1 //===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the checking of insns inside a bundle according to the
11 // packet constraint rules of the Hexagon ISA.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "MCTargetDesc/HexagonMCChecker.h"
16 #include "Hexagon.h"
17 #include "MCTargetDesc/HexagonBaseInfo.h"
18 #include "MCTargetDesc/HexagonMCInstrInfo.h"
19 #include "MCTargetDesc/HexagonMCShuffler.h"
20 #include "MCTargetDesc/HexagonMCTargetDesc.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/MC/MCInst.h"
24 #include "llvm/MC/MCInstrDesc.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/SourceMgr.h"
28 #include <cassert>
29
30 using namespace llvm;
31
32 static cl::opt<bool>
33 RelaxNVChecks("relax-nv-checks", cl::init(false), cl::ZeroOrMore,
34 cl::Hidden, cl::desc("Relax checks of new-value validity"));
35
36 const HexagonMCChecker::PredSense
37 HexagonMCChecker::Unconditional(Hexagon::NoRegister, false);
38
init()39 void HexagonMCChecker::init() {
40 // Initialize read-only registers set.
41 ReadOnly.insert(Hexagon::PC);
42 ReadOnly.insert(Hexagon::C9_8);
43
44 // Figure out the loop-registers definitions.
45 if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
46 Defs[Hexagon::SA0].insert(Unconditional); // FIXME: define or change SA0?
47 Defs[Hexagon::LC0].insert(Unconditional);
48 }
49 if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
50 Defs[Hexagon::SA1].insert(Unconditional); // FIXME: define or change SA0?
51 Defs[Hexagon::LC1].insert(Unconditional);
52 }
53
54 if (HexagonMCInstrInfo::isBundle(MCB))
55 // Unfurl a bundle.
56 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
57 MCInst const &Inst = *I.getInst();
58 if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) {
59 init(*Inst.getOperand(0).getInst());
60 init(*Inst.getOperand(1).getInst());
61 } else
62 init(Inst);
63 }
64 else
65 init(MCB);
66 }
67
initReg(MCInst const & MCI,unsigned R,unsigned & PredReg,bool & isTrue)68 void HexagonMCChecker::initReg(MCInst const &MCI, unsigned R, unsigned &PredReg,
69 bool &isTrue) {
70 if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && isPredicateRegister(R)) {
71 // Note an used predicate register.
72 PredReg = R;
73 isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI);
74
75 // Note use of new predicate register.
76 if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
77 NewPreds.insert(PredReg);
78 } else
79 // Note register use. Super-registers are not tracked directly,
80 // but their components.
81 for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
82 SRI.isValid(); ++SRI)
83 if (!MCSubRegIterator(*SRI, &RI).isValid())
84 // Skip super-registers used indirectly.
85 Uses.insert(*SRI);
86 }
87
init(MCInst const & MCI)88 void HexagonMCChecker::init(MCInst const &MCI) {
89 const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MCI);
90 unsigned PredReg = Hexagon::NoRegister;
91 bool isTrue = false;
92
93 // Get used registers.
94 for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
95 if (MCI.getOperand(i).isReg())
96 initReg(MCI, MCI.getOperand(i).getReg(), PredReg, isTrue);
97 for (unsigned i = 0; i < MCID.getNumImplicitUses(); ++i)
98 initReg(MCI, MCID.getImplicitUses()[i], PredReg, isTrue);
99
100 // Get implicit register definitions.
101 if (const MCPhysReg *ImpDef = MCID.getImplicitDefs())
102 for (; *ImpDef; ++ImpDef) {
103 unsigned R = *ImpDef;
104
105 if (Hexagon::R31 != R && MCID.isCall())
106 // Any register other than the LR and the PC are actually volatile ones
107 // as defined by the ABI, not modified implicitly by the call insn.
108 continue;
109 if (Hexagon::PC == R)
110 // Branches are the only insns that can change the PC,
111 // otherwise a read-only register.
112 continue;
113
114 if (Hexagon::USR_OVF == R)
115 // Many insns change the USR implicitly, but only one or another flag.
116 // The instruction table models the USR.OVF flag, which can be
117 // implicitly modified more than once, but cannot be modified in the
118 // same packet with an instruction that modifies is explicitly. Deal
119 // with such situations individually.
