• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ====================================================================
2  * Copyright (c) 2008 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    openssl-core@openssl.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ==================================================================== */
48 
49 #ifndef OPENSSL_HEADER_MODES_INTERNAL_H
50 #define OPENSSL_HEADER_MODES_INTERNAL_H
51 
52 #include <openssl/base.h>
53 
54 #include <openssl/aes.h>
55 #include <openssl/cpu.h>
56 
57 #include <stdlib.h>
58 #include <string.h>
59 
60 #include "../../internal.h"
61 
62 #if defined(__cplusplus)
63 extern "C" {
64 #endif
65 
66 
GETU32(const void * in)67 static inline uint32_t GETU32(const void *in) {
68   uint32_t v;
69   OPENSSL_memcpy(&v, in, sizeof(v));
70   return CRYPTO_bswap4(v);
71 }
72 
PUTU32(void * out,uint32_t v)73 static inline void PUTU32(void *out, uint32_t v) {
74   v = CRYPTO_bswap4(v);
75   OPENSSL_memcpy(out, &v, sizeof(v));
76 }
77 
load_word_le(const void * in)78 static inline size_t load_word_le(const void *in) {
79   size_t v;
80   OPENSSL_memcpy(&v, in, sizeof(v));
81   return v;
82 }
83 
store_word_le(void * out,size_t v)84 static inline void store_word_le(void *out, size_t v) {
85   OPENSSL_memcpy(out, &v, sizeof(v));
86 }
87 
88 // block128_f is the type of an AES block cipher implementation.
89 //
90 // Unlike upstream OpenSSL, it and the other functions in this file hard-code
91 // |AES_KEY|. It is undefined in C to call a function pointer with anything
92 // other than the original type. Thus we either must match |block128_f| to the
93 // type signature of |AES_encrypt| and friends or pass in |void*| wrapper
94 // functions.
95 //
96 // These functions are called exclusively with AES, so we use the former.
97 typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16],
98                            const AES_KEY *key);
99 
100 
101 // CTR.
102 
103 // ctr128_f is the type of a function that performs CTR-mode encryption.
104 typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks,
105                          const AES_KEY *key, const uint8_t ivec[16]);
106 
107 // CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode)
108 // |len| bytes from |in| to |out| using |block| in counter mode. There's no
109 // requirement that |len| be a multiple of any value and any partial blocks are
110 // stored in |ecount_buf| and |*num|, which must be zeroed before the initial
111 // call. The counter is a 128-bit, big-endian value in |ivec| and is
112 // incremented by this function.
113 void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
114                            const AES_KEY *key, uint8_t ivec[16],
115                            uint8_t ecount_buf[16], unsigned *num,
116                            block128_f block);
117 
118 // CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes
119 // |ctr|, a function that performs CTR mode but only deals with the lower 32
120 // bits of the counter. This is useful when |ctr| can be an optimised
121 // function.
122 void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len,
123                                  const AES_KEY *key, uint8_t ivec[16],
124                                  uint8_t ecount_buf[16], unsigned *num,
125                                  ctr128_f ctr);
126 
127 
128 // GCM.
129 //
130 // This API differs from the upstream API slightly. The |GCM128_CONTEXT| does
131 // not have a |key| pointer that points to the key as upstream's version does.
132 // Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT|
133 // can be safely copied. Additionally, |gcm_key| is split into a separate
134 // struct.
135 
136 typedef struct { uint64_t hi,lo; } u128;
137 
138 // gmult_func multiplies |Xi| by the GCM key and writes the result back to
139 // |Xi|.
140 typedef void (*gmult_func)(uint64_t Xi[2], const u128 Htable[16]);
141 
142 // ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from
143 // |inp|. The result is written back to |Xi| and the |len| argument must be a
144 // multiple of 16.
145 typedef void (*ghash_func)(uint64_t Xi[2], const u128 Htable[16],
146                            const uint8_t *inp, size_t len);
147 
148 typedef struct gcm128_key_st {
149   // Note the MOVBE-based, x86-64, GHASH assembly requires |H| and |Htable| to
150   // be the first two elements of this struct. Additionally, some assembly
151   // routines require a 16-byte-aligned |Htable| when hashing data, but not
152   // initialization. |GCM128_KEY| is not itself aligned to simplify embedding in
153   // |EVP_AEAD_CTX|, but |Htable|'s offset must be a multiple of 16.
