1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements hazard recognizers for scheduling on GCN processors.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "GCNHazardRecognizer.h"
15 #include "AMDGPUSubtarget.h"
16 #include "SIInstrInfo.h"
17 #include "llvm/CodeGen/ScheduleDAG.h"
18 #include "llvm/Support/Debug.h"
19
20 using namespace llvm;
21
22 //===----------------------------------------------------------------------===//
23 // Hazard Recoginizer Implementation
24 //===----------------------------------------------------------------------===//
25
GCNHazardRecognizer(const MachineFunction & MF)26 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
27 CurrCycleInstr(nullptr),
28 MF(MF),
29 ST(MF.getSubtarget<SISubtarget>()) {
30 MaxLookAhead = 5;
31 }
32
EmitInstruction(SUnit * SU)33 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
34 EmitInstruction(SU->getInstr());
35 }
36
EmitInstruction(MachineInstr * MI)37 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
38 CurrCycleInstr = MI;
39 }
40
41 ScheduleHazardRecognizer::HazardType
getHazardType(SUnit * SU,int Stalls)42 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
43 MachineInstr *MI = SU->getInstr();
44
45 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
46 return NoopHazard;
47
48 if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0)
49 return NoopHazard;
50
51 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
52 return NoopHazard;
53
54 return NoHazard;
55 }
56
PreEmitNoops(SUnit * SU)57 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
58 return PreEmitNoops(SU->getInstr());
59 }
60
PreEmitNoops(MachineInstr * MI)61 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
62 if (SIInstrInfo::isSMRD(*MI))
63 return std::max(0, checkSMRDHazards(MI));
64
65 if (SIInstrInfo::isVMEM(*MI))
66 return std::max(0, checkVMEMHazards(MI));
67
68 if (SIInstrInfo::isDPP(*MI))
69 return std::max(0, checkDPPHazards(MI));
70
71 return 0;
72 }
73
EmitNoop()74 void GCNHazardRecognizer::EmitNoop() {
75 EmittedInstrs.push_front(nullptr);
76 }
77
AdvanceCycle()78 void GCNHazardRecognizer::AdvanceCycle() {
79
80 // When the scheduler detects a stall, it will call AdvanceCycle() without
81 // emitting any instructions.
82 if (!CurrCycleInstr)
83 return;
84
85 const SIInstrInfo *TII = ST.getInstrInfo();
86 unsigned NumWaitStates = TII->getNumWaitStates(*CurrCycleInstr);
87
88 // Keep track of emitted instructions
89 EmittedInstrs.push_front(CurrCycleInstr);
90
91 // Add a nullptr for each additional wait state after the first. Make sure
92 // not to add more than getMaxLookAhead() items to the list, since we
93 // truncate the list to that size right after this loop.
94 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
95 i < e; ++i) {
96 EmittedInstrs.push_front(nullptr);
97 }
98
99 // getMaxLookahead() is the largest number of wait states we will ever need
100 // to insert, so there is no point in keeping track of more than that many
101 // wait states.
102 EmittedInstrs.resize(getMaxLookAhead());
103
104 CurrCycleInstr = nullptr;
105 }
106
RecedeCycle()107 void GCNHazardRecognizer::RecedeCycle() {
108 llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
109 }
110
111 //===----------------------------------------------------------------------===//
112 // Helper Functions
113 //===----------------------------------------------------------------------===//
114
getWaitStatesSinceDef(unsigned Reg,function_ref<bool (MachineInstr *)> IsHazardDef)115 int GCNHazardRecognizer::getWaitStatesSinceDef(
116 unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
117 const SIRegisterInfo *TRI = ST.getRegisterInfo();
118
119 int WaitStates = -1;
120 for (MachineInstr *MI : EmittedInstrs) {
121 ++WaitStates;
122 if (!MI || !IsHazardDef(MI))
123 continue;
124 if (MI->modifiesRegister(Reg, TRI))
125 return WaitStates;
126 }
127 return std::numeric_limits<int>::max();
128 }
129
130 //===----------------------------------------------------------------------===//
131 // No-op Hazard Detection
132 //===----------------------------------------------------------------------===//
133
addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops,std::set<unsigned> & Set)134 static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops,
135 std::set<unsigned> &Set) {
136 for (const MachineOperand &Op : Ops) {
137 if (Op.isReg())
138 Set.insert(Op.getReg());
139 }
140 }
141
checkSMEMSoftClauseHazards(MachineInstr * SMEM)142 int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) {
143 // SMEM soft clause are only present on VI+
144 if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
145 return 0;
146
147 // A soft-clause is any group of consecutive SMEM instructions. The
148 // instructions in this group may return out of order and/or may be
149 // replayed (i.e. the same instruction issued more than once).