120 SoftDefs.insert(R);
121 else if (isPredicateRegister(R) &&
122 HexagonMCInstrInfo::isPredicateLate(MCII, MCI))
123 // Include implicit late predicates.
124 LatePreds.insert(R);
125 else
126 Defs[R].insert(PredSense(PredReg, isTrue));
127 }
128
129 // Figure out explicit register definitions.
130 for (unsigned i = 0; i < MCID.getNumDefs(); ++i) {
131 unsigned R = MCI.getOperand(i).getReg(), S = Hexagon::NoRegister;
132 // USR has subregisters (while C8 does not for technical reasons), so
133 // reset R to USR, since we know how to handle multiple defs of USR,
134 // taking into account its subregisters.
135 if (R == Hexagon::C8)
136 R = Hexagon::USR;
137
138 // Note register definitions, direct ones as well as indirect side-effects.
139 // Super-registers are not tracked directly, but their components.
140 for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
141 SRI.isValid(); ++SRI) {
142 if (MCSubRegIterator(*SRI, &RI).isValid())
143 // Skip super-registers defined indirectly.
144 continue;
145
146 if (R == *SRI) {
147 if (S == R)
148 // Avoid scoring the defined register multiple times.
149 continue;
150 else
151 // Note that the defined register has already been scored.
152 S = R;
153 }
154
155 if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI)
156 // P3:0 is a special case, since multiple predicate register definitions
157 // in a packet is allowed as the equivalent of their logical "and".
158 // Only an explicit definition of P3:0 is noted as such; if a
159 // side-effect, then note as a soft definition.
160 SoftDefs.insert(*SRI);
161 else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) &&
162 isPredicateRegister(*SRI))
163 // Some insns produce predicates too late to be used in the same packet.
164 LatePreds.insert(*SRI);
165 else if (i == 0 && HexagonMCInstrInfo::getType(MCII, MCI) ==
166 HexagonII::TypeCVI_VM_TMP_LD)
167 // Temporary loads should be used in the same packet, but don't commit
168 // results, so it should be disregarded if another insn changes the same
169 // register.
170 // TODO: relies on the impossibility of a current and a temporary loads
171 // in the same packet.
172 TmpDefs.insert(*SRI);
173 else if (i <= 1 && HexagonMCInstrInfo::hasNewValue2(MCII, MCI))
174 // vshuff(Vx, Vy, Rx) <- Vx(0) and Vy(1) are both source and
175 // destination registers with this instruction. same for vdeal(Vx,Vy,Rx)
176 Uses.insert(*SRI);
177 else
178 Defs[*SRI].insert(PredSense(PredReg, isTrue));
179 }
180 }
181
182 // Figure out definitions of new predicate registers.
183 if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
184 for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
185 if (MCI.getOperand(i).isReg()) {
186 unsigned P = MCI.getOperand(i).getReg();
187
188 if (isPredicateRegister(P))
189 NewPreds.insert(P);
190 }
191 }
192
HexagonMCChecker(MCContext & Context,MCInstrInfo const & MCII,MCSubtargetInfo const & STI,MCInst & mcb,MCRegisterInfo const & ri,bool ReportErrors)193 HexagonMCChecker::HexagonMCChecker(MCContext &Context, MCInstrInfo const &MCII,
194 MCSubtargetInfo const &STI, MCInst &mcb,
195 MCRegisterInfo const &ri, bool ReportErrors)
196 : Context(Context), MCB(mcb), RI(ri), MCII(MCII), STI(STI),
197 ReportErrors(ReportErrors) {
198 init();
199 }
200
HexagonMCChecker(HexagonMCChecker const & Other,MCSubtargetInfo const & STI,bool CopyReportErrors)201 HexagonMCChecker::HexagonMCChecker(HexagonMCChecker const &Other,
