1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <memory>
27 #include <string>
28 #include <linux/futex.h>
29 #include <sys/stat.h>
30 #include <sys/syscall.h>
31 #include <cutils/properties.h>
32 #include <media/AudioParameter.h>
33 #include <media/AudioResamplerPublic.h>
34 #include <media/RecordBufferConverter.h>
35 #include <media/TypeConverter.h>
36 #include <utils/Log.h>
37 #include <utils/Trace.h>
38
39 #include <private/media/AudioTrackShared.h>
40 #include <private/android_filesystem_config.h>
41 #include <audio_utils/Balance.h>
42 #include <audio_utils/channels.h>
43 #include <audio_utils/mono_blend.h>
44 #include <audio_utils/primitives.h>
45 #include <audio_utils/format.h>
46 #include <audio_utils/minifloat.h>
47 #include <audio_utils/safe_math.h>
48 #include <system/audio_effects/effect_ns.h>
49 #include <system/audio_effects/effect_aec.h>
50 #include <system/audio.h>
51
52 // NBAIO implementations
53 #include <media/nbaio/AudioStreamInSource.h>
54 #include <media/nbaio/AudioStreamOutSink.h>
55 #include <media/nbaio/MonoPipe.h>
56 #include <media/nbaio/MonoPipeReader.h>
57 #include <media/nbaio/Pipe.h>
58 #include <media/nbaio/PipeReader.h>
59 #include <media/nbaio/SourceAudioBufferProvider.h>
60 #include <mediautils/BatteryNotifier.h>
61
62 #include <audiomanager/AudioManager.h>
63 #include <powermanager/PowerManager.h>
64
65 #include <media/audiohal/EffectsFactoryHalInterface.h>
66 #include <media/audiohal/StreamHalInterface.h>
67
68 #include "AudioFlinger.h"
69 #include "FastMixer.h"
70 #include "FastCapture.h"
71 #include <mediautils/SchedulingPolicyService.h>
72 #include <mediautils/ServiceUtilities.h>
73
74 #ifdef ADD_BATTERY_DATA
75 #include <media/IMediaPlayerService.h>
76 #include <media/IMediaDeathNotifier.h>
77 #endif
78
79 #ifdef DEBUG_CPU_USAGE
80 #include <audio_utils/Statistics.h>
81 #include <cpustats/ThreadCpuUsage.h>
82 #endif
83
84 #include "AutoPark.h"
85
86 #include <pthread.h>
87 #include "TypedLogger.h"
88
89 // ----------------------------------------------------------------------------
90
91 // Note: the following macro is used for extremely verbose logging message. In
92 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
93 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
94 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
95 // turned on. Do not uncomment the #def below unless you really know what you
96 // are doing and want to see all of the extremely verbose messages.
97 //#define VERY_VERY_VERBOSE_LOGGING
98 #ifdef VERY_VERY_VERBOSE_LOGGING
99 #define ALOGVV ALOGV
100 #else
101 #define ALOGVV(a...) do { } while(0)
102 #endif
103
104 // TODO: Move these macro/inlines to a header file.
105 #define max(a, b) ((a) > (b) ? (a) : (b))
106 template <typename T>
min(const T & a,const T & b)107 static inline T min(const T& a, const T& b)
108 {
109 return a < b ? a : b;
110 }
111
112 namespace android {
113
114 // retry counts for buffer fill timeout
115 // 50 * ~20msecs = 1 second
116 static const int8_t kMaxTrackRetries = 50;
117 static const int8_t kMaxTrackStartupRetries = 50;
118 // allow less retry attempts on direct output thread.
119 // direct outputs can be a scarce resource in audio hardware and should
120 // be released as quickly as possible.
121 static const int8_t kMaxTrackRetriesDirect = 2;
122
123
124
125 // don't warn about blocked writes or record buffer overflows more often than this
126 static const nsecs_t kWarningThrottleNs = seconds(5);
127
128 // RecordThread loop sleep time upon application overrun or audio HAL read error
129 static const int kRecordThreadSleepUs = 5000;
130
131 // maximum time to wait in sendConfigEvent_l() for a status to be received
132 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
133
134 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
135 static const uint32_t kMinThreadSleepTimeUs = 5000;
136 // maximum divider applied to the active sleep time in the mixer thread loop
137 static const uint32_t kMaxThreadSleepTimeShift = 2;
138
139 // minimum normal sink buffer size, expressed in milliseconds rather than frames
140 // FIXME This should be based on experimentally observed scheduling jitter
141 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
142 // maximum normal sink buffer size
143 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
144
145 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
146 // FIXME This should be based on experimentally observed scheduling jitter
147 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
148
149 // Offloaded output thread standby delay: allows track transition without going to standby
150 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
151
152 // Direct output thread minimum sleep time in idle or active(underrun) state
153 static const nsecs_t kDirectMinSleepTimeUs = 10000;
154
155 // The universal constant for ubiquitous 20ms value. The value of 20ms seems to provide a good
156 // balance between power consumption and latency, and allows threads to be scheduled reliably
157 // by the CFS scheduler.
158 // FIXME Express other hardcoded references to 20ms with references to this constant and move
159 // it appropriately.
160 #define FMS_20 20
161
162 // Whether to use fast mixer
163 static const enum {
164 FastMixer_Never, // never initialize or use: for debugging only
165 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
166 // normal mixer multiplier is 1
167 FastMixer_Static, // initialize if needed, then use all the time if initialized,
168 // multiplier is calculated based on min & max normal mixer buffer size
169 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
170 // multiplier is calculated based on min & max normal mixer buffer size
171 // FIXME for FastMixer_Dynamic:
172 // Supporting this option will require fixing HALs that can't handle large writes.
173 // For example, one HAL implementation returns an error from a large write,
174 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
175 // We could either fix the HAL implementations, or provide a wrapper that breaks
176 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
177 } kUseFastMixer = FastMixer_Static;
178
179 // Whether to use fast capture
180 static const enum {
181 FastCapture_Never, // never initialize or use: for debugging only
182 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
183 FastCapture_Static, // initialize if needed, then use all the time if initialized
184 } kUseFastCapture = FastCapture_Static;
185
186 // Priorities for requestPriority
187 static const int kPriorityAudioApp = 2;
188 static const int kPriorityFastMixer = 3;
189 static const int kPriorityFastCapture = 3;
190
191 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
192 // track buffer in shared memory. Zero on input means to use a default value. For fast tracks,
193 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
194
195 // This is the default value, if not specified by property.
196 static const int kFastTrackMultiplier = 2;
197
198 // The minimum and maximum allowed values
199 static const int kFastTrackMultiplierMin = 1;
200 static const int kFastTrackMultiplierMax = 2;
201
202 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
203 static int sFastTrackMultiplier = kFastTrackMultiplier;
204
205 // See Thread::readOnlyHeap().
206 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
207 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
208 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
209 static const size_t kRecordThreadReadOnlyHeapSize = 0xD000;
210
211 // ----------------------------------------------------------------------------
212
213 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
214
sFastTrackMultiplierInit()215 static void sFastTrackMultiplierInit()
216 {
217 char value[PROPERTY_VALUE_MAX];
218 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
219 char *endptr;
220 unsigned long ul = strtoul(value, &endptr, 0);
221 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
222 sFastTrackMultiplier = (int) ul;
223 }
224 }
225 }
226
227 // ----------------------------------------------------------------------------
228
229 #ifdef ADD_BATTERY_DATA
230 // To collect the amplifier usage
addBatteryData(uint32_t params)231 static void addBatteryData(uint32_t params) {
232 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
233 if (service == NULL) {
234 // it already logged
235 return;
236 }
237
238 service->addBatteryData(params);
239 }
240 #endif
241
242 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
243 struct {
244 // call when you acquire a partial wakelock
acquireandroid::__anona72156d50308245 void acquire(const sp<IBinder> &wakeLockToken) {
246 pthread_mutex_lock(&mLock);
247 if (wakeLockToken.get() == nullptr) {
248 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
249 } else {
250 if (mCount == 0) {
251 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
252 }
253 ++mCount;
254 }
255 pthread_mutex_unlock(&mLock);
256 }
257
258 // call when you release a partial wakelock.
releaseandroid::__anona72156d50308259 void release(const sp<IBinder> &wakeLockToken) {
260 if (wakeLockToken.get() == nullptr) {
261 return;
262 }
263 pthread_mutex_lock(&mLock);
264 if (--mCount < 0) {
265 ALOGE("negative wakelock count");
266 mCount = 0;
267 }
268 pthread_mutex_unlock(&mLock);
269 }
270
271 // retrieves the boottime timebase offset from monotonic.
getBoottimeOffsetandroid::__anona72156d50308272 int64_t getBoottimeOffset() {
273 pthread_mutex_lock(&mLock);
274 int64_t boottimeOffset = mBoottimeOffset;
275 pthread_mutex_unlock(&mLock);
276 return boottimeOffset;
277 }
278
279 // Adjusts the timebase offset between TIMEBASE_MONOTONIC
280 // and the selected timebase.
281 // Currently only TIMEBASE_BOOTTIME is allowed.
282 //
283 // This only needs to be called upon acquiring the first partial wakelock
284 // after all other partial wakelocks are released.
285 //
286 // We do an empirical measurement of the offset rather than parsing
287 // /proc/timer_list since the latter is not a formal kernel ABI.
adjustTimebaseOffsetandroid::__anona72156d50308288 static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
289 int clockbase;
290 switch (timebase) {
291 case ExtendedTimestamp::TIMEBASE_BOOTTIME:
292 clockbase = SYSTEM_TIME_BOOTTIME;
293 break;
294 default:
295 LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
296 break;
297 }
298 // try three times to get the clock offset, choose the one
299 // with the minimum gap in measurements.
300 const int tries = 3;
301 nsecs_t bestGap, measured;
302 for (int i = 0; i < tries; ++i) {
303 const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
304 const nsecs_t tbase = systemTime(clockbase);
305 const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
306 const nsecs_t gap = tmono2 - tmono;
307 if (i == 0 || gap < bestGap) {
308 bestGap = gap;
309 measured = tbase - ((tmono + tmono2) >> 1);
310 }
311 }
312
313 // to avoid micro-adjusting, we don't change the timebase
314 // unless it is significantly different.
315 //
316 // Assumption: It probably takes more than toleranceNs to
317 // suspend and resume the device.
318 static int64_t toleranceNs = 10000; // 10 us
319 if (llabs(*offset - measured) > toleranceNs) {
320 ALOGV("Adjusting timebase offset old: %lld new: %lld",
321 (long long)*offset, (long long)measured);
322 *offset = measured;
323 }
324 }
325
326 pthread_mutex_t mLock;
327 int32_t mCount;
328 int64_t mBoottimeOffset;
329 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
330
331 // ----------------------------------------------------------------------------
332 // CPU Stats
333 // ----------------------------------------------------------------------------
334
335 class CpuStats {
336 public:
337 CpuStats();
338 void sample(const String8 &title);
339 #ifdef DEBUG_CPU_USAGE
340 private:
341 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
342 audio_utils::Statistics<double> mWcStats; // statistics on thread CPU usage in wall clock ns
343
344 audio_utils::Statistics<double> mHzStats; // statistics on thread CPU usage in cycles
345
346 int mCpuNum; // thread's current CPU number
347 int mCpukHz; // frequency of thread's current CPU in kHz
348 #endif
349 };
350
CpuStats()351 CpuStats::CpuStats()
352 #ifdef DEBUG_CPU_USAGE
353 : mCpuNum(-1), mCpukHz(-1)
354 #endif
355 {
356 }
357
sample(const String8 & title __unused)358 void CpuStats::sample(const String8 &title
359 #ifndef DEBUG_CPU_USAGE
360 __unused
361 #endif
362 ) {
363 #ifdef DEBUG_CPU_USAGE
364 // get current thread's delta CPU time in wall clock ns
365 double wcNs;
366 bool valid = mCpuUsage.sampleAndEnable(wcNs);
367
368 // record sample for wall clock statistics
369 if (valid) {
370 mWcStats.add(wcNs);
371 }
372
373 // get the current CPU number
374 int cpuNum = sched_getcpu();
375
376 // get the current CPU frequency in kHz
377 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
378
379 // check if either CPU number or frequency changed
380 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
381 mCpuNum = cpuNum;
382 mCpukHz = cpukHz;
383 // ignore sample for purposes of cycles
384 valid = false;
385 }
386
387 // if no change in CPU number or frequency, then record sample for cycle statistics
388 if (valid && mCpukHz > 0) {
389 const double cycles = wcNs * cpukHz * 0.000001;
390 mHzStats.add(cycles);
391 }
392
393 const unsigned n = mWcStats.getN();
394 // mCpuUsage.elapsed() is expensive, so don't call it every loop
395 if ((n & 127) == 1) {
396 const long long elapsed = mCpuUsage.elapsed();
397 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
398 const double perLoop = elapsed / (double) n;
399 const double perLoop100 = perLoop * 0.01;
400 const double perLoop1k = perLoop * 0.001;
401 const double mean = mWcStats.getMean();
402 const double stddev = mWcStats.getStdDev();
403 const double minimum = mWcStats.getMin();
404 const double maximum = mWcStats.getMax();
405 const double meanCycles = mHzStats.getMean();
406 const double stddevCycles = mHzStats.getStdDev();
407 const double minCycles = mHzStats.getMin();
408 const double maxCycles = mHzStats.getMax();
409 mCpuUsage.resetElapsed();
410 mWcStats.reset();
411 mHzStats.reset();
412 ALOGD("CPU usage for %s over past %.1f secs\n"
413 " (%u mixer loops at %.1f mean ms per loop):\n"
414 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
415 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
416 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
417 title.string(),
418 elapsed * .000000001, n, perLoop * .000001,
419 mean * .001,
420 stddev * .001,
421 minimum * .001,
422 maximum * .001,
423 mean / perLoop100,
424 stddev / perLoop100,
425 minimum / perLoop100,
426 maximum / perLoop100,
427 meanCycles / perLoop1k,
428 stddevCycles / perLoop1k,
429 minCycles / perLoop1k,
430 maxCycles / perLoop1k);
431
432 }
433 }
434 #endif
435 };
436
437 // ----------------------------------------------------------------------------
438 // ThreadBase
439 // ----------------------------------------------------------------------------
440
441 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)442 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
443 {
444 switch (type) {
445 case MIXER:
446 return "MIXER";
447 case DIRECT:
448 return "DIRECT";
449 case DUPLICATING:
450 return "DUPLICATING";
451 case RECORD:
452 return "RECORD";
453 case OFFLOAD:
454 return "OFFLOAD";
455 case MMAP:
456 return "MMAP";
457 default:
458 return "unknown";
459 }
460 }
461
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,type_t type,bool systemReady)462 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
463 audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
464 : Thread(false /*canCallJava*/),
465 mType(type),
466 mAudioFlinger(audioFlinger),
467 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
468 // are set by PlaybackThread::readOutputParameters_l() or
469 // RecordThread::readInputParameters_l()
470 //FIXME: mStandby should be true here. Is this some kind of hack?
471 mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
472 mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
473 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
474 // mName will be set by concrete (non-virtual) subclass
475 mDeathRecipient(new PMDeathRecipient(this)),
476 mSystemReady(systemReady),
477 mSignalPending(false)
478 {
479 memset(&mPatch, 0, sizeof(struct audio_patch));
480 }
481
~ThreadBase()482 AudioFlinger::ThreadBase::~ThreadBase()
483 {
484 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
485 mConfigEvents.clear();
486
487 // do not lock the mutex in destructor
488 releaseWakeLock_l();
489 if (mPowerManager != 0) {
490 sp<IBinder> binder = IInterface::asBinder(mPowerManager);
491 binder->unlinkToDeath(mDeathRecipient);
492 }
493
494 sendStatistics(true /* force */);
495 }
496
readyToRun()497 status_t AudioFlinger::ThreadBase::readyToRun()
498 {
499 status_t status = initCheck();
500 if (status == NO_ERROR) {
501 ALOGI("AudioFlinger's thread %p tid=%d ready to run", this, getTid());
502 } else {
503 ALOGE("No working audio driver found.");
504 }
505 return status;
506 }
507
exit()508 void AudioFlinger::ThreadBase::exit()
509 {
510 ALOGV("ThreadBase::exit");
511 // do any cleanup required for exit to succeed
512 preExit();
513 {
514 // This lock prevents the following race in thread (uniprocessor for illustration):
515 // if (!exitPending()) {
516 // // context switch from here to exit()
517 // // exit() calls requestExit(), what exitPending() observes
518 // // exit() calls signal(), which is dropped since no waiters
519 // // context switch back from exit() to here
520 // mWaitWorkCV.wait(...);
521 // // now thread is hung
522 // }
523 AutoMutex lock(mLock);
524 requestExit();
525 mWaitWorkCV.broadcast();
526 }
527 // When Thread::requestExitAndWait is made virtual and this method is renamed to
528 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
529 requestExitAndWait();
530 }
531
setParameters(const String8 & keyValuePairs)532 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
533 {
534 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
535 Mutex::Autolock _l(mLock);
536
537 return sendSetParameterConfigEvent_l(keyValuePairs);
538 }
539
540 // sendConfigEvent_l() must be called with ThreadBase::mLock held
541 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)542 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
543 {
544 status_t status = NO_ERROR;
545
546 if (event->mRequiresSystemReady && !mSystemReady) {
547 event->mWaitStatus = false;
548 mPendingConfigEvents.add(event);
549 return status;
550 }
551 mConfigEvents.add(event);
552 ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
553 mWaitWorkCV.signal();
554 mLock.unlock();
555 {
556 Mutex::Autolock _l(event->mLock);
557 while (event->mWaitStatus) {
558 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
559 event->mStatus = TIMED_OUT;
560 event->mWaitStatus = false;
561 }
562 }
563 status = event->mStatus;
564 }
565 mLock.lock();
566 return status;
567 }
568
sendIoConfigEvent(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)569 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid,
570 audio_port_handle_t portId)
571 {
572 Mutex::Autolock _l(mLock);
573 sendIoConfigEvent_l(event, pid, portId);
574 }
575
576 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)577 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid,
578 audio_port_handle_t portId)
579 {
580 // The audio statistics history is exponentially weighted to forget events
581 // about five or more seconds in the past. In order to have
582 // crisper statistics for mediametrics, we reset the statistics on
583 // an IoConfigEvent, to reflect different properties for a new device.
584 mIoJitterMs.reset();
585 mLatencyMs.reset();
586 mProcessTimeMs.reset();
587 mTimestampVerifier.discontinuity();
588
589 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid, portId);
590 sendConfigEvent_l(configEvent);
591 }
592
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio,bool forApp)593 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio, bool forApp)
594 {
595 Mutex::Autolock _l(mLock);
596 sendPrioConfigEvent_l(pid, tid, prio, forApp);
597 }
598
599 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio,bool forApp)600 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(
601 pid_t pid, pid_t tid, int32_t prio, bool forApp)
602 {
603 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio, forApp);
604 sendConfigEvent_l(configEvent);
605 }
606
607 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)608 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
609 {
610 sp<ConfigEvent> configEvent;
611 AudioParameter param(keyValuePair);
612 int value;
613 if (param.getInt(String8(AudioParameter::keyMonoOutput), value) == NO_ERROR) {
614 setMasterMono_l(value != 0);
615 if (param.size() == 1) {
616 return NO_ERROR; // should be a solo parameter - we don't pass down
617 }
618 param.remove(String8(AudioParameter::keyMonoOutput));
619 configEvent = new SetParameterConfigEvent(param.toString());
620 } else {
621 configEvent = new SetParameterConfigEvent(keyValuePair);
622 }
623 return sendConfigEvent_l(configEvent);
624 }
625
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)626 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
627 const struct audio_patch *patch,
628 audio_patch_handle_t *handle)
629 {
630 Mutex::Autolock _l(mLock);
631 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
632 status_t status = sendConfigEvent_l(configEvent);
633 if (status == NO_ERROR) {
634 CreateAudioPatchConfigEventData *data =
635 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
636 *handle = data->mHandle;
637 }
638 return status;
639 }
640
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)641 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
642 const audio_patch_handle_t handle)
643 {
644 Mutex::Autolock _l(mLock);
645 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
646 return sendConfigEvent_l(configEvent);
647 }
648
649
650 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()651 void AudioFlinger::ThreadBase::processConfigEvents_l()
652 {
653 bool configChanged = false;
654
655 while (!mConfigEvents.isEmpty()) {
656 ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
657 sp<ConfigEvent> event = mConfigEvents[0];
658 mConfigEvents.removeAt(0);
659 switch (event->mType) {
660 case CFG_EVENT_PRIO: {
661 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
662 // FIXME Need to understand why this has to be done asynchronously
663 int err = requestPriority(data->mPid, data->mTid, data->mPrio, data->mForApp,
664 true /*asynchronous*/);
665 if (err != 0) {
666 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
667 data->mPrio, data->mPid, data->mTid, err);
668 }
669 } break;
670 case CFG_EVENT_IO: {
671 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
672 ioConfigChanged(data->mEvent, data->mPid, data->mPortId);
673 } break;
674 case CFG_EVENT_SET_PARAMETER: {
675 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
676 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
677 configChanged = true;
678 mLocalLog.log("CFG_EVENT_SET_PARAMETER: (%s) configuration changed",
679 data->mKeyValuePairs.string());
680 }
681 } break;
682 case CFG_EVENT_CREATE_AUDIO_PATCH: {
683 const audio_devices_t oldDevice = getDevice();
684 CreateAudioPatchConfigEventData *data =
685 (CreateAudioPatchConfigEventData *)event->mData.get();
686 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
687 const audio_devices_t newDevice = getDevice();
688 mLocalLog.log("CFG_EVENT_CREATE_AUDIO_PATCH: old device %#x (%s) new device %#x (%s)",
689 (unsigned)oldDevice, toString(oldDevice).c_str(),
690 (unsigned)newDevice, toString(newDevice).c_str());
691 } break;
692 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
693 const audio_devices_t oldDevice = getDevice();
694 ReleaseAudioPatchConfigEventData *data =
695 (ReleaseAudioPatchConfigEventData *)event->mData.get();
696 event->mStatus = releaseAudioPatch_l(data->mHandle);
697 const audio_devices_t newDevice = getDevice();
698 mLocalLog.log("CFG_EVENT_RELEASE_AUDIO_PATCH: old device %#x (%s) new device %#x (%s)",
699 (unsigned)oldDevice, toString(oldDevice).c_str(),
700 (unsigned)newDevice, toString(newDevice).c_str());
701 } break;
702 default:
703 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
704 break;
705 }
706 {
707 Mutex::Autolock _l(event->mLock);
708 if (event->mWaitStatus) {
709 event->mWaitStatus = false;
710 event->mCond.signal();
711 }
712 }
713 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
714 }
715
716 if (configChanged) {
717 cacheParameters_l();
718 }
719 }
720
channelMaskToString(audio_channel_mask_t mask,bool output)721 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
722 String8 s;
723 const audio_channel_representation_t representation =
724 audio_channel_mask_get_representation(mask);
725
726 switch (representation) {
727 // Travel all single bit channel mask to convert channel mask to string.
728 case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
729 if (output) {
730 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
731 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
732 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
733 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
734 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
735 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
736 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
737 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
738 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
739 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
740 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
741 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
742 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
743 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
744 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
745 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
746 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
747 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
748 if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_LEFT) s.append("top-side-left, " );
749 if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_RIGHT) s.append("top-side-right, " );
750 if (mask & AUDIO_CHANNEL_OUT_HAPTIC_B) s.append("haptic-B, " );
751 if (mask & AUDIO_CHANNEL_OUT_HAPTIC_A) s.append("haptic-A, " );
752 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
753 } else {
754 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
755 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
756 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
757 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
758 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
759 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
760 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
761 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
762 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
763 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
764 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
765 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
766 if (mask & AUDIO_CHANNEL_IN_BACK_LEFT) s.append("back-left, ");
767 if (mask & AUDIO_CHANNEL_IN_BACK_RIGHT) s.append("back-right, ");
768 if (mask & AUDIO_CHANNEL_IN_CENTER) s.append("center, ");
769 if (mask & AUDIO_CHANNEL_IN_LOW_FREQUENCY) s.append("low freq, ");
770 if (mask & AUDIO_CHANNEL_IN_TOP_LEFT) s.append("top-left, " );
771 if (mask & AUDIO_CHANNEL_IN_TOP_RIGHT) s.append("top-right, " );
772 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
773 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
774 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
775 }
776 const int len = s.length();
777 if (len > 2) {
778 (void) s.lockBuffer(len); // needed?
779 s.unlockBuffer(len - 2); // remove trailing ", "
780 }
781 return s;
782 }
783 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
784 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
785 return s;
786 default:
787 s.appendFormat("unknown mask, representation:%d bits:%#x",
788 representation, audio_channel_mask_get_bits(mask));
789 return s;
790 }
791 }
792
dump(int fd,const Vector<String16> & args)793 void AudioFlinger::ThreadBase::dump(int fd, const Vector<String16>& args)
794 {
795 dprintf(fd, "\n%s thread %p, name %s, tid %d, type %d (%s):\n", isOutput() ? "Output" : "Input",
796 this, mThreadName, getTid(), type(), threadTypeToString(type()));
797
798 bool locked = AudioFlinger::dumpTryLock(mLock);
799 if (!locked) {
800 dprintf(fd, " Thread may be deadlocked\n");
801 }
802
803 dumpBase_l(fd, args);
804 dumpInternals_l(fd, args);
805 dumpTracks_l(fd, args);
806 dumpEffectChains_l(fd, args);
807
808 if (locked) {
809 mLock.unlock();
810 }
811
812 dprintf(fd, " Local log:\n");
813 mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */);
814 }
815
dumpBase_l(int fd,const Vector<String16> & args __unused)816 void AudioFlinger::ThreadBase::dumpBase_l(int fd, const Vector<String16>& args __unused)
817 {
818 dprintf(fd, " I/O handle: %d\n", mId);
819 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
820 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate);
821 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
822 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat).c_str());
823 dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize);
824 dprintf(fd, " Channel count: %u\n", mChannelCount);
825 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask,
826 channelMaskToString(mChannelMask, mType != RECORD).string());
827 dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat).c_str());
828 dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize);
829 dprintf(fd, " Pending config events:");
830 size_t numConfig = mConfigEvents.size();
831 if (numConfig) {
832 const size_t SIZE = 256;
833 char buffer[SIZE];
834 for (size_t i = 0; i < numConfig; i++) {
835 mConfigEvents[i]->dump(buffer, SIZE);
836 dprintf(fd, "\n %s", buffer);
837 }
838 dprintf(fd, "\n");
839 } else {
840 dprintf(fd, " none\n");
841 }
842 // Note: output device may be used by capture threads for effects such as AEC.
843 dprintf(fd, " Output device: %#x (%s)\n", mOutDevice, toString(mOutDevice).c_str());
844 dprintf(fd, " Input device: %#x (%s)\n", mInDevice, toString(mInDevice).c_str());
845 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, toString(mAudioSource).c_str());
846
847 // Dump timestamp statistics for the Thread types that support it.
848 if (mType == RECORD
849 || mType == MIXER
850 || mType == DUPLICATING
851 || mType == DIRECT
852 || mType == OFFLOAD) {
853 dprintf(fd, " Timestamp stats: %s\n", mTimestampVerifier.toString().c_str());
854 dprintf(fd, " Timestamp corrected: %s\n", isTimestampCorrectionEnabled() ? "yes" : "no");
855 }
856
857 if (mLastIoBeginNs > 0) { // MMAP may not set this
858 dprintf(fd, " Last %s occurred (msecs): %lld\n",
859 isOutput() ? "write" : "read",
860 (long long) (systemTime() - mLastIoBeginNs) / NANOS_PER_MILLISECOND);
861 }
862
863 if (mProcessTimeMs.getN() > 0) {
864 dprintf(fd, " Process time ms stats: %s\n", mProcessTimeMs.toString().c_str());
865 }
866
867 if (mIoJitterMs.getN() > 0) {
868 dprintf(fd, " Hal %s jitter ms stats: %s\n",
869 isOutput() ? "write" : "read",
870 mIoJitterMs.toString().c_str());
871 }
872
873 if (mLatencyMs.getN() > 0) {
874 dprintf(fd, " Threadloop %s latency stats: %s\n",
875 isOutput() ? "write" : "read",
876 mLatencyMs.toString().c_str());
877 }
878 }
879
dumpEffectChains_l(int fd,const Vector<String16> & args)880 void AudioFlinger::ThreadBase::dumpEffectChains_l(int fd, const Vector<String16>& args)
881 {
882 const size_t SIZE = 256;
883 char buffer[SIZE];
884
885 size_t numEffectChains = mEffectChains.size();
886 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
887 write(fd, buffer, strlen(buffer));
888
889 for (size_t i = 0; i < numEffectChains; ++i) {
890 sp<EffectChain> chain = mEffectChains[i];
891 if (chain != 0) {
892 chain->dump(fd, args);
893 }
894 }
895 }
896
acquireWakeLock()897 void AudioFlinger::ThreadBase::acquireWakeLock()
898 {
899 Mutex::Autolock _l(mLock);
900 acquireWakeLock_l();
901 }
902
getWakeLockTag()903 String16 AudioFlinger::ThreadBase::getWakeLockTag()
904 {
905 switch (mType) {
906 case MIXER:
907 return String16("AudioMix");
908 case DIRECT:
909 return String16("AudioDirectOut");
910 case DUPLICATING:
911 return String16("AudioDup");
912 case RECORD:
913 return String16("AudioIn");
914 case OFFLOAD:
915 return String16("AudioOffload");
916 case MMAP:
917 return String16("Mmap");
918 default:
919 ALOG_ASSERT(false);
920 return String16("AudioUnknown");
921 }
922 }
923
acquireWakeLock_l()924 void AudioFlinger::ThreadBase::acquireWakeLock_l()
925 {
926 getPowerManager_l();
927 if (mPowerManager != 0) {
928 sp<IBinder> binder = new BBinder();
929 // Uses AID_AUDIOSERVER for wakelock. updateWakeLockUids_l() updates with client uids.
930 status_t status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
931 binder,
932 getWakeLockTag(),
933 String16("audioserver"),
934 true /* FIXME force oneway contrary to .aidl */);
935 if (status == NO_ERROR) {
936 mWakeLockToken = binder;
937 }
938 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
939 }
940
941 gBoottime.acquire(mWakeLockToken);
942 mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
943 gBoottime.getBoottimeOffset();
944 }
945
releaseWakeLock()946 void AudioFlinger::ThreadBase::releaseWakeLock()
947 {
948 Mutex::Autolock _l(mLock);
949 releaseWakeLock_l();
950 }
951
releaseWakeLock_l()952 void AudioFlinger::ThreadBase::releaseWakeLock_l()
953 {
954 gBoottime.release(mWakeLockToken);
955 if (mWakeLockToken != 0) {
956 ALOGV("releaseWakeLock_l() %s", mThreadName);
957 if (mPowerManager != 0) {
958 mPowerManager->releaseWakeLock(mWakeLockToken, 0,
959 true /* FIXME force oneway contrary to .aidl */);
960 }
961 mWakeLockToken.clear();
962 }
963 }
964
getPowerManager_l()965 void AudioFlinger::ThreadBase::getPowerManager_l() {
966 if (mSystemReady && mPowerManager == 0) {
967 // use checkService() to avoid blocking if power service is not up yet
968 sp<IBinder> binder =
969 defaultServiceManager()->checkService(String16("power"));
970 if (binder == 0) {
971 ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
972 } else {
973 mPowerManager = interface_cast<IPowerManager>(binder);
974 binder->linkToDeath(mDeathRecipient);
975 }
976 }
977 }
978
updateWakeLockUids_l(const SortedVector<uid_t> & uids)979 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<uid_t> &uids) {
980 getPowerManager_l();
981
982 #if !LOG_NDEBUG
983 std::stringstream s;
984 for (uid_t uid : uids) {
985 s << uid << " ";
986 }
987 ALOGD("updateWakeLockUids_l %s uids:%s", mThreadName, s.str().c_str());
988 #endif
989
990 if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
991 if (mSystemReady) {
992 ALOGE("no wake lock to update, but system ready!");
993 } else {
994 ALOGW("no wake lock to update, system not ready yet");
995 }
996 return;
997 }
998 if (mPowerManager != 0) {
999 std::vector<int> uidsAsInt(uids.begin(), uids.end()); // powermanager expects uids as ints
1000 status_t status = mPowerManager->updateWakeLockUids(
1001 mWakeLockToken, uidsAsInt.size(), uidsAsInt.data(),
1002 true /* FIXME force oneway contrary to .aidl */);
1003 ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1004 }
1005 }
1006
clearPowerManager()1007 void AudioFlinger::ThreadBase::clearPowerManager()
1008 {
1009 Mutex::Autolock _l(mLock);
1010 releaseWakeLock_l();
1011 mPowerManager.clear();
1012 }
1013
binderDied(const wp<IBinder> & who __unused)1014 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1015 {
1016 sp<ThreadBase> thread = mThread.promote();
1017 if (thread != 0) {
1018 thread->clearPowerManager();
1019 }
1020 ALOGW("power manager service died !!!");
1021 }
1022
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1023 void AudioFlinger::ThreadBase::setEffectSuspended_l(
1024 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1025 {
1026 sp<EffectChain> chain = getEffectChain_l(sessionId);
1027 if (chain != 0) {
1028 if (type != NULL) {
1029 chain->setEffectSuspended_l(type, suspend);
1030 } else {
1031 chain->setEffectSuspendedAll_l(suspend);
1032 }
1033 }
1034
1035 updateSuspendedSessions_l(type, suspend, sessionId);
1036 }
1037
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1038 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1039 {
1040 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1041 if (index < 0) {
1042 return;
1043 }
1044
1045 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1046 mSuspendedSessions.valueAt(index);
1047
1048 for (size_t i = 0; i < sessionEffects.size(); i++) {
1049 const sp<SuspendedSessionDesc>& desc = sessionEffects.valueAt(i);
1050 for (int j = 0; j < desc->mRefCount; j++) {
1051 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1052 chain->setEffectSuspendedAll_l(true);
1053 } else {
1054 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1055 desc->mType.timeLow);
1056 chain->setEffectSuspended_l(&desc->mType, true);
1057 }
1058 }
1059 }
1060 }
1061
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1062 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1063 bool suspend,
1064 audio_session_t sessionId)
1065 {
1066 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1067
1068 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1069
1070 if (suspend) {
1071 if (index >= 0) {
1072 sessionEffects = mSuspendedSessions.valueAt(index);
1073 } else {
1074 mSuspendedSessions.add(sessionId, sessionEffects);
1075 }
1076 } else {
1077 if (index < 0) {
1078 return;
1079 }
1080 sessionEffects = mSuspendedSessions.valueAt(index);
1081 }
1082
1083
1084 int key = EffectChain::kKeyForSuspendAll;
1085 if (type != NULL) {
1086 key = type->timeLow;
1087 }
1088 index = sessionEffects.indexOfKey(key);
1089
1090 sp<SuspendedSessionDesc> desc;
1091 if (suspend) {
1092 if (index >= 0) {
1093 desc = sessionEffects.valueAt(index);
1094 } else {
1095 desc = new SuspendedSessionDesc();
1096 if (type != NULL) {
1097 desc->mType = *type;
1098 }
1099 sessionEffects.add(key, desc);
1100 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1101 }
1102 desc->mRefCount++;
1103 } else {
1104 if (index < 0) {
1105 return;
1106 }
1107 desc = sessionEffects.valueAt(index);
1108 if (--desc->mRefCount == 0) {
1109 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1110 sessionEffects.removeItemsAt(index);
1111 if (sessionEffects.isEmpty()) {
1112 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1113 sessionId);
1114 mSuspendedSessions.removeItem(sessionId);
1115 }
1116 }
1117 }
1118 if (!sessionEffects.isEmpty()) {
1119 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1120 }
1121 }
1122
checkSuspendOnEffectEnabled(const sp<EffectModule> & effect,bool enabled,audio_session_t sessionId)1123 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1124 bool enabled,
1125 audio_session_t sessionId)
1126 {
1127 Mutex::Autolock _l(mLock);
1128 checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1129 }
1130
checkSuspendOnEffectEnabled_l(const sp<EffectModule> & effect,bool enabled,audio_session_t sessionId)1131 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1132 bool enabled,
1133 audio_session_t sessionId)
1134 {
1135 if (mType != RECORD) {
1136 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1137 // another session. This gives the priority to well behaved effect control panels
1138 // and applications not using global effects.
