1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \brief Clipping stage
30 *
31 * \author Keith Whitwell <keithw@vmware.com>
32 */
33
34
35 #include "util/u_bitcast.h"
36 #include "util/u_memory.h"
37 #include "util/u_math.h"
38
39 #include "pipe/p_shader_tokens.h"
40
41 #include "draw_vs.h"
42 #include "draw_pipe.h"
43 #include "draw_fs.h"
44 #include "draw_gs.h"
45
46
47 /** Set to 1 to enable printing of coords before/after clipping */
48 #define DEBUG_CLIP 0
49
50
51 #ifndef DIFFERENT_SIGNS
52 #define DIFFERENT_SIGNS(x, y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
53 #endif
54
55 #define MAX_CLIPPED_VERTICES ((2 * (6 + PIPE_MAX_CLIP_PLANES))+1)
56
57
58
59 struct clip_stage {
60 struct draw_stage stage; /**< base class */
61
62 unsigned pos_attr;
63 boolean have_clipdist;
64 int cv_attr;
65
66 /* List of the attributes to be constant interpolated. */
67 uint num_const_attribs;
68 uint8_t const_attribs[PIPE_MAX_SHADER_OUTPUTS];
69 /* List of the attributes to be linear interpolated. */
70 uint num_linear_attribs;
71 uint8_t linear_attribs[PIPE_MAX_SHADER_OUTPUTS];
72 /* List of the attributes to be perspective interpolated. */
73 uint num_perspect_attribs;
74 uint8_t perspect_attribs[PIPE_MAX_SHADER_OUTPUTS];
75
76 float (*plane)[4];
77 };
78
79
80 /** Cast wrapper */
clip_stage(struct draw_stage * stage)81 static inline struct clip_stage *clip_stage(struct draw_stage *stage)
82 {
83 return (struct clip_stage *)stage;
84 }
85
86 static inline unsigned
draw_viewport_index(struct draw_context * draw,const struct vertex_header * leading_vertex)87 draw_viewport_index(struct draw_context *draw,
88 const struct vertex_header *leading_vertex)
89 {
90 if (draw_current_shader_uses_viewport_index(draw)) {
91 unsigned viewport_index_output =
92 draw_current_shader_viewport_index_output(draw);
93 unsigned viewport_index =
94 u_bitcast_f2u(leading_vertex->data[viewport_index_output][0]);
95 return draw_clamp_viewport_idx(viewport_index);
96 } else {
97 return 0;
98 }
99 }
100
101
102 #define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
103
104
105 /* All attributes are float[4], so this is easy:
106 */
interp_attr(float dst[4],float t,const float in[4],const float out[4])107 static void interp_attr(float dst[4],
108 float t,
109 const float in[4],
110 const float out[4])
111 {
112 dst[0] = LINTERP( t, out[0], in[0] );
113 dst[1] = LINTERP( t, out[1], in[1] );
114 dst[2] = LINTERP( t, out[2], in[2] );
115 dst[3] = LINTERP( t, out[3], in[3] );
116 }
117
118
119 /**
120 * Copy flat shaded attributes src vertex to dst vertex.
121 */
copy_flat(struct draw_stage * stage,struct vertex_header * dst,const struct vertex_header * src)122 static void copy_flat(struct draw_stage *stage,
123 struct vertex_header *dst,
124 const struct vertex_header *src)
125 {
126 const struct clip_stage *clipper = clip_stage(stage);
127 uint i;
128 for (i = 0; i < clipper->num_const_attribs; i++) {
129 const uint attr = clipper->const_attribs[i];
130 COPY_4FV(dst->data[attr], src->data[attr]);
131 }
132 }
133
134 /* Interpolate between two vertices to produce a third.
135 */
interp(const struct clip_stage * clip,struct vertex_header * dst,float t,const struct vertex_header * out,const struct vertex_header * in,unsigned viewport_index)136 static void interp(const struct clip_stage *clip,
137 struct vertex_header *dst,
138 float t,
139 const struct vertex_header *out,
140 const struct vertex_header *in,
141 unsigned viewport_index)
142 {
143 const unsigned pos_attr = clip->pos_attr;
144 unsigned j;
145 float t_nopersp;
146
147 /* Vertex header.
148 */
149 dst->clipmask = 0;
150 dst->edgeflag = 0; /* will get overwritten later */
151 dst->pad = 0;
152 dst->vertex_id = UNDEFINED_VERTEX_ID;
153
154 /* Interpolate the clip-space coords.