154   u128 H;
155   u128 Htable[16];
156   gmult_func gmult;
157   ghash_func ghash;
158 
159   block128_f block;
160 
161   // use_aesni_gcm_crypt is true if this context should use the assembly
162   // functions |aesni_gcm_encrypt| and |aesni_gcm_decrypt| to process data.
163   unsigned use_aesni_gcm_crypt:1;
164 } GCM128_KEY;
165 
166 // GCM128_CONTEXT contains state for a single GCM operation. The structure
167 // should be zero-initialized before use.
168 typedef struct {
169   // The following 5 names follow names in GCM specification
170   union {
171     uint64_t u[2];
172     uint32_t d[4];
173     uint8_t c[16];
174     size_t t[16 / sizeof(size_t)];
175   } Yi, EKi, EK0, len, Xi;
176 
177   // Note that the order of |Xi| and |gcm_key| is fixed by the MOVBE-based,
178   // x86-64, GHASH assembly. Additionally, some assembly routines require
179   // |gcm_key| to be 16-byte aligned. |GCM128_KEY| is not itself aligned to
180   // simplify embedding in |EVP_AEAD_CTX|.
181   alignas(16) GCM128_KEY gcm_key;
182 
183   unsigned mres, ares;
184 } GCM128_CONTEXT;
185 
186 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
187 // crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is
188 // used.
189 int crypto_gcm_clmul_enabled(void);
190 #endif
191 
192 // CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to
193 // |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware
194 // accelerated) functions for performing operations in the GHASH field. If the
195 // AVX implementation was used |*out_is_avx| will be true.
196 void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
197                        u128 *out_key, u128 out_table[16], int *out_is_avx,
198                        const uint8_t gcm_key[16]);
199 
200 // CRYPTO_gcm128_init_key initialises |gcm_key| to use |block| (typically AES)
201 // with the given key. |block_is_hwaes| is one if |block| is |aes_hw_encrypt|.
202 OPENSSL_EXPORT void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key,
203                                            const AES_KEY *key, block128_f block,
204                                            int block_is_hwaes);
205 
206 // CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the
207 // same key that was passed to |CRYPTO_gcm128_init|.
208 OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key,
209                                         const uint8_t *iv, size_t iv_len);
210 
211 // CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM.
212 // This must be called before and data is encrypted. It returns one on success
213 // and zero otherwise.
214 OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad,
215                                      size_t len);
216 
217 // CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key|
218 // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
219 // on success and zero otherwise.
220 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
221                                          const AES_KEY *key, const uint8_t *in,
222                                          uint8_t *out, size_t len);
223 
224 // CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key|
225 // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
226 // on success and zero otherwise.
227 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
228                                          const AES_KEY *key, const uint8_t *in,
229                                          uint8_t *out, size_t len);
230 
231 // CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using
232 // a CTR function that only handles the bottom 32 bits of the nonce, like
233 // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
234 // passed to |CRYPTO_gcm128_init|. It returns one on success and zero
235 // otherwise.
236 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
237                                                const AES_KEY *key,
238                                                const uint8_t *in, uint8_t *out,
239                                                size_t len, ctr128_f stream);
240 
241 // CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using
242 // a CTR function that only handles the bottom 32 bits of the nonce, like
243 // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
244 // passed to |CRYPTO_gcm128_init|. It returns one on success and zero
245 // otherwise.
246 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
247                                                const AES_KEY *key,
248                                                const uint8_t *in, uint8_t *out,
249                                                size_t len, ctr128_f stream);
250 
251 // CRYPTO_gcm128_finish calculates the authenticator and compares it against
252 // |len| bytes of |tag|. It returns one on success and zero otherwise.
253 OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag,
254                                         size_t len);
255 
256 // CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|.
257 // The minimum of |len| and 16 bytes are copied into |tag|.
258 OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag,
259                                       size_t len);
260 
261 
262 // GCM assembly.