1139 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1140 // global effects
1141 if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1142 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1143 }
1144 }
1145
1146 sp<EffectChain> chain = getEffectChain_l(sessionId);
1147 if (chain != 0) {
1148 chain->checkSuspendOnEffectEnabled(effect, enabled);
1149 }
1150 }
1151
1152 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1153 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1154 const effect_descriptor_t *desc, audio_session_t sessionId)
1155 {
1156 // No global effect sessions on record threads
1157 if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1158 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1159 desc->name, mThreadName);
1160 return BAD_VALUE;
1161 }
1162 // only pre processing effects on record thread
1163 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1164 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1165 desc->name, mThreadName);
1166 return BAD_VALUE;
1167 }
1168
1169 // always allow effects without processing load or latency
1170 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1171 return NO_ERROR;
1172 }
1173
1174 audio_input_flags_t flags = mInput->flags;
1175 if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1176 if (flags & AUDIO_INPUT_FLAG_RAW) {
1177 ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1178 desc->name, mThreadName);
1179 return BAD_VALUE;
1180 }
1181 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1182 ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1183 desc->name, mThreadName);
1184 return BAD_VALUE;
1185 }
1186 }
1187 return NO_ERROR;
1188 }
1189
1190 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1191 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1192 const effect_descriptor_t *desc, audio_session_t sessionId)
1193 {
1194 // no preprocessing on playback threads
1195 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1196 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1197 " thread %s", desc->name, mThreadName);
1198 return BAD_VALUE;
1199 }
1200
1201 // always allow effects without processing load or latency
1202 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1203 return NO_ERROR;
1204 }
1205
1206 switch (mType) {
1207 case MIXER: {
1208 #ifndef MULTICHANNEL_EFFECT_CHAIN
1209 // Reject any effect on mixer multichannel sinks.
1210 // TODO: fix both format and multichannel issues with effects.
1211 if (mChannelCount != FCC_2) {
1212 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1213 " thread %s", desc->name, mChannelCount, mThreadName);
1214 return BAD_VALUE;
1215 }
1216 #endif
1217 audio_output_flags_t flags = mOutput->flags;
1218 if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1219 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1220 // global effects are applied only to non fast tracks if they are SW
1221 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1222 break;
1223 }
1224 } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1225 // only post processing on output stage session
1226 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1227 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1228 " on output stage session", desc->name);
1229 return BAD_VALUE;
1230 }
1231 } else {
1232 // no restriction on effects applied on non fast tracks
1233 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1234 break;
1235 }
1236 }
1237
1238 if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1239 ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1240 desc->name);
1241 return BAD_VALUE;
1242 }
1243 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1244 ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1245 " in fast mode", desc->name);
1246 return BAD_VALUE;
1247 }
1248 }
1249 } break;
1250 case OFFLOAD:
1251 // nothing actionable on offload threads, if the effect:
1252 // - is offloadable: the effect can be created
1253 // - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1254 // will take care of invalidating the tracks of the thread
1255 break;
1256 case DIRECT:
1257 // Reject any effect on Direct output threads for now, since the format of
1258 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1259 ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1260 desc->name, mThreadName);
1261 return BAD_VALUE;
1262 case DUPLICATING:
1263 #ifndef MULTICHANNEL_EFFECT_CHAIN
1264 // Reject any effect on mixer multichannel sinks.
1265 // TODO: fix both format and multichannel issues with effects.
1266 if (mChannelCount != FCC_2) {
1267 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1268 " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1269 return BAD_VALUE;
1270 }
1271 #endif
1272 if ((sessionId == AUDIO_SESSION_OUTPUT_STAGE) || (sessionId == AUDIO_SESSION_OUTPUT_MIX)) {
1273 ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1274 " thread %s", desc->name, mThreadName);
1275 return BAD_VALUE;
1276 }
1277 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1278 ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1279 " DUPLICATING thread %s", desc->name, mThreadName);
1280 return BAD_VALUE;
1281 }
1282 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1283 ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1284 " DUPLICATING thread %s", desc->name, mThreadName);
1285 return BAD_VALUE;
1286 }
1287 break;
1288 default:
1289 LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1290 }
1291
1292 return NO_ERROR;
1293 }
1294
1295 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,audio_session_t sessionId,effect_descriptor_t * desc,int * enabled,status_t * status,bool pinned)1296 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1297 const sp<AudioFlinger::Client>& client,
1298 const sp<IEffectClient>& effectClient,
1299 int32_t priority,
1300 audio_session_t sessionId,
1301 effect_descriptor_t *desc,
1302 int *enabled,
1303 status_t *status,
1304 bool pinned)
1305 {
1306 sp<EffectModule> effect;
1307 sp<EffectHandle> handle;
1308 status_t lStatus;
1309 sp<EffectChain> chain;
1310 bool chainCreated = false;
1311 bool effectCreated = false;
1312 audio_unique_id_t effectId = AUDIO_UNIQUE_ID_USE_UNSPECIFIED;
1313
1314 lStatus = initCheck();
1315 if (lStatus != NO_ERROR) {
1316 ALOGW("createEffect_l() Audio driver not initialized.");
1317 goto Exit;
1318 }
1319
1320 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1321
1322 { // scope for mLock
1323 Mutex::Autolock _l(mLock);
1324
1325 lStatus = checkEffectCompatibility_l(desc, sessionId);
1326 if (lStatus != NO_ERROR) {
1327 goto Exit;
1328 }
1329
1330 // check for existing effect chain with the requested audio session
1331 chain = getEffectChain_l(sessionId);
1332 if (chain == 0) {
1333 // create a new chain for this session
1334 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1335 chain = new EffectChain(this, sessionId);
1336 addEffectChain_l(chain);
1337 chain->setStrategy(getStrategyForSession_l(sessionId));
1338 chainCreated = true;
1339 } else {
1340 effect = chain->getEffectFromDesc_l(desc);
1341 }
1342
1343 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1344
1345 if (effect == 0) {
1346 effectId = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1347 // create a new effect module if none present in the chain
1348 lStatus = chain->createEffect_l(effect, this, desc, effectId, sessionId, pinned);
1349 if (lStatus != NO_ERROR) {
1350 goto Exit;
1351 }
1352 effectCreated = true;
1353
1354 effect->setDevice(mOutDevice);
1355 effect->setDevice(mInDevice);
1356 effect->setMode(mAudioFlinger->getMode());
1357 effect->setAudioSource(mAudioSource);
1358 }
1359 // create effect handle and connect it to effect module
1360 handle = new EffectHandle(effect, client, effectClient, priority);
1361 lStatus = handle->initCheck();
1362 if (lStatus == OK) {
1363 lStatus = effect->addHandle(handle.get());
1364 }
1365 if (enabled != NULL) {
1366 *enabled = (int)effect->isEnabled();
1367 }
1368 }
1369
1370 Exit:
1371 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1372 Mutex::Autolock _l(mLock);
1373 if (effectCreated) {
1374 chain->removeEffect_l(effect);
1375 }
1376 if (chainCreated) {
1377 removeEffectChain_l(chain);
1378 }
1379 // handle must be cleared by caller to avoid deadlock.
1380 }
1381
1382 *status = lStatus;
1383 return handle;
1384 }
1385
disconnectEffectHandle(EffectHandle * handle,bool unpinIfLast)1386 void AudioFlinger::ThreadBase::disconnectEffectHandle(EffectHandle *handle,
1387 bool unpinIfLast)
1388 {
1389 bool remove = false;
1390 sp<EffectModule> effect;
1391 {
1392 Mutex::Autolock _l(mLock);
1393
1394 effect = handle->effect().promote();
1395 if (effect == 0) {
1396 return;
1397 }
1398 // restore suspended effects if the disconnected handle was enabled and the last one.
1399 remove = (effect->removeHandle(handle) == 0) && (!effect->isPinned() || unpinIfLast);
1400 if (remove) {
1401 removeEffect_l(effect, true);
1402 }
1403 }
1404 if (remove) {
1405 mAudioFlinger->updateOrphanEffectChains(effect);
1406 if (handle->enabled()) {
1407 checkSuspendOnEffectEnabled(effect, false, effect->sessionId());
1408 }
1409 }
1410 }
1411
getEffect(audio_session_t sessionId,int effectId)1412 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1413 int effectId)
1414 {
1415 Mutex::Autolock _l(mLock);
1416 return getEffect_l(sessionId, effectId);
1417 }
1418
getEffect_l(audio_session_t sessionId,int effectId)1419 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1420 int effectId)
1421 {
1422 sp<EffectChain> chain = getEffectChain_l(sessionId);
1423 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1424 }
1425
getEffectIds_l(audio_session_t sessionId)1426 std::vector<int> AudioFlinger::ThreadBase::getEffectIds_l(audio_session_t sessionId)
1427 {
1428 sp<EffectChain> chain = getEffectChain_l(sessionId);
1429 return chain != nullptr ? chain->getEffectIds() : std::vector<int>{};
1430 }
1431
1432 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1433 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1434 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1435 {
1436 // check for existing effect chain with the requested audio session
1437 audio_session_t sessionId = effect->sessionId();
1438 sp<EffectChain> chain = getEffectChain_l(sessionId);
1439 bool chainCreated = false;
1440
1441 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1442 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %#x",
1443 this, effect->desc().name, effect->desc().flags);
1444
1445 if (chain == 0) {
1446 // create a new chain for this session
1447 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1448 chain = new EffectChain(this, sessionId);
1449 addEffectChain_l(chain);
1450 chain->setStrategy(getStrategyForSession_l(sessionId));
1451 chainCreated = true;
1452 }
1453 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1454
1455 if (chain->getEffectFromId_l(effect->id()) != 0) {
1456 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1457 this, effect->desc().name, chain.get());
1458 return BAD_VALUE;
1459 }
1460
1461 effect->setOffloaded(mType == OFFLOAD, mId);
1462
1463 status_t status = chain->addEffect_l(effect);
1464 if (status != NO_ERROR) {
1465 if (chainCreated) {
1466 removeEffectChain_l(chain);
1467 }
1468 return status;
1469 }
1470
1471 effect->setDevice(mOutDevice);
1472 effect->setDevice(mInDevice);
1473 effect->setMode(mAudioFlinger->getMode());
1474 effect->setAudioSource(mAudioSource);
1475
1476 return NO_ERROR;
1477 }
1478
removeEffect_l(const sp<EffectModule> & effect,bool release)1479 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect, bool release) {
1480
1481 ALOGV("%s %p effect %p", __FUNCTION__, this, effect.get());
1482 effect_descriptor_t desc = effect->desc();
1483 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1484 detachAuxEffect_l(effect->id());
1485 }
1486
1487 sp<EffectChain> chain = effect->chain().promote();
1488 if (chain != 0) {
1489 // remove effect chain if removing last effect
1490 if (chain->removeEffect_l(effect, release) == 0) {
1491 removeEffectChain_l(chain);
1492 }
1493 } else {
1494 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1495 }
1496 }
1497
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1498 void AudioFlinger::ThreadBase::lockEffectChains_l(
1499 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1500 {
1501 effectChains = mEffectChains;
1502 for (size_t i = 0; i < mEffectChains.size(); i++) {
1503 mEffectChains[i]->lock();
1504 }
1505 }
1506
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1507 void AudioFlinger::ThreadBase::unlockEffectChains(
1508 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1509 {
1510 for (size_t i = 0; i < effectChains.size(); i++) {
1511 effectChains[i]->unlock();
1512 }
1513 }
1514
getEffectChain(audio_session_t sessionId)1515 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1516 {
1517 Mutex::Autolock _l(mLock);
1518 return getEffectChain_l(sessionId);
1519 }
1520
getEffectChain_l(audio_session_t sessionId) const1521 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1522 const
1523 {
1524 size_t size = mEffectChains.size();
1525 for (size_t i = 0; i < size; i++) {
1526 if (mEffectChains[i]->sessionId() == sessionId) {
1527 return mEffectChains[i];
1528 }
1529 }
1530 return 0;
1531 }
1532
setMode(audio_mode_t mode)1533 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1534 {
1535 Mutex::Autolock _l(mLock);
1536 size_t size = mEffectChains.size();
1537 for (size_t i = 0; i < size; i++) {
1538 mEffectChains[i]->setMode_l(mode);
1539 }
1540 }
1541
toAudioPortConfig(struct audio_port_config * config)1542 void AudioFlinger::ThreadBase::toAudioPortConfig(struct audio_port_config *config)
1543 {
1544 config->type = AUDIO_PORT_TYPE_MIX;
1545 config->ext.mix.handle = mId;
1546 config->sample_rate = mSampleRate;
1547 config->format = mFormat;
1548 config->channel_mask = mChannelMask;
1549 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1550 AUDIO_PORT_CONFIG_FORMAT;
1551 }
1552
systemReady()1553 void AudioFlinger::ThreadBase::systemReady()
1554 {
1555 Mutex::Autolock _l(mLock);
1556 if (mSystemReady) {
1557 return;
1558 }
1559 mSystemReady = true;
1560
1561 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1562 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1563 }
1564 mPendingConfigEvents.clear();
1565 }
1566
1567 template <typename T>
add(const sp<T> & track)1568 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::add(const sp<T> &track) {
1569 ssize_t index = mActiveTracks.indexOf(track);
1570 if (index >= 0) {
1571 ALOGW("ActiveTracks<T>::add track %p already there", track.get());
1572 return index;
1573 }
1574 logTrack("add", track);
1575 mActiveTracksGeneration++;
1576 mLatestActiveTrack = track;
1577 ++mBatteryCounter[track->uid()].second;
1578 mHasChanged = true;
1579 return mActiveTracks.add(track);
1580 }
1581
1582 template <typename T>
remove(const sp<T> & track)1583 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::remove(const sp<T> &track) {
1584 ssize_t index = mActiveTracks.remove(track);
1585 if (index < 0) {
1586 ALOGW("ActiveTracks<T>::remove nonexistent track %p", track.get());
1587 return index;
1588 }
1589 logTrack("remove", track);
1590 mActiveTracksGeneration++;
1591 --mBatteryCounter[track->uid()].second;
1592 // mLatestActiveTrack is not cleared even if is the same as track.
1593 mHasChanged = true;
1594 #ifdef TEE_SINK
1595 track->dumpTee(-1 /* fd */, "_REMOVE");
1596 #endif
1597 return index;
1598 }
1599
1600 template <typename T>
clear()1601 void AudioFlinger::ThreadBase::ActiveTracks<T>::clear() {
1602 for (const sp<T> &track : mActiveTracks) {
1603 BatteryNotifier::getInstance().noteStopAudio(track->uid());
1604 logTrack("clear", track);
1605 }
1606 mLastActiveTracksGeneration = mActiveTracksGeneration;
1607 if (!mActiveTracks.empty()) { mHasChanged = true; }
1608 mActiveTracks.clear();
1609 mLatestActiveTrack.clear();
1610 mBatteryCounter.clear();
1611 }
1612
1613 template <typename T>
updatePowerState(sp<ThreadBase> thread,bool force)1614 void AudioFlinger::ThreadBase::ActiveTracks<T>::updatePowerState(
1615 sp<ThreadBase> thread, bool force) {
1616 // Updates ActiveTracks client uids to the thread wakelock.
1617 if (mActiveTracksGeneration != mLastActiveTracksGeneration || force) {
1618 thread->updateWakeLockUids_l(getWakeLockUids());
1619 mLastActiveTracksGeneration = mActiveTracksGeneration;
1620 }
1621
1622 // Updates BatteryNotifier uids
1623 for (auto it = mBatteryCounter.begin(); it != mBatteryCounter.end();) {
1624 const uid_t uid = it->first;
1625 ssize_t &previous = it->second.first;
1626 ssize_t ¤t = it->second.second;
1627 if (current > 0) {
1628 if (previous == 0) {
1629 BatteryNotifier::getInstance().noteStartAudio(uid);
1630 }
1631 previous = current;
1632 ++it;
1633 } else if (current == 0) {
1634 if (previous > 0) {
1635 BatteryNotifier::getInstance().noteStopAudio(uid);
1636 }
1637 it = mBatteryCounter.erase(it); // std::map<> is stable on iterator erase.
1638 } else /* (current < 0) */ {
1639 LOG_ALWAYS_FATAL("negative battery count %zd", current);
1640 }
1641 }
1642 }
1643
1644 template <typename T>
readAndClearHasChanged()1645 bool AudioFlinger::ThreadBase::ActiveTracks<T>::readAndClearHasChanged() {
1646 const bool hasChanged = mHasChanged;
1647 mHasChanged = false;
1648 return hasChanged;
1649 }
1650
1651 template <typename T>
logTrack(const char * funcName,const sp<T> & track) const1652 void AudioFlinger::ThreadBase::ActiveTracks<T>::logTrack(
1653 const char *funcName, const sp<T> &track) const {
1654 if (mLocalLog != nullptr) {
1655 String8 result;
1656 track->appendDump(result, false /* active */);
1657 mLocalLog->log("AT::%-10s(%p) %s", funcName, track.get(), result.string());
1658 }
1659 }
1660
broadcast_l()1661 void AudioFlinger::ThreadBase::broadcast_l()
1662 {
1663 // Thread could be blocked waiting for async
1664 // so signal it to handle state changes immediately
1665 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1666 // be lost so we also flag to prevent it blocking on mWaitWorkCV
1667 mSignalPending = true;
1668 mWaitWorkCV.broadcast();
1669 }
1670
1671 // Call only from threadLoop() or when it is idle.
1672 // Do not call from high performance code as this may do binder rpc to the MediaMetrics service.
sendStatistics(bool force)1673 void AudioFlinger::ThreadBase::sendStatistics(bool force)
1674 {
1675 // Do not log if we have no stats.
1676 // We choose the timestamp verifier because it is the most likely item to be present.
1677 const int64_t nstats = mTimestampVerifier.getN() - mLastRecordedTimestampVerifierN;
1678 if (nstats == 0) {
1679 return;
1680 }
1681
1682 // Don't log more frequently than once per 12 hours.
1683 // We use BOOTTIME to include suspend time.
1684 const int64_t timeNs = systemTime(SYSTEM_TIME_BOOTTIME);
1685 const int64_t sinceNs = timeNs - mLastRecordedTimeNs; // ok if mLastRecordedTimeNs = 0
1686 if (!force && sinceNs <= 12 * NANOS_PER_HOUR) {
1687 return;
1688 }
1689
1690 mLastRecordedTimestampVerifierN = mTimestampVerifier.getN();
1691 mLastRecordedTimeNs = timeNs;
1692
1693 std::unique_ptr<MediaAnalyticsItem> item(MediaAnalyticsItem::create("audiothread"));
1694
1695 #define MM_PREFIX "android.media.audiothread." // avoid cut-n-paste errors.
1696
1697 // thread configuration
1698 item->setInt32(MM_PREFIX "id", (int32_t)mId); // IO handle
1699 // item->setInt32(MM_PREFIX "portId", (int32_t)mPortId);
1700 item->setCString(MM_PREFIX "type", threadTypeToString(mType));
1701 item->setInt32(MM_PREFIX "sampleRate", (int32_t)mSampleRate);
1702 item->setInt64(MM_PREFIX "channelMask", (int64_t)mChannelMask);
1703 item->setCString(MM_PREFIX "encoding", toString(mFormat).c_str());
1704 item->setInt32(MM_PREFIX "frameCount", (int32_t)mFrameCount);
1705 item->setCString(MM_PREFIX "outDevice", toString(mOutDevice).c_str());
1706 item->setCString(MM_PREFIX "inDevice", toString(mInDevice).c_str());
1707
1708 // thread statistics
1709 if (mIoJitterMs.getN() > 0) {
1710 item->setDouble(MM_PREFIX "ioJitterMs.mean", mIoJitterMs.getMean());
1711 item->setDouble(MM_PREFIX "ioJitterMs.std", mIoJitterMs.getStdDev());
1712 }
1713 if (mProcessTimeMs.getN() > 0) {
1714 item->setDouble(MM_PREFIX "processTimeMs.mean", mProcessTimeMs.getMean());
1715 item->setDouble(MM_PREFIX "processTimeMs.std", mProcessTimeMs.getStdDev());
1716 }
1717 const auto tsjitter = mTimestampVerifier.getJitterMs();
1718 if (tsjitter.getN() > 0) {
1719 item->setDouble(MM_PREFIX "timestampJitterMs.mean", tsjitter.getMean());
1720 item->setDouble(MM_PREFIX "timestampJitterMs.std", tsjitter.getStdDev());
1721 }
1722 if (mLatencyMs.getN() > 0) {
1723 item->setDouble(MM_PREFIX "latencyMs.mean", mLatencyMs.getMean());
1724 item->setDouble(MM_PREFIX "latencyMs.std", mLatencyMs.getStdDev());
1725 }
1726
1727 item->selfrecord();
1728 }
1729
1730 // ----------------------------------------------------------------------------
1731 // Playback
1732 // ----------------------------------------------------------------------------
1733
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type,bool systemReady)1734 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1735 AudioStreamOut* output,
1736 audio_io_handle_t id,
1737 audio_devices_t device,
1738 type_t type,
1739 bool systemReady)
1740 : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1741 mNormalFrameCount(0), mSinkBuffer(NULL),
1742 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1743 mMixerBuffer(NULL),
1744 mMixerBufferSize(0),
1745 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1746 mMixerBufferValid(false),
1747 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1748 mEffectBuffer(NULL),
1749 mEffectBufferSize(0),
1750 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1751 mEffectBufferValid(false),
1752 mSuspended(0), mBytesWritten(0),
1753 mFramesWritten(0),
1754 mSuspendedFrames(0),
1755 mActiveTracks(&this->mLocalLog),
1756 // mStreamTypes[] initialized in constructor body
1757 mTracks(type == MIXER),
1758 mOutput(output),
1759 mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1760 mMixerStatus(MIXER_IDLE),
1761 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1762 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1763 mBytesRemaining(0),
1764 mCurrentWriteLength(0),
1765 mUseAsyncWrite(false),
1766 mWriteAckSequence(0),
1767 mDrainSequence(0),
1768 mScreenState(AudioFlinger::mScreenState),
1769 // index 0 is reserved for normal mixer's submix
1770 mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1771 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1772 mLeftVolFloat(-1.0), mRightVolFloat(-1.0)
1773 {
1774 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1775 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1776
1777 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1778 // it would be safer to explicitly pass initial masterVolume/masterMute as
1779 // parameter.
1780 //
1781 // If the HAL we are using has support for master volume or master mute,
1782 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1783 // and the mute set to false).
1784 mMasterVolume = audioFlinger->masterVolume_l();
1785 mMasterMute = audioFlinger->masterMute_l();
1786 if (mOutput && mOutput->audioHwDev) {
1787 if (mOutput->audioHwDev->canSetMasterVolume()) {
1788 mMasterVolume = 1.0;
1789 }
1790
1791 if (mOutput->audioHwDev->canSetMasterMute()) {
1792 mMasterMute = false;
1793 }
1794 mIsMsdDevice = strcmp(
1795 mOutput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
1796 }
1797
1798 readOutputParameters_l();
1799
1800 // TODO: We may also match on address as well as device type for
1801 // AUDIO_DEVICE_OUT_BUS, AUDIO_DEVICE_OUT_ALL_A2DP, AUDIO_DEVICE_OUT_REMOTE_SUBMIX
1802 if (type == MIXER || type == DIRECT) {
1803 mTimestampCorrectedDevices = (audio_devices_t)property_get_int64(
1804 "audio.timestamp.corrected_output_devices",
1805 (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_OUT_BUS // turn on by default for MSD
1806 : AUDIO_DEVICE_NONE));
1807 }
1808
1809 // ++ operator does not compile
1810 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_FOR_POLICY_CNT;
1811 stream = (audio_stream_type_t) (stream + 1)) {
1812 mStreamTypes[stream].volume = 0.0f;
1813 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1814 }
1815 // Audio patch volume is always max
1816 mStreamTypes[AUDIO_STREAM_PATCH].volume = 1.0f;
1817 mStreamTypes[AUDIO_STREAM_PATCH].mute = false;
1818 }
1819
~PlaybackThread()1820 AudioFlinger::PlaybackThread::~PlaybackThread()
1821 {
1822 mAudioFlinger->unregisterWriter(mNBLogWriter);
1823 free(mSinkBuffer);
1824 free(mMixerBuffer);
1825 free(mEffectBuffer);
1826 }
1827
1828 // Thread virtuals
1829
onFirstRef()1830 void AudioFlinger::PlaybackThread::onFirstRef()
1831 {
1832 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1833 }
1834
1835 // ThreadBase virtuals
preExit()1836 void AudioFlinger::PlaybackThread::preExit()
1837 {
1838 ALOGV(" preExit()");
1839 // FIXME this is using hard-coded strings but in the future, this functionality will be
1840 // converted to use audio HAL extensions required to support tunneling
1841 status_t result = mOutput->stream->setParameters(String8("exiting=1"));
1842 ALOGE_IF(result != OK, "Error when setting parameters on exit: %d", result);
1843 }
1844
dumpTracks_l(int fd,const Vector<String16> & args __unused)1845 void AudioFlinger::PlaybackThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
1846 {
1847 String8 result;
1848
1849 result.appendFormat(" Stream volumes in dB: ");
1850 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1851 const stream_type_t *st = &mStreamTypes[i];
1852 if (i > 0) {
1853 result.appendFormat(", ");
1854 }
1855 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1856 if (st->mute) {
1857 result.append("M");
1858 }
1859 }
1860 result.append("\n");
1861 write(fd, result.string(), result.length());
1862 result.clear();
1863
1864 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
1865 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1866 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
1867 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1868
1869 size_t numtracks = mTracks.size();
1870 size_t numactive = mActiveTracks.size();
1871 dprintf(fd, " %zu Tracks", numtracks);
1872 size_t numactiveseen = 0;
1873 const char *prefix = " ";
1874 if (numtracks) {
1875 dprintf(fd, " of which %zu are active\n", numactive);
1876 result.append(prefix);
1877 mTracks[0]->appendDumpHeader(result);
1878 for (size_t i = 0; i < numtracks; ++i) {
1879 sp<Track> track = mTracks[i];
1880 if (track != 0) {
1881 bool active = mActiveTracks.indexOf(track) >= 0;
1882 if (active) {
1883 numactiveseen++;
1884 }
1885 result.append(prefix);
1886 track->appendDump(result, active);
1887 }
1888 }
1889 } else {
1890 result.append("\n");
1891 }
1892 if (numactiveseen != numactive) {
1893 // some tracks in the active list were not in the tracks list
1894 result.append(" The following tracks are in the active list but"
1895 " not in the track list\n");
1896 result.append(prefix);
1897 mActiveTracks[0]->appendDumpHeader(result);
1898 for (size_t i = 0; i < numactive; ++i) {
1899 sp<Track> track = mActiveTracks[i];
1900 if (mTracks.indexOf(track) < 0) {
1901 result.append(prefix);
1902 track->appendDump(result, true /* active */);
1903 }
1904 }
1905 }
1906
1907 write(fd, result.string(), result.size());
1908 }
1909
dumpInternals_l(int fd,const Vector<String16> & args __unused)1910 void AudioFlinger::PlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
1911 {
1912 dprintf(fd, " Master mute: %s\n", mMasterMute ? "on" : "off");
1913 if (mHapticChannelMask != AUDIO_CHANNEL_NONE) {
1914 dprintf(fd, " Haptic channel mask: %#x (%s)\n", mHapticChannelMask,
1915 channelMaskToString(mHapticChannelMask, true /* output */).c_str());
1916 }
1917 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
1918 dprintf(fd, " Total writes: %d\n", mNumWrites);
1919 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
1920 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
1921 dprintf(fd, " Suspend count: %d\n", mSuspended);
1922 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
1923 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
1924 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
1925 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
1926 dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1927 AudioStreamOut *output = mOutput;
1928 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1929 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n",
1930 output, flags, toString(flags).c_str());
1931 dprintf(fd, " Frames written: %lld\n", (long long)mFramesWritten);
1932 dprintf(fd, " Suspended frames: %lld\n", (long long)mSuspendedFrames);
1933 if (mPipeSink.get() != nullptr) {
1934 dprintf(fd, " PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten());
1935 }
1936 if (output != nullptr) {
1937 dprintf(fd, " Hal stream dump:\n");
1938 (void)output->stream->dump(fd);
1939 }
1940 }
1941
1942 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,size_t * pNotificationFrameCount,uint32_t notificationsPerBuffer,float speed,const sp<IMemory> & sharedBuffer,audio_session_t sessionId,audio_output_flags_t * flags,pid_t creatorPid,pid_t tid,uid_t uid,status_t * status,audio_port_handle_t portId)1943 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1944 const sp<AudioFlinger::Client>& client,
1945 audio_stream_type_t streamType,
1946 const audio_attributes_t& attr,
1947 uint32_t *pSampleRate,
1948 audio_format_t format,
1949 audio_channel_mask_t channelMask,
1950 size_t *pFrameCount,
1951 size_t *pNotificationFrameCount,
1952 uint32_t notificationsPerBuffer,
1953 float speed,
1954 const sp<IMemory>& sharedBuffer,
1955 audio_session_t sessionId,
1956 audio_output_flags_t *flags,
1957 pid_t creatorPid,
1958 pid_t tid,
1959 uid_t uid,
1960 status_t *status,
1961 audio_port_handle_t portId)
1962 {
1963 size_t frameCount = *pFrameCount;
1964 size_t notificationFrameCount = *pNotificationFrameCount;
1965 sp<Track> track;
1966 status_t lStatus;
1967 audio_output_flags_t outputFlags = mOutput->flags;
1968 audio_output_flags_t requestedFlags = *flags;
1969 uint32_t sampleRate;
1970
1971 if (sharedBuffer != 0 && checkIMemory(sharedBuffer) != NO_ERROR) {
1972 lStatus = BAD_VALUE;
1973 goto Exit;
1974 }
1975
1976 if (*pSampleRate == 0) {
1977 *pSampleRate = mSampleRate;
1978 }
1979 sampleRate = *pSampleRate;
1980
1981 // special case for FAST flag considered OK if fast mixer is present
1982 if (hasFastMixer()) {
1983 outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
1984 }
1985
1986 // Check if requested flags are compatible with output stream flags
1987 if ((*flags & outputFlags) != *flags) {
1988 ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
1989 *flags, outputFlags);
1990 *flags = (audio_output_flags_t)(*flags & outputFlags);
1991 }
1992
1993 // client expresses a preference for FAST, but we get the final say
1994 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
1995 if (
1996 // PCM data
1997 audio_is_linear_pcm(format) &&
1998 // TODO: extract as a data library function that checks that a computationally
1999 // expensive downmixer is not required: isFastOutputChannelConversion()
2000 (channelMask == (mChannelMask | mHapticChannelMask) ||
2001 mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
2002 (channelMask == AUDIO_CHANNEL_OUT_MONO
2003 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
2004 // hardware sample rate
2005 (sampleRate == mSampleRate) &&
2006 // normal mixer has an associated fast mixer
2007 hasFastMixer() &&
2008 // there are sufficient fast track slots available
2009 (mFastTrackAvailMask != 0)
2010 // FIXME test that MixerThread for this fast track has a capable output HAL
2011 // FIXME add a permission test also?