155 */
156 if (clip->cv_attr >= 0) {
157 interp_attr(dst->data[clip->cv_attr], t,
158 in->data[clip->cv_attr], out->data[clip->cv_attr]);
159 }
160 /* interpolate the clip-space position */
161 interp_attr(dst->clip_pos, t, in->clip_pos, out->clip_pos);
162
163 /* Do the projective divide and viewport transformation to get
164 * new window coordinates:
165 */
166 {
167 const float *pos = dst->clip_pos;
168 const float *scale =
169 clip->stage.draw->viewports[viewport_index].scale;
170 const float *trans =
171 clip->stage.draw->viewports[viewport_index].translate;
172 const float oow = 1.0f / pos[3];
173
174 dst->data[pos_attr][0] = pos[0] * oow * scale[0] + trans[0];
175 dst->data[pos_attr][1] = pos[1] * oow * scale[1] + trans[1];
176 dst->data[pos_attr][2] = pos[2] * oow * scale[2] + trans[2];
177 dst->data[pos_attr][3] = oow;
178 }
179
180
181 /* interp perspective attribs */
182 for (j = 0; j < clip->num_perspect_attribs; j++) {
183 const unsigned attr = clip->perspect_attribs[j];
184 interp_attr(dst->data[attr], t, in->data[attr], out->data[attr]);
185 }
186
187 /**
188 * Compute the t in screen-space instead of 3d space to use
189 * for noperspective interpolation.
190 *
191 * The points can be aligned with the X axis, so in that case try
192 * the Y. When both points are at the same screen position, we can
193 * pick whatever value (the interpolated point won't be in front
194 * anyway), so just use the 3d t.
195 */
196 if (clip->num_linear_attribs) {
197 int k;
198 t_nopersp = t;
199 /* find either in.x != out.x or in.y != out.y */
200 for (k = 0; k < 2; k++) {
201 if (in->clip_pos[k] != out->clip_pos[k]) {
202 /* do divide by W, then compute linear interpolation factor */
203 float in_coord = in->clip_pos[k] / in->clip_pos[3];
204 float out_coord = out->clip_pos[k] / out->clip_pos[3];
205 float dst_coord = dst->clip_pos[k] / dst->clip_pos[3];
206 t_nopersp = (dst_coord - out_coord) / (in_coord - out_coord);
207 break;
208 }
209 }
210 for (j = 0; j < clip->num_linear_attribs; j++) {
211 const unsigned attr = clip->linear_attribs[j];
212 interp_attr(dst->data[attr], t_nopersp, in->data[attr], out->data[attr]);
213 }
214 }
215 }
216
217 /**
218 * Checks whether the specified triangle is empty and if it is returns
219 * true, otherwise returns false.
220 * Triangle is considered null/empty if its area is equal to zero.
221 */
222 static inline boolean
is_tri_null(const struct clip_stage * clip,const struct prim_header * header)223 is_tri_null(const struct clip_stage *clip, const struct prim_header *header)
224 {
225 const unsigned pos_attr = clip->pos_attr;
226 float x1 = header->v[1]->data[pos_attr][0] - header->v[0]->data[pos_attr][0];
227 float y1 = header->v[1]->data[pos_attr][1] - header->v[0]->data[pos_attr][1];
228 float z1 = header->v[1]->data[pos_attr][2] - header->v[0]->data[pos_attr][2];
229
230 float x2 = header->v[2]->data[pos_attr][0] - header->v[0]->data[pos_attr][0];
231 float y2 = header->v[2]->data[pos_attr][1] - header->v[0]->data[pos_attr][1];
232 float z2 = header->v[2]->data[pos_attr][2] - header->v[0]->data[pos_attr][2];
233
234 float vx = y1 * z2 - z1 * y2;
235 float vy = x1 * z2 - z1 * x2;
236 float vz = x1 * y2 - y1 * x2;
237
238 return (vx*vx + vy*vy + vz*vz) == 0.f;
239 }
240
241 /**
242 * Emit a post-clip polygon to the next pipeline stage. The polygon
243 * will be convex and the provoking vertex will always be vertex[0].