202 MCSubtargetInfo const &STI,
203 bool CopyReportErrors)
204 : Context(Other.Context), MCB(Other.MCB), RI(Other.RI), MCII(Other.MCII),
205 STI(STI), ReportErrors(CopyReportErrors ? Other.ReportErrors : false) {}
206
check(bool FullCheck)207 bool HexagonMCChecker::check(bool FullCheck) {
208 bool chkP = checkPredicates();
209 bool chkNV = checkNewValues();
210 bool chkR = checkRegisters();
211 bool chkRRO = checkRegistersReadOnly();
212 checkRegisterCurDefs();
213 bool chkS = checkSolo();
214 bool chkSh = true;
215 if (FullCheck)
216 chkSh = checkShuffle();
217 bool chkSl = true;
218 if (FullCheck)
219 chkSl = checkSlots();
220 bool chkAXOK = checkAXOK();
221 bool chkCofMax1 = checkCOFMax1();
222 bool chkHWLoop = checkHWLoop();
223 bool chk = chkP && chkNV && chkR && chkRRO && chkS && chkSh && chkSl &&
224 chkAXOK && chkCofMax1 && chkHWLoop;
225
226 return chk;
227 }
228
isDuplexAGroup(unsigned Opcode)229 static bool isDuplexAGroup(unsigned Opcode) {
230 switch (Opcode) {
231 case Hexagon::SA1_addi:
232 case Hexagon::SA1_addrx:
233 case Hexagon::SA1_addsp:
234 case Hexagon::SA1_and1:
235 case Hexagon::SA1_clrf:
236 case Hexagon::SA1_clrfnew:
237 case Hexagon::SA1_clrt:
238 case Hexagon::SA1_clrtnew:
239 case Hexagon::SA1_cmpeqi:
240 case Hexagon::SA1_combine0i:
241 case Hexagon::SA1_combine1i:
242 case Hexagon::SA1_combine2i:
243 case Hexagon::SA1_combine3i:
244 case Hexagon::SA1_combinerz:
245 case Hexagon::SA1_combinezr:
246 case Hexagon::SA1_dec:
247 case Hexagon::SA1_inc:
248 case Hexagon::SA1_seti:
249 case Hexagon::SA1_setin1:
250 case Hexagon::SA1_sxtb:
251 case Hexagon::SA1_sxth:
252 case Hexagon::SA1_tfr:
253 case Hexagon::SA1_zxtb:
254 case Hexagon::SA1_zxth:
255 return true;
256 break;
257 default:
258 return false;
259 }
260 }
261
isNeitherAnorX(MCInstrInfo const & MCII,MCInst const & ID)262 static bool isNeitherAnorX(MCInstrInfo const &MCII, MCInst const &ID) {
263 unsigned Result = 0;
264 unsigned Type = HexagonMCInstrInfo::getType(MCII, ID);
265 if (Type == HexagonII::TypeDUPLEX) {
266 unsigned subInst0Opcode = ID.getOperand(0).getInst()->getOpcode();
267 unsigned subInst1Opcode = ID.getOperand(1).getInst()->getOpcode();
268 Result += !isDuplexAGroup(subInst0Opcode);
269 Result += !isDuplexAGroup(subInst1Opcode);
270 } else
271 Result +=
272 Type != HexagonII::TypeALU32_2op && Type != HexagonII::TypeALU32_3op &&
273 Type != HexagonII::TypeALU32_ADDI && Type != HexagonII::TypeS_2op &&
274 Type != HexagonII::TypeS_3op &&
275 (Type != HexagonII::TypeALU64 || HexagonMCInstrInfo::isFloat(MCII, ID));
276 return Result != 0;
277 }
278
checkAXOK()279 bool HexagonMCChecker::checkAXOK() {
280 MCInst const *HasSoloAXInst = nullptr;
281 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
282 if (HexagonMCInstrInfo::isSoloAX(MCII, I)) {
283 HasSoloAXInst = &I;
284 }
285 }
286 if (!HasSoloAXInst)
287 return true;
288 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
289 if (&I != HasSoloAXInst && isNeitherAnorX(MCII, I)) {
290 reportError(
291 HasSoloAXInst->getLoc(),
292 Twine("Instruction can only be in a packet with ALU or non-FPU XTYPE "
293 "instructions"));
294 reportError(I.getLoc(),
295 Twine("Not an ALU or non-FPU XTYPE instruction"));
296 return false;
297 }
298 }
299 return true;
300 }
301
reportBranchErrors()302 void HexagonMCChecker::reportBranchErrors() {