150 //
151 // In order to handle these situations correctly we need to make sure
152 // that when a clause has more than one instruction, no instruction in the
153 // clause writes to a register that is read another instruction in the clause
154 // (including itself). If we encounter this situaion, we need to break the
155 // clause by inserting a non SMEM instruction.
156
157 std::set<unsigned> ClauseDefs;
158 std::set<unsigned> ClauseUses;
159
160 for (MachineInstr *MI : EmittedInstrs) {
161
162 // When we hit a non-SMEM instruction then we have passed the start of the
163 // clause and we can stop.
164 if (!MI || !SIInstrInfo::isSMRD(*MI))
165 break;
166
167 addRegsToSet(MI->defs(), ClauseDefs);
168 addRegsToSet(MI->uses(), ClauseUses);
169 }
170
171 if (ClauseDefs.empty())
172 return 0;
173
174 // FIXME: When we support stores, we need to make sure not to put loads and
175 // stores in the same clause if they use the same address. For now, just
176 // start a new clause whenever we see a store.
177 if (SMEM->mayStore())
178 return 1;
179
180 addRegsToSet(SMEM->defs(), ClauseDefs);
181 addRegsToSet(SMEM->uses(), ClauseUses);
182
183 std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size()));
184 std::vector<unsigned>::iterator End;
185
186 End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(),
187 ClauseUses.begin(), ClauseUses.end(), Result.begin());
188
189 // If the set of defs and uses intersect then we cannot add this instruction
190 // to the clause, so we have a hazard.
191 if (End != Result.begin())
192 return 1;
193
194 return 0;
195 }
196
checkSMRDHazards(MachineInstr * SMRD)197 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
198 const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
199 const SIInstrInfo *TII = ST.getInstrInfo();
200 int WaitStatesNeeded = 0;
201
202 WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD);
203
204 // This SMRD hazard only affects SI.
205 if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS)
206 return WaitStatesNeeded;
207
208 // A read of an SGPR by SMRD instruction requires 4 wait states when the
209 // SGPR was written by a VALU instruction.
210 int SmrdSgprWaitStates = 4;
211 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
212
213 for (const MachineOperand &Use : SMRD->uses()) {
214 if (!Use.isReg())
215 continue;
216 int WaitStatesNeededForUse =
217 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
218 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
219 }
220 return WaitStatesNeeded;
221 }
222
checkVMEMHazards(MachineInstr * VMEM)223 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
224 const SIInstrInfo *TII = ST.getInstrInfo();
225
226 if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
227 return 0;
228
229 const SIRegisterInfo &TRI = TII->getRegisterInfo();
230
231 // A read of an SGPR by a VMEM instruction requires 5 wait states when the
232 // SGPR was written by a VALU Instruction.
233 int VmemSgprWaitStates = 5;
234 int WaitStatesNeeded = 0;
235 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
236
237 for (const MachineOperand &Use : VMEM->uses()) {
238 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
239 continue;
240
241 int WaitStatesNeededForUse =
242 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
243 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
244 }
245 return WaitStatesNeeded;
246 }
247
checkDPPHazards(MachineInstr * DPP)248 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
249 const SIRegisterInfo *TRI = ST.getRegisterInfo();
250
251 // Check for DPP VGPR read after VALU VGPR write.
252 int DppVgprWaitStates = 2;
253 int WaitStatesNeeded = 0;
254
255 for (const MachineOperand &Use : DPP->uses()) {
256 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
257 continue;
258 int WaitStatesNeededForUse =
259 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
260 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
261 }
262
263 return WaitStatesNeeded;
264 }
265