244 */
emit_poly(struct draw_stage * stage,struct vertex_header ** inlist,const boolean * edgeflags,unsigned n,const struct prim_header * origPrim)245 static void emit_poly(struct draw_stage *stage,
246 struct vertex_header **inlist,
247 const boolean *edgeflags,
248 unsigned n,
249 const struct prim_header *origPrim)
250 {
251 const struct clip_stage *clipper = clip_stage(stage);
252 struct prim_header header;
253 unsigned i;
254 ushort edge_first, edge_middle, edge_last;
255 boolean last_tri_was_null = FALSE;
256 boolean tri_was_not_null = FALSE;
257
258 if (stage->draw->rasterizer->flatshade_first) {
259 edge_first = DRAW_PIPE_EDGE_FLAG_0;
260 edge_middle = DRAW_PIPE_EDGE_FLAG_1;
261 edge_last = DRAW_PIPE_EDGE_FLAG_2;
262 }
263 else {
264 edge_first = DRAW_PIPE_EDGE_FLAG_2;
265 edge_middle = DRAW_PIPE_EDGE_FLAG_0;
266 edge_last = DRAW_PIPE_EDGE_FLAG_1;
267 }
268
269 if (!edgeflags[0])
270 edge_first = 0;
271
272 /* later stages may need the determinant, but only the sign matters */
273 header.det = origPrim->det;
274 header.flags = DRAW_PIPE_RESET_STIPPLE | edge_first | edge_middle;
275 header.pad = 0;
276
277 for (i = 2; i < n; i++, header.flags = edge_middle) {
278 boolean tri_null;
279 /* order the triangle verts to respect the provoking vertex mode */
280 if (stage->draw->rasterizer->flatshade_first) {
281 header.v[0] = inlist[0]; /* the provoking vertex */
282 header.v[1] = inlist[i-1];
283 header.v[2] = inlist[i];
284 }
285 else {
286 header.v[0] = inlist[i-1];
287 header.v[1] = inlist[i];
288 header.v[2] = inlist[0]; /* the provoking vertex */
289 }
290
291 tri_null = is_tri_null(clipper, &header);
292 /* If we generated a triangle with an area, aka. non-null triangle,
293 * or if the previous triangle was also null then skip all subsequent
294 * null triangles */
295 if ((tri_was_not_null && tri_null) || (last_tri_was_null && tri_null)) {
296 last_tri_was_null = tri_null;
297 continue;
298 }
299 last_tri_was_null = tri_null;
300 if (!tri_null) {
301 tri_was_not_null = TRUE;
302 }
303
304 if (!edgeflags[i-1]) {
305 header.flags &= ~edge_middle;
306 }
307
308 if (i == n - 1 && edgeflags[i])
309 header.flags |= edge_last;
310
311 if (DEBUG_CLIP) {
312 uint j, k;
313 debug_printf("Clipped tri: (flat-shade-first = %d)\n",
314 stage->draw->rasterizer->flatshade_first);
315 for (j = 0; j < 3; j++) {
316 debug_printf(" Vert %d: clip pos: %f %f %f %f\n", j,
317 header.v[j]->clip_pos[0],
318 header.v[j]->clip_pos[1],
319 header.v[j]->clip_pos[2],
320 header.v[j]->clip_pos[3]);
321 if (clipper->cv_attr >= 0) {
322 debug_printf(" Vert %d: cv: %f %f %f %f\n", j,
323 header.v[j]->data[clipper->cv_attr][0],
324 header.v[j]->data[clipper->cv_attr][1],
325 header.v[j]->data[clipper->cv_attr][2],
326 header.v[j]->data[clipper->cv_attr][3]);
327 }
328 for (k = 0; k < draw_num_shader_outputs(stage->draw); k++) {
329 debug_printf(" Vert %d: Attr %d: %f %f %f %f\n", j, k,
330 header.v[j]->data[k][0],
331 header.v[j]->data[k][1],
332 header.v[j]->data[k][2],
333 header.v[j]->data[k][3]);
334 }
335 }
336 }
337 stage->next->tri(stage->next, &header);
338 }
339 }
340
341
342 static inline float
dot4(const float * a,const float * b)343 dot4(const float *a, const float *b)
344 {
345 return (a[0] * b[0] +
346 a[1] * b[1] +
347 a[2] * b[2] +
348 a[3] * b[3]);
349 }
350
351 /*
352 * this function extracts the clip distance for the current plane,
353 * it first checks if the shader provided a clip distance, otherwise
354 * it works out the value using the clipvertex
355 */
getclipdist(const struct clip_stage * clipper,struct vertex_header * vert,int plane_idx)356 static inline float getclipdist(const struct clip_stage *clipper,
357 struct vertex_header *vert,
358 int plane_idx)
359 {
360 const float *plane;
361 float dp;
362 if (plane_idx < 6) {
363 /* ordinary xyz view volume clipping uses pos output */
364 plane = clipper->plane[plane_idx];
365 dp = dot4(vert->clip_pos, plane);
366 }
367 else if (clipper->have_clipdist) {
368 /* pick the correct clipdistance element from the output vectors */
369 int _idx = plane_idx - 6;
370 int cdi = _idx >= 4;
371 int vidx = cdi ? _idx - 4 : _idx;
372 dp = vert->data[draw_current_shader_ccdistance_output(clipper->stage.draw, cdi)][vidx];
373 } else {
374 /*
375 * legacy user clip planes or gl_ClipVertex
376 */
377 plane = clipper->plane[plane_idx];
378 if (clipper->cv_attr >= 0) {
379 dp = dot4(vert->data[clipper->cv_attr], plane);
380 }
381 else {
382 dp = dot4(vert->clip_pos, plane);
383 }
384 }
385 return dp;
386 }
387
388 /* Clip a triangle against the viewport and user clip planes.