303 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
304 MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
305 if (Desc.isBranch() || Desc.isCall() || Desc.isReturn())
306 reportNote(I.getLoc(), "Branching instruction");
307 }
308 }
309
checkHWLoop()310 bool HexagonMCChecker::checkHWLoop() {
311 if (!HexagonMCInstrInfo::isInnerLoop(MCB) &&
312 !HexagonMCInstrInfo::isOuterLoop(MCB))
313 return true;
314 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
315 MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
316 if (Desc.isBranch() || Desc.isCall() || Desc.isReturn()) {
317 reportError(MCB.getLoc(),
318 "Branches cannot be in a packet with hardware loops");
319 reportBranchErrors();
320 return false;
321 }
322 }
323 return true;
324 }
325
checkCOFMax1()326 bool HexagonMCChecker::checkCOFMax1() {
327 SmallVector<MCInst const *, 2> BranchLocations;
328 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
329 MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
330 if (Desc.isBranch() || Desc.isCall() || Desc.isReturn())
331 BranchLocations.push_back(&I);
332 }
333 for (unsigned J = 0, N = BranchLocations.size(); J < N; ++J) {
334 MCInst const &I = *BranchLocations[J];
335 if (HexagonMCInstrInfo::isCofMax1(MCII, I)) {
336 bool Relax1 = HexagonMCInstrInfo::isCofRelax1(MCII, I);
337 bool Relax2 = HexagonMCInstrInfo::isCofRelax2(MCII, I);
338 if (N > 1 && !Relax1 && !Relax2) {
339 reportError(I.getLoc(),
340 "Instruction may not be in a packet with other branches");
341 reportBranchErrors();
342 return false;
343 }
344 if (N > 1 && J == 0 && !Relax1) {
345 reportError(I.getLoc(),
346 "Instruction may not be the first branch in packet");
347 reportBranchErrors();
348 return false;
349 }
350 if (N > 1 && J == 1 && !Relax2) {
351 reportError(I.getLoc(),
352 "Instruction may not be the second branch in packet");
353 reportBranchErrors();
354 return false;
355 }
356 }
357 }
358 return true;
359 }
360
checkSlots()361 bool HexagonMCChecker::checkSlots() {
362 unsigned slotsUsed = 0;
363 for (auto HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
364 MCInst const &MCI = *HMI.getInst();
365 if (HexagonMCInstrInfo::isImmext(MCI))
366 continue;
367 if (HexagonMCInstrInfo::isDuplex(MCII, MCI))
368 slotsUsed += 2;
369 else
370 ++slotsUsed;
371 }
372
373 if (slotsUsed > HEXAGON_PACKET_SIZE) {
374 reportError("invalid instruction packet: out of slots");
375 return false;
376 }
377 return true;
378 }
379
380 // Check legal use of predicate registers.
checkPredicates()381 bool HexagonMCChecker::checkPredicates() {
382 // Check for proper use of new predicate registers.
383 for (const auto &I : NewPreds) {
384 unsigned P = I;
385
386 if (!Defs.count(P) || LatePreds.count(P)) {
387 // Error out if the new predicate register is not defined,
388 // or defined "late"
389 // (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }").
390 reportErrorNewValue(P);
391 return false;
392 }
393 }
394
395 // Check for proper use of auto-anded of predicate registers.
396 for (const auto &I : LatePreds) {
397 unsigned P = I;
398
399 if (LatePreds.count(P) > 1 || Defs.count(P)) {
400 // Error out if predicate register defined "late" multiple times or
401 // defined late and regularly defined
402 // (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }".
403 reportErrorRegisters(P);
404 return false;
405 }
406 }
407
408 return true;
409 }
410
411 // Check legal use of new values.
