compact_inst *src)
1292 {
1293 memset(dst, 0, sizeof(*dst));
1294
1295 if (devinfo->gen >= 8 &&
1296 is_3src(devinfo, brw_compact_inst_3src_opcode(devinfo, src))) {
1297 brw_uncompact_3src_instruction(devinfo, dst, src);
1298 return;
1299 }
1300
1301 #define uncompact(field) \
1302 brw_inst_set_##field(devinfo, dst, brw_compact_inst_##field(devinfo, src))
1303
1304 uncompact(opcode);
1305 uncompact(debug_control);
1306
1307 set_uncompacted_control(devinfo, dst, src);
1308 set_uncompacted_datatype(devinfo, dst, src);
1309
1310 /* src0/1 register file fields are in the datatype table. */
1311 bool is_immediate = brw_inst_src0_reg_file(devinfo, dst) == BRW_IMMEDIATE_VALUE ||
1312 brw_inst_src1_reg_file(devinfo, dst) == BRW_IMMEDIATE_VALUE;
1313
1314 set_uncompacted_subreg(devinfo, dst, src);
1315
1316 if (devinfo->gen >= 6) {
1317 uncompact(acc_wr_control);
1318 } else {
1319 uncompact(mask_control_ex);
1320 }
1321
1322 uncompact(cond_modifier);
1323
1324 if (devinfo->gen <= 6)
1325 uncompact(flag_subreg_nr);
1326
1327 set_uncompacted_src0(devinfo, dst, src);
1328 set_uncompacted_src1(devinfo, dst, src, is_immediate);
1329
1330 brw_inst_set_dst_da_reg_nr(devinfo, dst,
1331 brw_compact_inst_dst_reg_nr(devinfo, src));
1332 brw_inst_set_src0_da_reg_nr(devinfo, dst,
1333 brw_compact_inst_src0_reg_nr(devinfo, src));
1334
1335 if (is_immediate) {
1336 brw_inst_set_imm_ud(devinfo, dst,
1337 brw_inst_imm_ud(devinfo, dst) |
1338 brw_compact_inst_src1_reg_nr(devinfo, src));
1339 } else {
1340 brw_inst_set_src1_da_reg_nr(devinfo, dst,
1341 brw_compact_inst_src1_reg_nr(devinfo, src));
1342 }
1343
1344 #undef uncompact
1345 }
1346
brw_debug_compact_uncompact(const struct gen_device_info * devinfo,brw_inst * orig,brw_inst * uncompacted)1347 void brw_debug_compact_uncompact(const struct gen_device_info *devinfo,
1348 brw_inst *orig,
1349 brw_inst *uncompacted)
1350 {
1351 fprintf(stderr, "Instruction compact/uncompact changed (gen%d):\n",
1352 devinfo->gen);
1353
1354 fprintf(stderr, " before: ");
1355 brw_disassemble_inst(stderr, devinfo, orig, true);
1356
1357 fprintf(stderr, " after: ");
1358 brw_disassemble_inst(stderr, devinfo, uncompacted, false);
1359
1360 uint32_t *before_bits = (uint32_t *)orig;
1361 uint32_t *after_bits = (uint32_t *)uncompacted;
1362 fprintf(stderr, " changed bits:\n");
1363 for (int i = 0; i < 128; i++) {
1364 uint32_t before = before_bits[i / 32] & (1 << (i & 31));
1365 uint32_t after = after_bits[i / 32] & (1 << (i & 31));
1366
1367 if (before != after) {
1368 fprintf(stderr, " bit %d, %s to %s\n", i,
1369 before ? "set" : "unset",
1370 after ? "set" : "unset");
1371 }
1372 }
1373 }
1374
1375 static int
compacted_between(int old_ip,int old_target_ip,int * compacted_counts)1376 compacted_between(int old_ip, int old_target_ip, int *compacted_counts)
1377 {
1378 int this_compacted_count = compacted_counts[old_ip];
1379 int target_compacted_count = compacted_counts[old_target_ip];
1380 return target_compacted_count - this_compacted_count;
1381 }
1382
1383 static void
update_uip_jip(const struct gen_device_info * devinfo,brw_inst * insn,int this_old_ip,int * compacted_counts)1384 update_uip_jip(const struct gen_device_info *devinfo, brw_inst *insn,
1385 int this_old_ip, int *compacted_counts)
1386 {
1387 /* JIP and UIP are in units of:
1388 * - bytes on Gen8+; and
1389 * - compacted instructions on Gen6+.