2012 ) {
2013 // static tracks can have any nonzero framecount, streaming tracks check against minimum.
2014 if (sharedBuffer == 0) {
2015 // read the fast track multiplier property the first time it is needed
2016 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
2017 if (ok != 0) {
2018 ALOGE("%s pthread_once failed: %d", __func__, ok);
2019 }
2020 frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
2021 }
2022
2023 // check compatibility with audio effects.
2024 { // scope for mLock
2025 Mutex::Autolock _l(mLock);
2026 for (audio_session_t session : {
2027 AUDIO_SESSION_OUTPUT_STAGE,
2028 AUDIO_SESSION_OUTPUT_MIX,
2029 sessionId,
2030 }) {
2031 sp<EffectChain> chain = getEffectChain_l(session);
2032 if (chain.get() != nullptr) {
2033 audio_output_flags_t old = *flags;
2034 chain->checkOutputFlagCompatibility(flags);
2035 if (old != *flags) {
2036 ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x",
2037 (int)session, (int)old, (int)*flags);
2038 }
2039 }
2040 }
2041 }
2042 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
2043 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
2044 frameCount, mFrameCount);
2045 } else {
2046 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
2047 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
2048 "sampleRate=%u mSampleRate=%u "
2049 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
2050 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
2051 audio_is_linear_pcm(format),
2052 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
2053 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
2054 }
2055 }
2056
2057 if (!audio_has_proportional_frames(format)) {
2058 if (sharedBuffer != 0) {
2059 // Same comment as below about ignoring frameCount parameter for set()
2060 frameCount = sharedBuffer->size();
2061 } else if (frameCount == 0) {
2062 frameCount = mNormalFrameCount;
2063 }
2064 if (notificationFrameCount != frameCount) {
2065 notificationFrameCount = frameCount;
2066 }
2067 } else if (sharedBuffer != 0) {
2068 // FIXME: Ensure client side memory buffers need
2069 // not have additional alignment beyond sample
2070 // (e.g. 16 bit stereo accessed as 32 bit frame).
2071 size_t alignment = audio_bytes_per_sample(format);
2072 if (alignment & 1) {
2073 // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java).
2074 alignment = 1;
2075 }
2076 uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
2077 size_t frameSize = channelCount * audio_bytes_per_sample(format);
2078 if (channelCount > 1) {
2079 // More than 2 channels does not require stronger alignment than stereo
2080 alignment <<= 1;
2081 }
2082 if (((uintptr_t)sharedBuffer->pointer() & (alignment - 1)) != 0) {
2083 ALOGE("Invalid buffer alignment: address %p, channel count %u",
2084 sharedBuffer->pointer(), channelCount);
2085 lStatus = BAD_VALUE;
2086 goto Exit;
2087 }
2088
2089 // When initializing a shared buffer AudioTrack via constructors,
2090 // there's no frameCount parameter.
2091 // But when initializing a shared buffer AudioTrack via set(),
2092 // there _is_ a frameCount parameter. We silently ignore it.
2093 frameCount = sharedBuffer->size() / frameSize;
2094 } else {
2095 size_t minFrameCount = 0;
2096 // For fast tracks we try to respect the application's request for notifications per buffer.
2097 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2098 if (notificationsPerBuffer > 0) {
2099 // Avoid possible arithmetic overflow during multiplication.
2100 if (notificationsPerBuffer > SIZE_MAX / mFrameCount) {
2101 ALOGE("Requested notificationPerBuffer=%u ignored for HAL frameCount=%zu",
2102 notificationsPerBuffer, mFrameCount);
2103 } else {
2104 minFrameCount = mFrameCount * notificationsPerBuffer;
2105 }
2106 }
2107 } else {
2108 // For normal PCM streaming tracks, update minimum frame count.
2109 // Buffer depth is forced to be at least 2 x the normal mixer frame count and
2110 // cover audio hardware latency.
2111 // This is probably too conservative, but legacy application code may depend on it.
2112 // If you change this calculation, also review the start threshold which is related.
2113 uint32_t latencyMs = latency_l();
2114 if (latencyMs == 0) {
2115 ALOGE("Error when retrieving output stream latency");
2116 lStatus = UNKNOWN_ERROR;
2117 goto Exit;
2118 }
2119
2120 minFrameCount = AudioSystem::calculateMinFrameCount(latencyMs, mNormalFrameCount,
2121 mSampleRate, sampleRate, speed /*, 0 mNotificationsPerBufferReq*/);
2122
2123 }
2124 if (frameCount < minFrameCount) {
2125 frameCount = minFrameCount;
2126 }
2127 }
2128
2129 // Make sure that application is notified with sufficient margin before underrun.
2130 // The client can divide the AudioTrack buffer into sub-buffers,
2131 // and expresses its desire to server as the notification frame count.
2132 if (sharedBuffer == 0 && audio_is_linear_pcm(format)) {
2133 size_t maxNotificationFrames;
2134 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2135 // notify every HAL buffer, regardless of the size of the track buffer
2136 maxNotificationFrames = mFrameCount;
2137 } else {
2138 // Triple buffer the notification period for a triple buffered mixer period;
2139 // otherwise, double buffering for the notification period is fine.
2140 //
2141 // TODO: This should be moved to AudioTrack to modify the notification period
2142 // on AudioTrack::setBufferSizeInFrames() changes.
2143 const int nBuffering =
2144 (uint64_t{frameCount} * mSampleRate)
2145 / (uint64_t{mNormalFrameCount} * sampleRate) == 3 ? 3 : 2;
2146
2147 maxNotificationFrames = frameCount / nBuffering;
2148 // If client requested a fast track but this was denied, then use the smaller maximum.
2149 if (requestedFlags & AUDIO_OUTPUT_FLAG_FAST) {
2150 size_t maxNotificationFramesFastDenied = FMS_20 * sampleRate / 1000;
2151 if (maxNotificationFrames > maxNotificationFramesFastDenied) {
2152 maxNotificationFrames = maxNotificationFramesFastDenied;
2153 }
2154 }
2155 }
2156 if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
2157 if (notificationFrameCount == 0) {
2158 ALOGD("Client defaulted notificationFrames to %zu for frameCount %zu",
2159 maxNotificationFrames, frameCount);
2160 } else {
2161 ALOGW("Client adjusted notificationFrames from %zu to %zu for frameCount %zu",
2162 notificationFrameCount, maxNotificationFrames, frameCount);
2163 }
2164 notificationFrameCount = maxNotificationFrames;
2165 }
2166 }
2167
2168 *pFrameCount = frameCount;
2169 *pNotificationFrameCount = notificationFrameCount;
2170
2171 switch (mType) {
2172
2173 case DIRECT:
2174 if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
2175 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2176 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
2177 "for output %p with format %#x",
2178 sampleRate, format, channelMask, mOutput, mFormat);
2179 lStatus = BAD_VALUE;
2180 goto Exit;
2181 }
2182 }
2183 break;
2184
2185 case OFFLOAD:
2186 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2187 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
2188 "for output %p with format %#x",
2189 sampleRate, format, channelMask, mOutput, mFormat);
2190 lStatus = BAD_VALUE;
2191 goto Exit;
2192 }
2193 break;
2194
2195 default:
2196 if (!audio_is_linear_pcm(format)) {
2197 ALOGE("createTrack_l() Bad parameter: format %#x \""
2198 "for output %p with format %#x",
2199 format, mOutput, mFormat);
2200 lStatus = BAD_VALUE;
2201 goto Exit;
2202 }
2203 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2204 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2205 lStatus = BAD_VALUE;
2206 goto Exit;
2207 }
2208 break;
2209
2210 }
2211
2212 lStatus = initCheck();
2213 if (lStatus != NO_ERROR) {
2214 ALOGE("createTrack_l() audio driver not initialized");
2215 goto Exit;
2216 }
2217
2218 { // scope for mLock
2219 Mutex::Autolock _l(mLock);
2220
2221 // all tracks in same audio session must share the same routing strategy otherwise
2222 // conflicts will happen when tracks are moved from one output to another by audio policy
2223 // manager
2224 uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2225 for (size_t i = 0; i < mTracks.size(); ++i) {
2226 sp<Track> t = mTracks[i];
2227 if (t != 0 && t->isExternalTrack()) {
2228 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2229 if (sessionId == t->sessionId() && strategy != actual) {
2230 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2231 strategy, actual);
2232 lStatus = BAD_VALUE;
2233 goto Exit;
2234 }
2235 }
2236 }
2237
2238 track = new Track(this, client, streamType, attr, sampleRate, format,
2239 channelMask, frameCount,
2240 nullptr /* buffer */, (size_t)0 /* bufferSize */, sharedBuffer,
2241 sessionId, creatorPid, uid, *flags, TrackBase::TYPE_DEFAULT, portId);
2242
2243 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2244 if (lStatus != NO_ERROR) {
2245 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2246 // track must be cleared from the caller as the caller has the AF lock
2247 goto Exit;
2248 }
2249 mTracks.add(track);
2250
2251 sp<EffectChain> chain = getEffectChain_l(sessionId);
2252 if (chain != 0) {
2253 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2254 track->setMainBuffer(chain->inBuffer());
2255 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2256 chain->incTrackCnt();
2257 }
2258
2259 if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2260 pid_t callingPid = IPCThreadState::self()->getCallingPid();
2261 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2262 // so ask activity manager to do this on our behalf
2263 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
2264 }
2265 }
2266
2267 lStatus = NO_ERROR;
2268
2269 Exit:
2270 *status = lStatus;
2271 return track;
2272 }
2273
2274 template<typename T>
remove(const sp<T> & track)2275 ssize_t AudioFlinger::PlaybackThread::Tracks<T>::remove(const sp<T> &track)
2276 {
2277 const int trackId = track->id();
2278 const ssize_t index = mTracks.remove(track);
2279 if (index >= 0) {
2280 if (mSaveDeletedTrackIds) {
2281 // We can't directly access mAudioMixer since the caller may be outside of threadLoop.
2282 // Instead, we add to mDeletedTrackIds which is solely used for mAudioMixer update,
2283 // to be handled when MixerThread::prepareTracks_l() next changes mAudioMixer.
2284 mDeletedTrackIds.emplace(trackId);
2285 }
2286 }
2287 return index;
2288 }
2289
correctLatency_l(uint32_t latency) const2290 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2291 {
2292 return latency;
2293 }
2294
latency() const2295 uint32_t AudioFlinger::PlaybackThread::latency() const
2296 {
2297 Mutex::Autolock _l(mLock);
2298 return latency_l();
2299 }
latency_l() const2300 uint32_t AudioFlinger::PlaybackThread::latency_l() const
2301 {
2302 uint32_t latency;
2303 if (initCheck() == NO_ERROR && mOutput->stream->getLatency(&latency) == OK) {
2304 return correctLatency_l(latency);
2305 }
2306 return 0;
2307 }
2308
setMasterVolume(float value)2309 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2310 {
2311 Mutex::Autolock _l(mLock);
2312 // Don't apply master volume in SW if our HAL can do it for us.
2313 if (mOutput && mOutput->audioHwDev &&
2314 mOutput->audioHwDev->canSetMasterVolume()) {
2315 mMasterVolume = 1.0;
2316 } else {
2317 mMasterVolume = value;
2318 }
2319 }
2320
setMasterBalance(float balance)2321 void AudioFlinger::PlaybackThread::setMasterBalance(float balance)
2322 {
2323 mMasterBalance.store(balance);
2324 }
2325
setMasterMute(bool muted)2326 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2327 {
2328 if (isDuplicating()) {
2329 return;
2330 }
2331 Mutex::Autolock _l(mLock);
2332 // Don't apply master mute in SW if our HAL can do it for us.
2333 if (mOutput && mOutput->audioHwDev &&
2334 mOutput->audioHwDev->canSetMasterMute()) {
2335 mMasterMute = false;
2336 } else {
2337 mMasterMute = muted;
2338 }
2339 }
2340
setStreamVolume(audio_stream_type_t stream,float value)2341 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2342 {
2343 Mutex::Autolock _l(mLock);
2344 mStreamTypes[stream].volume = value;
2345 broadcast_l();
2346 }
2347
setStreamMute(audio_stream_type_t stream,bool muted)2348 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2349 {
2350 Mutex::Autolock _l(mLock);
2351 mStreamTypes[stream].mute = muted;
2352 broadcast_l();
2353 }
2354
streamVolume(audio_stream_type_t stream) const2355 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2356 {
2357 Mutex::Autolock _l(mLock);
2358 return mStreamTypes[stream].volume;
2359 }
2360
setVolumeForOutput_l(float left,float right) const2361 void AudioFlinger::PlaybackThread::setVolumeForOutput_l(float left, float right) const
2362 {
2363 mOutput->stream->setVolume(left, right);
2364 }
2365
2366 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)2367 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2368 {
2369 status_t status = ALREADY_EXISTS;
2370
2371 if (mActiveTracks.indexOf(track) < 0) {
2372 // the track is newly added, make sure it fills up all its
2373 // buffers before playing. This is to ensure the client will
2374 // effectively get the latency it requested.
2375 if (track->isExternalTrack()) {
2376 TrackBase::track_state state = track->mState;
2377 mLock.unlock();
2378 status = AudioSystem::startOutput(track->portId());
2379 mLock.lock();
2380 // abort track was stopped/paused while we released the lock
2381 if (state != track->mState) {
2382 if (status == NO_ERROR) {
2383 mLock.unlock();
2384 AudioSystem::stopOutput(track->portId());
2385 mLock.lock();
2386 }
2387 return INVALID_OPERATION;
2388 }
2389 // abort if start is rejected by audio policy manager
2390 if (status != NO_ERROR) {
2391 return PERMISSION_DENIED;
2392 }
2393 #ifdef ADD_BATTERY_DATA
2394 // to track the speaker usage
2395 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2396 #endif
2397 sendIoConfigEvent_l(AUDIO_CLIENT_STARTED, track->creatorPid(), track->portId());
2398 }
2399
2400 // set retry count for buffer fill
2401 if (track->isOffloaded()) {
2402 if (track->isStopping_1()) {
2403 track->mRetryCount = kMaxTrackStopRetriesOffload;
2404 } else {
2405 track->mRetryCount = kMaxTrackStartupRetriesOffload;
2406 }
2407 track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2408 } else {
2409 track->mRetryCount = kMaxTrackStartupRetries;
2410 track->mFillingUpStatus =
2411 track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2412 }
2413
2414 if ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
2415 && mHapticChannelMask != AUDIO_CHANNEL_NONE) {
2416 // Unlock due to VibratorService will lock for this call and will
2417 // call Tracks.mute/unmute which also require thread's lock.
2418 mLock.unlock();
2419 const int intensity = AudioFlinger::onExternalVibrationStart(
2420 track->getExternalVibration());
2421 mLock.lock();
2422 track->setHapticIntensity(static_cast<AudioMixer::haptic_intensity_t>(intensity));
2423 // Haptic playback should be enabled by vibrator service.
2424 if (track->getHapticPlaybackEnabled()) {
2425 // Disable haptic playback of all active track to ensure only
2426 // one track playing haptic if current track should play haptic.
2427 for (const auto &t : mActiveTracks) {
2428 t->setHapticPlaybackEnabled(false);
2429 }
2430 }
2431 }
2432
2433 track->mResetDone = false;
2434 track->mPresentationCompleteFrames = 0;
2435 mActiveTracks.add(track);
2436 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2437 if (chain != 0) {
2438 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2439 track->sessionId());
2440 chain->incActiveTrackCnt();
2441 }
2442
2443 status = NO_ERROR;
2444 }
2445
2446 onAddNewTrack_l();
2447 return status;
2448 }
2449
destroyTrack_l(const sp<Track> & track)2450 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2451 {
2452 track->terminate();
2453 // active tracks are removed by threadLoop()
2454 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2455 track->mState = TrackBase::STOPPED;
2456 if (!trackActive) {
2457 removeTrack_l(track);
2458 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2459 track->mState = TrackBase::STOPPING_1;
2460 }
2461
2462 return trackActive;
2463 }
2464
removeTrack_l(const sp<Track> & track)2465 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2466 {
2467 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2468
2469 String8 result;
2470 track->appendDump(result, false /* active */);
2471 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
2472
2473 mTracks.remove(track);
2474 if (track->isFastTrack()) {
2475 int index = track->mFastIndex;
2476 ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2477 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2478 mFastTrackAvailMask |= 1 << index;
2479 // redundant as track is about to be destroyed, for dumpsys only
2480 track->mFastIndex = -1;
2481 }
2482 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2483 if (chain != 0) {
2484 chain->decTrackCnt();
2485 }
2486 }
2487
getParameters(const String8 & keys)2488 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2489 {
2490 Mutex::Autolock _l(mLock);
2491 String8 out_s8;
2492 if (initCheck() == NO_ERROR && mOutput->stream->getParameters(keys, &out_s8) == OK) {
2493 return out_s8;
2494 }
2495 return String8();
2496 }
2497
selectPresentation(int presentationId,int programId)2498 status_t AudioFlinger::DirectOutputThread::selectPresentation(int presentationId, int programId) {
2499 Mutex::Autolock _l(mLock);
2500 if (mOutput == nullptr || mOutput->stream == nullptr) {
2501 return NO_INIT;
2502 }
2503 return mOutput->stream->selectPresentation(presentationId, programId);
2504 }
2505
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)2506 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
2507 audio_port_handle_t portId) {
2508 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2509 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2510
2511 desc->mIoHandle = mId;
2512
2513 switch (event) {
2514 case AUDIO_OUTPUT_OPENED:
2515 case AUDIO_OUTPUT_REGISTERED:
2516 case AUDIO_OUTPUT_CONFIG_CHANGED:
2517 desc->mPatch = mPatch;
2518 desc->mChannelMask = mChannelMask;
2519 desc->mSamplingRate = mSampleRate;
2520 desc->mFormat = mFormat;
2521 desc->mFrameCount = mNormalFrameCount; // FIXME see
2522 // AudioFlinger::frameCount(audio_io_handle_t)
2523 desc->mFrameCountHAL = mFrameCount;
2524 desc->mLatency = latency_l();
2525 break;
2526 case AUDIO_CLIENT_STARTED:
2527 desc->mPatch = mPatch;
2528 desc->mPortId = portId;
2529 break;
2530 case AUDIO_OUTPUT_CLOSED:
2531 default:
2532 break;
2533 }
2534 mAudioFlinger->ioConfigChanged(event, desc, pid);
2535 }
2536
onWriteReady()2537 void AudioFlinger::PlaybackThread::onWriteReady()
2538 {
2539 mCallbackThread->resetWriteBlocked();
2540 }
2541
onDrainReady()2542 void AudioFlinger::PlaybackThread::onDrainReady()
2543 {
2544 mCallbackThread->resetDraining();
2545 }
2546
onError()2547 void AudioFlinger::PlaybackThread::onError()
2548 {
2549 mCallbackThread->setAsyncError();
2550 }
2551
resetWriteBlocked(uint32_t sequence)2552 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2553 {
2554 Mutex::Autolock _l(mLock);
2555 // reject out of sequence requests
2556 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2557 mWriteAckSequence &= ~1;
2558 mWaitWorkCV.signal();
2559 }
2560 }
2561
resetDraining(uint32_t sequence)2562 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2563 {
2564 Mutex::Autolock _l(mLock);
2565 // reject out of sequence requests
2566 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2567 // Register discontinuity when HW drain is completed because that can cause
2568 // the timestamp frame position to reset to 0 for direct and offload threads.
2569 // (Out of sequence requests are ignored, since the discontinuity would be handled
2570 // elsewhere, e.g. in flush).
2571 mTimestampVerifier.discontinuity();
2572 mDrainSequence &= ~1;
2573 mWaitWorkCV.signal();
2574 }
2575 }
2576
readOutputParameters_l()2577 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2578 {
2579 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2580 mSampleRate = mOutput->getSampleRate();
2581 mChannelMask = mOutput->getChannelMask();
2582 if (!audio_is_output_channel(mChannelMask)) {
2583 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2584 }
2585 if ((mType == MIXER || mType == DUPLICATING)
2586 && !isValidPcmSinkChannelMask(mChannelMask)) {
2587 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2588 mChannelMask);
2589 }
2590 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2591 mBalance.setChannelMask(mChannelMask);
2592
2593 // Get actual HAL format.
2594 status_t result = mOutput->stream->getFormat(&mHALFormat);
2595 LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream format: %d", result);
2596 // Get format from the shim, which will be different than the HAL format
2597 // if playing compressed audio over HDMI passthrough.
2598 mFormat = mOutput->getFormat();
2599 if (!audio_is_valid_format(mFormat)) {
2600 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2601 }
2602 if ((mType == MIXER || mType == DUPLICATING)
2603 && !isValidPcmSinkFormat(mFormat)) {
2604 LOG_FATAL("HAL format %#x not supported for mixed output",
2605 mFormat);
2606 }
2607 mFrameSize = mOutput->getFrameSize();
2608 result = mOutput->stream->getBufferSize(&mBufferSize);
2609 LOG_ALWAYS_FATAL_IF(result != OK,
2610 "Error when retrieving output stream buffer size: %d", result);
2611 mFrameCount = mBufferSize / mFrameSize;
2612 if (mFrameCount & 15) {
2613 ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2614 mFrameCount);
2615 }
2616
2617 if (mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) {
2618 if (mOutput->stream->setCallback(this) == OK) {
2619 mUseAsyncWrite = true;
2620 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2621 }
2622 }
2623
2624 mHwSupportsPause = false;
2625 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2626 bool supportsPause = false, supportsResume = false;
2627 if (mOutput->stream->supportsPauseAndResume(&supportsPause, &supportsResume) == OK) {
2628 if (supportsPause && supportsResume) {
2629 mHwSupportsPause = true;
2630 } else if (supportsPause) {
2631 ALOGW("direct output implements pause but not resume");
2632 } else if (supportsResume) {
2633 ALOGW("direct output implements resume but not pause");
2634 }
2635 }
2636 }
2637 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2638 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2639 }
2640
2641 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2642 // For best precision, we use float instead of the associated output
2643 // device format (typically PCM 16 bit).
2644
2645 mFormat = AUDIO_FORMAT_PCM_FLOAT;
2646 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2647 mBufferSize = mFrameSize * mFrameCount;
2648
2649 // TODO: We currently use the associated output device channel mask and sample rate.
2650 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2651 // (if a valid mask) to avoid premature downmix.
2652 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2653 // instead of the output device sample rate to avoid loss of high frequency information.
2654 // This may need to be updated as MixerThread/OutputTracks are added and not here.
2655 }
2656
2657 // Calculate size of normal sink buffer relative to the HAL output buffer size
2658 double multiplier = 1.0;
2659 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2660 kUseFastMixer == FastMixer_Dynamic)) {
2661 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2662 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2663
2664 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2665 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2666 maxNormalFrameCount = maxNormalFrameCount & ~15;
2667 if (maxNormalFrameCount < minNormalFrameCount) {
2668 maxNormalFrameCount = minNormalFrameCount;
2669 }
2670 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2671 if (multiplier <= 1.0) {
2672 multiplier = 1.0;
2673 } else if (multiplier <= 2.0) {
2674 if (2 * mFrameCount <= maxNormalFrameCount) {
2675 multiplier = 2.0;
2676 } else {
2677 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2678 }
2679 } else {
2680 multiplier = floor(multiplier);
2681 }
2682 }
2683 mNormalFrameCount = multiplier * mFrameCount;
2684 // round up to nearest 16 frames to satisfy AudioMixer
2685 if (mType == MIXER || mType == DUPLICATING) {
2686 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2687 }
2688 ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2689 mNormalFrameCount);
2690
2691 // Check if we want to throttle the processing to no more than 2x normal rate
2692 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2693 mThreadThrottleTimeMs = 0;
2694 mThreadThrottleEndMs = 0;
2695 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2696
2697 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
2698 // Originally this was int16_t[] array, need to remove legacy implications.
2699 free(mSinkBuffer);
2700 mSinkBuffer = NULL;
2701 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2702 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2703 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2704 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2705
2706 // We resize the mMixerBuffer according to the requirements of the sink buffer which
2707 // drives the output.
2708 free(mMixerBuffer);
2709 mMixerBuffer = NULL;
2710 if (mMixerBufferEnabled) {
2711 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // no longer valid: AUDIO_FORMAT_PCM_16_BIT.
2712 mMixerBufferSize = mNormalFrameCount * mChannelCount
2713 * audio_bytes_per_sample(mMixerBufferFormat);
2714 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2715 }
2716 free(mEffectBuffer);
2717 mEffectBuffer = NULL;
2718 if (mEffectBufferEnabled) {
2719 mEffectBufferFormat = EFFECT_BUFFER_FORMAT;
2720 mEffectBufferSize = mNormalFrameCount * mChannelCount
2721 * audio_bytes_per_sample(mEffectBufferFormat);
2722 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2723 }
2724
2725 mHapticChannelMask = mChannelMask & AUDIO_CHANNEL_HAPTIC_ALL;
2726 mChannelMask &= ~mHapticChannelMask;
2727 mHapticChannelCount = audio_channel_count_from_out_mask(mHapticChannelMask);
2728 mChannelCount -= mHapticChannelCount;
2729
2730 // force reconfiguration of effect chains and engines to take new buffer size and audio
2731 // parameters into account
2732 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2733 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2734 // matter.
2735 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2736 Vector< sp<EffectChain> > effectChains = mEffectChains;
2737 for (size_t i = 0; i < effectChains.size(); i ++) {
2738 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(),
2739 this/* srcThread */, this/* dstThread */);
2740 }
2741 }
2742
updateMetadata_l()2743 void AudioFlinger::PlaybackThread::updateMetadata_l()
2744 {
2745 if (mOutput == nullptr || mOutput->stream == nullptr ) {
2746 return; // That should not happen
2747 }
2748 bool hasChanged = mActiveTracks.readAndClearHasChanged();
2749 for (const sp<Track> &track : mActiveTracks) {
2750 // Do not short-circuit as all hasChanged states must be reset
2751 // as all the metadata are going to be sent
2752 hasChanged |= track->readAndClearHasChanged();
2753 }
2754 if (!hasChanged) {
2755 return; // nothing to do
2756 }
2757 StreamOutHalInterface::SourceMetadata metadata;
2758 auto backInserter = std::back_inserter(metadata.tracks);
2759 for (const sp<Track> &track : mActiveTracks) {
2760 // No track is invalid as this is called after prepareTrack_l in the same critical section
2761 track->copyMetadataTo(backInserter);
2762 }
2763 sendMetadataToBackend_l(metadata);
2764 }
2765
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)2766 void AudioFlinger::PlaybackThread::sendMetadataToBackend_l(
2767 const StreamOutHalInterface::SourceMetadata& metadata)
2768 {
2769 mOutput->stream->updateSourceMetadata(metadata);
2770 };
2771
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)2772 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2773 {
2774 if (halFrames == NULL || dspFrames == NULL) {
2775 return BAD_VALUE;
2776 }
2777 Mutex::Autolock _l(mLock);
2778 if (initCheck() != NO_ERROR) {
2779 return INVALID_OPERATION;
2780 }
2781 int64_t framesWritten = mBytesWritten / mFrameSize;
2782 *halFrames = framesWritten;
2783
2784 if (isSuspended()) {
2785 // return an estimation of rendered frames when the output is suspended
2786 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2787 *dspFrames = (uint32_t)
2788 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2789 return NO_ERROR;
2790 } else {
2791 status_t status;
2792 uint32_t frames;
2793 status = mOutput->getRenderPosition(&frames);
2794 *dspFrames = (size_t)frames;
2795 return status;
2796 }
2797 }
2798
getStrategyForSession_l(audio_session_t sessionId)2799 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2800 {
2801 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2802 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2803 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2804 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2805 }
2806 for (size_t i = 0; i < mTracks.size(); i++) {
2807 sp<Track> track = mTracks[i];
2808 if (sessionId == track->sessionId() && !track->isInvalid()) {
2809 return AudioSystem::getStrategyForStream(track->streamType());
2810 }
2811 }
2812 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2813 }
2814
2815
getOutput() const2816 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2817 {
2818 Mutex::Autolock _l(mLock);
2819 return mOutput;
2820 }
2821
clearOutput()2822 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2823 {
2824 Mutex::Autolock _l(mLock);
2825 AudioStreamOut *output = mOutput;
2826 mOutput = NULL;
2827 // FIXME FastMixer might also have a raw ptr to mOutputSink;
2828 // must push a NULL and wait for ack
2829 mOutputSink.clear();
2830 mPipeSink.clear();
2831 mNormalSink.clear();
2832 return output;
2833 }
2834
2835 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const2836 sp<StreamHalInterface> AudioFlinger::PlaybackThread::stream() const
2837 {
2838 if (mOutput == NULL) {
2839 return NULL;
2840 }
2841 return mOutput->stream;
2842 }
2843
activeSleepTimeUs() const2844 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2845 {
2846 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2847 }
2848
setSyncEvent(const sp<SyncEvent> & event)2849 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2850 {
2851 if (!isValidSyncEvent(event)) {
2852 return BAD_VALUE;
2853 }
2854
2855 Mutex::Autolock _l(mLock);
2856
2857 for (size_t i = 0; i < mTracks.size(); ++i) {
2858 sp<Track> track = mTracks[i];
2859 if (event->triggerSession() == track->sessionId()) {
2860 (void) track->setSyncEvent(event);
2861 return NO_ERROR;
2862 }
2863 }
2864
2865 return NAME_NOT_FOUND;
2866 }
2867
isValidSyncEvent(const sp<SyncEvent> & event) const2868 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2869 {
2870 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2871 }
2872
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2873 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2874 const Vector< sp<Track> >& tracksToRemove)
2875 {
2876 // Miscellaneous track cleanup when removed from the active list,
2877 // called without Thread lock but synchronized with threadLoop processing.
2878 #ifdef ADD_BATTERY_DATA
2879 for (const auto& track : tracksToRemove) {
2880 if (track->isExternalTrack()) {
2881 // to track the speaker usage
2882 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2883 }
2884 }
2885 #else
2886 (void)tracksToRemove; // suppress unused warning
2887 #endif
2888 }
2889
checkSilentMode_l()2890 void AudioFlinger::PlaybackThread::checkSilentMode_l()
2891 {
2892 if (!mMasterMute) {
2893 char value[PROPERTY_VALUE_MAX];
2894 if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
2895 ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
2896 return;
2897 }
2898 if (property_get("ro.audio.silent", value, "0") > 0) {
2899 char *endptr;
2900 unsigned long ul = strtoul(value, &endptr, 0);
2901 if (*endptr == '\0' && ul != 0) {
2902 ALOGD("Silence is golden");
2903 // The setprop command will not allow a property to be changed after
2904 // the first time it is set, so we don't have to worry about un-muting.
2905 setMasterMute_l(true);
2906 }
2907 }
2908 }
2909 }
2910
2911 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()2912 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2913 {
2914 LOG_HIST_TS();
2915 mInWrite = true;
2916 ssize_t bytesWritten;
2917 const size_t offset = mCurrentWriteLength - mBytesRemaining;
2918
2919 // If an NBAIO sink is present, use it to write the normal mixer's submix
2920 if (mNormalSink != 0) {
2921
2922 const size_t count = mBytesRemaining / mFrameSize;
2923
2924 ATRACE_BEGIN("write");
2925 // update the setpoint when AudioFlinger::mScreenState changes
2926 uint32_t screenState = AudioFlinger::mScreenState;
2927 if (screenState != mScreenState) {
2928 mScreenState = screenState;
2929 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2930 if (pipe != NULL) {
2931 pipe->setAvgFrames((mScreenState & 1) ?
2932 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2933 }
2934 }
2935 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2936 ATRACE_END();
2937 if (framesWritten > 0) {
2938 bytesWritten = framesWritten * mFrameSize;
2939 #ifdef TEE_SINK
2940 mTee.write((char *)mSinkBuffer + offset, framesWritten);
2941 #endif
2942 } else {
2943 bytesWritten = framesWritten;
2944 }
2945 // otherwise use the HAL / AudioStreamOut directly
2946 } else {
2947 // Direct output and offload threads
2948
2949 if (mUseAsyncWrite) {
2950 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2951 mWriteAckSequence += 2;
2952 mWriteAckSequence |= 1;
2953 ALOG_ASSERT(mCallbackThread != 0);
2954 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2955 }
2956 // FIXME We should have an implementation of timestamps for direct output threads.
2957 // They are used e.g for multichannel PCM playback over HDMI.
