• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "RenderTopView.h"
18 #include "VideoTex.h"
19 #include "glError.h"
20 #include "shader.h"
21 #include "shader_simpleTex.h"
22 #include "shader_projectedTex.h"
23 
24 #include <log/log.h>
25 #include <math/mat4.h>
26 #include <math/vec3.h>
27 
28 
29 // Simple aliases to make geometric math using vectors more readable
30 static const unsigned X = 0;
31 static const unsigned Y = 1;
32 static const unsigned Z = 2;
33 //static const unsigned W = 3;
34 
35 
36 // Since we assume no roll in these views, we can simplify the required math
unitVectorFromPitchAndYaw(float pitch,float yaw)37 static android::vec3 unitVectorFromPitchAndYaw(float pitch, float yaw) {
38     float sinPitch, cosPitch;
39     sincosf(pitch, &sinPitch, &cosPitch);
40     float sinYaw, cosYaw;
41     sincosf(yaw, &sinYaw, &cosYaw);
42     return android::vec3(cosPitch * -sinYaw,
43                          cosPitch * cosYaw,
44                          sinPitch);
45 }
46 
47 
48 // Helper function to set up a perspective matrix with independent horizontal and vertical
49 // angles of view.
perspective(float hfov,float vfov,float near,float far)50 static android::mat4 perspective(float hfov, float vfov, float near, float far) {
51     const float tanHalfFovX = tanf(hfov * 0.5f);
52     const float tanHalfFovY = tanf(vfov * 0.5f);
53 
54     android::mat4 p(0.0f);
55     p[0][0] = 1.0f / tanHalfFovX;
56     p[1][1] = 1.0f / tanHalfFovY;
57     p[2][2] = - (far + near) / (far - near);
58     p[2][3] = -1.0f;
59     p[3][2] = - (2.0f * far * near) / (far - near);
60     return p;
61 }
62 
63 
64 // Helper function to set up a view matrix for a camera given it's yaw & pitch & location
65 // Yes, with a bit of work, we could use lookAt, but it does a lot of extra work
66 // internally that we can short cut.
cameraLookMatrix(const ConfigManager::CameraInfo & cam)67 static android::mat4 cameraLookMatrix(const ConfigManager::CameraInfo& cam) {
68     float sinYaw, cosYaw;
69     sincosf(cam.yaw, &sinYaw, &cosYaw);
70 
71     // Construct principal unit vectors
72     android::vec3 vAt = unitVectorFromPitchAndYaw(cam.pitch, cam.yaw);
73     android::vec3 vRt = android::vec3(cosYaw, sinYaw, 0.0f);
74     android::vec3 vUp = -cross(vAt, vRt);
75     android::vec3 eye = android::vec3(cam.position[X], cam.position[Y], cam.position[Z]);
76 
77     android::mat4 Result(1.0f);
78     Result[0][0] = vRt.x;
79     Result[1][0] = vRt.y;
80     Result[2][0] = vRt.z;
81     Result[0][1] = vUp.x;
82     Result[1][1] = vUp.y;
83     Result[2][1] = vUp.z;
84     Result[0][2] =-vAt.x;
85     Result[1][2] =-vAt.y;
86     Result[2][2] =-vAt.z;
87     Result[3][0] =-dot(vRt, eye);
88     Result[3][1] =-dot(vUp, eye);
89     Result[3][2] = dot(vAt, eye);
90     return Result;
91 }
92 
93 
RenderTopView(sp<IEvsEnumerator> enumerator,const std::vector<ConfigManager::CameraInfo> & camList,const ConfigManager & mConfig)94 RenderTopView::RenderTopView(sp<IEvsEnumerator> enumerator,
95                              const std::vector<ConfigManager::CameraInfo>& camList,
96                              const ConfigManager& mConfig) :
97     mEnumerator(enumerator),
98     mConfig(mConfig) {
99 
100     // Copy the list of cameras we're to employ into our local storage.  We'll create and
101     // associate a streaming video texture when we are activated.
102     mActiveCameras.reserve(camList.size());
103     for (unsigned i=0; i<camList.size(); i++) {
104         mActiveCameras.emplace_back(camList[i]);
105     }
106 }
107 
108 
activate()109 bool RenderTopView::activate() {
110     // Ensure GL is ready to go...