389 */
390 static void
do_clip_tri(struct draw_stage * stage,struct prim_header * header,unsigned clipmask)391 do_clip_tri(struct draw_stage *stage,
392 struct prim_header *header,
393 unsigned clipmask)
394 {
395 struct clip_stage *clipper = clip_stage( stage );
396 struct vertex_header *a[MAX_CLIPPED_VERTICES];
397 struct vertex_header *b[MAX_CLIPPED_VERTICES];
398 struct vertex_header **inlist = a;
399 struct vertex_header **outlist = b;
400 struct vertex_header *prov_vertex;
401 unsigned tmpnr = 0;
402 unsigned n = 3;
403 unsigned i;
404 boolean aEdges[MAX_CLIPPED_VERTICES];
405 boolean bEdges[MAX_CLIPPED_VERTICES];
406 boolean *inEdges = aEdges;
407 boolean *outEdges = bEdges;
408 int viewport_index = 0;
409
410 inlist[0] = header->v[0];
411 inlist[1] = header->v[1];
412 inlist[2] = header->v[2];
413
414 /*
415 * For d3d10, we need to take this from the leading (first) vertex.
416 * For GL, we could do anything (as long as we advertize
417 * GL_UNDEFINED_VERTEX for the VIEWPORT_INDEX_PROVOKING_VERTEX query),
418 * but it needs to be consistent with what other parts (i.e. driver)
419 * will do, and that seems easier with GL_PROVOKING_VERTEX logic.
420 */
421 if (stage->draw->rasterizer->flatshade_first) {
422 prov_vertex = inlist[0];
423 }
424 else {
425 prov_vertex = inlist[2];
426 }
427 viewport_index = draw_viewport_index(clipper->stage.draw, prov_vertex);
428
429 if (DEBUG_CLIP) {
430 const float *v0 = header->v[0]->clip_pos;
431 const float *v1 = header->v[1]->clip_pos;
432 const float *v2 = header->v[2]->clip_pos;
433 debug_printf("Clip triangle pos:\n");
434 debug_printf(" %f, %f, %f, %f\n", v0[0], v0[1], v0[2], v0[3]);
435 debug_printf(" %f, %f, %f, %f\n", v1[0], v1[1], v1[2], v1[3]);
436 debug_printf(" %f, %f, %f, %f\n", v2[0], v2[1], v2[2], v2[3]);
437 if (clipper->cv_attr >= 0) {
438 const float *v0 = header->v[0]->data[clipper->cv_attr];
439 const float *v1 = header->v[1]->data[clipper->cv_attr];
440 const float *v2 = header->v[2]->data[clipper->cv_attr];
441 debug_printf("Clip triangle cv:\n");
442 debug_printf(" %f, %f, %f, %f\n", v0[0], v0[1], v0[2], v0[3]);
443 debug_printf(" %f, %f, %f, %f\n", v1[0], v1[1], v1[2], v1[3]);
444 debug_printf(" %f, %f, %f, %f\n", v2[0], v2[1], v2[2], v2[3]);
445 }
446 }
447
448 /*
449 * Note: at this point we can't just use the per-vertex edge flags.
450 * We have to observe the edge flag bits set in header->flags which
451 * were set during primitive decomposition. Put those flags into
452 * an edge flags array which parallels the vertex array.
453 * Later, in the 'unfilled' pipeline stage we'll draw the edge if both
454 * the header.flags bit is set AND the per-vertex edgeflag field is set.
455 */
456 inEdges[0] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_0);
457 inEdges[1] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_1);
458 inEdges[2] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_2);
459
460 while (clipmask && n >= 3) {
461 const unsigned plane_idx = ffs(clipmask)-1;
462 const boolean is_user_clip_plane = plane_idx >= 6;
463 struct vertex_header *vert_prev = inlist[0];
464 boolean *edge_prev = &inEdges[0];
465 float dp_prev;
466 unsigned outcount = 0;
467
468 dp_prev = getclipdist(clipper, vert_prev, plane_idx);
469 clipmask &= ~(1<<plane_idx);
470
471 if (util_is_inf_or_nan(dp_prev))
472 return; //discard nan
473
474 assert(n < MAX_CLIPPED_VERTICES);
475 if (n >= MAX_CLIPPED_VERTICES)
476 return;
477 inlist[n] = inlist[0]; /* prevent rotation of vertices */
478 inEdges[n] = inEdges[0];
479
480 for (i = 1; i <= n; i++) {
481 struct vertex_header *vert = inlist[i];
482 boolean *edge = &inEdges[i];
483
484 float dp = getclipdist(clipper, vert, plane_idx);
485
486 if (util_is_inf_or_nan(dp))
487 return; //discard nan
488
489 if (dp_prev >= 0.0f) {
490 assert(outcount < MAX_CLIPPED_VERTICES);
491 if (outcount >= MAX_CLIPPED_VERTICES)
492 return;
493 outEdges[outcount] = *edge_prev;
494 outlist[outcount++] = vert_prev;
495 }
496
497 if (DIFFERENT_SIGNS(dp, dp_prev)) {
498 struct vertex_header *new_vert;
499 boolean *new_edge;
500
501 assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
502 if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
503 return;
504 new_vert = clipper->stage.tmp[tmpnr++];
505
506 assert(outcount < MAX_CLIPPED_VERTICES);
507 if (outcount >= MAX_CLIPPED_VERTICES)
508 return;
509
510 new_edge = &outEdges[outcount];
511 outlist[outcount++] = new_vert;
512
513 if (dp < 0.0f) {
514 /* Going out of bounds. Avoid division by zero as we
515 * know dp != dp_prev from DIFFERENT_SIGNS, above.