checkNewValues()412 bool HexagonMCChecker::checkNewValues() {
413 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
414 if (!HexagonMCInstrInfo::isNewValue(MCII, I))
415 continue;
416 auto Consumer = HexagonMCInstrInfo::predicateInfo(MCII, I);
417 bool Branch = HexagonMCInstrInfo::getDesc(MCII, I).isBranch();
418 MCOperand const &Op = HexagonMCInstrInfo::getNewValueOperand(MCII, I);
419 assert(Op.isReg());
420 auto Producer = registerProducer(Op.getReg(), Consumer);
421 if (std::get<0>(Producer) == nullptr) {
422 reportError(I.getLoc(), "New value register consumer has no producer");
423 return false;
424 }
425 if (!RelaxNVChecks) {
426 // Checks that statically prove correct new value consumption
427 if (std::get<2>(Producer).isPredicated() &&
428 (!Consumer.isPredicated() ||
429 llvm::HexagonMCInstrInfo::getType(MCII, I) == HexagonII::TypeNCJ)) {
430 reportNote(
431 std::get<0>(Producer)->getLoc(),
432 "Register producer is predicated and consumer is unconditional");
433 reportError(I.getLoc(),
434 "Instruction does not have a valid new register producer");
435 return false;
436 }
437 if (std::get<2>(Producer).Register != Hexagon::NoRegister &&
438 std::get<2>(Producer).Register != Consumer.Register) {
439 reportNote(std::get<0>(Producer)->getLoc(),
440 "Register producer does not use the same predicate "
441 "register as the consumer");
442 reportError(I.getLoc(),
443 "Instruction does not have a valid new register producer");
444 return false;
445 }
446 }
447 if (std::get<2>(Producer).Register == Consumer.Register &&
448 Consumer.PredicatedTrue != std::get<2>(Producer).PredicatedTrue) {
449 reportNote(
450 std::get<0>(Producer)->getLoc(),
451 "Register producer has the opposite predicate sense as consumer");
452 reportError(I.getLoc(),
453 "Instruction does not have a valid new register producer");
454 return false;
455 }
456 MCInstrDesc const &Desc =
457 HexagonMCInstrInfo::getDesc(MCII, *std::get<0>(Producer));
458 if (Desc.OpInfo[std::get<1>(Producer)].RegClass ==
459 Hexagon::DoubleRegsRegClassID) {
460 reportNote(std::get<0>(Producer)->getLoc(),
461 "Double registers cannot be new-value producers");
462 reportError(I.getLoc(),
463 "Instruction does not have a valid new register producer");
464 return false;
465 }
466 if ((Desc.mayLoad() && std::get<1>(Producer) == 1) ||
467 (Desc.mayStore() && std::get<1>(Producer) == 0)) {
468 unsigned Mode =
469 HexagonMCInstrInfo::getAddrMode(MCII, *std::get<0>(Producer));
470 StringRef ModeError;
471 if (Mode == HexagonII::AbsoluteSet)
472 ModeError = "Absolute-set";
473 if (Mode == HexagonII::PostInc)
474 ModeError = "Auto-increment";
475 if (!ModeError.empty()) {
476 reportNote(std::get<0>(Producer)->getLoc(),
477 ModeError + " registers cannot be a new-value "
478 "producer");
479 reportError(I.getLoc(),
480 "Instruction does not have a valid new register producer");
481 return false;
482 }
483 }
484 if (Branch && HexagonMCInstrInfo::isFloat(MCII, *std::get<0>(Producer))) {
485 reportNote(std::get<0>(Producer)->getLoc(),
486 "FPU instructions cannot be new-value producers for jumps");
487 reportError(I.getLoc(),
488 "Instruction does not have a valid new register producer");
489 return false;
490 }
491 }
492 return true;
493 }
494
checkRegistersReadOnly()495 bool HexagonMCChecker::checkRegistersReadOnly() {
496 for (auto I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
497 MCInst const &Inst = *I.getInst();
498 unsigned Defs = HexagonMCInstrInfo::getDesc(MCII, Inst).getNumDefs();
499 for (unsigned j = 0; j < Defs; ++j) {
500 MCOperand const &Operand = Inst.getOperand(j);
501 assert(Operand.isReg() && "Def is not a register");
502 unsigned Register = Operand.getReg();
503 if (ReadOnly.find(Register) != ReadOnly.end()) {
504 reportError(Inst.getLoc(), "Cannot write to read-only register `" +
505 Twine(RI.getName(Register)) + "'");
506 return false;
507 }
508 }
509 }
510 return true;
511 }
512
registerUsed(unsigned Register)513 bool HexagonMCChecker::registerUsed(unsigned Register) {