111     if (!prepareGL()) {
112         ALOGE("Error initializing GL");
113         return false;
114     }
115 
116     // Load our shader programs
117     mPgmAssets.simpleTexture = buildShaderProgram(vtxShader_simpleTexture,
118                                                  pixShader_simpleTexture,
119                                                  "simpleTexture");
120     if (!mPgmAssets.simpleTexture) {
121         ALOGE("Failed to build shader program");
122         return false;
123     }
124     mPgmAssets.projectedTexture = buildShaderProgram(vtxShader_projectedTexture,
125                                                     pixShader_projectedTexture,
126                                                     "projectedTexture");
127     if (!mPgmAssets.projectedTexture) {
128         ALOGE("Failed to build shader program");
129         return false;
130     }
131 
132 
133     // Load the checkerboard text image
134     mTexAssets.checkerBoard.reset(createTextureFromPng(
135                                   "/system/etc/automotive/evs/LabeledChecker.png"));
136     if (!mTexAssets.checkerBoard) {
137         ALOGE("Failed to load checkerboard texture");
138         return false;
139     }
140 
141     // Load the car image
142     mTexAssets.carTopView.reset(createTextureFromPng(
143                                 "/system/etc/automotive/evs/CarFromTop.png"));
144     if (!mTexAssets.carTopView) {
145         ALOGE("Failed to load carTopView texture");
146         return false;
147     }
148 
149 
150     // Set up streaming video textures for our associated cameras
151     for (auto&& cam: mActiveCameras) {
152         cam.tex.reset(createVideoTexture(mEnumerator, cam.info.cameraId.c_str(), sDisplay));
153         if (!cam.tex) {
154             ALOGE("Failed to set up video texture for %s (%s)",
155                   cam.info.cameraId.c_str(), cam.info.function.c_str());
156 // TODO:  For production use, we may actually want to fail in this case, but not yet...
157 //            return false;
158         }
159     }
160 
161     return true;
162 }
163 
164 
deactivate()165 void RenderTopView::deactivate() {
166     // Release our video textures
167     // We can't hold onto it because some other Render object might need the same camera
168     // TODO(b/131492626):  investigate whether sharing video textures can save
169     // the time.
170     for (auto&& cam: mActiveCameras) {
171         cam.tex = nullptr;
172     }
173 }
174 
175 
drawFrame(const BufferDesc & tgtBuffer)176 bool RenderTopView::drawFrame(const BufferDesc& tgtBuffer) {
177     // Tell GL to render to the given buffer
178     if (!attachRenderTarget(tgtBuffer)) {
179         ALOGE("Failed to attached render target");
180         return false;
181     }
182 
183     // Set up our top down projection matrix from car space (world units, Xfwd, Yright, Zup)
184     // to view space (-1 to 1)
185     const float top    = mConfig.getDisplayTopLocation();
186     const float bottom = mConfig.getDisplayBottomLocation();
187     const float right  = mConfig.getDisplayRightLocation(sAspectRatio);
188     const float left   = mConfig.getDisplayLeftLocation(sAspectRatio);
189 
190     const float near = 10.0f;   // arbitrary top of view volume
191     const float far = 0.0f;     // ground plane is at zero
192 
193     // We can use a simple, unrotated ortho view since the screen and car space axis are
194     // naturally aligned in the top down view.
195     // TODO:  Not sure if flipping top/bottom here is "correct" or a double reverse...
196 //    orthoMatrix = android::mat4::ortho(left, right, bottom, top, near, far);
197     orthoMatrix = android::mat4::ortho(left, right, top, bottom, near, far);
198 
199 
200     // Refresh our video texture contents.  We do it all at once in hopes of getting
201     // better coherence among images.  This does not guarantee synchronization, of course...
202     for (auto&& cam: mActiveCameras) {
203         if (cam.tex) {
204             cam.tex->refresh();
205         }
206     }
207 
208     // Iterate over all the cameras and project their images onto the ground plane
209     for (auto&& cam: mActiveCameras) {
210         renderCameraOntoGroundPlane(cam);
211     }
212 
213     // Draw the car image
214     renderCarTopView();
215 
216     // Now that everythign is submitted, release our hold on the texture resource
217     detachRenderTarget();
218 
219     // Wait for the rendering to finish
220     glFinish();
221     detachRenderTarget();
222     return true;
223 }
224 
225 
226 //
227 // Responsible for drawing the car's self image in the top down view.
228 // Draws in car model space (units of meters with origin at center of rear axel)
229 // NOTE:  We probably want to eventually switch to using a VertexArray based model system.