1390 */
1391 int shift = devinfo->gen >= 8 ? 3 : 0;
1392
1393 int32_t jip_compacted = brw_inst_jip(devinfo, insn) >> shift;
1394 jip_compacted -= compacted_between(this_old_ip,
1395 this_old_ip + (jip_compacted / 2),
1396 compacted_counts);
1397 brw_inst_set_jip(devinfo, insn, jip_compacted << shift);
1398
1399 if (brw_inst_opcode(devinfo, insn) == BRW_OPCODE_ENDIF ||
1400 brw_inst_opcode(devinfo, insn) == BRW_OPCODE_WHILE ||
1401 (brw_inst_opcode(devinfo, insn) == BRW_OPCODE_ELSE && devinfo->gen <= 7))
1402 return;
1403
1404 int32_t uip_compacted = brw_inst_uip(devinfo, insn) >> shift;
1405 uip_compacted -= compacted_between(this_old_ip,
1406 this_old_ip + (uip_compacted / 2),
1407 compacted_counts);
1408 brw_inst_set_uip(devinfo, insn, uip_compacted << shift);
1409 }
1410
1411 static void
update_gen4_jump_count(const struct gen_device_info * devinfo,brw_inst * insn,int this_old_ip,int * compacted_counts)1412 update_gen4_jump_count(const struct gen_device_info *devinfo, brw_inst *insn,
1413 int this_old_ip, int *compacted_counts)
1414 {
1415 assert(devinfo->gen == 5 || devinfo->is_g4x);
1416
1417 /* Jump Count is in units of:
1418 * - uncompacted instructions on G45; and
1419 * - compacted instructions on Gen5.
1420 */
1421 int shift = devinfo->is_g4x ? 1 : 0;
1422
1423 int jump_count_compacted = brw_inst_gen4_jump_count(devinfo, insn) << shift;
1424
1425 int target_old_ip = this_old_ip + (jump_count_compacted / 2);
1426
1427 int this_compacted_count = compacted_counts[this_old_ip];
1428 int target_compacted_count = compacted_counts[target_old_ip];
1429
1430 jump_count_compacted -= (target_compacted_count - this_compacted_count);
1431 brw_inst_set_gen4_jump_count(devinfo, insn, jump_count_compacted >> shift);
1432 }
1433
1434 void
brw_init_compaction_tables(const struct gen_device_info * devinfo)1435 brw_init_compaction_tables(const struct gen_device_info *devinfo)
1436 {
1437 assert(g45_control_index_table[ARRAY_SIZE(g45_control_index_table) - 1] != 0);
1438 assert(g45_datatype_table[ARRAY_SIZE(g45_datatype_table) - 1] != 0);
1439 assert(g45_subreg_table[ARRAY_SIZE(g45_subreg_table) - 1] != 0);
1440 assert(g45_src_index_table[ARRAY_SIZE(g45_src_index_table) - 1] != 0);
1441 assert(gen6_control_index_table[ARRAY_SIZE(gen6_control_index_table) - 1] != 0);
1442 assert(gen6_datatype_table[ARRAY_SIZE(gen6_datatype_table) - 1] != 0);
1443 assert(gen6_subreg_table[ARRAY_SIZE(gen6_subreg_table) - 1] != 0);
1444 assert(gen6_src_index_table[ARRAY_SIZE(gen6_src_index_table) - 1] != 0);
1445 assert(gen7_control_index_table[ARRAY_SIZE(gen7_control_index_table) - 1] != 0);
1446 assert(gen7_datatype_table[ARRAY_SIZE(gen7_datatype_table) - 1] != 0);
1447 assert(gen7_subreg_table[ARRAY_SIZE(gen7_subreg_table) - 1] != 0);
1448 assert(gen7_src_index_table[ARRAY_SIZE(gen7_src_index_table) - 1] != 0);
1449 assert(gen8_control_index_table[ARRAY_SIZE(gen8_control_index_table) - 1] != 0);
1450 assert(gen8_datatype_table[ARRAY_SIZE(gen8_datatype_table) - 1] != 0);
1451 assert(gen8_subreg_table[ARRAY_SIZE(gen8_subreg_table) - 1] != 0);
1452 assert(gen8_src_index_table[ARRAY_SIZE(gen8_src_index_table) - 1] != 0);
1453
1454 switch (devinfo->gen) {
1455 case 10:
1456 case 9:
1457 case 8:
1458 control_index_table = gen8_control_index_table;
1459 datatype_table = gen8_datatype_table;
1460 subreg_table = gen8_subreg_table;
1461 src_index_table = gen8_src_index_table;
1462 break;
1463 case 7:
1464 control_index_table = gen7_control_index_table;
1465 datatype_table = gen7_datatype_table;
1466 subreg_table = gen7_subreg_table;
1467 src_index_table = gen7_src_index_table;
1468 break;
1469 case 6:
1470 control_index_table = gen6_control_index_table;
1471 datatype_table = gen6_datatype_table;
1472 subreg_table = gen6_subreg_table;
1473 src_index_table = gen6_src_index_table;
1474 break;
1475 case 5:
1476 case 4:
1477 control_index_table = g45_control_index_table;
1478 datatype_table = g45_datatype_table;
1479 subreg_table = g45_subreg_table;
1480 src_index_table = g45_src_index_table;
1481 break;
1482 default:
1483 unreachable("unknown generation");
1484 }
1485 }
1486
1487 void
brw_compact_instructions(struct brw_codegen * p,int start_offset,struct disasm_info * disasm)1488 brw_compact_instructions(struct brw_codegen *p, int start_offset,
1489 struct disasm_info *disasm)
1490 {
1491 if (unlikely(INTEL_DEBUG & DEBUG_NO_COMPACTION))
1492 return;
1493
1494 const struct gen_device_info *devinfo = p->devinfo;
1495 void *store = p->store + start_offset / 16;
1496 /* For an instruction at byte offset 16*i before compaction, this is the
1497 * number of compacted instructions minus the number of padding NOP/NENOPs
1498 * that preceded it.