514 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB))
515 for (unsigned j = HexagonMCInstrInfo::getDesc(MCII, I).getNumDefs(),
516 n = I.getNumOperands();
517 j < n; ++j) {
518 MCOperand const &Operand = I.getOperand(j);
519 if (Operand.isReg() && Operand.getReg() == Register)
520 return true;
521 }
522 return false;
523 }
524
525 std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo>
registerProducer(unsigned Register,HexagonMCInstrInfo::PredicateInfo ConsumerPredicate)526 HexagonMCChecker::registerProducer(
527 unsigned Register, HexagonMCInstrInfo::PredicateInfo ConsumerPredicate) {
528 std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo>
529 WrongSense;
530 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
531 MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
532 auto ProducerPredicate = HexagonMCInstrInfo::predicateInfo(MCII, I);
533 for (unsigned J = 0, N = Desc.getNumDefs(); J < N; ++J)
534 for (auto K = MCRegAliasIterator(I.getOperand(J).getReg(), &RI, true);
535 K.isValid(); ++K)
536 if (*K == Register) {
537 if (RelaxNVChecks ||
538 (ProducerPredicate.Register == ConsumerPredicate.Register &&
539 (ProducerPredicate.Register == Hexagon::NoRegister ||
540 ProducerPredicate.PredicatedTrue ==
541 ConsumerPredicate.PredicatedTrue)))
542 return std::make_tuple(&I, J, ProducerPredicate);
543 std::get<0>(WrongSense) = &I;
544 std::get<1>(WrongSense) = J;
545 std::get<2>(WrongSense) = ProducerPredicate;
546 }
547 if (Register == Hexagon::VTMP && HexagonMCInstrInfo::hasTmpDst(MCII, I))
548 return std::make_tuple(&I, 0, HexagonMCInstrInfo::PredicateInfo());
549 }
550 return WrongSense;
551 }
552
checkRegisterCurDefs()553 void HexagonMCChecker::checkRegisterCurDefs() {
554 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
555 if (HexagonMCInstrInfo::isCVINew(MCII, I) &&
556 HexagonMCInstrInfo::getDesc(MCII, I).mayLoad()) {
557 unsigned Register = I.getOperand(0).getReg();
558 if (!registerUsed(Register))
559 reportWarning("Register `" + Twine(RI.getName(Register)) +
560 "' used with `.cur' "
561 "but not used in the same packet");
562 }
563 }
564 }
565
566 // Check for legal register uses and definitions.
checkRegisters()567 bool HexagonMCChecker::checkRegisters() {
568 // Check for proper register definitions.
569 for (const auto &I : Defs) {
570 unsigned R = I.first;
571
572 if (isLoopRegister(R) && Defs.count(R) > 1 &&
573 (HexagonMCInstrInfo::isInnerLoop(MCB) ||
574 HexagonMCInstrInfo::isOuterLoop(MCB))) {
575 // Error out for definitions of loop registers at the end of a loop.
576 reportError("loop-setup and some branch instructions "
577 "cannot be in the same packet");
578 return false;
579 }
580 if (SoftDefs.count(R)) {
581 // Error out for explicit changes to registers also weakly defined
582 // (e.g., "{ usr = r0; r0 = sfadd(...) }").
583 unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:.
584 unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
585 reportErrorRegisters(BadR);
586 return false;
587 }
588 if (!isPredicateRegister(R) && Defs[R].size() > 1) {
589 // Check for multiple register definitions.
590 PredSet &PM = Defs[R];
591
592 // Check for multiple unconditional register definitions.
593 if (PM.count(Unconditional)) {
594 // Error out on an unconditional change when there are any other
595 // changes, conditional or not.
596 unsigned UsrR = Hexagon::USR;
597 unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
598 reportErrorRegisters(BadR);
599 return false;
600 }
601 // Check for multiple conditional register definitions.
602 for (const auto &J : PM) {
603 PredSense P = J;
604
605 // Check for multiple uses of the same condition.
606 if (PM.count(P) > 1) {
607 // Error out on conditional changes based on the same predicate
608 // (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }").
609 reportErrorRegisters(R);
610 return false;
611 }
612 // Check for the use of the complementary condition.