230 //
renderCarTopView()231 void RenderTopView::renderCarTopView() {
232     // Compute the corners of our image footprint in car space
233     const float carLengthInTexels = mConfig.carGraphicRearPixel() - mConfig.carGraphicFrontPixel();
234     const float carSpaceUnitsPerTexel = mConfig.getCarLength() / carLengthInTexels;
235     const float textureHeightInCarSpace = mTexAssets.carTopView->height() * carSpaceUnitsPerTexel;
236     const float textureAspectRatio = (float)mTexAssets.carTopView->width() /
237                                             mTexAssets.carTopView->height();
238     const float pixelsBehindCarInImage = mTexAssets.carTopView->height() -
239                                          mConfig.carGraphicRearPixel();
240     const float textureExtentBehindCarInCarSpace = pixelsBehindCarInImage * carSpaceUnitsPerTexel;
241 
242     const float btCS = mConfig.getRearLocation() - textureExtentBehindCarInCarSpace;
243     const float tpCS = textureHeightInCarSpace + btCS;
244     const float ltCS = 0.5f * textureHeightInCarSpace * textureAspectRatio;
245     const float rtCS = -ltCS;
246 
247     GLfloat vertsCarPos[] = { ltCS, tpCS, 0.0f,   // left top in car space
248                               rtCS, tpCS, 0.0f,   // right top
249                               ltCS, btCS, 0.0f,   // left bottom
250                               rtCS, btCS, 0.0f    // right bottom
251     };
252     // NOTE:  We didn't flip the image in the texture, so V=0 is actually the top of the image
253     GLfloat vertsCarTex[] = { 0.0f, 0.0f,   // left top
254                               1.0f, 0.0f,   // right top
255                               0.0f, 1.0f,   // left bottom
256                               1.0f, 1.0f    // right bottom
257     };
258     glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, vertsCarPos);
259     glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, vertsCarTex);
260     glEnableVertexAttribArray(0);
261     glEnableVertexAttribArray(1);
262 
263 
264     glEnable(GL_BLEND);
265     glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
266 
267     glUseProgram(mPgmAssets.simpleTexture);
268     GLint loc = glGetUniformLocation(mPgmAssets.simpleTexture, "cameraMat");
269     glUniformMatrix4fv(loc, 1, false, orthoMatrix.asArray());
270     glBindTexture(GL_TEXTURE_2D, mTexAssets.carTopView->glId());
271 
272     glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
273 
274 
275     glDisable(GL_BLEND);
276 
277     glDisableVertexAttribArray(0);
278     glDisableVertexAttribArray(1);
279 }
280 
281 
282 // NOTE:  Might be worth reviewing the ideas at
283 // http://math.stackexchange.com/questions/1691895/inverse-of-perspective-matrix
284 // to see if that simplifies the math, although we'll still want to compute the actual ground
285 // interception points taking into account the pitchLimit as below.
renderCameraOntoGroundPlane(const ActiveCamera & cam)286 void RenderTopView::renderCameraOntoGroundPlane(const ActiveCamera& cam) {
287     // How far is the farthest any camera should even consider projecting it's image?
288     const float visibleSizeV = mConfig.getDisplayTopLocation() - mConfig.getDisplayBottomLocation();
289     const float visibleSizeH = visibleSizeV * sAspectRatio;
290     const float maxRange = (visibleSizeH > visibleSizeV) ? visibleSizeH : visibleSizeV;
291 
292     // Construct the projection matrix (View + Projection) associated with this sensor
293     // TODO:  Consider just hard coding the far plane distance as it likely doesn't matter
294     const android::mat4 V = cameraLookMatrix(cam.info);
295     const android::mat4 P = perspective(cam.info.hfov, cam.info.vfov, cam.info.position[Z], maxRange);
296     const android::mat4 projectionMatix = P*V;
297 
298     // Just draw the whole darn ground plane for now -- we're wasting fill rate, but so what?
299     // A 2x optimization would be to draw only the 1/2 space of the window in the direction
300     // the sensor is facing.  A more complex solution would be to construct the intersection
301     // of the sensor volume with the ground plane and render only that geometry.
302     const float top = mConfig.getDisplayTopLocation();
303     const float bottom = mConfig.getDisplayBottomLocation();
304     const float wsHeight = top - bottom;
305     const float wsWidth = wsHeight * sAspectRatio;
306     const float right =  wsWidth * 0.5f;
307     const float left = -right;
308 
309     const android::vec3 topLeft(left, top, 0.0f);
310     const android::vec3 topRight(right, top, 0.0f);
311     const android::vec3 botLeft(left, bottom, 0.0f);
312     const android::vec3 botRight(right, bottom, 0.0f);
313 
314     GLfloat vertsPos[] = { topLeft[X],  topLeft[Y],  topLeft[Z],
315                            topRight[X], topRight[Y], topRight[Z],
316                            botLeft[X],  botLeft[Y],  botLeft[Z],
317                            botRight[X], botRight[Y], botRight[Z],
318     };
319     glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, vertsPos);
320     glEnableVertexAttribArray(0);
321 
322 
323     glDisable(GL_BLEND);
324 
325     glUseProgram(mPgmAssets.projectedTexture);
326     GLint locCam = glGetUniformLocation(mPgmAssets.projectedTexture, "cameraMat");
327     glUniformMatrix4fv(locCam, 1, false, orthoMatrix.asArray());
328     GLint locProj = glGetUniformLocation(mPgmAssets.projectedTexture, "projectionMat");
329     glUniformMatrix4fv(locProj, 1, false, projectionMatix.asArray());
330 
331     GLuint texId;
332     if (cam.tex) {
333         texId = cam.tex->glId();
334     } else {
335         texId = mTexAssets.checkerBoard->glId();
336     }
337     glBindTexture(GL_TEXTURE_2D, texId);
338 
339     glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
340 
341 
342     glDisableVertexAttribArray(0);
343 }
344