516 */
517 float t = dp / (dp - dp_prev);
518 interp( clipper, new_vert, t, vert, vert_prev, viewport_index );
519
520 /* Whether or not to set edge flag for the new vert depends
521 * on whether it's a user-defined clipping plane. We're
522 * copying NVIDIA's behaviour here.
523 */
524 if (is_user_clip_plane) {
525 /* we want to see an edge along the clip plane */
526 *new_edge = TRUE;
527 new_vert->edgeflag = TRUE;
528 }
529 else {
530 /* we don't want to see an edge along the frustum clip plane */
531 *new_edge = *edge_prev;
532 new_vert->edgeflag = FALSE;
533 }
534 }
535 else {
536 /* Coming back in.
537 */
538 float t = dp_prev / (dp_prev - dp);
539 interp( clipper, new_vert, t, vert_prev, vert, viewport_index );
540
541 /* Copy starting vert's edgeflag:
542 */
543 new_vert->edgeflag = vert_prev->edgeflag;
544 *new_edge = *edge_prev;
545 }
546 }
547
548 vert_prev = vert;
549 edge_prev = edge;
550 dp_prev = dp;
551 }
552
553 /* swap in/out lists */
554 {
555 struct vertex_header **tmp = inlist;
556 inlist = outlist;
557 outlist = tmp;
558 n = outcount;
559 }
560 {
561 boolean *tmp = inEdges;
562 inEdges = outEdges;
563 outEdges = tmp;
564 }
565
566 }
567
568 /* If constant interpolated, copy provoking vertex attrib to polygon vertex[0]
569 */
570 if (n >= 3) {
571 if (clipper->num_const_attribs) {
572 if (stage->draw->rasterizer->flatshade_first) {
573 if (inlist[0] != header->v[0]) {
574 assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
575 if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
576 return;
577 inlist[0] = dup_vert(stage, inlist[0], tmpnr++);
578 copy_flat(stage, inlist[0], header->v[0]);
579 }
580 }
581 else {
582 if (inlist[0] != header->v[2]) {
583 assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
584 if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
585 return;
586 inlist[0] = dup_vert(stage, inlist[0], tmpnr++);
587 copy_flat(stage, inlist[0], header->v[2]);
588 }
589 }
590 }
591
592 /* Emit the polygon as triangles to the setup stage:
593 */
594 emit_poly(stage, inlist, inEdges, n, header);
595 }
596 }
597
598
599 /* Clip a line against the viewport and user clip planes.