2958 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2959
2960 if (mUseAsyncWrite &&
2961 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2962 // do not wait for async callback in case of error of full write
2963 mWriteAckSequence &= ~1;
2964 ALOG_ASSERT(mCallbackThread != 0);
2965 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2966 }
2967 }
2968
2969 mNumWrites++;
2970 mInWrite = false;
2971 mStandby = false;
2972 return bytesWritten;
2973 }
2974
threadLoop_drain()2975 void AudioFlinger::PlaybackThread::threadLoop_drain()
2976 {
2977 bool supportsDrain = false;
2978 if (mOutput->stream->supportsDrain(&supportsDrain) == OK && supportsDrain) {
2979 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2980 if (mUseAsyncWrite) {
2981 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2982 mDrainSequence |= 1;
2983 ALOG_ASSERT(mCallbackThread != 0);
2984 mCallbackThread->setDraining(mDrainSequence);
2985 }
2986 status_t result = mOutput->stream->drain(mMixerStatus == MIXER_DRAIN_TRACK);
2987 ALOGE_IF(result != OK, "Error when draining stream: %d", result);
2988 }
2989 }
2990
threadLoop_exit()2991 void AudioFlinger::PlaybackThread::threadLoop_exit()
2992 {
2993 {
2994 Mutex::Autolock _l(mLock);
2995 for (size_t i = 0; i < mTracks.size(); i++) {
2996 sp<Track> track = mTracks[i];
2997 track->invalidate();
2998 }
2999 // Clear ActiveTracks to update BatteryNotifier in case active tracks remain.
3000 // After we exit there are no more track changes sent to BatteryNotifier
3001 // because that requires an active threadLoop.
3002 // TODO: should we decActiveTrackCnt() of the cleared track effect chain?
3003 mActiveTracks.clear();
3004 }
3005 }
3006
3007 /*
3008 The derived values that are cached:
3009 - mSinkBufferSize from frame count * frame size
3010 - mActiveSleepTimeUs from activeSleepTimeUs()
3011 - mIdleSleepTimeUs from idleSleepTimeUs()
3012 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
3013 kDefaultStandbyTimeInNsecs when connected to an A2DP device.
3014 - maxPeriod from frame count and sample rate (MIXER only)
3015
3016 The parameters that affect these derived values are:
3017 - frame count
3018 - frame size
3019 - sample rate
3020 - device type: A2DP or not
3021 - device latency
3022 - format: PCM or not
3023 - active sleep time
3024 - idle sleep time
3025 */
3026
cacheParameters_l()3027 void AudioFlinger::PlaybackThread::cacheParameters_l()
3028 {
3029 mSinkBufferSize = mNormalFrameCount * mFrameSize;
3030 mActiveSleepTimeUs = activeSleepTimeUs();
3031 mIdleSleepTimeUs = idleSleepTimeUs();
3032
3033 // make sure standby delay is not too short when connected to an A2DP sink to avoid
3034 // truncating audio when going to standby.
3035 mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
3036 if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
3037 if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
3038 mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
3039 }
3040 }
3041 }
3042
invalidateTracks_l(audio_stream_type_t streamType)3043 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
3044 {
3045 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
3046 this, streamType, mTracks.size());
3047 bool trackMatch = false;
3048 size_t size = mTracks.size();
3049 for (size_t i = 0; i < size; i++) {
3050 sp<Track> t = mTracks[i];
3051 if (t->streamType() == streamType && t->isExternalTrack()) {
3052 t->invalidate();
3053 trackMatch = true;
3054 }
3055 }
3056 return trackMatch;
3057 }
3058
invalidateTracks(audio_stream_type_t streamType)3059 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
3060 {
3061 Mutex::Autolock _l(mLock);
3062 invalidateTracks_l(streamType);
3063 }
3064
addEffectChain_l(const sp<EffectChain> & chain)3065 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
3066 {
3067 audio_session_t session = chain->sessionId();
3068 sp<EffectBufferHalInterface> halInBuffer, halOutBuffer;
3069 status_t result = mAudioFlinger->mEffectsFactoryHal->mirrorBuffer(
3070 mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer,
3071 mEffectBufferEnabled ? mEffectBufferSize : mSinkBufferSize,
3072 &halInBuffer);
3073 if (result != OK) return result;
3074 halOutBuffer = halInBuffer;
3075 effect_buffer_t *buffer = reinterpret_cast<effect_buffer_t*>(halInBuffer->externalData());
3076 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
3077 if (session > AUDIO_SESSION_OUTPUT_MIX) {
3078 // Only one effect chain can be present in direct output thread and it uses
3079 // the sink buffer as input
3080 if (mType != DIRECT) {
3081 size_t numSamples = mNormalFrameCount * (mChannelCount + mHapticChannelCount);
3082 status_t result = mAudioFlinger->mEffectsFactoryHal->allocateBuffer(
3083 numSamples * sizeof(effect_buffer_t),
3084 &halInBuffer);
3085 if (result != OK) return result;
3086 #ifdef FLOAT_EFFECT_CHAIN
3087 buffer = halInBuffer->audioBuffer()->f32;
3088 #else
3089 buffer = halInBuffer->audioBuffer()->s16;
3090 #endif
3091 ALOGV("addEffectChain_l() creating new input buffer %p session %d",
3092 buffer, session);
3093 }
3094
3095 // Attach all tracks with same session ID to this chain.
3096 for (size_t i = 0; i < mTracks.size(); ++i) {
3097 sp<Track> track = mTracks[i];
3098 if (session == track->sessionId()) {
3099 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
3100 buffer);
3101 track->setMainBuffer(buffer);
3102 chain->incTrackCnt();
3103 }
3104 }
3105
3106 // indicate all active tracks in the chain
3107 for (const sp<Track> &track : mActiveTracks) {
3108 if (session == track->sessionId()) {
3109 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
3110 chain->incActiveTrackCnt();
3111 }
3112 }
3113 }
3114 chain->setThread(this);
3115 chain->setInBuffer(halInBuffer);
3116 chain->setOutBuffer(halOutBuffer);
3117 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
3118 // chains list in order to be processed last as it contains output stage effects.
3119 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
3120 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
3121 // after track specific effects and before output stage.
3122 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
3123 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
3124 // Effect chain for other sessions are inserted at beginning of effect
3125 // chains list to be processed before output mix effects. Relative order between other
3126 // sessions is not important.
3127 static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
3128 AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
3129 "audio_session_t constants misdefined");
3130 size_t size = mEffectChains.size();
3131 size_t i = 0;
3132 for (i = 0; i < size; i++) {
3133 if (mEffectChains[i]->sessionId() < session) {
3134 break;
3135 }
3136 }
3137 mEffectChains.insertAt(chain, i);
3138 checkSuspendOnAddEffectChain_l(chain);
3139
3140 return NO_ERROR;
3141 }
3142
removeEffectChain_l(const sp<EffectChain> & chain)3143 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
3144 {
3145 audio_session_t session = chain->sessionId();
3146
3147 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
3148
3149 for (size_t i = 0; i < mEffectChains.size(); i++) {
3150 if (chain == mEffectChains[i]) {
3151 mEffectChains.removeAt(i);
3152 // detach all active tracks from the chain
3153 for (const sp<Track> &track : mActiveTracks) {
3154 if (session == track->sessionId()) {
3155 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
3156 chain.get(), session);
3157 chain->decActiveTrackCnt();
3158 }
3159 }
3160
3161 // detach all tracks with same session ID from this chain
3162 for (size_t i = 0; i < mTracks.size(); ++i) {
3163 sp<Track> track = mTracks[i];
3164 if (session == track->sessionId()) {
3165 track->setMainBuffer(reinterpret_cast<effect_buffer_t*>(mSinkBuffer));
3166 chain->decTrackCnt();
3167 }
3168 }
3169 break;
3170 }
3171 }
3172 return mEffectChains.size();
3173 }
3174
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3175 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
3176 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3177 {
3178 Mutex::Autolock _l(mLock);
3179 return attachAuxEffect_l(track, EffectId);
3180 }
3181
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3182 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
3183 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3184 {
3185 status_t status = NO_ERROR;
3186
3187 if (EffectId == 0) {
3188 track->setAuxBuffer(0, NULL);
3189 } else {
3190 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
3191 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
3192 if (effect != 0) {
3193 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
3194 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
3195 } else {
3196 status = INVALID_OPERATION;
3197 }
3198 } else {
3199 status = BAD_VALUE;
3200 }
3201 }
3202 return status;
3203 }
3204
detachAuxEffect_l(int effectId)3205 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
3206 {
3207 for (size_t i = 0; i < mTracks.size(); ++i) {
3208 sp<Track> track = mTracks[i];
3209 if (track->auxEffectId() == effectId) {
3210 attachAuxEffect_l(track, 0);
3211 }
3212 }
3213 }
3214
threadLoop()3215 bool AudioFlinger::PlaybackThread::threadLoop()
3216 {
3217 tlNBLogWriter = mNBLogWriter.get();
3218
3219 Vector< sp<Track> > tracksToRemove;
3220
3221 mStandbyTimeNs = systemTime();
3222 int64_t lastLoopCountWritten = -2; // never matches "previous" loop, when loopCount = 0.
3223 int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
3224
3225 // MIXER
3226 nsecs_t lastWarning = 0;
3227
3228 // DUPLICATING
3229 // FIXME could this be made local to while loop?
3230 writeFrames = 0;
3231
3232 cacheParameters_l();
3233 mSleepTimeUs = mIdleSleepTimeUs;
3234
3235 if (mType == MIXER) {
3236 sleepTimeShift = 0;
3237 }
3238
3239 CpuStats cpuStats;
3240 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
3241
3242 acquireWakeLock();
3243
3244 // mNBLogWriter logging APIs can only be called by a single thread, typically the
3245 // thread associated with this PlaybackThread.
3246 // If you want to share the mNBLogWriter with other threads (for example, binder threads)
3247 // then all such threads must agree to hold a common mutex before logging.
3248 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
3249 // and then that string will be logged at the next convenient opportunity.
3250 // See reference to logString below.
3251 const char *logString = NULL;
3252
3253 // Estimated time for next buffer to be written to hal. This is used only on
3254 // suspended mode (for now) to help schedule the wait time until next iteration.
3255 nsecs_t timeLoopNextNs = 0;
3256
3257 checkSilentMode_l();
3258
3259 // DIRECT and OFFLOAD threads should reset frame count to zero on stop/flush
3260 // TODO: add confirmation checks:
3261 // 1) DIRECT threads and linear PCM format really resets to 0?
3262 // 2) Is frame count really valid if not linear pcm?
3263 // 3) Are all 64 bits of position returned, not just lowest 32 bits?
3264 if (mType == OFFLOAD || mType == DIRECT) {
3265 mTimestampVerifier.setDiscontinuityMode(mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
3266 }
3267 audio_patch_handle_t lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3268
3269 // loopCount is used for statistics and diagnostics.
3270 for (int64_t loopCount = 0; !exitPending(); ++loopCount)
3271 {
3272 // Log merge requests are performed during AudioFlinger binder transactions, but
3273 // that does not cover audio playback. It's requested here for that reason.
3274 mAudioFlinger->requestLogMerge();
3275
3276 cpuStats.sample(myName);
3277
3278 Vector< sp<EffectChain> > effectChains;
3279 audio_session_t activeHapticSessionId = AUDIO_SESSION_NONE;
3280 std::vector<sp<Track>> activeTracks;
3281
3282 // If the device is AUDIO_DEVICE_OUT_BUS, check for downstream latency.
3283 //
3284 // Note: we access outDevice() outside of mLock.
3285 if (isMsdDevice() && (outDevice() & AUDIO_DEVICE_OUT_BUS) != 0) {
3286 // Here, we try for the AF lock, but do not block on it as the latency
3287 // is more informational.
3288 if (mAudioFlinger->mLock.tryLock() == NO_ERROR) {
3289 std::vector<PatchPanel::SoftwarePatch> swPatches;
3290 double latencyMs;
3291 status_t status = INVALID_OPERATION;
3292 audio_patch_handle_t downstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3293 if (mAudioFlinger->mPatchPanel.getDownstreamSoftwarePatches(id(), &swPatches) == OK
3294 && swPatches.size() > 0) {
3295 status = swPatches[0].getLatencyMs_l(&latencyMs);
3296 downstreamPatchHandle = swPatches[0].getPatchHandle();
3297 }
3298 if (downstreamPatchHandle != lastDownstreamPatchHandle) {
3299 mDownstreamLatencyStatMs.reset();
3300 lastDownstreamPatchHandle = downstreamPatchHandle;
3301 }
3302 if (status == OK) {
3303 // verify downstream latency (we assume a max reasonable
3304 // latency of 5 seconds).
3305 const double minLatency = 0., maxLatency = 5000.;
3306 if (latencyMs >= minLatency && latencyMs <= maxLatency) {
3307 ALOGV("new downstream latency %lf ms", latencyMs);
3308 } else {
3309 ALOGD("out of range downstream latency %lf ms", latencyMs);
3310 if (latencyMs < minLatency) latencyMs = minLatency;
3311 else if (latencyMs > maxLatency) latencyMs = maxLatency;
3312 }
3313 mDownstreamLatencyStatMs.add(latencyMs);
3314 }
3315 mAudioFlinger->mLock.unlock();
3316 }
3317 } else {
3318 if (lastDownstreamPatchHandle != AUDIO_PATCH_HANDLE_NONE) {
3319 // our device is no longer AUDIO_DEVICE_OUT_BUS, reset patch handle and stats.
3320 mDownstreamLatencyStatMs.reset();
3321 lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3322 }
3323 }
3324
3325 { // scope for mLock
3326
3327 Mutex::Autolock _l(mLock);
3328
3329 processConfigEvents_l();
3330
3331 // See comment at declaration of logString for why this is done under mLock
3332 if (logString != NULL) {
3333 mNBLogWriter->logTimestamp();
3334 mNBLogWriter->log(logString);
3335 logString = NULL;
3336 }
3337
3338 // Collect timestamp statistics for the Playback Thread types that support it.
3339 if (mType == MIXER
3340 || mType == DUPLICATING
3341 || mType == DIRECT
3342 || mType == OFFLOAD) { // no indentation
3343 // Gather the framesReleased counters for all active tracks,
3344 // and associate with the sink frames written out. We need
3345 // this to convert the sink timestamp to the track timestamp.
3346 bool kernelLocationUpdate = false;
3347 ExtendedTimestamp timestamp; // use private copy to fetch
3348 if (mStandby) {
3349 mTimestampVerifier.discontinuity();
3350 } else if (threadloop_getHalTimestamp_l(×tamp) == OK) {
3351 mTimestampVerifier.add(timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL],
3352 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
3353 mSampleRate);
3354
3355 if (isTimestampCorrectionEnabled()) {
3356 ALOGV("TS_BEFORE: %d %lld %lld", id(),
3357 (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
3358 (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
3359 auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
3360 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3361 = correctedTimestamp.mFrames;
3362 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]
3363 = correctedTimestamp.mTimeNs;
3364 ALOGV("TS_AFTER: %d %lld %lld", id(),
3365 (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
3366 (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
3367
3368 // Note: Downstream latency only added if timestamp correction enabled.
3369 if (mDownstreamLatencyStatMs.getN() > 0) { // we have latency info.
3370 const int64_t newPosition =
3371 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3372 - int64_t(mDownstreamLatencyStatMs.getMean() * mSampleRate * 1e-3);
3373 // prevent retrograde
3374 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = max(
3375 newPosition,
3376 (mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3377 - mSuspendedFrames));
3378 }
3379 }
3380
3381 // We always fetch the timestamp here because often the downstream
3382 // sink will block while writing.
3383
3384 // We keep track of the last valid kernel position in case we are in underrun
3385 // and the normal mixer period is the same as the fast mixer period, or there
3386 // is some error from the HAL.
3387 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3388 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3389 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3390 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3391 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3392
3393 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3394 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3395 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3396 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3397 }
3398
3399 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3400 kernelLocationUpdate = true;
3401 } else {
3402 ALOGVV("getTimestamp error - no valid kernel position");
3403 }
3404
3405 // copy over kernel info
3406 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3407 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3408 + mSuspendedFrames; // add frames discarded when suspended
3409 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3410 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3411 } else {
3412 mTimestampVerifier.error();
3413 }
3414
3415 // mFramesWritten for non-offloaded tracks are contiguous
3416 // even after standby() is called. This is useful for the track frame
3417 // to sink frame mapping.
3418 bool serverLocationUpdate = false;
3419 if (mFramesWritten != lastFramesWritten) {
3420 serverLocationUpdate = true;
3421 lastFramesWritten = mFramesWritten;
3422 }
3423 // Only update timestamps if there is a meaningful change.
3424 // Either the kernel timestamp must be valid or we have written something.
3425 if (kernelLocationUpdate || serverLocationUpdate) {
3426 if (serverLocationUpdate) {
3427 // use the time before we called the HAL write - it is a bit more accurate
3428 // to when the server last read data than the current time here.
3429 //
3430 // If we haven't written anything, mLastIoBeginNs will be -1
3431 // and we use systemTime().
3432 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3433 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastIoBeginNs == -1
3434 ? systemTime() : mLastIoBeginNs;
3435 }
3436
3437 for (const sp<Track> &t : mActiveTracks) {
3438 if (!t->isFastTrack()) {
3439 t->updateTrackFrameInfo(
3440 t->mAudioTrackServerProxy->framesReleased(),
3441 mFramesWritten,
3442 mSampleRate,
3443 mTimestamp);
3444 }
3445 }
3446 }
3447
3448 if (audio_has_proportional_frames(mFormat)) {
3449 const double latencyMs = mTimestamp.getOutputServerLatencyMs(mSampleRate);
3450 if (latencyMs != 0.) { // note 0. means timestamp is empty.
3451 mLatencyMs.add(latencyMs);
3452 }
3453 }
3454
3455 } // if (mType ... ) { // no indentation
3456 #if 0
3457 // logFormat example
3458 if (z % 100 == 0) {
3459 timespec ts;
3460 clock_gettime(CLOCK_MONOTONIC, &ts);
3461 LOGT("This is an integer %d, this is a float %f, this is my "
3462 "pid %p %% %s %t", 42, 3.14, "and this is a timestamp", ts);
3463 LOGT("A deceptive null-terminated string %\0");
3464 }
3465 ++z;
3466 #endif
3467 saveOutputTracks();
3468 if (mSignalPending) {
3469 // A signal was raised while we were unlocked
3470 mSignalPending = false;
3471 } else if (waitingAsyncCallback_l()) {
3472 if (exitPending()) {
3473 break;
3474 }
3475 bool released = false;
3476 if (!keepWakeLock()) {
3477 releaseWakeLock_l();
3478 released = true;
3479 }
3480
3481 const int64_t waitNs = computeWaitTimeNs_l();
3482 ALOGV("wait async completion (wait time: %lld)", (long long)waitNs);
3483 status_t status = mWaitWorkCV.waitRelative(mLock, waitNs);
3484 if (status == TIMED_OUT) {
3485 mSignalPending = true; // if timeout recheck everything
3486 }
3487 ALOGV("async completion/wake");
3488 if (released) {
3489 acquireWakeLock_l();
3490 }
3491 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3492 mSleepTimeUs = 0;
3493
3494 continue;
3495 }
3496 if ((mActiveTracks.isEmpty() && systemTime() > mStandbyTimeNs) ||
3497 isSuspended()) {
3498 // put audio hardware into standby after short delay
3499 if (shouldStandby_l()) {
3500
3501 threadLoop_standby();
3502
3503 // This is where we go into standby
3504 if (!mStandby) {
3505 LOG_AUDIO_STATE();
3506 }
3507 mStandby = true;
3508 sendStatistics(false /* force */);
3509 }
3510
3511 if (mActiveTracks.isEmpty() && mConfigEvents.isEmpty()) {
3512 // we're about to wait, flush the binder command buffer
3513 IPCThreadState::self()->flushCommands();
3514
3515 clearOutputTracks();
3516
3517 if (exitPending()) {
3518 break;
3519 }
3520
3521 releaseWakeLock_l();
3522 // wait until we have something to do...
3523 ALOGV("%s going to sleep", myName.string());
3524 mWaitWorkCV.wait(mLock);
3525 ALOGV("%s waking up", myName.string());
3526 acquireWakeLock_l();
3527
3528 mMixerStatus = MIXER_IDLE;
3529 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3530 mBytesWritten = 0;
3531 mBytesRemaining = 0;
3532 checkSilentMode_l();
3533
3534 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3535 mSleepTimeUs = mIdleSleepTimeUs;
3536 if (mType == MIXER) {
3537 sleepTimeShift = 0;
3538 }
3539
3540 continue;
3541 }
3542 }
3543 // mMixerStatusIgnoringFastTracks is also updated internally
3544 mMixerStatus = prepareTracks_l(&tracksToRemove);
3545
3546 mActiveTracks.updatePowerState(this);
3547
3548 updateMetadata_l();
3549
3550 // prevent any changes in effect chain list and in each effect chain
3551 // during mixing and effect process as the audio buffers could be deleted
3552 // or modified if an effect is created or deleted
3553 lockEffectChains_l(effectChains);
3554
3555 // Determine which session to pick up haptic data.
3556 // This must be done under the same lock as prepareTracks_l().
3557 // TODO: Write haptic data directly to sink buffer when mixing.
3558 if (mHapticChannelCount > 0 && effectChains.size() > 0) {
3559 for (const auto& track : mActiveTracks) {
3560 if (track->getHapticPlaybackEnabled()) {
3561 activeHapticSessionId = track->sessionId();
3562 break;
3563 }
3564 }
3565 }
3566
3567 // Acquire a local copy of active tracks with lock (release w/o lock).
3568 //
3569 // Control methods on the track acquire the ThreadBase lock (e.g. start()
3570 // stop(), pause(), etc.), but the threadLoop is entitled to call audio
3571 // data / buffer methods on tracks from activeTracks without the ThreadBase lock.
3572 activeTracks.insert(activeTracks.end(), mActiveTracks.begin(), mActiveTracks.end());
3573 } // mLock scope ends
3574
3575 if (mBytesRemaining == 0) {
3576 mCurrentWriteLength = 0;
3577 if (mMixerStatus == MIXER_TRACKS_READY) {
3578 // threadLoop_mix() sets mCurrentWriteLength
3579 threadLoop_mix();
3580 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3581 && (mMixerStatus != MIXER_DRAIN_ALL)) {
3582 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3583 // must be written to HAL
3584 threadLoop_sleepTime();
3585 if (mSleepTimeUs == 0) {
3586 mCurrentWriteLength = mSinkBufferSize;
3587
3588 // Tally underrun frames as we are inserting 0s here.
3589 for (const auto& track : activeTracks) {
3590 if (track->mFillingUpStatus == Track::FS_ACTIVE) {
3591 track->mAudioTrackServerProxy->tallyUnderrunFrames(mNormalFrameCount);
3592 }
3593 }
3594 }
3595 }
3596 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3597 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3598 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3599 // or mSinkBuffer (if there are no effects).
3600 //
3601 // This is done pre-effects computation; if effects change to
3602 // support higher precision, this needs to move.
3603 //
3604 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3605 // TODO use mSleepTimeUs == 0 as an additional condition.
3606 if (mMixerBufferValid) {
3607 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3608 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3609
3610 // mono blend occurs for mixer threads only (not direct or offloaded)
3611 // and is handled here if we're going directly to the sink.
3612 if (requireMonoBlend() && !mEffectBufferValid) {
3613 mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3614 true /*limit*/);
3615 }
3616
3617 if (!hasFastMixer()) {
3618 // Balance must take effect after mono conversion.
3619 // We do it here if there is no FastMixer.
3620 // mBalance detects zero balance within the class for speed (not needed here).
3621 mBalance.setBalance(mMasterBalance.load());
3622 mBalance.process((float *)mMixerBuffer, mNormalFrameCount);
3623 }
3624
3625 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3626 mNormalFrameCount * (mChannelCount + mHapticChannelCount));
3627
3628 // If we're going directly to the sink and there are haptic channels,
3629 // we should adjust channels as the sample data is partially interleaved
3630 // in this case.
3631 if (!mEffectBufferValid && mHapticChannelCount > 0) {
3632 adjust_channels_non_destructive(buffer, mChannelCount, buffer,
3633 mChannelCount + mHapticChannelCount,
3634 audio_bytes_per_sample(format),
3635 audio_bytes_per_frame(mChannelCount, format) * mNormalFrameCount);
3636 }
3637 }
3638
3639 mBytesRemaining = mCurrentWriteLength;
3640 if (isSuspended()) {
3641 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3642 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3643 const size_t framesRemaining = mBytesRemaining / mFrameSize;
3644 mBytesWritten += mBytesRemaining;
3645 mFramesWritten += framesRemaining;
3646 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3647 mBytesRemaining = 0;
3648 }
3649
3650 // only process effects if we're going to write
3651 if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3652 for (size_t i = 0; i < effectChains.size(); i ++) {
3653 effectChains[i]->process_l();
3654 // TODO: Write haptic data directly to sink buffer when mixing.
3655 if (activeHapticSessionId != AUDIO_SESSION_NONE
3656 && activeHapticSessionId == effectChains[i]->sessionId()) {
3657 // Haptic data is active in this case, copy it directly from
3658 // in buffer to out buffer.
3659 const size_t audioBufferSize = mNormalFrameCount
3660 * audio_bytes_per_frame(mChannelCount, EFFECT_BUFFER_FORMAT);
3661 memcpy_by_audio_format(
3662 (uint8_t*)effectChains[i]->outBuffer() + audioBufferSize,
3663 EFFECT_BUFFER_FORMAT,
3664 (const uint8_t*)effectChains[i]->inBuffer() + audioBufferSize,
3665 EFFECT_BUFFER_FORMAT, mNormalFrameCount * mHapticChannelCount);
3666 }
3667 }
3668 }
3669 }
3670 // Process effect chains for offloaded thread even if no audio
3671 // was read from audio track: process only updates effect state
3672 // and thus does have to be synchronized with audio writes but may have
3673 // to be called while waiting for async write callback
3674 if (mType == OFFLOAD) {
3675 for (size_t i = 0; i < effectChains.size(); i ++) {
3676 effectChains[i]->process_l();
3677 }
3678 }
3679
3680 // Only if the Effects buffer is enabled and there is data in the
3681 // Effects buffer (buffer valid), we need to
3682 // copy into the sink buffer.
3683 // TODO use mSleepTimeUs == 0 as an additional condition.
3684 if (mEffectBufferValid) {
3685 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3686
3687 if (requireMonoBlend()) {
3688 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3689 true /*limit*/);
3690 }
3691
3692 if (!hasFastMixer()) {
3693 // Balance must take effect after mono conversion.
3694 // We do it here if there is no FastMixer.
3695 // mBalance detects zero balance within the class for speed (not needed here).
3696 mBalance.setBalance(mMasterBalance.load());
3697 mBalance.process((float *)mEffectBuffer, mNormalFrameCount);
3698 }
3699
3700 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3701 mNormalFrameCount * (mChannelCount + mHapticChannelCount));
3702 // The sample data is partially interleaved when haptic channels exist,
3703 // we need to adjust channels here.
3704 if (mHapticChannelCount > 0) {
3705 adjust_channels_non_destructive(mSinkBuffer, mChannelCount, mSinkBuffer,
3706 mChannelCount + mHapticChannelCount,
3707 audio_bytes_per_sample(mFormat),
3708 audio_bytes_per_frame(mChannelCount, mFormat) * mNormalFrameCount);
3709 }
3710 }
3711
3712 // enable changes in effect chain
3713 unlockEffectChains(effectChains);
3714
3715 if (!waitingAsyncCallback()) {
3716 // mSleepTimeUs == 0 means we must write to audio hardware
3717 if (mSleepTimeUs == 0) {
3718 ssize_t ret = 0;
3719 // writePeriodNs is updated >= 0 when ret > 0.
3720 int64_t writePeriodNs = -1;
3721 if (mBytesRemaining) {
3722 // FIXME rewrite to reduce number of system calls
3723 const int64_t lastIoBeginNs = systemTime();
3724 ret = threadLoop_write();
3725 const int64_t lastIoEndNs = systemTime();
3726 if (ret < 0) {
3727 mBytesRemaining = 0;
3728 } else if (ret > 0) {
3729 mBytesWritten += ret;
3730 mBytesRemaining -= ret;
3731 const int64_t frames = ret / mFrameSize;
3732 mFramesWritten += frames;
3733
3734 writePeriodNs = lastIoEndNs - mLastIoEndNs;
3735 // process information relating to write time.
3736 if (audio_has_proportional_frames(mFormat)) {
3737 // we are in a continuous mixing cycle
3738 if (mMixerStatus == MIXER_TRACKS_READY &&
3739 loopCount == lastLoopCountWritten + 1) {
3740
3741 const double jitterMs =
3742 TimestampVerifier<int64_t, int64_t>::computeJitterMs(
3743 {frames, writePeriodNs},
3744 {0, 0} /* lastTimestamp */, mSampleRate);
3745 const double processMs =
3746 (lastIoBeginNs - mLastIoEndNs) * 1e-6;
3747
3748 Mutex::Autolock _l(mLock);
3749 mIoJitterMs.add(jitterMs);
3750 mProcessTimeMs.add(processMs);
3751 }
3752
3753 // write blocked detection
3754 const int64_t deltaWriteNs = lastIoEndNs - lastIoBeginNs;
3755 if (mType == MIXER && deltaWriteNs > maxPeriod) {
3756 mNumDelayedWrites++;
3757 if ((lastIoEndNs - lastWarning) > kWarningThrottleNs) {
3758 ATRACE_NAME("underrun");
3759 ALOGW("write blocked for %lld msecs, "
3760 "%d delayed writes, thread %d",
3761 (long long)deltaWriteNs / NANOS_PER_MILLISECOND,
3762 mNumDelayedWrites, mId);
3763 lastWarning = lastIoEndNs;
3764 }
3765 }
3766 }
3767 // update timing info.
3768 mLastIoBeginNs = lastIoBeginNs;
3769 mLastIoEndNs = lastIoEndNs;
3770 lastLoopCountWritten = loopCount;
3771 }
3772 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3773 (mMixerStatus == MIXER_DRAIN_ALL)) {
3774 threadLoop_drain();
3775 }
3776 if (mType == MIXER && !mStandby) {
3777
3778 if (mThreadThrottle
3779 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3780 && writePeriodNs > 0) { // we have write period info
3781 // Limit MixerThread data processing to no more than twice the
3782 // expected processing rate.
3783 //
3784 // This helps prevent underruns with NuPlayer and other applications
3785 // which may set up buffers that are close to the minimum size, or use
3786 // deep buffers, and rely on a double-buffering sleep strategy to fill.
3787 //
3788 // The throttle smooths out sudden large data drains from the device,
3789 // e.g. when it comes out of standby, which often causes problems with
3790 // (1) mixer threads without a fast mixer (which has its own warm-up)
3791 // (2) minimum buffer sized tracks (even if the track is full,
3792 // the app won't fill fast enough to handle the sudden draw).
3793 //
3794 // Total time spent in last processing cycle equals time spent in
3795 // 1. threadLoop_write, as well as time spent in
3796 // 2. threadLoop_mix (significant for heavy mixing, especially
3797 // on low tier processors)
3798
3799 // it's OK if deltaMs is an overestimate.
3800
3801 const int32_t deltaMs = writePeriodNs / NANOS_PER_MILLISECOND;
3802
3803 const int32_t throttleMs = (int32_t)mHalfBufferMs - deltaMs;
3804 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3805 usleep(throttleMs * 1000);
3806 // notify of throttle start on verbose log
3807 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3808 "mixer(%p) throttle begin:"
3809 " ret(%zd) deltaMs(%d) requires sleep %d ms",
3810 this, ret, deltaMs, throttleMs);
3811 mThreadThrottleTimeMs += throttleMs;
3812 // Throttle must be attributed to the previous mixer loop's write time
3813 // to allow back-to-back throttling.
3814 // This also ensures proper timing statistics.
3815 mLastIoEndNs = systemTime(); // we fetch the write end time again.
3816 } else {
3817 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3818 if (diff > 0) {
3819 // notify of throttle end on debug log
3820 // but prevent spamming for bluetooth
3821 ALOGD_IF(!audio_is_a2dp_out_device(outDevice()) &&
3822 !audio_is_hearing_aid_out_device(outDevice()),
3823 "mixer(%p) throttle end: throttle time(%u)", this, diff);
3824 mThreadThrottleEndMs = mThreadThrottleTimeMs;
3825 }
3826 }
3827 }
3828 }
3829
3830 } else {
3831 ATRACE_BEGIN("sleep");
3832 Mutex::Autolock _l(mLock);
3833 // suspended requires accurate metering of sleep time.
3834 if (isSuspended()) {
3835 // advance by expected sleepTime
3836 timeLoopNextNs += microseconds((nsecs_t)mSleepTimeUs);
3837 const nsecs_t nowNs = systemTime();
3838
3839 // compute expected next time vs current time.
3840 // (negative deltas are treated as delays).
3841 nsecs_t deltaNs = timeLoopNextNs - nowNs;
3842 if (deltaNs < -kMaxNextBufferDelayNs) {
3843 // Delays longer than the max allowed trigger a reset.
3844 ALOGV("DelayNs: %lld, resetting timeLoopNextNs", (long long) deltaNs);
3845 deltaNs = microseconds((nsecs_t)mSleepTimeUs);
3846 timeLoopNextNs = nowNs + deltaNs;
3847 } else if (deltaNs < 0) {
3848 // Delays within the max delay allowed: zero the delta/sleepTime
3849 // to help the system catch up in the next iteration(s)
3850 ALOGV("DelayNs: %lld, catching-up", (long long) deltaNs);
3851 deltaNs = 0;
3852 }
3853 // update sleep time (which is >= 0)
3854 mSleepTimeUs = deltaNs / 1000;
3855 }
3856 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
3857 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
3858 }
3859 ATRACE_END();
3860 }
3861 }
3862
3863 // Finally let go of removed track(s), without the lock held
3864 // since we can't guarantee the destructors won't acquire that
3865 // same lock. This will also mutate and push a new fast mixer state.
3866 threadLoop_removeTracks(tracksToRemove);
3867 tracksToRemove.clear();
3868
3869 // FIXME I don't understand the need for this here;
3870 // it was in the original code but maybe the
3871 // assignment in saveOutputTracks() makes this unnecessary?