1499 */
1500 int compacted_counts[(p->next_insn_offset - start_offset) / sizeof(brw_inst)];
1501 /* For an instruction at byte offset 8*i after compaction, this was its IP
1502 * (in 16-byte units) before compaction.
1503 */
1504 int old_ip[(p->next_insn_offset - start_offset) / sizeof(brw_compact_inst) + 1];
1505
1506 if (devinfo->gen == 4 && !devinfo->is_g4x)
1507 return;
1508
1509 int offset = 0;
1510 int compacted_count = 0;
1511 for (int src_offset = 0; src_offset < p->next_insn_offset - start_offset;
1512 src_offset += sizeof(brw_inst)) {
1513 brw_inst *src = store + src_offset;
1514 void *dst = store + offset;
1515
1516 old_ip[offset / sizeof(brw_compact_inst)] = src_offset / sizeof(brw_inst);
1517 compacted_counts[src_offset / sizeof(brw_inst)] = compacted_count;
1518
1519 brw_inst inst = precompact(devinfo, *src);
1520 brw_inst saved = inst;
1521
1522 if (brw_try_compact_instruction(devinfo, dst, &inst)) {
1523 compacted_count++;
1524
1525 if (INTEL_DEBUG) {
1526 brw_inst uncompacted;
1527 brw_uncompact_instruction(devinfo, &uncompacted, dst);
1528 if (memcmp(&saved, &uncompacted, sizeof(uncompacted))) {
1529 brw_debug_compact_uncompact(devinfo, &saved, &uncompacted);
1530 }
1531 }
1532
1533 offset += sizeof(brw_compact_inst);
1534 } else {
1535 /* All uncompacted instructions need to be aligned on G45. */
1536 if ((offset & sizeof(brw_compact_inst)) != 0 && devinfo->is_g4x){
1537 brw_compact_inst *align = store + offset;
1538 memset(align, 0, sizeof(*align));
1539 brw_compact_inst_set_opcode(devinfo, align, BRW_OPCODE_NENOP);
1540 brw_compact_inst_set_cmpt_control(devinfo, align, true);
1541 offset += sizeof(brw_compact_inst);
1542 compacted_count--;
1543 compacted_counts[src_offset / sizeof(brw_inst)] = compacted_count;
1544 old_ip[offset / sizeof(brw_compact_inst)] = src_offset / sizeof(brw_inst);
1545
1546 dst = store + offset;
1547 }
1548
1549 /* If we didn't compact this intruction, we need to move it down into
1550 * place.
1551 */
1552 if (offset != src_offset) {
1553 memmove(dst, src, sizeof(brw_inst));
1554 }
1555 offset += sizeof(brw_inst);
1556 }
1557 }
1558
1559 /* Add an entry for the ending offset of the program. This greatly
1560 * simplifies the linked list walk at the end of the function.