600 */
601 static void
do_clip_line(struct draw_stage * stage,struct prim_header * header,unsigned clipmask)602 do_clip_line(struct draw_stage *stage,
603 struct prim_header *header,
604 unsigned clipmask)
605 {
606 const struct clip_stage *clipper = clip_stage(stage);
607 struct vertex_header *v0 = header->v[0];
608 struct vertex_header *v1 = header->v[1];
609 struct vertex_header *prov_vertex;
610 float t0 = 0.0F;
611 float t1 = 0.0F;
612 struct prim_header newprim;
613 int viewport_index;
614
615 newprim.flags = header->flags;
616
617 if (stage->draw->rasterizer->flatshade_first) {
618 prov_vertex = v0;
619 }
620 else {
621 prov_vertex = v1;
622 }
623 viewport_index = draw_viewport_index(clipper->stage.draw, prov_vertex);
624
625 while (clipmask) {
626 const unsigned plane_idx = ffs(clipmask)-1;
627 const float dp0 = getclipdist(clipper, v0, plane_idx);
628 const float dp1 = getclipdist(clipper, v1, plane_idx);
629
630 if (util_is_inf_or_nan(dp0) || util_is_inf_or_nan(dp1))
631 return; //discard nan
632
633 if (dp1 < 0.0F) {
634 float t = dp1 / (dp1 - dp0);
635 t1 = MAX2(t1, t);
636 }
637
638 if (dp0 < 0.0F) {
639 float t = dp0 / (dp0 - dp1);
640 t0 = MAX2(t0, t);
641 }
642
643 if (t0 + t1 >= 1.0F)
644 return; /* discard */
645
646 clipmask &= ~(1 << plane_idx); /* turn off this plane's bit */
647 }
648
649 if (v0->clipmask) {
650 interp( clipper, stage->tmp[0], t0, v0, v1, viewport_index );
651 if (stage->draw->rasterizer->flatshade_first) {
652 copy_flat(stage, stage->tmp[0], v0); /* copy v0 color to tmp[0] */
653 }
654 else {
655 copy_flat(stage, stage->tmp[0], v1); /* copy v1 color to tmp[0] */
656 }
657 newprim.v[0] = stage->tmp[0];
658 }
659 else {
660 newprim.v[0] = v0;
661 }
662
663 if (v1->clipmask) {
664 interp( clipper, stage->tmp[1], t1, v1, v0, viewport_index );
665 if (stage->draw->rasterizer->flatshade_first) {
666 copy_flat(stage, stage->tmp[1], v0); /* copy v0 color to tmp[1] */
667 }
668 else {
669 copy_flat(stage, stage->tmp[1], v1); /* copy v1 color to tmp[1] */
670 }
671 newprim.v[1] = stage->tmp[1];
672 }
673 else {
674 newprim.v[1] = v1;
675 }
676
677 stage->next->line( stage->next, &newprim );
678 }
679
680
681 static void
clip_point(struct draw_stage * stage,struct prim_header * header)682 clip_point(struct draw_stage *stage, struct prim_header *header)
683 {
684 if (header->v[0]->clipmask == 0)
685 stage->next->point( stage->next, header );
686 }
687
688
689 /*
690 * Clip points but ignore the first 4 (xy) clip planes.
691 * (Because the generated clip mask is completely unaffacted by guard band,
692 * we still need to manually evaluate the x/y planes if they are outside
693 * the guard band and not just outside the vp.)
694 */
695 static void
clip_point_guard_xy(struct draw_stage * stage,struct prim_header * header)696 clip_point_guard_xy(struct draw_stage *stage, struct prim_header *header)
697 {
698 unsigned clipmask = header->v[0]->clipmask;
699 if ((clipmask & 0xffffffff) == 0)
700 stage->next->point(stage->next, header);
701 else if ((clipmask & 0xfffffff0) == 0) {
702 while (clipmask) {
703 const unsigned plane_idx = ffs(clipmask)-1;
704 clipmask &= ~(1 << plane_idx); /* turn off this plane's bit */
705 /* TODO: this should really do proper guardband clipping,
706 * currently just throw out infs/nans.
707 * Also note that vertices with negative w values MUST be tossed
708 * out (not sure if proper guardband clipping would do this
709 * automatically). These would usually be captured by depth clip
710 * too but this can be disabled.
711 */
712 if (header->v[0]->clip_pos[3] <= 0.0f ||
713 util_is_inf_or_nan(header->v[0]->clip_pos[0]) ||
714 util_is_inf_or_nan(header->v[0]->clip_pos[1]))
715 return;
716 }
717 stage->next->point(stage->next, header);
718 }
719 }
720
721
722 static void
clip_first_point(struct draw_stage * stage,struct prim_header * header)723 clip_first_point(struct draw_stage *stage, struct prim_header *header)
724 {
725 stage->point = stage->draw->guard_band_points_xy ? clip_point_guard_xy : clip_point;
726 stage->point(stage, header);
727 }
728
729
730 static void
clip_line(struct draw_stage * stage,struct prim_header * header)731 clip_line(struct draw_stage *stage, struct prim_header *header)
732 {
733 unsigned clipmask = (header->v[0]->clipmask |
734 header->v[1]->clipmask);
735
736 if (clipmask == 0) {
737 /* no clipping needed */
738 stage->next->line( stage->next, header );
739 }
740 else if ((header->v[0]->clipmask &
741 header->v[1]->clipmask) == 0) {
742 do_clip_line(stage, header, clipmask);
743 }
744 /* else, totally clipped */
745 }
746
747
748 static void
clip_tri(struct draw_stage * stage,struct prim_header * header)749 clip_tri(struct draw_stage *stage, struct prim_header *header)
750 {
751 unsigned clipmask = (header->v[0]->clipmask |
752 header->v[1]->clipmask |
753 header->v[2]->clipmask);
754
755 if (clipmask == 0) {
756 /* no clipping needed */
757 stage->next->tri( stage->next, header );
758 }
759 else if ((header->v[0]->clipmask &
760 header->v[1]->clipmask &
761 header->v[2]->clipmask) == 0) {
762 do_clip_tri(stage, header, clipmask);
763 }
764 }
765
766
767 static int
find_interp(const struct draw_fragment_shader * fs,int * indexed_interp,uint semantic_name,uint semantic_index)768 find_interp(const struct draw_fragment_shader *fs, int *indexed_interp,
769 uint semantic_name, uint semantic_index)
770 {
771 int interp;
772 /* If it's gl_{Front,Back}{,Secondary}Color, pick up the mode
773 * from the array we've filled before. */
774 if ((semantic_name == TGSI_SEMANTIC_COLOR ||
775 semantic_name == TGSI_SEMANTIC_BCOLOR) &&
776 semantic_index < 2) {
777 interp = indexed_interp[semantic_index];
778 } else if (semantic_name == TGSI_SEMANTIC_POSITION ||
779 semantic_name == TGSI_SEMANTIC_CLIPVERTEX) {
780 /* these inputs are handled specially always */
781 return -1;
782 } else {
783 /* Otherwise, search in the FS inputs, with a decent default
784 * if we don't find it.