3872 clearOutputTracks();
3873
3874 // Effect chains will be actually deleted here if they were removed from
3875 // mEffectChains list during mixing or effects processing
3876 effectChains.clear();
3877
3878 // FIXME Note that the above .clear() is no longer necessary since effectChains
3879 // is now local to this block, but will keep it for now (at least until merge done).
3880 }
3881
3882 threadLoop_exit();
3883
3884 if (!mStandby) {
3885 threadLoop_standby();
3886 mStandby = true;
3887 }
3888
3889 releaseWakeLock();
3890
3891 ALOGV("Thread %p type %d exiting", this, mType);
3892 return false;
3893 }
3894
3895 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)3896 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3897 {
3898 for (const auto& track : tracksToRemove) {
3899 mActiveTracks.remove(track);
3900 ALOGV("%s(%d): removing track on session %d", __func__, track->id(), track->sessionId());
3901 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3902 if (chain != 0) {
3903 ALOGV("%s(%d): stopping track on chain %p for session Id: %d",
3904 __func__, track->id(), chain.get(), track->sessionId());
3905 chain->decActiveTrackCnt();
3906 }
3907 // If an external client track, inform APM we're no longer active, and remove if needed.
3908 // We do this under lock so that the state is consistent if the Track is destroyed.
3909 if (track->isExternalTrack()) {
3910 AudioSystem::stopOutput(track->portId());
3911 if (track->isTerminated()) {
3912 AudioSystem::releaseOutput(track->portId());
3913 }
3914 }
3915 if (track->isTerminated()) {
3916 // remove from our tracks vector
3917 removeTrack_l(track);
3918 }
3919 if ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
3920 && mHapticChannelCount > 0) {
3921 mLock.unlock();
3922 // Unlock due to VibratorService will lock for this call and will
3923 // call Tracks.mute/unmute which also require thread's lock.
3924 AudioFlinger::onExternalVibrationStop(track->getExternalVibration());
3925 mLock.lock();
3926 }
3927 }
3928 }
3929
getTimestamp_l(AudioTimestamp & timestamp)3930 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3931 {
3932 if (mNormalSink != 0) {
3933 ExtendedTimestamp ets;
3934 status_t status = mNormalSink->getTimestamp(ets);
3935 if (status == NO_ERROR) {
3936 status = ets.getBestTimestamp(×tamp);
3937 }
3938 return status;
3939 }
3940 if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL) {
3941 uint64_t position64;
3942 if (mOutput->getPresentationPosition(&position64, ×tamp.mTime) == OK) {
3943 timestamp.mPosition = (uint32_t)position64;
3944 if (mDownstreamLatencyStatMs.getN() > 0) {
3945 const uint32_t positionOffset =
3946 (uint32_t)(mDownstreamLatencyStatMs.getMean() * mSampleRate * 1e-3);
3947 if (positionOffset > timestamp.mPosition) {
3948 timestamp.mPosition = 0;
3949 } else {
3950 timestamp.mPosition -= positionOffset;
3951 }
3952 }
3953 return NO_ERROR;
3954 }
3955 }
3956 return INVALID_OPERATION;
3957 }
3958
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3959 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3960 audio_patch_handle_t *handle)
3961 {
3962 status_t status;
3963 if (property_get_bool("af.patch_park", false /* default_value */)) {
3964 // Park FastMixer to avoid potential DOS issues with writing to the HAL
3965 // or if HAL does not properly lock against access.
3966 AutoPark<FastMixer> park(mFastMixer);
3967 status = PlaybackThread::createAudioPatch_l(patch, handle);
3968 } else {
3969 status = PlaybackThread::createAudioPatch_l(patch, handle);
3970 }
3971 return status;
3972 }
3973
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3974 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3975 audio_patch_handle_t *handle)
3976 {
3977 status_t status = NO_ERROR;
3978
3979 // store new device and send to effects
3980 audio_devices_t type = AUDIO_DEVICE_NONE;
3981 for (unsigned int i = 0; i < patch->num_sinks; i++) {
3982 type |= patch->sinks[i].ext.device.type;
3983 }
3984
3985 audio_port_handle_t sinkPortId = patch->sinks[0].id;
3986 #ifdef ADD_BATTERY_DATA
3987 // when changing the audio output device, call addBatteryData to notify
3988 // the change
3989 if (mOutDevice != type) {
3990 uint32_t params = 0;
3991 // check whether speaker is on
3992 if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3993 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3994 }
3995
3996 audio_devices_t deviceWithoutSpeaker
3997 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3998 // check if any other device (except speaker) is on
3999 if (type & deviceWithoutSpeaker) {
4000 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4001 }
4002
4003 if (params != 0) {
4004 addBatteryData(params);
4005 }
4006 }
4007 #endif
4008
4009 for (size_t i = 0; i < mEffectChains.size(); i++) {
4010 mEffectChains[i]->setDevice_l(type);
4011 }
4012
4013 // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
4014 // the thread is created so that the first patch creation triggers an ioConfigChanged callback
4015 bool configChanged = (mPrevOutDevice != type) || (mDeviceId != sinkPortId);
4016 mOutDevice = type;
4017 mPatch = *patch;
4018
4019 if (mOutput->audioHwDev->supportsAudioPatches()) {
4020 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4021 status = hwDevice->createAudioPatch(patch->num_sources,
4022 patch->sources,
4023 patch->num_sinks,
4024 patch->sinks,
4025 handle);
4026 } else {
4027 char *address;
4028 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
4029 //FIXME: we only support address on first sink with HAL version < 3.0
4030 address = audio_device_address_to_parameter(
4031 patch->sinks[0].ext.device.type,
4032 patch->sinks[0].ext.device.address);
4033 } else {
4034 address = (char *)calloc(1, 1);
4035 }
4036 AudioParameter param = AudioParameter(String8(address));
4037 free(address);
4038 param.addInt(String8(AudioParameter::keyRouting), (int)type);
4039 status = mOutput->stream->setParameters(param.toString());
4040 *handle = AUDIO_PATCH_HANDLE_NONE;
4041 }
4042 if (configChanged) {
4043 mPrevOutDevice = type;
4044 mDeviceId = sinkPortId;
4045 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4046 }
4047 return status;
4048 }
4049
releaseAudioPatch_l(const audio_patch_handle_t handle)4050 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
4051 {
4052 status_t status;
4053 if (property_get_bool("af.patch_park", false /* default_value */)) {
4054 // Park FastMixer to avoid potential DOS issues with writing to the HAL
4055 // or if HAL does not properly lock against access.
4056 AutoPark<FastMixer> park(mFastMixer);
4057 status = PlaybackThread::releaseAudioPatch_l(handle);
4058 } else {
4059 status = PlaybackThread::releaseAudioPatch_l(handle);
4060 }
4061 return status;
4062 }
4063
releaseAudioPatch_l(const audio_patch_handle_t handle)4064 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
4065 {
4066 status_t status = NO_ERROR;
4067
4068 mOutDevice = AUDIO_DEVICE_NONE;
4069
4070 if (mOutput->audioHwDev->supportsAudioPatches()) {
4071 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4072 status = hwDevice->releaseAudioPatch(handle);
4073 } else {
4074 AudioParameter param;
4075 param.addInt(String8(AudioParameter::keyRouting), 0);
4076 status = mOutput->stream->setParameters(param.toString());
4077 }
4078 return status;
4079 }
4080
addPatchTrack(const sp<PatchTrack> & track)4081 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
4082 {
4083 Mutex::Autolock _l(mLock);
4084 mTracks.add(track);
4085 }
4086
deletePatchTrack(const sp<PatchTrack> & track)4087 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
4088 {
4089 Mutex::Autolock _l(mLock);
4090 destroyTrack_l(track);
4091 }
4092
toAudioPortConfig(struct audio_port_config * config)4093 void AudioFlinger::PlaybackThread::toAudioPortConfig(struct audio_port_config *config)
4094 {
4095 ThreadBase::toAudioPortConfig(config);
4096 config->role = AUDIO_PORT_ROLE_SOURCE;
4097 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
4098 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
4099 if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
4100 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
4101 config->flags.output = mOutput->flags;
4102 }
4103 }
4104
4105 // ----------------------------------------------------------------------------
4106
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady,type_t type)4107 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
4108 audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
4109 : PlaybackThread(audioFlinger, output, id, device, type, systemReady),
4110 // mAudioMixer below
4111 // mFastMixer below
4112 mFastMixerFutex(0),
4113 mMasterMono(false)
4114 // mOutputSink below
4115 // mPipeSink below
4116 // mNormalSink below
4117 {
4118 setMasterBalance(audioFlinger->getMasterBalance_l());
4119 ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
4120 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
4121 "mFrameCount=%zu, mNormalFrameCount=%zu",
4122 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
4123 mNormalFrameCount);
4124 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4125
4126 if (type == DUPLICATING) {
4127 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
4128 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
4129 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
4130 return;
4131 }
4132 // create an NBAIO sink for the HAL output stream, and negotiate
4133 mOutputSink = new AudioStreamOutSink(output->stream);
4134 size_t numCounterOffers = 0;
4135 const NBAIO_Format offers[1] = {Format_from_SR_C(
4136 mSampleRate, mChannelCount + mHapticChannelCount, mFormat)};
4137 #if !LOG_NDEBUG
4138 ssize_t index =
4139 #else
4140 (void)
4141 #endif
4142 mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
4143 ALOG_ASSERT(index == 0);
4144
4145 // initialize fast mixer depending on configuration
4146 bool initFastMixer;
4147 switch (kUseFastMixer) {
4148 case FastMixer_Never:
4149 initFastMixer = false;
4150 break;
4151 case FastMixer_Always:
4152 initFastMixer = true;
4153 break;
4154 case FastMixer_Static:
4155 case FastMixer_Dynamic:
4156 // FastMixer was designed to operate with a HAL that pulls at a regular rate,
4157 // where the period is less than an experimentally determined threshold that can be
4158 // scheduled reliably with CFS. However, the BT A2DP HAL is
4159 // bursty (does not pull at a regular rate) and so cannot operate with FastMixer.
4160 initFastMixer = mFrameCount < mNormalFrameCount
4161 && (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) == 0;
4162 break;
4163 }
4164 ALOGW_IF(initFastMixer == false && mFrameCount < mNormalFrameCount,
4165 "FastMixer is preferred for this sink as frameCount %zu is less than threshold %zu",
4166 mFrameCount, mNormalFrameCount);
4167 if (initFastMixer) {
4168 audio_format_t fastMixerFormat;
4169 if (mMixerBufferEnabled && mEffectBufferEnabled) {
4170 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
4171 } else {
4172 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
4173 }
4174 if (mFormat != fastMixerFormat) {
4175 // change our Sink format to accept our intermediate precision
4176 mFormat = fastMixerFormat;
4177 free(mSinkBuffer);
4178 mFrameSize = audio_bytes_per_frame(mChannelCount + mHapticChannelCount, mFormat);
4179 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
4180 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
4181 }
4182
4183 // create a MonoPipe to connect our submix to FastMixer
4184 NBAIO_Format format = mOutputSink->format();
4185
4186 // adjust format to match that of the Fast Mixer
4187 ALOGV("format changed from %#x to %#x", format.mFormat, fastMixerFormat);
4188 format.mFormat = fastMixerFormat;
4189 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
4190
4191 // This pipe depth compensates for scheduling latency of the normal mixer thread.
4192 // When it wakes up after a maximum latency, it runs a few cycles quickly before
4193 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
4194 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
4195 const NBAIO_Format offers[1] = {format};
4196 size_t numCounterOffers = 0;
4197 #if !LOG_NDEBUG
4198 ssize_t index =
4199 #else
4200 (void)
4201 #endif
4202 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
4203 ALOG_ASSERT(index == 0);
4204 monoPipe->setAvgFrames((mScreenState & 1) ?
4205 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
4206 mPipeSink = monoPipe;
4207
4208 // create fast mixer and configure it initially with just one fast track for our submix
4209 mFastMixer = new FastMixer(mId);
4210 FastMixerStateQueue *sq = mFastMixer->sq();
4211 #ifdef STATE_QUEUE_DUMP
4212 sq->setObserverDump(&mStateQueueObserverDump);
4213 sq->setMutatorDump(&mStateQueueMutatorDump);
4214 #endif
4215 FastMixerState *state = sq->begin();
4216 FastTrack *fastTrack = &state->mFastTracks[0];
4217 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
4218 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
4219 fastTrack->mVolumeProvider = NULL;
4220 fastTrack->mChannelMask = mChannelMask | mHapticChannelMask; // mPipeSink channel mask for
4221 // audio to FastMixer
4222 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
4223 fastTrack->mHapticPlaybackEnabled = mHapticChannelMask != AUDIO_CHANNEL_NONE;
4224 fastTrack->mHapticIntensity = AudioMixer::HAPTIC_SCALE_NONE;
4225 fastTrack->mGeneration++;
4226 state->mFastTracksGen++;
4227 state->mTrackMask = 1;
4228 // fast mixer will use the HAL output sink
4229 state->mOutputSink = mOutputSink.get();
4230 state->mOutputSinkGen++;
4231 state->mFrameCount = mFrameCount;
4232 // specify sink channel mask when haptic channel mask present as it can not
4233 // be calculated directly from channel count
4234 state->mSinkChannelMask = mHapticChannelMask == AUDIO_CHANNEL_NONE
4235 ? AUDIO_CHANNEL_NONE : mChannelMask | mHapticChannelMask;
4236 state->mCommand = FastMixerState::COLD_IDLE;
4237 // already done in constructor initialization list
4238 //mFastMixerFutex = 0;
4239 state->mColdFutexAddr = &mFastMixerFutex;
4240 state->mColdGen++;
4241 state->mDumpState = &mFastMixerDumpState;
4242 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
4243 state->mNBLogWriter = mFastMixerNBLogWriter.get();
4244 sq->end();
4245 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4246
4247 NBLog::thread_info_t info;
4248 info.id = mId;
4249 info.type = NBLog::FASTMIXER;
4250 mFastMixerNBLogWriter->log<NBLog::EVENT_THREAD_INFO>(info);
4251
4252 // start the fast mixer
4253 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
4254 pid_t tid = mFastMixer->getTid();
4255 sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
4256 stream()->setHalThreadPriority(kPriorityFastMixer);
4257
4258 #ifdef AUDIO_WATCHDOG
4259 // create and start the watchdog
4260 mAudioWatchdog = new AudioWatchdog();
4261 mAudioWatchdog->setDump(&mAudioWatchdogDump);
4262 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
4263 tid = mAudioWatchdog->getTid();
4264 sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
4265 #endif
4266 } else {
4267 #ifdef TEE_SINK
4268 // Only use the MixerThread tee if there is no FastMixer.
4269 mTee.set(mOutputSink->format(), NBAIO_Tee::TEE_FLAG_OUTPUT_THREAD);
4270 mTee.setId(std::string("_") + std::to_string(mId) + "_M");
4271 #endif
4272 }
4273
4274 switch (kUseFastMixer) {
4275 case FastMixer_Never:
4276 case FastMixer_Dynamic:
4277 mNormalSink = mOutputSink;
4278 break;
4279 case FastMixer_Always:
4280 mNormalSink = mPipeSink;
4281 break;
4282 case FastMixer_Static:
4283 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
4284 break;
4285 }
4286 }
4287
~MixerThread()4288 AudioFlinger::MixerThread::~MixerThread()
4289 {
4290 if (mFastMixer != 0) {
4291 FastMixerStateQueue *sq = mFastMixer->sq();
4292 FastMixerState *state = sq->begin();
4293 if (state->mCommand == FastMixerState::COLD_IDLE) {
4294 int32_t old = android_atomic_inc(&mFastMixerFutex);
4295 if (old == -1) {
4296 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4297 }
4298 }
4299 state->mCommand = FastMixerState::EXIT;
4300 sq->end();
4301 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4302 mFastMixer->join();
4303 // Though the fast mixer thread has exited, it's state queue is still valid.
4304 // We'll use that extract the final state which contains one remaining fast track
4305 // corresponding to our sub-mix.
4306 state = sq->begin();
4307 ALOG_ASSERT(state->mTrackMask == 1);
4308 FastTrack *fastTrack = &state->mFastTracks[0];
4309 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
4310 delete fastTrack->mBufferProvider;
4311 sq->end(false /*didModify*/);
4312 mFastMixer.clear();
4313 #ifdef AUDIO_WATCHDOG
4314 if (mAudioWatchdog != 0) {
4315 mAudioWatchdog->requestExit();
4316 mAudioWatchdog->requestExitAndWait();
4317 mAudioWatchdog.clear();
4318 }
4319 #endif
4320 }
4321 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
4322 delete mAudioMixer;
4323 }
4324
4325
correctLatency_l(uint32_t latency) const4326 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
4327 {
4328 if (mFastMixer != 0) {
4329 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
4330 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
4331 }
4332 return latency;
4333 }
4334
threadLoop_write()4335 ssize_t AudioFlinger::MixerThread::threadLoop_write()
4336 {
4337 // FIXME we should only do one push per cycle; confirm this is true
4338 // Start the fast mixer if it's not already running
4339 if (mFastMixer != 0) {
4340 FastMixerStateQueue *sq = mFastMixer->sq();
4341 FastMixerState *state = sq->begin();
4342 if (state->mCommand != FastMixerState::MIX_WRITE &&
4343 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
4344 if (state->mCommand == FastMixerState::COLD_IDLE) {
4345
4346 // FIXME workaround for first HAL write being CPU bound on some devices
4347 ATRACE_BEGIN("write");
4348 mOutput->write((char *)mSinkBuffer, 0);
4349 ATRACE_END();
4350
4351 int32_t old = android_atomic_inc(&mFastMixerFutex);
4352 if (old == -1) {
4353 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4354 }
4355 #ifdef AUDIO_WATCHDOG
4356 if (mAudioWatchdog != 0) {
4357 mAudioWatchdog->resume();
4358 }
4359 #endif
4360 }
4361 state->mCommand = FastMixerState::MIX_WRITE;
4362 #ifdef FAST_THREAD_STATISTICS
4363 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
4364 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
4365 #endif
4366 sq->end();
4367 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4368 if (kUseFastMixer == FastMixer_Dynamic) {
4369 mNormalSink = mPipeSink;
4370 }
4371 } else {
4372 sq->end(false /*didModify*/);
4373 }
4374 }
4375 return PlaybackThread::threadLoop_write();
4376 }
4377
threadLoop_standby()4378 void AudioFlinger::MixerThread::threadLoop_standby()
4379 {
4380 // Idle the fast mixer if it's currently running
4381 if (mFastMixer != 0) {
4382 FastMixerStateQueue *sq = mFastMixer->sq();
4383 FastMixerState *state = sq->begin();
4384 if (!(state->mCommand & FastMixerState::IDLE)) {
4385 // Report any frames trapped in the Monopipe
4386 MonoPipe *monoPipe = (MonoPipe *)mPipeSink.get();
4387 const long long pipeFrames = monoPipe->maxFrames() - monoPipe->availableToWrite();
4388 mLocalLog.log("threadLoop_standby: framesWritten:%lld suspendedFrames:%lld "
4389 "monoPipeWritten:%lld monoPipeLeft:%lld",
4390 (long long)mFramesWritten, (long long)mSuspendedFrames,
4391 (long long)mPipeSink->framesWritten(), pipeFrames);
4392 mLocalLog.log("threadLoop_standby: %s", mTimestamp.toString().c_str());
4393
4394 state->mCommand = FastMixerState::COLD_IDLE;
4395 state->mColdFutexAddr = &mFastMixerFutex;
4396 state->mColdGen++;
4397 mFastMixerFutex = 0;
4398 sq->end();
4399 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
4400 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4401 if (kUseFastMixer == FastMixer_Dynamic) {
4402 mNormalSink = mOutputSink;
4403 }
4404 #ifdef AUDIO_WATCHDOG
4405 if (mAudioWatchdog != 0) {
4406 mAudioWatchdog->pause();
4407 }
4408 #endif
4409 } else {
4410 sq->end(false /*didModify*/);
4411 }
4412 }
4413 PlaybackThread::threadLoop_standby();
4414 }
4415
waitingAsyncCallback_l()4416 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
4417 {
4418 return false;
4419 }
4420
shouldStandby_l()4421 bool AudioFlinger::PlaybackThread::shouldStandby_l()
4422 {
4423 return !mStandby;
4424 }
4425
waitingAsyncCallback()4426 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
4427 {
4428 Mutex::Autolock _l(mLock);
4429 return waitingAsyncCallback_l();
4430 }
4431
4432 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()4433 void AudioFlinger::PlaybackThread::threadLoop_standby()
4434 {
4435 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
4436 mOutput->standby();
4437 if (mUseAsyncWrite != 0) {
4438 // discard any pending drain or write ack by incrementing sequence
4439 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4440 mDrainSequence = (mDrainSequence + 2) & ~1;
4441 ALOG_ASSERT(mCallbackThread != 0);
4442 mCallbackThread->setWriteBlocked(mWriteAckSequence);
4443 mCallbackThread->setDraining(mDrainSequence);
4444 }
4445 mHwPaused = false;
4446 }
4447
onAddNewTrack_l()4448 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
4449 {
4450 ALOGV("signal playback thread");
4451 broadcast_l();
4452 }
4453
onAsyncError()4454 void AudioFlinger::PlaybackThread::onAsyncError()
4455 {
4456 for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
4457 invalidateTracks((audio_stream_type_t)i);
4458 }
4459 }
4460
threadLoop_mix()4461 void AudioFlinger::MixerThread::threadLoop_mix()
4462 {
4463 // mix buffers...
4464 mAudioMixer->process();
4465 mCurrentWriteLength = mSinkBufferSize;
4466 // increase sleep time progressively when application underrun condition clears.
4467 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
4468 // that a steady state of alternating ready/not ready conditions keeps the sleep time
4469 // such that we would underrun the audio HAL.
4470 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
4471 sleepTimeShift--;
4472 }
4473 mSleepTimeUs = 0;
4474 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4475 //TODO: delay standby when effects have a tail
4476
4477 }
4478
threadLoop_sleepTime()4479 void AudioFlinger::MixerThread::threadLoop_sleepTime()
4480 {
4481 // If no tracks are ready, sleep once for the duration of an output
4482 // buffer size, then write 0s to the output
4483 if (mSleepTimeUs == 0) {
4484 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4485 if (mPipeSink.get() != nullptr && mPipeSink == mNormalSink) {
4486 // Using the Monopipe availableToWrite, we estimate the
4487 // sleep time to retry for more data (before we underrun).
4488 MonoPipe *monoPipe = static_cast<MonoPipe *>(mPipeSink.get());
4489 const ssize_t availableToWrite = mPipeSink->availableToWrite();
4490 const size_t pipeFrames = monoPipe->maxFrames();
4491 const size_t framesLeft = pipeFrames - max(availableToWrite, 0);
4492 // HAL_framecount <= framesDelay ~ framesLeft / 2 <= Normal_Mixer_framecount
4493 const size_t framesDelay = std::min(
4494 mNormalFrameCount, max(framesLeft / 2, mFrameCount));
4495 ALOGV("pipeFrames:%zu framesLeft:%zu framesDelay:%zu",
4496 pipeFrames, framesLeft, framesDelay);
4497 mSleepTimeUs = framesDelay * MICROS_PER_SECOND / mSampleRate;
4498 } else {
4499 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
4500 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
4501 mSleepTimeUs = kMinThreadSleepTimeUs;
4502 }
4503 // reduce sleep time in case of consecutive application underruns to avoid
4504 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
4505 // duration we would end up writing less data than needed by the audio HAL if
4506 // the condition persists.
4507 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
4508 sleepTimeShift++;
4509 }
4510 }
4511 } else {
4512 mSleepTimeUs = mIdleSleepTimeUs;
4513 }
4514 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
4515 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
4516 // before effects processing or output.
4517 if (mMixerBufferValid) {
4518 memset(mMixerBuffer, 0, mMixerBufferSize);
4519 } else {
4520 memset(mSinkBuffer, 0, mSinkBufferSize);
4521 }
4522 mSleepTimeUs = 0;
4523 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
4524 "anticipated start");
4525 }
4526 // TODO add standby time extension fct of effect tail
4527 }
4528
4529 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4530 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
4531 Vector< sp<Track> > *tracksToRemove)
4532 {
4533 // clean up deleted track ids in AudioMixer before allocating new tracks
4534 (void)mTracks.processDeletedTrackIds([this](int trackId) {
4535 // for each trackId, destroy it in the AudioMixer
4536 if (mAudioMixer->exists(trackId)) {
4537 mAudioMixer->destroy(trackId);
4538 }
4539 });
4540 mTracks.clearDeletedTrackIds();
4541
4542 mixer_state mixerStatus = MIXER_IDLE;
4543 // find out which tracks need to be processed
4544 size_t count = mActiveTracks.size();
4545 size_t mixedTracks = 0;
4546 size_t tracksWithEffect = 0;
4547 // counts only _active_ fast tracks
4548 size_t fastTracks = 0;
4549 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
4550
4551 float masterVolume = mMasterVolume;
4552 bool masterMute = mMasterMute;
4553
4554 if (masterMute) {
4555 masterVolume = 0;
4556 }
4557 // Delegate master volume control to effect in output mix effect chain if needed
4558 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
4559 if (chain != 0) {
4560 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
4561 chain->setVolume_l(&v, &v);
4562 masterVolume = (float)((v + (1 << 23)) >> 24);
4563 chain.clear();
4564 }
4565
4566 // prepare a new state to push
4567 FastMixerStateQueue *sq = NULL;
4568 FastMixerState *state = NULL;
4569 bool didModify = false;
4570 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4571 bool coldIdle = false;
4572 if (mFastMixer != 0) {
4573 sq = mFastMixer->sq();
4574 state = sq->begin();
4575 coldIdle = state->mCommand == FastMixerState::COLD_IDLE;
4576 }
4577
4578 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
4579 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4580
4581 // DeferredOperations handles statistics after setting mixerStatus.
4582 class DeferredOperations {
4583 public:
4584 DeferredOperations(mixer_state *mixerStatus)
4585 : mMixerStatus(mixerStatus) { }
4586
4587 // when leaving scope, tally frames properly.
4588 ~DeferredOperations() {
4589 // Tally underrun frames only if we are actually mixing (MIXER_TRACKS_READY)
4590 // because that is when the underrun occurs.
4591 // We do not distinguish between FastTracks and NormalTracks here.
4592 if (*mMixerStatus == MIXER_TRACKS_READY) {
4593 for (const auto &underrun : mUnderrunFrames) {
4594 underrun.first->mAudioTrackServerProxy->tallyUnderrunFrames(
4595 underrun.second);
4596 }
4597 }
4598 }
4599
4600 // tallyUnderrunFrames() is called to update the track counters
4601 // with the number of underrun frames for a particular mixer period.
4602 // We defer tallying until we know the final mixer status.
4603 void tallyUnderrunFrames(sp<Track> track, size_t underrunFrames) {
4604 mUnderrunFrames.emplace_back(track, underrunFrames);
4605 }
4606
4607 private:
4608 const mixer_state * const mMixerStatus;
4609 std::vector<std::pair<sp<Track>, size_t>> mUnderrunFrames;
4610 } deferredOperations(&mixerStatus); // implicit nested scope for variable capture
4611
4612 bool noFastHapticTrack = true;
4613 for (size_t i=0 ; i<count ; i++) {
4614 const sp<Track> t = mActiveTracks[i];
4615
4616 // this const just means the local variable doesn't change
4617 Track* const track = t.get();
4618
4619 // process fast tracks
4620 if (track->isFastTrack()) {
4621 LOG_ALWAYS_FATAL_IF(mFastMixer.get() == nullptr,
4622 "%s(%d): FastTrack(%d) present without FastMixer",
4623 __func__, id(), track->id());
4624
4625 if (track->getHapticPlaybackEnabled()) {
4626 noFastHapticTrack = false;
4627 }
4628
4629 // It's theoretically possible (though unlikely) for a fast track to be created
4630 // and then removed within the same normal mix cycle. This is not a problem, as
4631 // the track never becomes active so it's fast mixer slot is never touched.
4632 // The converse, of removing an (active) track and then creating a new track
4633 // at the identical fast mixer slot within the same normal mix cycle,
4634 // is impossible because the slot isn't marked available until the end of each cycle.
4635 int j = track->mFastIndex;
4636 ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4637 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4638 FastTrack *fastTrack = &state->mFastTracks[j];
4639
4640 // Determine whether the track is currently in underrun condition,
4641 // and whether it had a recent underrun.
4642 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4643 FastTrackUnderruns underruns = ftDump->mUnderruns;
4644 uint32_t recentFull = (underruns.mBitFields.mFull -
4645 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4646 uint32_t recentPartial = (underruns.mBitFields.mPartial -
4647 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4648 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4649 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4650 uint32_t recentUnderruns = recentPartial + recentEmpty;
4651 track->mObservedUnderruns = underruns;
4652 // don't count underruns that occur while stopping or pausing
4653 // or stopped which can occur when flush() is called while active
4654 size_t underrunFrames = 0;
4655 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4656 recentUnderruns > 0) {
4657 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4658 underrunFrames = recentUnderruns * mFrameCount;
4659 }
4660 // Immediately account for FastTrack underruns.
4661 track->mAudioTrackServerProxy->tallyUnderrunFrames(underrunFrames);
4662
4663 // This is similar to the state machine for normal tracks,
4664 // with a few modifications for fast tracks.
4665 bool isActive = true;
4666 switch (track->mState) {
4667 case TrackBase::STOPPING_1:
4668 // track stays active in STOPPING_1 state until first underrun
4669 if (recentUnderruns > 0 || track->isTerminated()) {
4670 track->mState = TrackBase::STOPPING_2;
4671 }
4672 break;
4673 case TrackBase::PAUSING:
4674 // ramp down is not yet implemented
4675 track->setPaused();
4676 break;
4677 case TrackBase::RESUMING:
4678 // ramp up is not yet implemented
4679 track->mState = TrackBase::ACTIVE;
4680 break;
4681 case TrackBase::ACTIVE:
4682 if (recentFull > 0 || recentPartial > 0) {
4683 // track has provided at least some frames recently: reset retry count
4684 track->mRetryCount = kMaxTrackRetries;
4685 }
4686 if (recentUnderruns == 0) {
4687 // no recent underruns: stay active
4688 break;
4689 }
4690 // there has recently been an underrun of some kind
4691 if (track->sharedBuffer() == 0) {
4692 // were any of the recent underruns "empty" (no frames available)?
4693 if (recentEmpty == 0) {
4694 // no, then ignore the partial underruns as they are allowed indefinitely
4695 break;
4696 }
4697 // there has recently been an "empty" underrun: decrement the retry counter
4698 if (--(track->mRetryCount) > 0) {
4699 break;
4700 }
4701 // indicate to client process that the track was disabled because of underrun;
4702 // it will then automatically call start() when data is available
4703 track->disable();
4704 // remove from active list, but state remains ACTIVE [confusing but true]
4705 isActive = false;
4706 break;
4707 }
4708 FALLTHROUGH_INTENDED;
4709 case TrackBase::STOPPING_2:
4710 case TrackBase::PAUSED:
4711 case TrackBase::STOPPED:
4712 case TrackBase::FLUSHED: // flush() while active
4713 // Check for presentation complete if track is inactive
4714 // We have consumed all the buffers of this track.
4715 // This would be incomplete if we auto-paused on underrun
4716 {
4717 uint32_t latency = 0;
4718 status_t result = mOutput->stream->getLatency(&latency);
4719 ALOGE_IF(result != OK,
4720 "Error when retrieving output stream latency: %d", result);
4721 size_t audioHALFrames = (latency * mSampleRate) / 1000;
4722 int64_t framesWritten = mBytesWritten / mFrameSize;
4723 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4724 // track stays in active list until presentation is complete
4725 break;
4726 }
4727 }
4728 if (track->isStopping_2()) {
4729 track->mState = TrackBase::STOPPED;
4730 }
4731 if (track->isStopped()) {
4732 // Can't reset directly, as fast mixer is still polling this track
4733 // track->reset();
4734 // So instead mark this track as needing to be reset after push with ack
4735 resetMask |= 1 << i;
4736 }
4737 isActive = false;
4738 break;
4739 case TrackBase::IDLE:
4740 default:
4741 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4742 }
4743
4744 if (isActive) {
4745 // was it previously inactive?
4746 if (!(state->mTrackMask & (1 << j))) {
4747 ExtendedAudioBufferProvider *eabp = track;
4748 VolumeProvider *vp = track;
4749 fastTrack->mBufferProvider = eabp;
4750 fastTrack->mVolumeProvider = vp;
4751 fastTrack->mChannelMask = track->mChannelMask;
4752 fastTrack->mFormat = track->mFormat;
4753 fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
4754 fastTrack->mHapticIntensity = track->getHapticIntensity();
4755 fastTrack->mGeneration++;
4756 state->mTrackMask |= 1 << j;
4757 didModify = true;
4758 // no acknowledgement required for newly active tracks
4759 }
4760 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4761 // cache the combined master volume and stream type volume for fast mixer; this
4762 // lacks any synchronization or barrier so VolumeProvider may read a stale value
4763 const float vh = track->getVolumeHandler()->getVolume(
4764 proxy->framesReleased()).first;
4765 float volume;
4766 if (track->isPlaybackRestricted()) {
4767 volume = 0.f;
4768 } else {
4769 volume = masterVolume
4770 * mStreamTypes[track->streamType()].volume
4771 * vh;
4772 }
4773 track->mCachedVolume = volume;
4774 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4775 float vlf = volume * float_from_gain(gain_minifloat_unpack_left(vlr));
4776 float vrf = volume * float_from_gain(gain_minifloat_unpack_right(vlr));
4777 track->setFinalVolume((vlf + vrf) / 2.f);
4778 ++fastTracks;
4779 } else {
4780 // was it previously active?