613 P.second = !P.second;
614 if (PM.count(P) && PM.size() > 2) {
615 // Error out on conditional changes based on the same predicate
616 // multiple times
617 // (e.g., "if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =...").
618 reportErrorRegisters(R);
619 return false;
620 }
621 }
622 }
623 }
624
625 // Check for use of temporary definitions.
626 for (const auto &I : TmpDefs) {
627 unsigned R = I;
628
629 if (!Uses.count(R)) {
630 // special case for vhist
631 bool vHistFound = false;
632 for (auto const &HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
633 if (HexagonMCInstrInfo::getType(MCII, *HMI.getInst()) ==
634 HexagonII::TypeCVI_HIST) {
635 vHistFound = true; // vhist() implicitly uses ALL REGxx.tmp
636 break;
637 }
638 }
639 // Warn on an unused temporary definition.
640 if (!vHistFound) {
641 reportWarning("register `" + Twine(RI.getName(R)) +
642 "' used with `.tmp' but not used in the same packet");
643 return true;
644 }
645 }
646 }
647
648 return true;
649 }
650
651 // Check for legal use of solo insns.
checkSolo()652 bool HexagonMCChecker::checkSolo() {
653 if (HexagonMCInstrInfo::bundleSize(MCB) > 1)
654 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
655 if (HexagonMCInstrInfo::isSolo(MCII, I)) {
656 reportError(I.getLoc(), "Instruction is marked `isSolo' and "
657 "cannot have other instructions in "
658 "the same packet");
659 return false;
660 }
661 }
662
663 return true;
664 }
665
checkShuffle()666 bool HexagonMCChecker::checkShuffle() {
667 HexagonMCShuffler MCSDX(Context, ReportErrors, MCII, STI, MCB);
668 return MCSDX.check();
669 }
670
compoundRegisterMap(unsigned & Register)671 void HexagonMCChecker::compoundRegisterMap(unsigned &Register) {
672 switch (Register) {
673 default:
674 break;
675 case Hexagon::R15:
676 Register = Hexagon::R23;
677 break;
678 case Hexagon::R14:
679 Register = Hexagon::R22;
680 break;
681 case Hexagon::R13:
682 Register = Hexagon::R21;
683 break;
684 case Hexagon::R12:
685 Register = Hexagon::R20;
686 break;
687 case Hexagon::R11:
688 Register = Hexagon::R19;
689 break;
690 case Hexagon::R10:
691 Register = Hexagon::R18;
692 break;
693 case Hexagon::R9:
694 Register = Hexagon::R17;
695 break;
696 case Hexagon::R8:
697 Register = Hexagon::R16;
698 break;
699 }
700 }
701
reportErrorRegisters(unsigned Register)702 void HexagonMCChecker::reportErrorRegisters(unsigned Register) {
703 reportError("register `" + Twine(RI.getName(Register)) +
704 "' modified more than once");
705 }
706
reportErrorNewValue(unsigned Register)707 void HexagonMCChecker::reportErrorNewValue(unsigned Register) {
708 reportError("register `" + Twine(RI.getName(Register)) +
709 "' used with `.new' "
710 "but not validly modified in the same packet");
711 }
712
reportError(Twine const & Msg)713 void HexagonMCChecker::reportError(Twine const &Msg) {
714 reportError(MCB.getLoc(), Msg);
715 }
716
reportError(SMLoc Loc,Twine const & Msg)717 void HexagonMCChecker::reportError(SMLoc Loc, Twine const &Msg) {
718 if (ReportErrors)
719 Context.reportError(Loc, Msg);
720 }
721
reportNote(SMLoc Loc,llvm::Twine const & Msg)722 void HexagonMCChecker::reportNote(SMLoc Loc, llvm::Twine const &Msg) {
723 if (ReportErrors) {
724 auto SM = Context.getSourceManager();
725 if (SM)
726 SM->PrintMessage(Loc, SourceMgr::DK_Note, Msg);
727 }
728 }
729
reportWarning(Twine const & Msg)730 void HexagonMCChecker::reportWarning(Twine const &Msg) {
731 if (ReportErrors) {
732 auto SM = Context.getSourceManager();
733 if (SM)
734 SM->PrintMessage(MCB.getLoc(), SourceMgr::DK_Warning, Msg);
735 }
736 }
737