785 * This probably only matters for layer, vpindex, culldist, maybe
786 * front_face.
787 */
788 uint j;
789 if (semantic_name == TGSI_SEMANTIC_LAYER ||
790 semantic_name == TGSI_SEMANTIC_VIEWPORT_INDEX) {
791 interp = TGSI_INTERPOLATE_CONSTANT;
792 }
793 else {
794 interp = TGSI_INTERPOLATE_PERSPECTIVE;
795 }
796 if (fs) {
797 for (j = 0; j < fs->info.num_inputs; j++) {
798 if (semantic_name == fs->info.input_semantic_name[j] &&
799 semantic_index == fs->info.input_semantic_index[j]) {
800 interp = fs->info.input_interpolate[j];
801 break;
802 }
803 }
804 }
805 }
806 return interp;
807 }
808
809 /* Update state. Could further delay this until we hit the first
810 * primitive that really requires clipping.
811 */
812 static void
clip_init_state(struct draw_stage * stage)813 clip_init_state(struct draw_stage *stage)
814 {
815 struct clip_stage *clipper = clip_stage(stage);
816 const struct draw_context *draw = stage->draw;
817 const struct draw_fragment_shader *fs = draw->fs.fragment_shader;
818 const struct tgsi_shader_info *info = draw_get_shader_info(draw);
819 uint i, j;
820 int indexed_interp[2];
821
822 clipper->pos_attr = draw_current_shader_position_output(draw);
823 clipper->have_clipdist = draw_current_shader_num_written_clipdistances(draw) > 0;
824 if (draw_current_shader_clipvertex_output(draw) != clipper->pos_attr) {
825 clipper->cv_attr = (int)draw_current_shader_clipvertex_output(draw);
826 }
827 else {
828 clipper->cv_attr = -1;
829 }
830
831 /* We need to know for each attribute what kind of interpolation is
832 * done on it (flat, smooth or noperspective). But the information
833 * is not directly accessible for outputs, only for inputs. So we
834 * have to match semantic name and index between the VS (or GS/ES)
835 * outputs and the FS inputs to get to the interpolation mode.
836 *
837 * The only hitch is with gl_FrontColor/gl_BackColor which map to
838 * gl_Color, and their Secondary versions. First there are (up to)
839 * two outputs for one input, so we tuck the information in a
840 * specific array. Second if they don't have qualifiers, the
841 * default value has to be picked from the global shade mode.
842 *
843 * Of course, if we don't have a fragment shader in the first
844 * place, defaults should be used.
845 */
846
847 /* First pick up the interpolation mode for
848 * gl_Color/gl_SecondaryColor, with the correct default.
849 */
850 indexed_interp[0] = indexed_interp[1] = draw->rasterizer->flatshade ?