4781 if (state->mTrackMask & (1 << j)) {
4782 fastTrack->mBufferProvider = NULL;
4783 fastTrack->mGeneration++;
4784 state->mTrackMask &= ~(1 << j);
4785 didModify = true;
4786 // If any fast tracks were removed, we must wait for acknowledgement
4787 // because we're about to decrement the last sp<> on those tracks.
4788 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4789 } else {
4790 // ALOGW rather than LOG_ALWAYS_FATAL because it seems there are cases where an
4791 // AudioTrack may start (which may not be with a start() but with a write()
4792 // after underrun) and immediately paused or released. In that case the
4793 // FastTrack state hasn't had time to update.
4794 // TODO Remove the ALOGW when this theory is confirmed.
4795 ALOGW("fast track %d should have been active; "
4796 "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4797 j, track->mState, state->mTrackMask, recentUnderruns,
4798 track->sharedBuffer() != 0);
4799 // Since the FastMixer state already has the track inactive, do nothing here.
4800 }
4801 tracksToRemove->add(track);
4802 // Avoids a misleading display in dumpsys
4803 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4804 }
4805 if (fastTrack->mHapticPlaybackEnabled != track->getHapticPlaybackEnabled()) {
4806 fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
4807 didModify = true;
4808 }
4809 continue;
4810 }
4811
4812 { // local variable scope to avoid goto warning
4813
4814 audio_track_cblk_t* cblk = track->cblk();
4815
4816 // The first time a track is added we wait
4817 // for all its buffers to be filled before processing it
4818 const int trackId = track->id();
4819
4820 // if an active track doesn't exist in the AudioMixer, create it.
4821 // use the trackId as the AudioMixer name.
4822 if (!mAudioMixer->exists(trackId)) {
4823 status_t status = mAudioMixer->create(
4824 trackId,
4825 track->mChannelMask,
4826 track->mFormat,
4827 track->mSessionId);
4828 if (status != OK) {
4829 ALOGW("%s(): AudioMixer cannot create track(%d)"
4830 " mask %#x, format %#x, sessionId %d",
4831 __func__, trackId,
4832 track->mChannelMask, track->mFormat, track->mSessionId);
4833 tracksToRemove->add(track);
4834 track->invalidate(); // consider it dead.
4835 continue;
4836 }
4837 }
4838
4839 // make sure that we have enough frames to mix one full buffer.
4840 // enforce this condition only once to enable draining the buffer in case the client
4841 // app does not call stop() and relies on underrun to stop:
4842 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4843 // during last round
4844 size_t desiredFrames;
4845 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4846 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4847
4848 desiredFrames = sourceFramesNeededWithTimestretch(
4849 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4850 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4851 // add frames already consumed but not yet released by the resampler
4852 // because mAudioTrackServerProxy->framesReady() will include these frames
4853 desiredFrames += mAudioMixer->getUnreleasedFrames(trackId);
4854
4855 uint32_t minFrames = 1;
4856 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4857 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4858 minFrames = desiredFrames;
4859 }
4860
4861 size_t framesReady = track->framesReady();
4862 if (ATRACE_ENABLED()) {
4863 // I wish we had formatted trace names
4864 std::string traceName("nRdy");
4865 traceName += std::to_string(trackId);
4866 ATRACE_INT(traceName.c_str(), framesReady);
4867 }
4868 if ((framesReady >= minFrames) && track->isReady() &&
4869 !track->isPaused() && !track->isTerminated())
4870 {
4871 ALOGVV("track(%d) s=%08x [OK] on thread %p", trackId, cblk->mServer, this);
4872
4873 mixedTracks++;
4874
4875 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4876 // there is an effect chain connected to the track
4877 chain.clear();
4878 if (track->mainBuffer() != mSinkBuffer &&
4879 track->mainBuffer() != mMixerBuffer) {
4880 if (mEffectBufferEnabled) {
4881 mEffectBufferValid = true; // Later can set directly.
4882 }
4883 chain = getEffectChain_l(track->sessionId());
4884 // Delegate volume control to effect in track effect chain if needed
4885 if (chain != 0) {
4886 tracksWithEffect++;
4887 } else {
4888 ALOGW("prepareTracks_l(): track(%d) attached to effect but no chain found on "
4889 "session %d",
4890 trackId, track->sessionId());
4891 }
4892 }
4893
4894
4895 int param = AudioMixer::VOLUME;
4896 if (track->mFillingUpStatus == Track::FS_FILLED) {
4897 // no ramp for the first volume setting
4898 track->mFillingUpStatus = Track::FS_ACTIVE;
4899 if (track->mState == TrackBase::RESUMING) {
4900 track->mState = TrackBase::ACTIVE;
4901 // If a new track is paused immediately after start, do not ramp on resume.
4902 if (cblk->mServer != 0) {
4903 param = AudioMixer::RAMP_VOLUME;
4904 }
4905 }
4906 mAudioMixer->setParameter(trackId, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4907 mLeftVolFloat = -1.0;
4908 // FIXME should not make a decision based on mServer
4909 } else if (cblk->mServer != 0) {
4910 // If the track is stopped before the first frame was mixed,
4911 // do not apply ramp
4912 param = AudioMixer::RAMP_VOLUME;
4913 }
4914
4915 // compute volume for this track
4916 uint32_t vl, vr; // in U8.24 integer format
4917 float vlf, vrf, vaf; // in [0.0, 1.0] float format
4918 // read original volumes with volume control
4919 float typeVolume = mStreamTypes[track->streamType()].volume;
4920 float v = masterVolume * typeVolume;
4921 // Always fetch volumeshaper volume to ensure state is updated.
4922 const sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4923 const float vh = track->getVolumeHandler()->getVolume(
4924 track->mAudioTrackServerProxy->framesReleased()).first;
4925
4926 if (track->isPausing() || mStreamTypes[track->streamType()].mute
4927 || track->isPlaybackRestricted()) {
4928 vl = vr = 0;
4929 vlf = vrf = vaf = 0.;
4930 if (track->isPausing()) {
4931 track->setPaused();
4932 }
4933 } else {
4934 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4935 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4936 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4937 // track volumes come from shared memory, so can't be trusted and must be clamped
4938 if (vlf > GAIN_FLOAT_UNITY) {
4939 ALOGV("Track left volume out of range: %.3g", vlf);
4940 vlf = GAIN_FLOAT_UNITY;
4941 }
4942 if (vrf > GAIN_FLOAT_UNITY) {
4943 ALOGV("Track right volume out of range: %.3g", vrf);
4944 vrf = GAIN_FLOAT_UNITY;
4945 }
4946 // now apply the master volume and stream type volume and shaper volume
4947 vlf *= v * vh;
4948 vrf *= v * vh;
4949 // assuming master volume and stream type volume each go up to 1.0,
4950 // then derive vl and vr as U8.24 versions for the effect chain
4951 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4952 vl = (uint32_t) (scaleto8_24 * vlf);
4953 vr = (uint32_t) (scaleto8_24 * vrf);
4954 // vl and vr are now in U8.24 format
4955 uint16_t sendLevel = proxy->getSendLevel_U4_12();
4956 // send level comes from shared memory and so may be corrupt
4957 if (sendLevel > MAX_GAIN_INT) {
4958 ALOGV("Track send level out of range: %04X", sendLevel);
4959 sendLevel = MAX_GAIN_INT;
4960 }
4961 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4962 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4963 }
4964
4965 track->setFinalVolume((vrf + vlf) / 2.f);
4966
4967 // Delegate volume control to effect in track effect chain if needed
4968 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4969 // Do not ramp volume if volume is controlled by effect
4970 param = AudioMixer::VOLUME;
4971 // Update remaining floating point volume levels
4972 vlf = (float)vl / (1 << 24);
4973 vrf = (float)vr / (1 << 24);
4974 track->mHasVolumeController = true;
4975 } else {
4976 // force no volume ramp when volume controller was just disabled or removed
4977 // from effect chain to avoid volume spike
4978 if (track->mHasVolumeController) {
4979 param = AudioMixer::VOLUME;
4980 }
4981 track->mHasVolumeController = false;
4982 }
4983
4984 // For dedicated VoIP outputs, let the HAL apply the stream volume. Track volume is
4985 // still applied by the mixer.
4986 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_VOIP_RX) != 0) {
4987 v = mStreamTypes[track->streamType()].mute ? 0.0f : v;
4988 if (v != mLeftVolFloat) {
4989 status_t result = mOutput->stream->setVolume(v, v);
4990 ALOGE_IF(result != OK, "Error when setting output stream volume: %d", result);
4991 if (result == OK) {
4992 mLeftVolFloat = v;
4993 }
4994 }
4995 // if stream volume was successfully sent to the HAL, mLeftVolFloat == v here and we
4996 // remove stream volume contribution from software volume.
4997 if (v != 0.0f && mLeftVolFloat == v) {
4998 vlf = min(1.0f, vlf / v);
4999 vrf = min(1.0f, vrf / v);
5000 vaf = min(1.0f, vaf / v);
5001 }
5002 }
5003 // XXX: these things DON'T need to be done each time
5004 mAudioMixer->setBufferProvider(trackId, track);
5005 mAudioMixer->enable(trackId);
5006
5007 mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME0, &vlf);
5008 mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME1, &vrf);
5009 mAudioMixer->setParameter(trackId, param, AudioMixer::AUXLEVEL, &vaf);
5010 mAudioMixer->setParameter(
5011 trackId,
5012 AudioMixer::TRACK,
5013 AudioMixer::FORMAT, (void *)track->format());
5014 mAudioMixer->setParameter(
5015 trackId,
5016 AudioMixer::TRACK,
5017 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
5018 mAudioMixer->setParameter(
5019 trackId,
5020 AudioMixer::TRACK,
5021 AudioMixer::MIXER_CHANNEL_MASK,
5022 (void *)(uintptr_t)(mChannelMask | mHapticChannelMask));
5023 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
5024 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
5025 uint32_t reqSampleRate = proxy->getSampleRate();
5026 if (reqSampleRate == 0) {
5027 reqSampleRate = mSampleRate;
5028 } else if (reqSampleRate > maxSampleRate) {
5029 reqSampleRate = maxSampleRate;
5030 }
5031 mAudioMixer->setParameter(
5032 trackId,
5033 AudioMixer::RESAMPLE,
5034 AudioMixer::SAMPLE_RATE,
5035 (void *)(uintptr_t)reqSampleRate);
5036
5037 AudioPlaybackRate playbackRate = proxy->getPlaybackRate();
5038 mAudioMixer->setParameter(
5039 trackId,
5040 AudioMixer::TIMESTRETCH,
5041 AudioMixer::PLAYBACK_RATE,
5042 &playbackRate);
5043
5044 /*
5045 * Select the appropriate output buffer for the track.
5046 *
5047 * Tracks with effects go into their own effects chain buffer
5048 * and from there into either mEffectBuffer or mSinkBuffer.
5049 *
5050 * Other tracks can use mMixerBuffer for higher precision
5051 * channel accumulation. If this buffer is enabled
5052 * (mMixerBufferEnabled true), then selected tracks will accumulate
5053 * into it.
5054 *
5055 */
5056 if (mMixerBufferEnabled
5057 && (track->mainBuffer() == mSinkBuffer
5058 || track->mainBuffer() == mMixerBuffer)) {
5059 mAudioMixer->setParameter(
5060 trackId,
5061 AudioMixer::TRACK,
5062 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
5063 mAudioMixer->setParameter(
5064 trackId,
5065 AudioMixer::TRACK,
5066 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
5067 // TODO: override track->mainBuffer()?
5068 mMixerBufferValid = true;
5069 } else {
5070 mAudioMixer->setParameter(
5071 trackId,
5072 AudioMixer::TRACK,
5073 AudioMixer::MIXER_FORMAT, (void *)EFFECT_BUFFER_FORMAT);
5074 mAudioMixer->setParameter(
5075 trackId,
5076 AudioMixer::TRACK,
5077 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
5078 }
5079 mAudioMixer->setParameter(
5080 trackId,
5081 AudioMixer::TRACK,
5082 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
5083 mAudioMixer->setParameter(
5084 trackId,
5085 AudioMixer::TRACK,
5086 AudioMixer::HAPTIC_ENABLED, (void *)(uintptr_t)track->getHapticPlaybackEnabled());
5087 mAudioMixer->setParameter(
5088 trackId,
5089 AudioMixer::TRACK,
5090 AudioMixer::HAPTIC_INTENSITY, (void *)(uintptr_t)track->getHapticIntensity());
5091
5092 // reset retry count
5093 track->mRetryCount = kMaxTrackRetries;
5094
5095 // If one track is ready, set the mixer ready if:
5096 // - the mixer was not ready during previous round OR
5097 // - no other track is not ready
5098 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
5099 mixerStatus != MIXER_TRACKS_ENABLED) {
5100 mixerStatus = MIXER_TRACKS_READY;
5101 }
5102 } else {
5103 size_t underrunFrames = 0;
5104 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
5105 ALOGV("track(%d) underrun, framesReady(%zu) < framesDesired(%zd)",
5106 trackId, framesReady, desiredFrames);
5107 underrunFrames = desiredFrames;
5108 }
5109 deferredOperations.tallyUnderrunFrames(track, underrunFrames);
5110
5111 // clear effect chain input buffer if an active track underruns to avoid sending
5112 // previous audio buffer again to effects
5113 chain = getEffectChain_l(track->sessionId());
5114 if (chain != 0) {
5115 chain->clearInputBuffer();
5116 }
5117
5118 ALOGVV("track(%d) s=%08x [NOT READY] on thread %p", trackId, cblk->mServer, this);
5119 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
5120 track->isStopped() || track->isPaused()) {
5121 // We have consumed all the buffers of this track.
5122 // Remove it from the list of active tracks.
5123 // TODO: use actual buffer filling status instead of latency when available from
5124 // audio HAL
5125 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
5126 int64_t framesWritten = mBytesWritten / mFrameSize;
5127 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
5128 if (track->isStopped()) {
5129 track->reset();
5130 }
5131 tracksToRemove->add(track);
5132 }
5133 } else {
5134 // No buffers for this track. Give it a few chances to
5135 // fill a buffer, then remove it from active list.
5136 if (--(track->mRetryCount) <= 0) {
5137 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p",
5138 trackId, this);
5139 tracksToRemove->add(track);
5140 // indicate to client process that the track was disabled because of underrun;
5141 // it will then automatically call start() when data is available
5142 track->disable();
5143 // If one track is not ready, mark the mixer also not ready if:
5144 // - the mixer was ready during previous round OR
5145 // - no other track is ready
5146 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
5147 mixerStatus != MIXER_TRACKS_READY) {
5148 mixerStatus = MIXER_TRACKS_ENABLED;
5149 }
5150 }
5151 mAudioMixer->disable(trackId);
5152 }
5153
5154 } // local variable scope to avoid goto warning
5155
5156 }
5157
5158 if (mHapticChannelMask != AUDIO_CHANNEL_NONE && sq != NULL) {
5159 // When there is no fast track playing haptic and FastMixer exists,
5160 // enabling the first FastTrack, which provides mixed data from normal
5161 // tracks, to play haptic data.
5162 FastTrack *fastTrack = &state->mFastTracks[0];
5163 if (fastTrack->mHapticPlaybackEnabled != noFastHapticTrack) {
5164 fastTrack->mHapticPlaybackEnabled = noFastHapticTrack;
5165 didModify = true;
5166 }
5167 }
5168
5169 // Push the new FastMixer state if necessary
5170 bool pauseAudioWatchdog = false;
5171 if (didModify) {
5172 state->mFastTracksGen++;
5173 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
5174 if (kUseFastMixer == FastMixer_Dynamic &&
5175 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
5176 state->mCommand = FastMixerState::COLD_IDLE;
5177 state->mColdFutexAddr = &mFastMixerFutex;
5178 state->mColdGen++;
5179 mFastMixerFutex = 0;
5180 if (kUseFastMixer == FastMixer_Dynamic) {
5181 mNormalSink = mOutputSink;
5182 }
5183 // If we go into cold idle, need to wait for acknowledgement
5184 // so that fast mixer stops doing I/O.
5185 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
5186 pauseAudioWatchdog = true;
5187 }
5188 }
5189 if (sq != NULL) {
5190 sq->end(didModify);
5191 // No need to block if the FastMixer is in COLD_IDLE as the FastThread
5192 // is not active. (We BLOCK_UNTIL_ACKED when entering COLD_IDLE
5193 // when bringing the output sink into standby.)
5194 //
5195 // We will get the latest FastMixer state when we come out of COLD_IDLE.
5196 //
5197 // This occurs with BT suspend when we idle the FastMixer with
5198 // active tracks, which may be added or removed.
5199 sq->push(coldIdle ? FastMixerStateQueue::BLOCK_NEVER : block);
5200 }
5201 #ifdef AUDIO_WATCHDOG
5202 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
5203 mAudioWatchdog->pause();
5204 }
5205 #endif
5206
5207 // Now perform the deferred reset on fast tracks that have stopped
5208 while (resetMask != 0) {
5209 size_t i = __builtin_ctz(resetMask);
5210 ALOG_ASSERT(i < count);
5211 resetMask &= ~(1 << i);
5212 sp<Track> track = mActiveTracks[i];
5213 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
5214 track->reset();
5215 }
5216
5217 // Track destruction may occur outside of threadLoop once it is removed from active tracks.
5218 // Ensure the AudioMixer doesn't have a raw "buffer provider" pointer to the track if
5219 // it ceases to be active, to allow safe removal from the AudioMixer at the start
5220 // of prepareTracks_l(); this releases any outstanding buffer back to the track.
5221 // See also the implementation of destroyTrack_l().
5222 for (const auto &track : *tracksToRemove) {
5223 const int trackId = track->id();
5224 if (mAudioMixer->exists(trackId)) { // Normal tracks here, fast tracks in FastMixer.
5225 mAudioMixer->setBufferProvider(trackId, nullptr /* bufferProvider */);
5226 }
5227 }
5228
5229 // remove all the tracks that need to be...
5230 removeTracks_l(*tracksToRemove);
5231
5232 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
5233 mEffectBufferValid = true;
5234 }
5235
5236 if (mEffectBufferValid) {
5237 // as long as there are effects we should clear the effects buffer, to avoid
5238 // passing a non-clean buffer to the effect chain
5239 memset(mEffectBuffer, 0, mEffectBufferSize);
5240 }
5241 // sink or mix buffer must be cleared if all tracks are connected to an
5242 // effect chain as in this case the mixer will not write to the sink or mix buffer
5243 // and track effects will accumulate into it
5244 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
5245 (mixedTracks == 0 && fastTracks > 0))) {
5246 // FIXME as a performance optimization, should remember previous zero status
5247 if (mMixerBufferValid) {
5248 memset(mMixerBuffer, 0, mMixerBufferSize);
5249 // TODO: In testing, mSinkBuffer below need not be cleared because
5250 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
5251 // after mixing.
5252 //
5253 // To enforce this guarantee:
5254 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
5255 // (mixedTracks == 0 && fastTracks > 0))
5256 // must imply MIXER_TRACKS_READY.
5257 // Later, we may clear buffers regardless, and skip much of this logic.
5258 }
5259 // FIXME as a performance optimization, should remember previous zero status
5260 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
5261 }
5262
5263 // if any fast tracks, then status is ready
5264 mMixerStatusIgnoringFastTracks = mixerStatus;
5265 if (fastTracks > 0) {
5266 mixerStatus = MIXER_TRACKS_READY;
5267 }
5268 return mixerStatus;
5269 }
5270
5271 // trackCountForUid_l() must be called with ThreadBase::mLock held
trackCountForUid_l(uid_t uid) const5272 uint32_t AudioFlinger::PlaybackThread::trackCountForUid_l(uid_t uid) const
5273 {
5274 uint32_t trackCount = 0;
5275 for (size_t i = 0; i < mTracks.size() ; i++) {
5276 if (mTracks[i]->uid() == uid) {
5277 trackCount++;
5278 }
5279 }
5280 return trackCount;
5281 }
5282
5283 // isTrackAllowed_l() must be called with ThreadBase::mLock held
isTrackAllowed_l(audio_channel_mask_t channelMask,audio_format_t format,audio_session_t sessionId,uid_t uid) const5284 bool AudioFlinger::MixerThread::isTrackAllowed_l(
5285 audio_channel_mask_t channelMask, audio_format_t format,
5286 audio_session_t sessionId, uid_t uid) const
5287 {
5288 if (!PlaybackThread::isTrackAllowed_l(channelMask, format, sessionId, uid)) {
5289 return false;
5290 }
5291 // Check validity as we don't call AudioMixer::create() here.
5292 if (!AudioMixer::isValidFormat(format)) {
5293 ALOGW("%s: invalid format: %#x", __func__, format);
5294 return false;
5295 }
5296 if (!AudioMixer::isValidChannelMask(channelMask)) {
5297 ALOGW("%s: invalid channelMask: %#x", __func__, channelMask);
5298 return false;
5299 }
5300 return true;
5301 }
5302
5303 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5304 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
5305 status_t& status)
5306 {
5307 bool reconfig = false;
5308 bool a2dpDeviceChanged = false;
5309
5310 status = NO_ERROR;
5311
5312 AutoPark<FastMixer> park(mFastMixer);
5313
5314 AudioParameter param = AudioParameter(keyValuePair);
5315 int value;
5316 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
5317 reconfig = true;
5318 }
5319 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
5320 if (!isValidPcmSinkFormat((audio_format_t) value)) {
5321 status = BAD_VALUE;
5322 } else {
5323 // no need to save value, since it's constant
5324 reconfig = true;
5325 }
5326 }
5327 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
5328 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
5329 status = BAD_VALUE;
5330 } else {
5331 // no need to save value, since it's constant
5332 reconfig = true;
5333 }
5334 }
5335 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5336 // do not accept frame count changes if tracks are open as the track buffer
5337 // size depends on frame count and correct behavior would not be guaranteed
5338 // if frame count is changed after track creation
5339 if (!mTracks.isEmpty()) {
5340 status = INVALID_OPERATION;
5341 } else {
5342 reconfig = true;
5343 }
5344 }
5345 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5346 #ifdef ADD_BATTERY_DATA
5347 // when changing the audio output device, call addBatteryData to notify
5348 // the change
5349 if (mOutDevice != value) {
5350 uint32_t params = 0;
5351 // check whether speaker is on
5352 if (value & AUDIO_DEVICE_OUT_SPEAKER) {
5353 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
5354 }
5355
5356 audio_devices_t deviceWithoutSpeaker
5357 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
5358 // check if any other device (except speaker) is on
5359 if (value & deviceWithoutSpeaker) {
5360 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
5361 }
5362
5363 if (params != 0) {
5364 addBatteryData(params);
5365 }
5366 }
5367 #endif
5368
5369 // forward device change to effects that have requested to be
5370 // aware of attached audio device.
5371 if (value != AUDIO_DEVICE_NONE) {
5372 a2dpDeviceChanged =
5373 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5374 mOutDevice = value;
5375 for (size_t i = 0; i < mEffectChains.size(); i++) {
5376 mEffectChains[i]->setDevice_l(mOutDevice);
5377 }
5378 }
5379 }
5380
5381 if (status == NO_ERROR) {
5382 status = mOutput->stream->setParameters(keyValuePair);
5383 if (!mStandby && status == INVALID_OPERATION) {
5384 mOutput->standby();
5385 mStandby = true;
5386 mBytesWritten = 0;
5387 status = mOutput->stream->setParameters(keyValuePair);
5388 }
5389 if (status == NO_ERROR && reconfig) {
5390 readOutputParameters_l();
5391 delete mAudioMixer;
5392 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
5393 for (const auto &track : mTracks) {
5394 const int trackId = track->id();
5395 status_t status = mAudioMixer->create(
5396 trackId,
5397 track->mChannelMask,
5398 track->mFormat,
5399 track->mSessionId);
5400 ALOGW_IF(status != NO_ERROR,
5401 "%s(): AudioMixer cannot create track(%d)"
5402 " mask %#x, format %#x, sessionId %d",
5403 __func__,
5404 trackId, track->mChannelMask, track->mFormat, track->mSessionId);
5405 }
5406 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5407 }
5408 }
5409
5410 return reconfig || a2dpDeviceChanged;
5411 }
5412
5413
dumpInternals_l(int fd,const Vector<String16> & args)5414 void AudioFlinger::MixerThread::dumpInternals_l(int fd, const Vector<String16>& args)
5415 {
5416 PlaybackThread::dumpInternals_l(fd, args);
5417 dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
5418 dprintf(fd, " AudioMixer tracks: %s\n", mAudioMixer->trackNames().c_str());
5419 dprintf(fd, " Master mono: %s\n", mMasterMono ? "on" : "off");
5420 dprintf(fd, " Master balance: %f (%s)\n", mMasterBalance.load(),
5421 (hasFastMixer() ? std::to_string(mFastMixer->getMasterBalance())
5422 : mBalance.toString()).c_str());
5423 if (hasFastMixer()) {
5424 dprintf(fd, " FastMixer thread %p tid=%d", mFastMixer.get(), mFastMixer->getTid());
5425
5426 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
5427 // while we are dumping it. It may be inconsistent, but it won't mutate!
5428 // This is a large object so we place it on the heap.
5429 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
5430 const std::unique_ptr<FastMixerDumpState> copy =
5431 std::make_unique<FastMixerDumpState>(mFastMixerDumpState);
5432 copy->dump(fd);
5433
5434 #ifdef STATE_QUEUE_DUMP
5435 // Similar for state queue
5436 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
5437 observerCopy.dump(fd);
5438 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
5439 mutatorCopy.dump(fd);
5440 #endif
5441
5442 #ifdef AUDIO_WATCHDOG
5443 if (mAudioWatchdog != 0) {
5444 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
5445 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
5446 wdCopy.dump(fd);
5447 }
5448 #endif
5449
5450 } else {
5451 dprintf(fd, " No FastMixer\n");
5452 }
5453 }
5454
idleSleepTimeUs() const5455 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
5456 {
5457 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
5458 }
5459
suspendSleepTimeUs() const5460 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
5461 {
5462 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
5463 }
5464
cacheParameters_l()5465 void AudioFlinger::MixerThread::cacheParameters_l()
5466 {
5467 PlaybackThread::cacheParameters_l();
5468
5469 // FIXME: Relaxed timing because of a certain device that can't meet latency
5470 // Should be reduced to 2x after the vendor fixes the driver issue
5471 // increase threshold again due to low power audio mode. The way this warning
5472 // threshold is calculated and its usefulness should be reconsidered anyway.
5473 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
5474 }
5475
5476 // ----------------------------------------------------------------------------
5477
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,ThreadBase::type_t type,bool systemReady)5478 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
5479 AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device,
5480 ThreadBase::type_t type, bool systemReady)
5481 : PlaybackThread(audioFlinger, output, id, device, type, systemReady)
5482 {
5483 setMasterBalance(audioFlinger->getMasterBalance_l());
5484 }
5485
~DirectOutputThread()5486 AudioFlinger::DirectOutputThread::~DirectOutputThread()
5487 {
5488 }
5489
dumpInternals_l(int fd,const Vector<String16> & args)5490 void AudioFlinger::DirectOutputThread::dumpInternals_l(int fd, const Vector<String16>& args)
5491 {
5492 PlaybackThread::dumpInternals_l(fd, args);
5493 dprintf(fd, " Master balance: %f Left: %f Right: %f\n",
5494 mMasterBalance.load(), mMasterBalanceLeft, mMasterBalanceRight);
5495 }
5496
setMasterBalance(float balance)5497 void AudioFlinger::DirectOutputThread::setMasterBalance(float balance)
5498 {
5499 Mutex::Autolock _l(mLock);
5500 if (mMasterBalance != balance) {
5501 mMasterBalance.store(balance);
5502 mBalance.computeStereoBalance(balance, &mMasterBalanceLeft, &mMasterBalanceRight);
5503 broadcast_l();
5504 }
5505 }
5506
processVolume_l(Track * track,bool lastTrack)5507 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
5508 {
5509 float left, right;
5510
5511 // Ensure volumeshaper state always advances even when muted.
5512 const sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5513 const auto [shaperVolume, shaperActive] = track->getVolumeHandler()->getVolume(
5514 proxy->framesReleased());
5515 mVolumeShaperActive = shaperActive;
5516
5517 if (mMasterMute || mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
5518 left = right = 0;
5519 } else {
5520 float typeVolume = mStreamTypes[track->streamType()].volume;
5521 const float v = mMasterVolume * typeVolume * shaperVolume;
5522
5523 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5524 left = float_from_gain(gain_minifloat_unpack_left(vlr));
5525 if (left > GAIN_FLOAT_UNITY) {
5526 left = GAIN_FLOAT_UNITY;
5527 }
5528 left *= v * mMasterBalanceLeft; // DirectOutputThread balance applied as track volume
5529 right = float_from_gain(gain_minifloat_unpack_right(vlr));
5530 if (right > GAIN_FLOAT_UNITY) {
5531 right = GAIN_FLOAT_UNITY;
5532 }
5533 right *= v * mMasterBalanceRight;
5534 }
5535
5536 if (lastTrack) {
5537 track->setFinalVolume((left + right) / 2.f);
5538 if (left != mLeftVolFloat || right != mRightVolFloat) {
5539 mLeftVolFloat = left;
5540 mRightVolFloat = right;
5541
5542 // Delegate volume control to effect in track effect chain if needed
5543 // only one effect chain can be present on DirectOutputThread, so if
5544 // there is one, the track is connected to it
5545 if (!mEffectChains.isEmpty()) {
5546 // if effect chain exists, volume is handled by it.
5547 // Convert volumes from float to 8.24
5548 uint32_t vl = (uint32_t)(left * (1 << 24));
5549 uint32_t vr = (uint32_t)(right * (1 << 24));
5550 // Direct/Offload effect chains set output volume in setVolume_l().
5551 (void)mEffectChains[0]->setVolume_l(&vl, &vr);
5552 } else {
5553 // otherwise we directly set the volume.
5554 setVolumeForOutput_l(left, right);
5555 }
5556 }
5557 }
5558 }
5559
onAddNewTrack_l()5560 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
5561 {
5562 sp<Track> previousTrack = mPreviousTrack.promote();
5563 sp<Track> latestTrack = mActiveTracks.getLatest();
5564
5565 if (previousTrack != 0 && latestTrack != 0) {
5566 if (mType == DIRECT) {
5567 if (previousTrack.get() != latestTrack.get()) {
5568 mFlushPending = true;
5569 }
5570 } else /* mType == OFFLOAD */ {
5571 if (previousTrack->sessionId() != latestTrack->sessionId()) {
5572 mFlushPending = true;
5573 }
5574 }
5575 } else if (previousTrack == 0) {
5576 // there could be an old track added back during track transition for direct
5577 // output, so always issues flush to flush data of the previous track if it
5578 // was already destroyed with HAL paused, then flush can resume the playback
5579 mFlushPending = true;
5580 }
5581 PlaybackThread::onAddNewTrack_l();
5582 }
5583
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5584 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
5585 Vector< sp<Track> > *tracksToRemove
5586 )
5587 {
5588 size_t count = mActiveTracks.size();
5589 mixer_state mixerStatus = MIXER_IDLE;
5590 bool doHwPause = false;
5591 bool doHwResume = false;
5592
5593 // find out which tracks need to be processed
5594 for (const sp<Track> &t : mActiveTracks) {
5595 if (t->isInvalid()) {
5596 ALOGW("An invalidated track shouldn't be in active list");
5597 tracksToRemove->add(t);
5598 continue;
5599 }
5600
5601 Track* const track = t.get();
5602 #ifdef VERY_VERY_VERBOSE_LOGGING
5603 audio_track_cblk_t* cblk = track->cblk();
5604 #endif
5605 // Only consider last track started for volume and mixer state control.
5606 // In theory an older track could underrun and restart after the new one starts
5607 // but as we only care about the transition phase between two tracks on a
5608 // direct output, it is not a problem to ignore the underrun case.
5609 sp<Track> l = mActiveTracks.getLatest();
5610 bool last = l.get() == track;
5611
5612 if (track->isPausing()) {
5613 track->setPaused();
5614 if (mHwSupportsPause && last && !mHwPaused) {
5615 doHwPause = true;
5616 mHwPaused = true;
5617 }
5618 } else if (track->isFlushPending()) {
5619 track->flushAck();
5620 if (last) {
5621 mFlushPending = true;
5622 }
5623 } else if (track->isResumePending()) {
5624 track->resumeAck();
5625 if (last) {
5626 mLeftVolFloat = mRightVolFloat = -1.0;
5627 if (mHwPaused) {
5628 doHwResume = true;
5629 mHwPaused = false;
5630 }
5631 }
5632 }
5633
5634 // The first time a track is added we wait
5635 // for all its buffers to be filled before processing it.
5636 // Allow draining the buffer in case the client
5637 // app does not call stop() and relies on underrun to stop:
5638 // hence the test on (track->mRetryCount > 1).
5639 // If retryCount<=1 then track is about to underrun and be removed.
5640 // Do not use a high threshold for compressed audio.