263 
264 #if !defined(OPENSSL_NO_ASM) &&                         \
265     (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
266      defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) || \
267      defined(OPENSSL_PPC64LE))
268 #define GHASH_ASM
269 #endif
270 
271 void gcm_init_4bit(u128 Htable[16], const uint64_t H[2]);
272 void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]);
273 void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
274                     size_t len);
275 
276 #if defined(GHASH_ASM)
277 
278 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
279 #define GCM_FUNCREF_4BIT
280 void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]);
281 void gcm_gmult_clmul(uint64_t Xi[2], const u128 Htable[16]);
282 void gcm_ghash_clmul(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
283                      size_t len);
284 
gcm_ssse3_capable(void)285 OPENSSL_INLINE char gcm_ssse3_capable(void) {
286   return (OPENSSL_ia32cap_get()[1] & (1 << (41 - 32))) != 0;
287 }
288 
289 // |gcm_gmult_ssse3| and |gcm_ghash_ssse3| require |Htable| to be
290 // 16-byte-aligned, but |gcm_init_ssse3| does not.
291 void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]);
292 void gcm_gmult_ssse3(uint64_t Xi[2], const u128 Htable[16]);
293 void gcm_ghash_ssse3(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
294                      size_t len);
295 
296 #if defined(OPENSSL_X86_64)
297 #define GHASH_ASM_X86_64
298 void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]);
299 void gcm_gmult_avx(uint64_t Xi[2], const u128 Htable[16]);
300 void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
301                    size_t len);
302 
303 #define AESNI_GCM
304 size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
305                          const AES_KEY *key, uint8_t ivec[16], uint64_t *Xi);
306 size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
307                          const AES_KEY *key, uint8_t ivec[16], uint64_t *Xi);
308 #endif  // OPENSSL_X86_64
309 
310 #if defined(OPENSSL_X86)
311 #define GHASH_ASM_X86
312 void gcm_gmult_4bit_mmx(uint64_t Xi[2], const u128 Htable[16]);
313 void gcm_ghash_4bit_mmx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
314                         size_t len);
315 #endif  // OPENSSL_X86
316 
317 #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
318 #define GHASH_ASM_ARM
319 #define GCM_FUNCREF_4BIT
320 
gcm_pmull_capable(void)321 OPENSSL_INLINE int gcm_pmull_capable(void) {
322   return CRYPTO_is_ARMv8_PMULL_capable();
323 }
324 
325 void gcm_init_v8(u128 Htable[16], const uint64_t Xi[2]);
326 void gcm_gmult_v8(uint64_t Xi[2], const u128 Htable[16]);
327 void gcm_ghash_v8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
328                   size_t len);
329 
gcm_neon_capable(void)330 OPENSSL_INLINE int gcm_neon_capable(void) { return CRYPTO_is_NEON_capable(); }
331 
332 void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]);
333 void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]);
334 void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
335                     size_t len);
336 
337 #elif defined(OPENSSL_PPC64LE)
338 #define GHASH_ASM_PPC64LE
339 #define GCM_FUNCREF_4BIT
340 void gcm_init_p8(u128 Htable[16], const uint64_t Xi[2]);
341 void gcm_gmult_p8(uint64_t Xi[2], const u128 Htable[16]);
342 void gcm_ghash_p8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
343                   size_t len);
344 #endif
345 #endif  // GHASH_ASM
346 
347 
348 // CCM.
349 
350 typedef struct ccm128_context {
351   block128_f block;
352   ctr128_f ctr;
353   unsigned M, L;
354 } CCM128_CONTEXT;
355 
356 // CRYPTO_ccm128_init initialises |ctx| to use |block| (typically AES) with the
357 // specified |M| and |L| parameters. It returns one on success and zero if |M|
358 // or |L| is invalid.
359 int CRYPTO_ccm128_init(CCM128_CONTEXT *ctx, const AES_KEY *key,
360                        block128_f block, ctr128_f ctr, unsigned M, unsigned L);
361 
362 // CRYPTO_ccm128_max_input returns the maximum input length accepted by |ctx|.
363 size_t CRYPTO_ccm128_max_input(const CCM128_CONTEXT *ctx);
364 
365 // CRYPTO_ccm128_encrypt encrypts |len| bytes from |in| to |out| writing the tag
366 // to |out_tag|. |key| must be the same key that was passed to
367 // |CRYPTO_ccm128_init|. It returns one on success and zero otherwise.