851 TGSI_INTERPOLATE_CONSTANT : TGSI_INTERPOLATE_PERSPECTIVE;
852
853 if (fs) {
854 for (i = 0; i < fs->info.num_inputs; i++) {
855 if (fs->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR &&
856 fs->info.input_semantic_index[i] < 2) {
857 if (fs->info.input_interpolate[i] != TGSI_INTERPOLATE_COLOR)
858 indexed_interp[fs->info.input_semantic_index[i]] = fs->info.input_interpolate[i];
859 }
860 }
861 }
862
863 /* Then resolve the interpolation mode for every output attribute. */
864
865 clipper->num_const_attribs = 0;
866 clipper->num_linear_attribs = 0;
867 clipper->num_perspect_attribs = 0;
868 for (i = 0; i < info->num_outputs; i++) {
869 /* Find the interpolation mode for a specific attribute */
870 int interp = find_interp(fs, indexed_interp,
871 info->output_semantic_name[i],
872 info->output_semantic_index[i]);
873 switch (interp) {
874 case TGSI_INTERPOLATE_CONSTANT:
875 clipper->const_attribs[clipper->num_const_attribs] = i;
876 clipper->num_const_attribs++;
877 break;
878 case TGSI_INTERPOLATE_LINEAR:
879 clipper->linear_attribs[clipper->num_linear_attribs] = i;
880 clipper->num_linear_attribs++;
881 break;
882 case TGSI_INTERPOLATE_PERSPECTIVE:
883 clipper->perspect_attribs[clipper->num_perspect_attribs] = i;
884 clipper->num_perspect_attribs++;
885 break;
886 case TGSI_INTERPOLATE_COLOR:
887 if (draw->rasterizer->flatshade) {
888 clipper->const_attribs[clipper->num_const_attribs] = i;
889 clipper->num_const_attribs++;
890 } else {
891 clipper->perspect_attribs[clipper->num_perspect_attribs] = i;
892 clipper->num_perspect_attribs++;
893 }
894 break;
895 default:
896 assert(interp == -1);
897 break;
898 }
899 }
900 /* Search the extra vertex attributes */
901 for (j = 0; j < draw->extra_shader_outputs.num; j++) {
902 /* Find the interpolation mode for a specific attribute */
903 int interp = find_interp(fs, indexed_interp,
904 draw->extra_shader_outputs.semantic_name[j],
905 draw->extra_shader_outputs.semantic_index[j]);
906 switch (interp) {
907 case TGSI_INTERPOLATE_CONSTANT:
908 clipper->const_attribs[clipper->num_const_attribs] = i + j;
909 clipper->num_const_attribs++;
910 break;
911 case TGSI_INTERPOLATE_LINEAR:
912 clipper->linear_attribs[clipper->num_linear_attribs] = i + j;
913 clipper->num_linear_attribs++;
914 break;
915 case TGSI_INTERPOLATE_PERSPECTIVE:
916 clipper->perspect_attribs[clipper->num_perspect_attribs] = i + j;
917 clipper->num_perspect_attribs++;
918 break;
919 default:
920 assert(interp == -1);
921 break;
922 }
923 }
924
925 stage->tri = clip_tri;
926 stage->line = clip_line;
927 }
928
929
930
clip_first_tri(struct draw_stage * stage,struct prim_header * header)931 static void clip_first_tri(struct draw_stage *stage,
932 struct prim_header *header)
933 {
934 clip_init_state( stage );
935 stage->tri( stage, header );
936 }
937
clip_first_line(struct draw_stage * stage,struct prim_header * header)938 static void clip_first_line(struct draw_stage *stage,
939 struct prim_header *header)
940 {
941 clip_init_state( stage );
942 stage->line( stage, header );
943 }
944
945
clip_flush(struct draw_stage * stage,unsigned flags)946 static void clip_flush(struct draw_stage *stage, unsigned flags)
947 {
948 stage->tri = clip_first_tri;
949 stage->line = clip_first_line;
950 stage->next->flush( stage->next, flags );
951 }
952
953
clip_reset_stipple_counter(struct draw_stage * stage)954 static void clip_reset_stipple_counter(struct draw_stage *stage)
955 {
956 stage->next->reset_stipple_counter( stage->next );
957 }
958
959
clip_destroy(struct draw_stage * stage)960 static void clip_destroy(struct draw_stage *stage)
961 {
962 draw_free_temp_verts( stage );
963 FREE( stage );
964 }
965
966
967 /**
968 * Allocate a new clipper stage.
969 * \return pointer to new stage object
970 */
draw_clip_stage(struct draw_context * draw)971 struct draw_stage *draw_clip_stage(struct draw_context *draw)
972 {
973 struct clip_stage *clipper = CALLOC_STRUCT(clip_stage);
974 if (!clipper)
975 goto fail;
976
977 clipper->stage.draw = draw;
978 clipper->stage.name = "clipper";
979 clipper->stage.point = clip_first_point;
980 clipper->stage.line = clip_first_line;
981 clipper->stage.tri = clip_first_tri;
982 clipper->stage.flush = clip_flush;
983 clipper->stage.reset_stipple_counter = clip_reset_stipple_counter;
984 clipper->stage.destroy = clip_destroy;
985
986 clipper->plane = draw->plane;
987
988 if (!draw_alloc_temp_verts( &clipper->stage, MAX_CLIPPED_VERTICES+1 ))
989 goto fail;
990
991 return &clipper->stage;
992
993 fail:
994 if (clipper)
995 clipper->stage.destroy( &clipper->stage );
996
997 return NULL;
998 }
999