5641 uint32_t minFrames;
5642 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
5643 && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
5644 minFrames = mNormalFrameCount;
5645 } else {
5646 minFrames = 1;
5647 }
5648
5649 if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
5650 !track->isStopping_2() && !track->isStopped())
5651 {
5652 ALOGVV("track(%d) s=%08x [OK]", track->id(), cblk->mServer);
5653
5654 if (track->mFillingUpStatus == Track::FS_FILLED) {
5655 track->mFillingUpStatus = Track::FS_ACTIVE;
5656 if (last) {
5657 // make sure processVolume_l() will apply new volume even if 0
5658 mLeftVolFloat = mRightVolFloat = -1.0;
5659 }
5660 if (!mHwSupportsPause) {
5661 track->resumeAck();
5662 }
5663 }
5664
5665 // compute volume for this track
5666 processVolume_l(track, last);
5667 if (last) {
5668 sp<Track> previousTrack = mPreviousTrack.promote();
5669 if (previousTrack != 0) {
5670 if (track != previousTrack.get()) {
5671 // Flush any data still being written from last track
5672 mBytesRemaining = 0;
5673 // Invalidate previous track to force a seek when resuming.
5674 previousTrack->invalidate();
5675 }
5676 }
5677 mPreviousTrack = track;
5678
5679 // reset retry count
5680 track->mRetryCount = kMaxTrackRetriesDirect;
5681 mActiveTrack = t;
5682 mixerStatus = MIXER_TRACKS_READY;
5683 if (mHwPaused) {
5684 doHwResume = true;
5685 mHwPaused = false;
5686 }
5687 }
5688 } else {
5689 // clear effect chain input buffer if the last active track started underruns
5690 // to avoid sending previous audio buffer again to effects
5691 if (!mEffectChains.isEmpty() && last) {
5692 mEffectChains[0]->clearInputBuffer();
5693 }
5694 if (track->isStopping_1()) {
5695 track->mState = TrackBase::STOPPING_2;
5696 if (last && mHwPaused) {
5697 doHwResume = true;
5698 mHwPaused = false;
5699 }
5700 }
5701 if ((track->sharedBuffer() != 0) || track->isStopped() ||
5702 track->isStopping_2() || track->isPaused()) {
5703 // We have consumed all the buffers of this track.
5704 // Remove it from the list of active tracks.
5705 size_t audioHALFrames;
5706 if (audio_has_proportional_frames(mFormat)) {
5707 audioHALFrames = (latency_l() * mSampleRate) / 1000;
5708 } else {
5709 audioHALFrames = 0;
5710 }
5711
5712 int64_t framesWritten = mBytesWritten / mFrameSize;
5713 if (mStandby || !last ||
5714 track->presentationComplete(framesWritten, audioHALFrames) ||
5715 track->isPaused()) {
5716 if (track->isStopping_2()) {
5717 track->mState = TrackBase::STOPPED;
5718 }
5719 if (track->isStopped()) {
5720 track->reset();
5721 }
5722 tracksToRemove->add(track);
5723 }
5724 } else {
5725 // No buffers for this track. Give it a few chances to
5726 // fill a buffer, then remove it from active list.
5727 // Only consider last track started for mixer state control
5728 if (--(track->mRetryCount) <= 0) {
5729 ALOGV("BUFFER TIMEOUT: remove track(%d) from active list", track->id());
5730 tracksToRemove->add(track);
5731 // indicate to client process that the track was disabled because of underrun;
5732 // it will then automatically call start() when data is available
5733 track->disable();
5734 } else if (last) {
5735 ALOGW("pause because of UNDERRUN, framesReady = %zu,"
5736 "minFrames = %u, mFormat = %#x",
5737 track->framesReady(), minFrames, mFormat);
5738 mixerStatus = MIXER_TRACKS_ENABLED;
5739 if (mHwSupportsPause && !mHwPaused && !mStandby) {
5740 doHwPause = true;
5741 mHwPaused = true;
5742 }
5743 }
5744 }
5745 }
5746 }
5747
5748 // if an active track did not command a flush, check for pending flush on stopped tracks
5749 if (!mFlushPending) {
5750 for (size_t i = 0; i < mTracks.size(); i++) {
5751 if (mTracks[i]->isFlushPending()) {
5752 mTracks[i]->flushAck();
5753 mFlushPending = true;
5754 }
5755 }
5756 }
5757
5758 // make sure the pause/flush/resume sequence is executed in the right order.
5759 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5760 // before flush and then resume HW. This can happen in case of pause/flush/resume
5761 // if resume is received before pause is executed.
5762 if (mHwSupportsPause && !mStandby &&
5763 (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5764 status_t result = mOutput->stream->pause();
5765 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
5766 }
5767 if (mFlushPending) {
5768 flushHw_l();
5769 }
5770 if (mHwSupportsPause && !mStandby && doHwResume) {
5771 status_t result = mOutput->stream->resume();
5772 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
5773 }
5774 // remove all the tracks that need to be...
5775 removeTracks_l(*tracksToRemove);
5776
5777 return mixerStatus;
5778 }
5779
threadLoop_mix()5780 void AudioFlinger::DirectOutputThread::threadLoop_mix()
5781 {
5782 size_t frameCount = mFrameCount;
5783 int8_t *curBuf = (int8_t *)mSinkBuffer;
5784 // output audio to hardware
5785 while (frameCount) {
5786 AudioBufferProvider::Buffer buffer;
5787 buffer.frameCount = frameCount;
5788 status_t status = mActiveTrack->getNextBuffer(&buffer);
5789 if (status != NO_ERROR || buffer.raw == NULL) {
5790 // no need to pad with 0 for compressed audio
5791 if (audio_has_proportional_frames(mFormat)) {
5792 memset(curBuf, 0, frameCount * mFrameSize);
5793 }
5794 break;
5795 }
5796 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
5797 frameCount -= buffer.frameCount;
5798 curBuf += buffer.frameCount * mFrameSize;
5799 mActiveTrack->releaseBuffer(&buffer);
5800 }
5801 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
5802 mSleepTimeUs = 0;
5803 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5804 mActiveTrack.clear();
5805 }
5806
threadLoop_sleepTime()5807 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
5808 {
5809 // do not write to HAL when paused
5810 if (mHwPaused || (usesHwAvSync() && mStandby)) {
5811 mSleepTimeUs = mIdleSleepTimeUs;
5812 return;
5813 }
5814 if (mSleepTimeUs == 0) {
5815 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5816 mSleepTimeUs = mActiveSleepTimeUs;
5817 } else {
5818 mSleepTimeUs = mIdleSleepTimeUs;
5819 }
5820 } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
5821 memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
5822 mSleepTimeUs = 0;
5823 }
5824 }
5825
threadLoop_exit()5826 void AudioFlinger::DirectOutputThread::threadLoop_exit()
5827 {
5828 {
5829 Mutex::Autolock _l(mLock);
5830 for (size_t i = 0; i < mTracks.size(); i++) {
5831 if (mTracks[i]->isFlushPending()) {
5832 mTracks[i]->flushAck();
5833 mFlushPending = true;
5834 }
5835 }
5836 if (mFlushPending) {
5837 flushHw_l();
5838 }
5839 }
5840 PlaybackThread::threadLoop_exit();
5841 }
5842
5843 // must be called with thread mutex locked
shouldStandby_l()5844 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
5845 {
5846 bool trackPaused = false;
5847 bool trackStopped = false;
5848
5849 if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
5850 return !mStandby;
5851 }
5852
5853 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5854 // after a timeout and we will enter standby then.
5855 if (mTracks.size() > 0) {
5856 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5857 trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5858 mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5859 }
5860
5861 return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5862 }
5863
5864 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5865 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5866 status_t& status)
5867 {
5868 bool reconfig = false;
5869 bool a2dpDeviceChanged = false;
5870
5871 status = NO_ERROR;
5872
5873 AudioParameter param = AudioParameter(keyValuePair);
5874 int value;
5875 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5876 // forward device change to effects that have requested to be
5877 // aware of attached audio device.
5878 if (value != AUDIO_DEVICE_NONE) {
5879 a2dpDeviceChanged =
5880 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5881 mOutDevice = value;
5882 for (size_t i = 0; i < mEffectChains.size(); i++) {
5883 mEffectChains[i]->setDevice_l(mOutDevice);
5884 }
5885 }
5886 }
5887 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5888 // do not accept frame count changes if tracks are open as the track buffer
5889 // size depends on frame count and correct behavior would not be garantied
5890 // if frame count is changed after track creation
5891 if (!mTracks.isEmpty()) {
5892 status = INVALID_OPERATION;
5893 } else {
5894 reconfig = true;
5895 }
5896 }
5897 if (status == NO_ERROR) {
5898 status = mOutput->stream->setParameters(keyValuePair);
5899 if (!mStandby && status == INVALID_OPERATION) {
5900 mOutput->standby();
5901 mStandby = true;
5902 mBytesWritten = 0;
5903 status = mOutput->stream->setParameters(keyValuePair);
5904 }
5905 if (status == NO_ERROR && reconfig) {
5906 readOutputParameters_l();
5907 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5908 }
5909 }
5910
5911 return reconfig || a2dpDeviceChanged;
5912 }
5913
activeSleepTimeUs() const5914 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5915 {
5916 uint32_t time;
5917 if (audio_has_proportional_frames(mFormat)) {
5918 time = PlaybackThread::activeSleepTimeUs();
5919 } else {
5920 time = kDirectMinSleepTimeUs;
5921 }
5922 return time;
5923 }
5924
idleSleepTimeUs() const5925 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5926 {
5927 uint32_t time;
5928 if (audio_has_proportional_frames(mFormat)) {
5929 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5930 } else {
5931 time = kDirectMinSleepTimeUs;
5932 }
5933 return time;
5934 }
5935
suspendSleepTimeUs() const5936 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5937 {
5938 uint32_t time;
5939 if (audio_has_proportional_frames(mFormat)) {
5940 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5941 } else {
5942 time = kDirectMinSleepTimeUs;
5943 }
5944 return time;
5945 }
5946
cacheParameters_l()5947 void AudioFlinger::DirectOutputThread::cacheParameters_l()
5948 {
5949 PlaybackThread::cacheParameters_l();
5950
5951 // use shorter standby delay as on normal output to release
5952 // hardware resources as soon as possible
5953 // no delay on outputs with HW A/V sync
5954 if (usesHwAvSync()) {
5955 mStandbyDelayNs = 0;
5956 } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5957 mStandbyDelayNs = kOffloadStandbyDelayNs;
5958 } else {
5959 mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5960 }
5961 }
5962
flushHw_l()5963 void AudioFlinger::DirectOutputThread::flushHw_l()
5964 {
5965 mOutput->flush();
5966 mHwPaused = false;
5967 mFlushPending = false;
5968 mTimestampVerifier.discontinuity(); // DIRECT and OFFLOADED flush resets frame count.
5969 }
5970
computeWaitTimeNs_l() const5971 int64_t AudioFlinger::DirectOutputThread::computeWaitTimeNs_l() const {
5972 // If a VolumeShaper is active, we must wake up periodically to update volume.
5973 const int64_t NS_PER_MS = 1000000;
5974 return mVolumeShaperActive ?
5975 kMinNormalSinkBufferSizeMs * NS_PER_MS : PlaybackThread::computeWaitTimeNs_l();
5976 }
5977
5978 // ----------------------------------------------------------------------------
5979
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)5980 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5981 const wp<AudioFlinger::PlaybackThread>& playbackThread)
5982 : Thread(false /*canCallJava*/),
5983 mPlaybackThread(playbackThread),
5984 mWriteAckSequence(0),
5985 mDrainSequence(0),
5986 mAsyncError(false)
5987 {
5988 }
5989
~AsyncCallbackThread()5990 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5991 {
5992 }
5993
onFirstRef()5994 void AudioFlinger::AsyncCallbackThread::onFirstRef()
5995 {
5996 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5997 }
5998
threadLoop()5999 bool AudioFlinger::AsyncCallbackThread::threadLoop()
6000 {
6001 while (!exitPending()) {
6002 uint32_t writeAckSequence;
6003 uint32_t drainSequence;
6004 bool asyncError;
6005
6006 {
6007 Mutex::Autolock _l(mLock);
6008 while (!((mWriteAckSequence & 1) ||
6009 (mDrainSequence & 1) ||
6010 mAsyncError ||
6011 exitPending())) {
6012 mWaitWorkCV.wait(mLock);
6013 }
6014
6015 if (exitPending()) {
6016 break;
6017 }
6018 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
6019 mWriteAckSequence, mDrainSequence);
6020 writeAckSequence = mWriteAckSequence;
6021 mWriteAckSequence &= ~1;
6022 drainSequence = mDrainSequence;
6023 mDrainSequence &= ~1;
6024 asyncError = mAsyncError;
6025 mAsyncError = false;
6026 }
6027 {
6028 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
6029 if (playbackThread != 0) {
6030 if (writeAckSequence & 1) {
6031 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
6032 }
6033 if (drainSequence & 1) {
6034 playbackThread->resetDraining(drainSequence >> 1);
6035 }
6036 if (asyncError) {
6037 playbackThread->onAsyncError();
6038 }
6039 }
6040 }
6041 }
6042 return false;
6043 }
6044
exit()6045 void AudioFlinger::AsyncCallbackThread::exit()
6046 {
6047 ALOGV("AsyncCallbackThread::exit");
6048 Mutex::Autolock _l(mLock);
6049 requestExit();
6050 mWaitWorkCV.broadcast();
6051 }
6052
setWriteBlocked(uint32_t sequence)6053 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
6054 {
6055 Mutex::Autolock _l(mLock);
6056 // bit 0 is cleared
6057 mWriteAckSequence = sequence << 1;
6058 }
6059
resetWriteBlocked()6060 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
6061 {
6062 Mutex::Autolock _l(mLock);
6063 // ignore unexpected callbacks
6064 if (mWriteAckSequence & 2) {
6065 mWriteAckSequence |= 1;
6066 mWaitWorkCV.signal();
6067 }
6068 }
6069
setDraining(uint32_t sequence)6070 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
6071 {
6072 Mutex::Autolock _l(mLock);
6073 // bit 0 is cleared
6074 mDrainSequence = sequence << 1;
6075 }
6076
resetDraining()6077 void AudioFlinger::AsyncCallbackThread::resetDraining()
6078 {
6079 Mutex::Autolock _l(mLock);
6080 // ignore unexpected callbacks
6081 if (mDrainSequence & 2) {
6082 mDrainSequence |= 1;
6083 mWaitWorkCV.signal();
6084 }
6085 }
6086
setAsyncError()6087 void AudioFlinger::AsyncCallbackThread::setAsyncError()
6088 {
6089 Mutex::Autolock _l(mLock);
6090 mAsyncError = true;
6091 mWaitWorkCV.signal();
6092 }
6093
6094
6095 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,bool systemReady)6096 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
6097 AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
6098 : DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
6099 mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
6100 mOffloadUnderrunPosition(~0LL)
6101 {
6102 //FIXME: mStandby should be set to true by ThreadBase constructo
6103 mStandby = true;
6104 mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
6105 }
6106
threadLoop_exit()6107 void AudioFlinger::OffloadThread::threadLoop_exit()
6108 {
6109 if (mFlushPending || mHwPaused) {
6110 // If a flush is pending or track was paused, just discard buffered data
6111 flushHw_l();
6112 } else {
6113 mMixerStatus = MIXER_DRAIN_ALL;
6114 threadLoop_drain();
6115 }
6116 if (mUseAsyncWrite) {
6117 ALOG_ASSERT(mCallbackThread != 0);
6118 mCallbackThread->exit();
6119 }
6120 PlaybackThread::threadLoop_exit();
6121 }
6122
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)6123 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
6124 Vector< sp<Track> > *tracksToRemove
6125 )
6126 {
6127 size_t count = mActiveTracks.size();
6128
6129 mixer_state mixerStatus = MIXER_IDLE;
6130 bool doHwPause = false;
6131 bool doHwResume = false;
6132
6133 ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
6134
6135 // find out which tracks need to be processed
6136 for (const sp<Track> &t : mActiveTracks) {
6137 Track* const track = t.get();
6138 #ifdef VERY_VERY_VERBOSE_LOGGING
6139 audio_track_cblk_t* cblk = track->cblk();
6140 #endif
6141 // Only consider last track started for volume and mixer state control.
6142 // In theory an older track could underrun and restart after the new one starts
6143 // but as we only care about the transition phase between two tracks on a
6144 // direct output, it is not a problem to ignore the underrun case.
6145 sp<Track> l = mActiveTracks.getLatest();
6146 bool last = l.get() == track;
6147
6148 if (track->isInvalid()) {
6149 ALOGW("An invalidated track shouldn't be in active list");
6150 tracksToRemove->add(track);
6151 continue;
6152 }
6153
6154 if (track->mState == TrackBase::IDLE) {
6155 ALOGW("An idle track shouldn't be in active list");
6156 continue;
6157 }
6158
6159 if (track->isPausing()) {
6160 track->setPaused();
6161 if (last) {
6162 if (mHwSupportsPause && !mHwPaused) {
6163 doHwPause = true;
6164 mHwPaused = true;
6165 }
6166 // If we were part way through writing the mixbuffer to
6167 // the HAL we must save this until we resume
6168 // BUG - this will be wrong if a different track is made active,
6169 // in that case we want to discard the pending data in the
6170 // mixbuffer and tell the client to present it again when the
6171 // track is resumed
6172 mPausedWriteLength = mCurrentWriteLength;
6173 mPausedBytesRemaining = mBytesRemaining;
6174 mBytesRemaining = 0; // stop writing
6175 }
6176 tracksToRemove->add(track);
6177 } else if (track->isFlushPending()) {
6178 if (track->isStopping_1()) {
6179 track->mRetryCount = kMaxTrackStopRetriesOffload;
6180 } else {
6181 track->mRetryCount = kMaxTrackRetriesOffload;
6182 }
6183 track->flushAck();
6184 if (last) {
6185 mFlushPending = true;
6186 }
6187 } else if (track->isResumePending()){
6188 track->resumeAck();
6189 if (last) {
6190 if (mPausedBytesRemaining) {
6191 // Need to continue write that was interrupted
6192 mCurrentWriteLength = mPausedWriteLength;
6193 mBytesRemaining = mPausedBytesRemaining;
6194 mPausedBytesRemaining = 0;
6195 }
6196 if (mHwPaused) {
6197 doHwResume = true;
6198 mHwPaused = false;
6199 // threadLoop_mix() will handle the case that we need to
6200 // resume an interrupted write
6201 }
6202 // enable write to audio HAL
6203 mSleepTimeUs = 0;
6204
6205 mLeftVolFloat = mRightVolFloat = -1.0;
6206
6207 // Do not handle new data in this iteration even if track->framesReady()
6208 mixerStatus = MIXER_TRACKS_ENABLED;
6209 }
6210 } else if (track->framesReady() && track->isReady() &&
6211 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
6212 ALOGVV("OffloadThread: track(%d) s=%08x [OK]", track->id(), cblk->mServer);
6213 if (track->mFillingUpStatus == Track::FS_FILLED) {
6214 track->mFillingUpStatus = Track::FS_ACTIVE;
6215 if (last) {
6216 // make sure processVolume_l() will apply new volume even if 0
6217 mLeftVolFloat = mRightVolFloat = -1.0;
6218 }
6219 }
6220
6221 if (last) {
6222 sp<Track> previousTrack = mPreviousTrack.promote();
6223 if (previousTrack != 0) {
6224 if (track != previousTrack.get()) {
6225 // Flush any data still being written from last track
6226 mBytesRemaining = 0;
6227 if (mPausedBytesRemaining) {
6228 // Last track was paused so we also need to flush saved
6229 // mixbuffer state and invalidate track so that it will
6230 // re-submit that unwritten data when it is next resumed
6231 mPausedBytesRemaining = 0;
6232 // Invalidate is a bit drastic - would be more efficient
6233 // to have a flag to tell client that some of the
6234 // previously written data was lost
6235 previousTrack->invalidate();
6236 }
6237 // flush data already sent to the DSP if changing audio session as audio
6238 // comes from a different source. Also invalidate previous track to force a
6239 // seek when resuming.
6240 if (previousTrack->sessionId() != track->sessionId()) {
6241 previousTrack->invalidate();
6242 }
6243 }
6244 }
6245 mPreviousTrack = track;
6246 // reset retry count
6247 if (track->isStopping_1()) {
6248 track->mRetryCount = kMaxTrackStopRetriesOffload;
6249 } else {
6250 track->mRetryCount = kMaxTrackRetriesOffload;
6251 }
6252 mActiveTrack = t;
6253 mixerStatus = MIXER_TRACKS_READY;
6254 }
6255 } else {
6256 ALOGVV("OffloadThread: track(%d) s=%08x [NOT READY]", track->id(), cblk->mServer);
6257 if (track->isStopping_1()) {
6258 if (--(track->mRetryCount) <= 0) {
6259 // Hardware buffer can hold a large amount of audio so we must
6260 // wait for all current track's data to drain before we say
6261 // that the track is stopped.
6262 if (mBytesRemaining == 0) {
6263 // Only start draining when all data in mixbuffer
6264 // has been written
6265 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
6266 track->mState = TrackBase::STOPPING_2; // so presentation completes after
6267 // drain do not drain if no data was ever sent to HAL (mStandby == true)
6268 if (last && !mStandby) {
6269 // do not modify drain sequence if we are already draining. This happens
6270 // when resuming from pause after drain.
6271 if ((mDrainSequence & 1) == 0) {
6272 mSleepTimeUs = 0;
6273 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6274 mixerStatus = MIXER_DRAIN_TRACK;
6275 mDrainSequence += 2;
6276 }
6277 if (mHwPaused) {
6278 // It is possible to move from PAUSED to STOPPING_1 without
6279 // a resume so we must ensure hardware is running
6280 doHwResume = true;
6281 mHwPaused = false;
6282 }
6283 }
6284 }
6285 } else if (last) {
6286 ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
6287 mixerStatus = MIXER_TRACKS_ENABLED;
6288 }
6289 } else if (track->isStopping_2()) {
6290 // Drain has completed or we are in standby, signal presentation complete
6291 if (!(mDrainSequence & 1) || !last || mStandby) {
6292 track->mState = TrackBase::STOPPED;
6293 uint32_t latency = 0;
6294 status_t result = mOutput->stream->getLatency(&latency);
6295 ALOGE_IF(result != OK,
6296 "Error when retrieving output stream latency: %d", result);
6297 size_t audioHALFrames = (latency * mSampleRate) / 1000;
6298 int64_t framesWritten =
6299 mBytesWritten / mOutput->getFrameSize();
6300 track->presentationComplete(framesWritten, audioHALFrames);
6301 track->reset();
6302 tracksToRemove->add(track);
6303 // DIRECT and OFFLOADED stop resets frame counts.
6304 if (!mUseAsyncWrite) {
6305 // If we don't get explicit drain notification we must
6306 // register discontinuity regardless of whether this is
6307 // the previous (!last) or the upcoming (last) track
6308 // to avoid skipping the discontinuity.
6309 mTimestampVerifier.discontinuity();
6310 }
6311 }
6312 } else {
6313 // No buffers for this track. Give it a few chances to
6314 // fill a buffer, then remove it from active list.
6315 if (--(track->mRetryCount) <= 0) {
6316 bool running = false;
6317 uint64_t position = 0;
6318 struct timespec unused;
6319 // The running check restarts the retry counter at least once.
6320 status_t ret = mOutput->stream->getPresentationPosition(&position, &unused);
6321 if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
6322 running = true;
6323 mOffloadUnderrunPosition = position;
6324 }
6325 if (ret == NO_ERROR) {
6326 ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
6327 (long long)position, (long long)mOffloadUnderrunPosition);
6328 }
6329 if (running) { // still running, give us more time.
6330 track->mRetryCount = kMaxTrackRetriesOffload;
6331 } else {
6332 ALOGV("OffloadThread: BUFFER TIMEOUT: remove track(%d) from active list",
6333 track->id());
6334 tracksToRemove->add(track);
6335 // tell client process that the track was disabled because of underrun;
6336 // it will then automatically call start() when data is available
6337 track->disable();
6338 }
6339 } else if (last){
6340 mixerStatus = MIXER_TRACKS_ENABLED;
6341 }
6342 }
6343 }
6344 // compute volume for this track
6345 processVolume_l(track, last);
6346 }
6347
6348 // make sure the pause/flush/resume sequence is executed in the right order.
6349 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
6350 // before flush and then resume HW. This can happen in case of pause/flush/resume
6351 // if resume is received before pause is executed.
6352 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
6353 status_t result = mOutput->stream->pause();
6354 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
6355 }
6356 if (mFlushPending) {
6357 flushHw_l();
6358 }
6359 if (!mStandby && doHwResume) {
6360 status_t result = mOutput->stream->resume();
6361 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
6362 }
6363
6364 // remove all the tracks that need to be...
6365 removeTracks_l(*tracksToRemove);
6366
6367 return mixerStatus;
6368 }
6369
6370 // must be called with thread mutex locked
waitingAsyncCallback_l()6371 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
6372 {
6373 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
6374 mWriteAckSequence, mDrainSequence);
6375 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
6376 return true;
6377 }
6378 return false;
6379 }
6380
waitingAsyncCallback()6381 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
6382 {
6383 Mutex::Autolock _l(mLock);
6384 return waitingAsyncCallback_l();
6385 }
6386
flushHw_l()6387 void AudioFlinger::OffloadThread::flushHw_l()
6388 {
6389 DirectOutputThread::flushHw_l();
6390 // Flush anything still waiting in the mixbuffer
6391 mCurrentWriteLength = 0;
6392 mBytesRemaining = 0;
6393 mPausedWriteLength = 0;
6394 mPausedBytesRemaining = 0;
6395 // reset bytes written count to reflect that DSP buffers are empty after flush.
6396 mBytesWritten = 0;
6397 mOffloadUnderrunPosition = ~0LL;
6398
6399 if (mUseAsyncWrite) {
6400 // discard any pending drain or write ack by incrementing sequence
6401 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
6402 mDrainSequence = (mDrainSequence + 2) & ~1;
6403 ALOG_ASSERT(mCallbackThread != 0);
6404 mCallbackThread->setWriteBlocked(mWriteAckSequence);
6405 mCallbackThread->setDraining(mDrainSequence);
6406 }
6407 }
6408
invalidateTracks(audio_stream_type_t streamType)6409 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
6410 {
6411 Mutex::Autolock _l(mLock);
6412 if (PlaybackThread::invalidateTracks_l(streamType)) {
6413 mFlushPending = true;
6414 }
6415 }
6416
6417 // ----------------------------------------------------------------------------
6418
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)6419 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
6420 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
6421 : MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
6422 systemReady, DUPLICATING),
6423 mWaitTimeMs(UINT_MAX)
6424 {
6425 addOutputTrack(mainThread);
6426 }
6427
~DuplicatingThread()6428 AudioFlinger::DuplicatingThread::~DuplicatingThread()
6429 {
6430 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6431 mOutputTracks[i]->destroy();
6432 }
6433 }
6434
threadLoop_mix()6435 void AudioFlinger::DuplicatingThread::threadLoop_mix()
6436 {
6437 // mix buffers...
6438 if (outputsReady(outputTracks)) {
6439 mAudioMixer->process();
6440 } else {
6441 if (mMixerBufferValid) {
6442 memset(mMixerBuffer, 0, mMixerBufferSize);
6443 } else {
6444 memset(mSinkBuffer, 0, mSinkBufferSize);
6445 }
6446 }
6447 mSleepTimeUs = 0;
6448 writeFrames = mNormalFrameCount;
6449 mCurrentWriteLength = mSinkBufferSize;
6450 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6451 }
6452
threadLoop_sleepTime()6453 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
6454 {
6455 if (mSleepTimeUs == 0) {
6456 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6457 mSleepTimeUs = mActiveSleepTimeUs;
6458 } else {
6459 mSleepTimeUs = mIdleSleepTimeUs;
6460 }
6461 } else if (mBytesWritten != 0) {
6462 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6463 writeFrames = mNormalFrameCount;
6464 memset(mSinkBuffer, 0, mSinkBufferSize);
6465 } else {
6466 // flush remaining overflow buffers in output tracks
6467 writeFrames = 0;
6468 }
6469 mSleepTimeUs = 0;
6470 }
6471 }
6472
threadLoop_write()6473 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
6474 {
6475 for (size_t i = 0; i < outputTracks.size(); i++) {
6476 const ssize_t actualWritten = outputTracks[i]->write(mSinkBuffer, writeFrames);
6477
6478 // Consider the first OutputTrack for timestamp and frame counting.
6479
6480 // The threadLoop() generally assumes writing a full sink buffer size at a time.
6481 // Here, we correct for writeFrames of 0 (a stop) or underruns because
6482 // we always claim success.
6483 if (i == 0) {
6484 const ssize_t correction = mSinkBufferSize / mFrameSize - actualWritten;
6485 ALOGD_IF(correction != 0 && writeFrames != 0,
6486 "%s: writeFrames:%u actualWritten:%zd correction:%zd mFramesWritten:%lld",
6487 __func__, writeFrames, actualWritten, correction, (long long)mFramesWritten);
6488 mFramesWritten -= correction;
6489 }
6490
6491 // TODO: Report correction for the other output tracks and show in the dump.
6492 }
6493 mStandby = false;
6494 return (ssize_t)mSinkBufferSize;
6495 }
6496
threadLoop_standby()6497 void AudioFlinger::DuplicatingThread::threadLoop_standby()
6498 {
6499 // DuplicatingThread implements standby by stopping all tracks
6500 for (size_t i = 0; i < outputTracks.size(); i++) {
6501 outputTracks[i]->stop();
6502 }
6503 }
6504
dumpInternals_l(int fd,const Vector<String16> & args __unused)6505 void AudioFlinger::DuplicatingThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
6506 {
6507 MixerThread::dumpInternals_l(fd, args);
6508
6509 std::stringstream ss;
6510 const size_t numTracks = mOutputTracks.size();
6511 ss << " " << numTracks << " OutputTracks";
6512 if (numTracks > 0) {
6513 ss << ":";
6514 for (const auto &track : mOutputTracks) {
6515 const sp<ThreadBase> thread = track->thread().promote();
6516 ss << " (" << track->id() << " : ";
6517 if (thread.get() != nullptr) {
6518 ss << thread.get() << ", " << thread->id();
6519 } else {
6520 ss << "null";
6521 }
6522 ss << ")";
6523 }
6524 }
6525 ss << "\n";
6526 std::string result = ss.str();
6527 write(fd, result.c_str(), result.size());
6528 }
6529
saveOutputTracks()6530 void AudioFlinger::DuplicatingThread::saveOutputTracks()
6531 {
6532 outputTracks = mOutputTracks;
6533 }
6534
clearOutputTracks()6535 void AudioFlinger::DuplicatingThread::clearOutputTracks()
6536 {
6537 outputTracks.clear();
6538 }
6539
addOutputTrack(MixerThread * thread)6540 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
6541 {
6542 Mutex::Autolock _l(mLock);
6543 // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
6544 // Adjust for thread->sampleRate() to determine minimum buffer frame count.
6545 // Then triple buffer because Threads do not run synchronously and may not be clock locked.
6546 const size_t frameCount =
6547 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
6548 // TODO: Consider asynchronous sample rate conversion to handle clock disparity
6549 // from different OutputTracks and their associated MixerThreads (e.g. one may
6550 // nearly empty and the other may be dropping data).