368 int CRYPTO_ccm128_encrypt(const CCM128_CONTEXT *ctx, const AES_KEY *key,
369                           uint8_t *out, uint8_t *out_tag, size_t tag_len,
370                           const uint8_t *nonce, size_t nonce_len,
371                           const uint8_t *in, size_t len, const uint8_t *aad,
372                           size_t aad_len);
373 
374 // CRYPTO_ccm128_decrypt decrypts |len| bytes from |in| to |out|, writing the
375 // expected tag to |out_tag|. |key| must be the same key that was passed to
376 // |CRYPTO_ccm128_init|. It returns one on success and zero otherwise.
377 int CRYPTO_ccm128_decrypt(const CCM128_CONTEXT *ctx, const AES_KEY *key,
378                           uint8_t *out, uint8_t *out_tag, size_t tag_len,
379                           const uint8_t *nonce, size_t nonce_len,
380                           const uint8_t *in, size_t len, const uint8_t *aad,
381                           size_t aad_len);
382 
383 
384 // CBC.
385 
386 // cbc128_f is the type of a function that performs CBC-mode encryption.
387 typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len,
388                          const AES_KEY *key, uint8_t ivec[16], int enc);
389 
390 // CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the
391 // given IV and block cipher in CBC mode. The input need not be a multiple of
392 // 128 bits long, but the output will round up to the nearest 128 bit multiple,
393 // zero padding the input if needed. The IV will be updated on return.
394 void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
395                            const AES_KEY *key, uint8_t ivec[16],
396                            block128_f block);
397 
398 // CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the
399 // given IV and block cipher in CBC mode. If |len| is not a multiple of 128
400 // bits then only that many bytes will be written, but a multiple of 128 bits
401 // is always read from |in|. The IV will be updated on return.
402 void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len,
403                            const AES_KEY *key, uint8_t ivec[16],
404                            block128_f block);
405 
406 
407 // OFB.
408 
409 // CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode)
410 // |len| bytes from |in| to |out| using |block| in OFB mode. There's no
411 // requirement that |len| be a multiple of any value and any partial blocks are
412 // stored in |ivec| and |*num|, the latter must be zero before the initial
413 // call.
414 void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
415                            const AES_KEY *key, uint8_t ivec[16], unsigned *num,
416                            block128_f block);
417 
418 
419 // CFB.
420 
421 // CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
422 // from |in| to |out| using |block| in CFB mode. There's no requirement that
423 // |len| be a multiple of any value and any partial blocks are stored in |ivec|
424 // and |*num|, the latter must be zero before the initial call.
425 void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
426                            const AES_KEY *key, uint8_t ivec[16], unsigned *num,
427                            int enc, block128_f block);
428 
429 // CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
430 // from |in| to |out| using |block| in CFB-8 mode. Prior to the first call
431 // |num| should be set to zero.
432 void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len,
433                              const AES_KEY *key, uint8_t ivec[16],
434                              unsigned *num, int enc, block128_f block);
435 
436 // CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
437 // from |in| to |out| using |block| in CFB-1 mode. Prior to the first call
438 // |num| should be set to zero.
439 void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits,
440                              const AES_KEY *key, uint8_t ivec[16],
441                              unsigned *num, int enc, block128_f block);
442 
443 size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len,
444                                    const AES_KEY *key, uint8_t ivec[16],
445                                    block128_f block);
446 
447 
448 // POLYVAL.
449 //
450 // POLYVAL is a polynomial authenticator that operates over a field very
451 // similar to the one that GHASH uses. See
452 // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02#section-3.
453 
454 typedef union {
455   uint64_t u[2];
456   uint8_t c[16];
457 } polyval_block;
458 
459 struct polyval_ctx {
460   // Note that the order of |S|, |H| and |Htable| is fixed by the MOVBE-based,
461   // x86-64, GHASH assembly. Additionally, some assembly routines require
462   // |Htable| to be 16-byte aligned.
463   polyval_block S;
464   u128 H;
465   alignas(16) u128 Htable[16];
466   gmult_func gmult;
467   ghash_func ghash;
468 };
469 
470 // CRYPTO_POLYVAL_init initialises |ctx| using |key|.
471 void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]);
472 
473 // CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the
474 // blocks from |in|. Only a whole number of blocks can be processed so |in_len|
475 // must be a multiple of 16.
476 void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in,
477                                   size_t in_len);
478 
479 // CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|.
480 void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]);
481 
482 
483 #if defined(__cplusplus)
484 }  // extern C
485 #endif
486 
487 #endif  // OPENSSL_HEADER_MODES_INTERNAL_H
488