1561 */
1562 old_ip[offset / sizeof(brw_compact_inst)] =
1563 (p->next_insn_offset - start_offset) / sizeof(brw_inst);
1564
1565 /* Fix up control flow offsets. */
1566 p->next_insn_offset = start_offset + offset;
1567 for (offset = 0; offset < p->next_insn_offset - start_offset;
1568 offset = next_offset(devinfo, store, offset)) {
1569 brw_inst *insn = store + offset;
1570 int this_old_ip = old_ip[offset / sizeof(brw_compact_inst)];
1571 int this_compacted_count = compacted_counts[this_old_ip];
1572
1573 switch (brw_inst_opcode(devinfo, insn)) {
1574 case BRW_OPCODE_BREAK:
1575 case BRW_OPCODE_CONTINUE:
1576 case BRW_OPCODE_HALT:
1577 if (devinfo->gen >= 6) {
1578 update_uip_jip(devinfo, insn, this_old_ip, compacted_counts);
1579 } else {
1580 update_gen4_jump_count(devinfo, insn, this_old_ip,
1581 compacted_counts);
1582 }
1583 break;
1584
1585 case BRW_OPCODE_IF:
1586 case BRW_OPCODE_IFF:
1587 case BRW_OPCODE_ELSE:
1588 case BRW_OPCODE_ENDIF:
1589 case BRW_OPCODE_WHILE:
1590 if (devinfo->gen >= 7) {
1591 if (brw_inst_cmpt_control(devinfo, insn)) {
1592 brw_inst uncompacted;
1593 brw_uncompact_instruction(devinfo, &uncompacted,
1594 (brw_compact_inst *)insn);
1595
1596 update_uip_jip(devinfo, &uncompacted, this_old_ip,
1597 compacted_counts);
1598
1599 bool ret = brw_try_compact_instruction(devinfo,
1600 (brw_compact_inst *)insn,
1601 &uncompacted);
1602 assert(ret); (void)ret;
1603 } else {
1604 update_uip_jip(devinfo, insn, this_old_ip, compacted_counts);
1605 }
1606 } else if (devinfo->gen == 6) {
1607 assert(!brw_inst_cmpt_control(devinfo, insn));
1608
1609 /* Jump Count is in units of compacted instructions on Gen6. */
1610 int jump_count_compacted = brw_inst_gen6_jump_count(devinfo, insn);
1611
1612 int target_old_ip = this_old_ip + (jump_count_compacted / 2);
1613 int target_compacted_count = compacted_counts[target_old_ip];
1614 jump_count_compacted -= (target_compacted_count - this_compacted_count);
1615 brw_inst_set_gen6_jump_count(devinfo, insn, jump_count_compacted);
1616 } else {
1617 update_gen4_jump_count(devinfo, insn, this_old_ip,
1618 compacted_counts);
1619 }
1620 break;
1621
1622 case BRW_OPCODE_ADD:
1623 /* Add instructions modifying the IP register use an immediate src1,
1624 * and Gens that use this cannot compact instructions with immediate
1625 * operands.
1626 */
1627 if (brw_inst_cmpt_control(devinfo, insn))
1628 break;
1629
1630 if (brw_inst_dst_reg_file(devinfo, insn) == BRW_ARCHITECTURE_REGISTER_FILE &&
1631 brw_inst_dst_da_reg_nr(devinfo, insn) == BRW_ARF_IP) {
1632 assert(brw_inst_src1_reg_file(devinfo, insn) == BRW_IMMEDIATE_VALUE);
1633
1634 int shift = 3;
1635 int jump_compacted = brw_inst_imm_d(devinfo, insn) >> shift;
1636
1637 int target_old_ip = this_old_ip + (jump_compacted / 2);
1638 int target_compacted_count = compacted_counts[target_old_ip];
1639 jump_compacted -= (target_compacted_count - this_compacted_count);
1640 brw_inst_set_imm_ud(devinfo, insn, jump_compacted << shift);
1641 }
1642 break;
1643 }
1644 }
1645
1646 /* p->nr_insn is counting the number of uncompacted instructions still, so
1647 * divide. We do want to be sure there's a valid instruction in any
1648 * alignment padding, so that the next compression pass (for the FS 8/16
1649 * compile passes) parses correctly.
1650 */
1651 if (p->next_insn_offset & sizeof(brw_compact_inst)) {
1652 brw_compact_inst *align = store + offset;
1653 memset(align, 0, sizeof(*align));
1654 brw_compact_inst_set_opcode(devinfo, align, BRW_OPCODE_NOP);
1655 brw_compact_inst_set_cmpt_control(devinfo, align, true);
1656 p->next_insn_offset += sizeof(brw_compact_inst);
1657 }
1658 p->nr_insn = p->next_insn_offset / sizeof(brw_inst);
1659
1660 /* Update the instruction offsets for each group. */
1661 if (disasm) {
1662 int offset = 0;
1663
1664 foreach_list_typed(struct inst_group, group, link, &disasm->group_list) {
1665 while (start_offset + old_ip[offset / sizeof(brw_compact_inst)] *
1666 sizeof(brw_inst) != group->offset) {
1667 assert(start_offset + old_ip[offset / sizeof(brw_compact_inst)] *
1668 sizeof(brw_inst) < group->offset);
1669 offset = next_offset(devinfo, store, offset);
1670 }
1671
1672 group->offset = start_offset + offset;
1673
1674 offset = next_offset(devinfo, store, offset);
1675 }
1676 }
1677 }
1678