6551
6552 sp<OutputTrack> outputTrack = new OutputTrack(thread,
6553 this,
6554 mSampleRate,
6555 mFormat,
6556 mChannelMask,
6557 frameCount,
6558 IPCThreadState::self()->getCallingUid());
6559 status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
6560 if (status != NO_ERROR) {
6561 ALOGE("addOutputTrack() initCheck failed %d", status);
6562 return;
6563 }
6564 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
6565 mOutputTracks.add(outputTrack);
6566 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
6567 updateWaitTime_l();
6568 }
6569
removeOutputTrack(MixerThread * thread)6570 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
6571 {
6572 Mutex::Autolock _l(mLock);
6573 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6574 if (mOutputTracks[i]->thread() == thread) {
6575 mOutputTracks[i]->destroy();
6576 mOutputTracks.removeAt(i);
6577 updateWaitTime_l();
6578 if (thread->getOutput() == mOutput) {
6579 mOutput = NULL;
6580 }
6581 return;
6582 }
6583 }
6584 ALOGV("removeOutputTrack(): unknown thread: %p", thread);
6585 }
6586
6587 // caller must hold mLock
updateWaitTime_l()6588 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
6589 {
6590 mWaitTimeMs = UINT_MAX;
6591 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6592 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
6593 if (strong != 0) {
6594 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
6595 if (waitTimeMs < mWaitTimeMs) {
6596 mWaitTimeMs = waitTimeMs;
6597 }
6598 }
6599 }
6600 }
6601
6602
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)6603 bool AudioFlinger::DuplicatingThread::outputsReady(
6604 const SortedVector< sp<OutputTrack> > &outputTracks)
6605 {
6606 for (size_t i = 0; i < outputTracks.size(); i++) {
6607 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
6608 if (thread == 0) {
6609 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
6610 outputTracks[i].get());
6611 return false;
6612 }
6613 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
6614 // see note at standby() declaration
6615 if (playbackThread->standby() && !playbackThread->isSuspended()) {
6616 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
6617 thread.get());
6618 return false;
6619 }
6620 }
6621 return true;
6622 }
6623
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)6624 void AudioFlinger::DuplicatingThread::sendMetadataToBackend_l(
6625 const StreamOutHalInterface::SourceMetadata& metadata)
6626 {
6627 for (auto& outputTrack : outputTracks) { // not mOutputTracks
6628 outputTrack->setMetadatas(metadata.tracks);
6629 }
6630 }
6631
activeSleepTimeUs() const6632 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
6633 {
6634 return (mWaitTimeMs * 1000) / 2;
6635 }
6636
cacheParameters_l()6637 void AudioFlinger::DuplicatingThread::cacheParameters_l()
6638 {
6639 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
6640 updateWaitTime_l();
6641
6642 MixerThread::cacheParameters_l();
6643 }
6644
6645
6646 // ----------------------------------------------------------------------------
6647 // Record
6648 // ----------------------------------------------------------------------------
6649
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)6650 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
6651 AudioStreamIn *input,
6652 audio_io_handle_t id,
6653 audio_devices_t outDevice,
6654 audio_devices_t inDevice,
6655 bool systemReady
6656 ) :
6657 ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
6658 mInput(input),
6659 mActiveTracks(&this->mLocalLog),
6660 mRsmpInBuffer(NULL),
6661 // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l()
6662 mRsmpInRear(0)
6663 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
6664 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
6665 // mFastCapture below
6666 , mFastCaptureFutex(0)
6667 // mInputSource
6668 // mPipeSink
6669 // mPipeSource
6670 , mPipeFramesP2(0)
6671 // mPipeMemory
6672 // mFastCaptureNBLogWriter
6673 , mFastTrackAvail(false)
6674 , mBtNrecSuspended(false)
6675 {
6676 snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
6677 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
6678
6679 if (mInput != nullptr && mInput->audioHwDev != nullptr) {
6680 mIsMsdDevice = strcmp(
6681 mInput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
6682 }
6683
6684 readInputParameters_l();
6685
6686 // TODO: We may also match on address as well as device type for
6687 // AUDIO_DEVICE_IN_BUS, AUDIO_DEVICE_IN_BLUETOOTH_A2DP, AUDIO_DEVICE_IN_REMOTE_SUBMIX
6688 mTimestampCorrectedDevices = (audio_devices_t)property_get_int64(
6689 "audio.timestamp.corrected_input_devices",
6690 (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_IN_BUS // turn on by default for MSD
6691 : AUDIO_DEVICE_NONE));
6692
6693 // create an NBAIO source for the HAL input stream, and negotiate
6694 mInputSource = new AudioStreamInSource(input->stream);
6695 size_t numCounterOffers = 0;
6696 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
6697 #if !LOG_NDEBUG
6698 ssize_t index =
6699 #else
6700 (void)
6701 #endif
6702 mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
6703 ALOG_ASSERT(index == 0);
6704
6705 // initialize fast capture depending on configuration
6706 bool initFastCapture;
6707 switch (kUseFastCapture) {
6708 case FastCapture_Never:
6709 initFastCapture = false;
6710 ALOGV("%p kUseFastCapture = Never, initFastCapture = false", this);
6711 break;
6712 case FastCapture_Always:
6713 initFastCapture = true;
6714 ALOGV("%p kUseFastCapture = Always, initFastCapture = true", this);
6715 break;
6716 case FastCapture_Static:
6717 initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
6718 ALOGV("%p kUseFastCapture = Static, (%lld * 1000) / %u vs %u, initFastCapture = %d",
6719 this, (long long)mFrameCount, mSampleRate, kMinNormalCaptureBufferSizeMs,
6720 initFastCapture);
6721 break;
6722 // case FastCapture_Dynamic:
6723 }
6724
6725 if (initFastCapture) {
6726 // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
6727 NBAIO_Format format = mInputSource->format();
6728 // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread
6729 size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000);
6730 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
6731 void *pipeBuffer = nullptr;
6732 const sp<MemoryDealer> roHeap(readOnlyHeap());
6733 sp<IMemory> pipeMemory;
6734 if ((roHeap == 0) ||
6735 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
6736 (pipeBuffer = pipeMemory->pointer()) == nullptr) {
6737 ALOGE("not enough memory for pipe buffer size=%zu; "
6738 "roHeap=%p, pipeMemory=%p, pipeBuffer=%p; roHeapSize: %lld",
6739 pipeSize, roHeap.get(), pipeMemory.get(), pipeBuffer,
6740 (long long)kRecordThreadReadOnlyHeapSize);
6741 goto failed;
6742 }
6743 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
6744 memset(pipeBuffer, 0, pipeSize);
6745 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
6746 const NBAIO_Format offers[1] = {format};
6747 size_t numCounterOffers = 0;
6748 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
6749 ALOG_ASSERT(index == 0);
6750 mPipeSink = pipe;
6751 PipeReader *pipeReader = new PipeReader(*pipe);
6752 numCounterOffers = 0;
6753 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
6754 ALOG_ASSERT(index == 0);
6755 mPipeSource = pipeReader;
6756 mPipeFramesP2 = pipeFramesP2;
6757 mPipeMemory = pipeMemory;
6758
6759 // create fast capture
6760 mFastCapture = new FastCapture();
6761 FastCaptureStateQueue *sq = mFastCapture->sq();
6762 #ifdef STATE_QUEUE_DUMP
6763 // FIXME
6764 #endif
6765 FastCaptureState *state = sq->begin();
6766 state->mCblk = NULL;
6767 state->mInputSource = mInputSource.get();
6768 state->mInputSourceGen++;
6769 state->mPipeSink = pipe;
6770 state->mPipeSinkGen++;
6771 state->mFrameCount = mFrameCount;
6772 state->mCommand = FastCaptureState::COLD_IDLE;
6773 // already done in constructor initialization list
6774 //mFastCaptureFutex = 0;
6775 state->mColdFutexAddr = &mFastCaptureFutex;
6776 state->mColdGen++;
6777 state->mDumpState = &mFastCaptureDumpState;
6778 #ifdef TEE_SINK
6779 // FIXME
6780 #endif
6781 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
6782 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
6783 sq->end();
6784 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6785
6786 // start the fast capture
6787 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
6788 pid_t tid = mFastCapture->getTid();
6789 sendPrioConfigEvent(getpid(), tid, kPriorityFastCapture, false /*forApp*/);
6790 stream()->setHalThreadPriority(kPriorityFastCapture);
6791 #ifdef AUDIO_WATCHDOG
6792 // FIXME
6793 #endif
6794
6795 mFastTrackAvail = true;
6796 }
6797 #ifdef TEE_SINK
6798 mTee.set(mInputSource->format(), NBAIO_Tee::TEE_FLAG_INPUT_THREAD);
6799 mTee.setId(std::string("_") + std::to_string(mId) + "_C");
6800 #endif
6801 failed: ;
6802
6803 // FIXME mNormalSource
6804 }
6805
~RecordThread()6806 AudioFlinger::RecordThread::~RecordThread()
6807 {
6808 if (mFastCapture != 0) {
6809 FastCaptureStateQueue *sq = mFastCapture->sq();
6810 FastCaptureState *state = sq->begin();
6811 if (state->mCommand == FastCaptureState::COLD_IDLE) {
6812 int32_t old = android_atomic_inc(&mFastCaptureFutex);
6813 if (old == -1) {
6814 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6815 }
6816 }
6817 state->mCommand = FastCaptureState::EXIT;
6818 sq->end();
6819 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6820 mFastCapture->join();
6821 mFastCapture.clear();
6822 }
6823 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
6824 mAudioFlinger->unregisterWriter(mNBLogWriter);
6825 free(mRsmpInBuffer);
6826 }
6827
onFirstRef()6828 void AudioFlinger::RecordThread::onFirstRef()
6829 {
6830 run(mThreadName, PRIORITY_URGENT_AUDIO);
6831 }
6832
preExit()6833 void AudioFlinger::RecordThread::preExit()
6834 {
6835 ALOGV(" preExit()");
6836 Mutex::Autolock _l(mLock);
6837 for (size_t i = 0; i < mTracks.size(); i++) {
6838 sp<RecordTrack> track = mTracks[i];
6839 track->invalidate();
6840 }
6841 mActiveTracks.clear();
6842 mStartStopCond.broadcast();
6843 }
6844
threadLoop()6845 bool AudioFlinger::RecordThread::threadLoop()
6846 {
6847 nsecs_t lastWarning = 0;
6848
6849 inputStandBy();
6850
6851 reacquire_wakelock:
6852 sp<RecordTrack> activeTrack;
6853 {
6854 Mutex::Autolock _l(mLock);
6855 acquireWakeLock_l();
6856 }
6857
6858 // used to request a deferred sleep, to be executed later while mutex is unlocked
6859 uint32_t sleepUs = 0;
6860
6861 int64_t lastLoopCountRead = -2; // never matches "previous" loop, when loopCount = 0.
6862
6863 // loop while there is work to do
6864 for (int64_t loopCount = 0;; ++loopCount) { // loopCount used for statistics tracking
6865 Vector< sp<EffectChain> > effectChains;
6866
6867 // activeTracks accumulates a copy of a subset of mActiveTracks
6868 Vector< sp<RecordTrack> > activeTracks;
6869
6870 // reference to the (first and only) active fast track
6871 sp<RecordTrack> fastTrack;
6872
6873 // reference to a fast track which is about to be removed
6874 sp<RecordTrack> fastTrackToRemove;
6875
6876 bool silenceFastCapture = false;
6877
6878 { // scope for mLock
6879 Mutex::Autolock _l(mLock);
6880
6881 processConfigEvents_l();
6882
6883 // check exitPending here because checkForNewParameters_l() and
6884 // checkForNewParameters_l() can temporarily release mLock
6885 if (exitPending()) {
6886 break;
6887 }
6888
6889 // sleep with mutex unlocked
6890 if (sleepUs > 0) {
6891 ATRACE_BEGIN("sleepC");
6892 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
6893 ATRACE_END();
6894 sleepUs = 0;
6895 continue;
6896 }
6897
6898 // if no active track(s), then standby and release wakelock
6899 size_t size = mActiveTracks.size();
6900 if (size == 0) {
6901 standbyIfNotAlreadyInStandby();
6902 // exitPending() can't become true here
6903 releaseWakeLock_l();
6904 ALOGV("RecordThread: loop stopping");
6905 // go to sleep
6906 mWaitWorkCV.wait(mLock);
6907 ALOGV("RecordThread: loop starting");
6908 goto reacquire_wakelock;
6909 }
6910
6911 bool doBroadcast = false;
6912 bool allStopped = true;
6913 for (size_t i = 0; i < size; ) {
6914
6915 activeTrack = mActiveTracks[i];
6916 if (activeTrack->isTerminated()) {
6917 if (activeTrack->isFastTrack()) {
6918 ALOG_ASSERT(fastTrackToRemove == 0);
6919 fastTrackToRemove = activeTrack;
6920 }
6921 removeTrack_l(activeTrack);
6922 mActiveTracks.remove(activeTrack);
6923 size--;
6924 continue;
6925 }
6926
6927 TrackBase::track_state activeTrackState = activeTrack->mState;
6928 switch (activeTrackState) {
6929
6930 case TrackBase::PAUSING:
6931 mActiveTracks.remove(activeTrack);
6932 activeTrack->mState = TrackBase::PAUSED;
6933 doBroadcast = true;
6934 size--;
6935 continue;
6936
6937 case TrackBase::STARTING_1:
6938 sleepUs = 10000;
6939 i++;
6940 allStopped = false;
6941 continue;
6942
6943 case TrackBase::STARTING_2:
6944 doBroadcast = true;
6945 mStandby = false;
6946 activeTrack->mState = TrackBase::ACTIVE;
6947 allStopped = false;
6948 break;
6949
6950 case TrackBase::ACTIVE:
6951 allStopped = false;
6952 break;
6953
6954 case TrackBase::IDLE: // cannot be on ActiveTracks if idle
6955 case TrackBase::PAUSED: // cannot be on ActiveTracks if paused
6956 case TrackBase::STOPPED: // cannot be on ActiveTracks if destroyed/terminated
6957 default:
6958 LOG_ALWAYS_FATAL("%s: Unexpected active track state:%d, id:%d, tracks:%zu",
6959 __func__, activeTrackState, activeTrack->id(), size);
6960 }
6961
6962 if (activeTrack->isFastTrack()) {
6963 ALOG_ASSERT(!mFastTrackAvail);
6964 ALOG_ASSERT(fastTrack == 0);
6965 // if the active fast track is silenced either:
6966 // 1) silence the whole capture from fast capture buffer if this is
6967 // the only active track
6968 // 2) invalidate this track: this will cause the client to reconnect and possibly
6969 // be invalidated again until unsilenced
6970 if (activeTrack->isSilenced()) {
6971 if (size > 1) {
6972 activeTrack->invalidate();
6973 ALOG_ASSERT(fastTrackToRemove == 0);
6974 fastTrackToRemove = activeTrack;
6975 removeTrack_l(activeTrack);
6976 mActiveTracks.remove(activeTrack);
6977 size--;
6978 continue;
6979 } else {
6980 silenceFastCapture = true;
6981 }
6982 }
6983 fastTrack = activeTrack;
6984 }
6985
6986 activeTracks.add(activeTrack);
6987 i++;
6988
6989 }
6990
6991 mActiveTracks.updatePowerState(this);
6992
6993 updateMetadata_l();
6994
6995 if (allStopped) {
6996 standbyIfNotAlreadyInStandby();
6997 }
6998 if (doBroadcast) {
6999 mStartStopCond.broadcast();
7000 }
7001
7002 // sleep if there are no active tracks to process
7003 if (activeTracks.isEmpty()) {
7004 if (sleepUs == 0) {
7005 sleepUs = kRecordThreadSleepUs;
7006 }
7007 continue;
7008 }
7009 sleepUs = 0;
7010
7011 lockEffectChains_l(effectChains);
7012 }
7013
7014 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
7015
7016 size_t size = effectChains.size();
7017 for (size_t i = 0; i < size; i++) {
7018 // thread mutex is not locked, but effect chain is locked
7019 effectChains[i]->process_l();
7020 }
7021
7022 // Push a new fast capture state if fast capture is not already running, or cblk change
7023 if (mFastCapture != 0) {
7024 FastCaptureStateQueue *sq = mFastCapture->sq();
7025 FastCaptureState *state = sq->begin();
7026 bool didModify = false;
7027 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
7028 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
7029 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
7030 if (state->mCommand == FastCaptureState::COLD_IDLE) {
7031 int32_t old = android_atomic_inc(&mFastCaptureFutex);
7032 if (old == -1) {
7033 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
7034 }
7035 }
7036 state->mCommand = FastCaptureState::READ_WRITE;
7037 #if 0 // FIXME
7038 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
7039 FastThreadDumpState::kSamplingNforLowRamDevice :
7040 FastThreadDumpState::kSamplingN);
7041 #endif
7042 didModify = true;
7043 }
7044 audio_track_cblk_t *cblkOld = state->mCblk;
7045 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
7046 if (cblkNew != cblkOld) {
7047 state->mCblk = cblkNew;
7048 // block until acked if removing a fast track
7049 if (cblkOld != NULL) {
7050 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
7051 }
7052 didModify = true;
7053 }
7054 AudioBufferProvider* abp = (fastTrack != 0 && fastTrack->isPatchTrack()) ?
7055 reinterpret_cast<AudioBufferProvider*>(fastTrack.get()) : nullptr;
7056 if (state->mFastPatchRecordBufferProvider != abp) {
7057 state->mFastPatchRecordBufferProvider = abp;
7058 state->mFastPatchRecordFormat = fastTrack == 0 ?
7059 AUDIO_FORMAT_INVALID : fastTrack->format();
7060 didModify = true;
7061 }
7062 if (state->mSilenceCapture != silenceFastCapture) {
7063 state->mSilenceCapture = silenceFastCapture;
7064 didModify = true;
7065 }
7066 sq->end(didModify);
7067 if (didModify) {
7068 sq->push(block);
7069 #if 0
7070 if (kUseFastCapture == FastCapture_Dynamic) {
7071 mNormalSource = mPipeSource;
7072 }
7073 #endif
7074 }
7075 }
7076
7077 // now run the fast track destructor with thread mutex unlocked
7078 fastTrackToRemove.clear();
7079
7080 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
7081 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
7082 // slow, then this RecordThread will overrun by not calling HAL read often enough.
7083 // If destination is non-contiguous, first read past the nominal end of buffer, then
7084 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
7085
7086 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
7087 ssize_t framesRead;
7088 const int64_t lastIoBeginNs = systemTime(); // start IO timing
7089
7090 // If an NBAIO source is present, use it to read the normal capture's data
7091 if (mPipeSource != 0) {
7092 size_t framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2);
7093
7094 // The audio fifo read() returns OVERRUN on overflow, and advances the read pointer
7095 // to the full buffer point (clearing the overflow condition). Upon OVERRUN error,
7096 // we immediately retry the read() to get data and prevent another overflow.
7097 for (int retries = 0; retries <= 2; ++retries) {
7098 ALOGW_IF(retries > 0, "overrun on read from pipe, retry #%d", retries);
7099 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
7100 framesToRead);
7101 if (framesRead != OVERRUN) break;
7102 }
7103
7104 const ssize_t availableToRead = mPipeSource->availableToRead();
7105 if (availableToRead >= 0) {
7106 // PipeSource is the master clock. It is up to the AudioRecord client to keep up.
7107 LOG_ALWAYS_FATAL_IF((size_t)availableToRead > mPipeFramesP2,
7108 "more frames to read than fifo size, %zd > %zu",
7109 availableToRead, mPipeFramesP2);
7110 const size_t pipeFramesFree = mPipeFramesP2 - availableToRead;
7111 const size_t sleepFrames = min(pipeFramesFree, mRsmpInFramesP2) / 2;
7112 ALOGVV("mPipeFramesP2:%zu mRsmpInFramesP2:%zu sleepFrames:%zu availableToRead:%zd",
7113 mPipeFramesP2, mRsmpInFramesP2, sleepFrames, availableToRead);
7114 sleepUs = (sleepFrames * 1000000LL) / mSampleRate;
7115 }
7116 if (framesRead < 0) {
7117 status_t status = (status_t) framesRead;
7118 switch (status) {
7119 case OVERRUN:
7120 ALOGW("overrun on read from pipe");
7121 framesRead = 0;
7122 break;
7123 case NEGOTIATE:
7124 ALOGE("re-negotiation is needed");
7125 framesRead = -1; // Will cause an attempt to recover.
7126 break;
7127 default:
7128 ALOGE("unknown error %d on read from pipe", status);
7129 break;
7130 }
7131 }
7132 // otherwise use the HAL / AudioStreamIn directly
7133 } else {
7134 ATRACE_BEGIN("read");
7135 size_t bytesRead;
7136 status_t result = mInput->stream->read(
7137 (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead);
7138 ATRACE_END();
7139 if (result < 0) {
7140 framesRead = result;
7141 } else {
7142 framesRead = bytesRead / mFrameSize;
7143 }
7144 }
7145
7146 const int64_t lastIoEndNs = systemTime(); // end IO timing
7147
7148 // Update server timestamp with server stats
7149 // systemTime() is optional if the hardware supports timestamps.
7150 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
7151 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = lastIoEndNs;
7152
7153 // Update server timestamp with kernel stats
7154 if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
7155 int64_t position, time;
7156 if (mStandby) {
7157 mTimestampVerifier.discontinuity();
7158 } else if (mInput->stream->getCapturePosition(&position, &time) == NO_ERROR
7159 && time > mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]) {
7160
7161 mTimestampVerifier.add(position, time, mSampleRate);
7162
7163 // Correct timestamps
7164 if (isTimestampCorrectionEnabled()) {
7165 ALOGV("TS_BEFORE: %d %lld %lld",
7166 id(), (long long)time, (long long)position);
7167 auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
7168 position = correctedTimestamp.mFrames;
7169 time = correctedTimestamp.mTimeNs;
7170 ALOGV("TS_AFTER: %d %lld %lld",
7171 id(), (long long)time, (long long)position);
7172 }
7173
7174 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
7175 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
7176 // Note: In general record buffers should tend to be empty in
7177 // a properly running pipeline.
7178 //
7179 // Also, it is not advantageous to call get_presentation_position during the read
7180 // as the read obtains a lock, preventing the timestamp call from executing.
7181 } else {
7182 mTimestampVerifier.error();
7183 }
7184 }
7185
7186 // From the timestamp, input read latency is negative output write latency.
7187 const audio_input_flags_t flags = mInput != NULL ? mInput->flags : AUDIO_INPUT_FLAG_NONE;
7188 const double latencyMs = RecordTrack::checkServerLatencySupported(mFormat, flags)
7189 ? - mTimestamp.getOutputServerLatencyMs(mSampleRate) : 0.;
7190 if (latencyMs != 0.) { // note 0. means timestamp is empty.
7191 mLatencyMs.add(latencyMs);
7192 }
7193
7194 // Use this to track timestamp information
7195 // ALOGD("%s", mTimestamp.toString().c_str());
7196
7197 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
7198 ALOGE("read failed: framesRead=%zd", framesRead);
7199 // Force input into standby so that it tries to recover at next read attempt
7200 inputStandBy();
7201 sleepUs = kRecordThreadSleepUs;
7202 }
7203 if (framesRead <= 0) {
7204 goto unlock;
7205 }
7206 ALOG_ASSERT(framesRead > 0);
7207 mFramesRead += framesRead;
7208
7209 #ifdef TEE_SINK
7210 (void)mTee.write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
7211 #endif
7212 // If destination is non-contiguous, we now correct for reading past end of buffer.
7213 {
7214 size_t part1 = mRsmpInFramesP2 - rear;
7215 if ((size_t) framesRead > part1) {
7216 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
7217 (framesRead - part1) * mFrameSize);
7218 }
7219 }
7220 rear = mRsmpInRear += framesRead;
7221
7222 size = activeTracks.size();
7223
7224 // loop over each active track
7225 for (size_t i = 0; i < size; i++) {
7226 activeTrack = activeTracks[i];
7227
7228 // skip fast tracks, as those are handled directly by FastCapture
7229 if (activeTrack->isFastTrack()) {
7230 continue;
7231 }
7232
7233 // TODO: This code probably should be moved to RecordTrack.
7234 // TODO: Update the activeTrack buffer converter in case of reconfigure.
7235
7236 enum {
7237 OVERRUN_UNKNOWN,
7238 OVERRUN_TRUE,
7239 OVERRUN_FALSE
7240 } overrun = OVERRUN_UNKNOWN;
7241
7242 // loop over getNextBuffer to handle circular sink
7243 for (;;) {
7244
7245 activeTrack->mSink.frameCount = ~0;
7246 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
7247 size_t framesOut = activeTrack->mSink.frameCount;
7248 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
7249
7250 // check available frames and handle overrun conditions
7251 // if the record track isn't draining fast enough.
7252 bool hasOverrun;
7253 size_t framesIn;
7254 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
7255 if (hasOverrun) {
7256 overrun = OVERRUN_TRUE;
7257 }
7258 if (framesOut == 0 || framesIn == 0) {
7259 break;
7260 }
7261
7262 // Don't allow framesOut to be larger than what is possible with resampling
7263 // from framesIn.
7264 // This isn't strictly necessary but helps limit buffer resizing in
7265 // RecordBufferConverter. TODO: remove when no longer needed.
7266 framesOut = min(framesOut,
7267 destinationFramesPossible(
7268 framesIn, mSampleRate, activeTrack->mSampleRate));
7269
7270 if (activeTrack->isDirect()) {
7271 // No RecordBufferConverter used for direct streams. Pass
7272 // straight from RecordThread buffer to RecordTrack buffer.
7273 AudioBufferProvider::Buffer buffer;
7274 buffer.frameCount = framesOut;
7275 status_t status = activeTrack->mResamplerBufferProvider->getNextBuffer(&buffer);
7276 if (status == OK && buffer.frameCount != 0) {
7277 ALOGV_IF(buffer.frameCount != framesOut,
7278 "%s() read less than expected (%zu vs %zu)",
7279 __func__, buffer.frameCount, framesOut);
7280 framesOut = buffer.frameCount;
7281 memcpy(activeTrack->mSink.raw, buffer.raw, buffer.frameCount * mFrameSize);
7282 activeTrack->mResamplerBufferProvider->releaseBuffer(&buffer);
7283 } else {
7284 framesOut = 0;
7285 ALOGE("%s() cannot fill request, status: %d, frameCount: %zu",
7286 __func__, status, buffer.frameCount);
7287 }
7288 } else {
7289 // process frames from the RecordThread buffer provider to the RecordTrack
7290 // buffer
7291 framesOut = activeTrack->mRecordBufferConverter->convert(
7292 activeTrack->mSink.raw,
7293 activeTrack->mResamplerBufferProvider,
7294 framesOut);
7295 }
7296
7297 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
7298 overrun = OVERRUN_FALSE;
7299 }
7300
7301 if (activeTrack->mFramesToDrop == 0) {
7302 if (framesOut > 0) {
7303 activeTrack->mSink.frameCount = framesOut;
7304 // Sanitize before releasing if the track has no access to the source data
7305 // An idle UID receives silence from non virtual devices until active
7306 if (activeTrack->isSilenced()) {
7307 memset(activeTrack->mSink.raw, 0, framesOut * activeTrack->frameSize());
7308 }
7309 activeTrack->releaseBuffer(&activeTrack->mSink);
7310 }
7311 } else {
7312 // FIXME could do a partial drop of framesOut
7313 if (activeTrack->mFramesToDrop > 0) {
7314 activeTrack->mFramesToDrop -= (ssize_t)framesOut;
7315 if (activeTrack->mFramesToDrop <= 0) {
7316 activeTrack->clearSyncStartEvent();
7317 }
7318 } else {
7319 activeTrack->mFramesToDrop += framesOut;
7320 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
7321 activeTrack->mSyncStartEvent->isCancelled()) {
7322 ALOGW("Synced record %s, session %d, trigger session %d",
7323 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
7324 activeTrack->sessionId(),
7325 (activeTrack->mSyncStartEvent != 0) ?
7326 activeTrack->mSyncStartEvent->triggerSession() :
7327 AUDIO_SESSION_NONE);
7328 activeTrack->clearSyncStartEvent();
7329 }
7330 }
7331 }
7332
7333 if (framesOut == 0) {
7334 break;
7335 }
7336 }
7337
7338 switch (overrun) {
7339 case OVERRUN_TRUE:
7340 // client isn't retrieving buffers fast enough
7341 if (!activeTrack->setOverflow()) {
7342 nsecs_t now = systemTime();
7343 // FIXME should lastWarning per track?
7344 if ((now - lastWarning) > kWarningThrottleNs) {
7345 ALOGW("RecordThread: buffer overflow");
7346 lastWarning = now;
7347 }
7348 }
7349 break;
7350 case OVERRUN_FALSE:
7351 activeTrack->clearOverflow();
7352 break;
7353 case OVERRUN_UNKNOWN:
7354 break;
7355 }
7356
7357 // update frame information and push timestamp out
7358 activeTrack->updateTrackFrameInfo(
7359 activeTrack->mServerProxy->framesReleased(),
7360 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
7361 mSampleRate, mTimestamp);
7362 }
7363
7364 unlock:
7365 // enable changes in effect chain
7366 unlockEffectChains(effectChains);
7367 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
7368 if (audio_has_proportional_frames(mFormat)
7369 && loopCount == lastLoopCountRead + 1) {
7370 const int64_t readPeriodNs = lastIoEndNs - mLastIoEndNs;
7371 const double jitterMs =
7372 TimestampVerifier<int64_t, int64_t>::computeJitterMs(
7373 {framesRead, readPeriodNs},
7374 {0, 0} /* lastTimestamp */, mSampleRate);
7375 const double processMs = (lastIoBeginNs - mLastIoEndNs) * 1e-6;
7376
7377 Mutex::Autolock _l(mLock);
7378 mIoJitterMs.add(jitterMs);
7379 mProcessTimeMs.add(processMs);
7380 }
7381 // update timing info.
7382 mLastIoBeginNs = lastIoBeginNs;
7383 mLastIoEndNs = lastIoEndNs;
7384 lastLoopCountRead = loopCount;
7385 }
7386
7387 standbyIfNotAlreadyInStandby();
7388
7389 {
7390 Mutex::Autolock _l(mLock);
7391 for (size_t i = 0; i < mTracks.size(); i++) {
7392 sp<RecordTrack> track = mTracks[i];
7393 track->invalidate();
7394 }
7395 mActiveTracks.clear();
7396 mStartStopCond.broadcast();
7397 }
7398
7399 releaseWakeLock();
7400
7401 ALOGV("RecordThread %p exiting", this);
7402 return false;
7403 }
7404
standbyIfNotAlreadyInStandby()7405 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
7406 {
7407 if (!mStandby) {
7408 inputStandBy();
7409 mStandby = true;
7410 }
7411 }
7412
inputStandBy()7413 void AudioFlinger::RecordThread::inputStandBy()
7414 {
7415 // Idle the fast capture if it's currently running
7416 if (mFastCapture != 0) {
7417 FastCaptureStateQueue *sq = mFastCapture->sq();
7418 FastCaptureState *state = sq->begin();
7419 if (!(state->mCommand & FastCaptureState::IDLE)) {
7420 state->mCommand = FastCaptureState::COLD_IDLE;
7421 state->mColdFutexAddr = &mFastCaptureFutex;
7422 state->mColdGen++;
7423 mFastCaptureFutex = 0;
7424 sq->end();
7425 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
7426 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
7427 #if 0
7428 if (kUseFastCapture == FastCapture_Dynamic) {
7429 // FIXME
7430 }
7431 #endif
7432 #ifdef AUDIO_WATCHDOG
7433 // FIXME
7434 #endif
7435 } else {
7436 sq->end(false /*didModify*/);
7437 }
7438 }
7439 status_t result = mInput->stream->standby();
7440 ALOGE_IF(result != OK, "Error when putting input stream into standby: %d", result);
7441
7442 // If going into standby, flush the pipe source.
7443 if (mPipeSource.get() != nullptr) {
7444 const ssize_t flushed = mPipeSource->flush();
7445 if (flushed > 0) {
7446 ALOGV("Input standby flushed PipeSource %zd frames", flushed);
7447 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed;
7448 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
7449 }
7450 }
7451 }
7452
7453 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,audio_session_t sessionId,size_t * pNotificationFrameCount,pid_t creatorPid,uid_t uid,audio_input_flags_t * flags,pid_t tid,status_t * status,audio_port_handle_t portId,const String16 & opPackageName)7454 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
7455 const sp<AudioFlinger::Client>& client,
7456 const audio_attributes_t& attr,
7457 uint32_t *pSampleRate,
7458 audio_format_t format,
7459 audio_channel_mask_t channelMask,
7460 size_t *pFrameCount,
7461 audio_session_t sessionId,
7462 size_t *pNotificationFrameCount,
7463 pid_t creatorPid,
7464 uid_t uid,
7465 audio_input_flags_t *flags,
7466 pid_t tid,
7467 status_t *status,
7468 audio_port_handle_t portId,
7469 const String16& opPackageName)
7470 {
7471 size_t frameCount = *pFrameCount;
7472 size_t notificationFrameCount = *pNotificationFrameCount;
7473 sp<RecordTrack> track;
7474 status_t lStatus;
7475 audio_input_flags_t inputFlags = mInput->flags;
7476 audio_input_flags_t requestedFlags = *flags;
7477 uint32_t sampleRate;
7478
7479 lStatus = initCheck();
7480 if (lStatus != NO_ERROR) {
7481 ALOGE("createRecordTrack_l() audio driver not initialized");
7482 goto Exit;
7483 }
7484
7485 if (!audio_is_linear_pcm(mFormat) && (*flags & AUDIO_INPUT_FLAG_DIRECT) == 0) {
7486 ALOGE("createRecordTrack_l() on an encoded stream requires AUDIO_INPUT_FLAG_DIRECT");
7487 lStatus = BAD_VALUE;
7488 goto Exit;
7489 }
7490
7491 if (*pSampleRate == 0) {
7492 *pSampleRate = mSampleRate;
7493 }
7494 sampleRate = *pSampleRate;
7495
7496 // special case for FAST flag considered OK if fast capture is present
7497 if (hasFastCapture()) {
7498 inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
7499 }
7500
7501 // Check if requested flags are compatible with input stream flags
7502 if ((*flags & inputFlags) != *flags) {
7503 ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
7504 " input flags (%08x)",
7505 *flags, inputFlags);
7506 *flags = (audio_input_flags_t)(*flags & inputFlags);
7507 }
7508
7509 // client expresses a preference for FAST, but we get the final say
7510 if (*flags & AUDIO_INPUT_FLAG_FAST) {
7511 if (
7512 // we formerly checked for a callback handler (non-0 tid),
7513 // but that is no longer required for TRANSFER_OBTAIN mode
7514 //
7515 // Frame count is not specified (0), or is less than or equal the pipe depth.
7516 // It is OK to provide a higher capacity than requested.
7517 // We will force it to mPipeFramesP2 below.
7518 (frameCount <= mPipeFramesP2) &&
7519 // PCM data
7520 audio_is_linear_pcm(format) &&
7521 // hardware format
7522 (format == mFormat) &&
7523 // hardware channel mask
7524 (channelMask == mChannelMask) &&
7525 // hardware sample rate
7526 (sampleRate == mSampleRate) &&
7527 // record thread has an associated fast capture
7528 hasFastCapture() &&
7529 // there are sufficient fast track slots available
7530 mFastTrackAvail
7531 ) {
7532 // check compatibility with audio effects.
7533 Mutex::Autolock _l(mLock);
7534 // Do not accept FAST flag if the session has software effects
7535 sp<EffectChain> chain = getEffectChain_l(sessionId);
7536 if (chain != 0) {
7537 audio_input_flags_t old = *flags;
7538 chain->checkInputFlagCompatibility(flags);
7539 if (old != *flags) {
7540 ALOGV("%p AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
7541 this, (int)old, (int)*flags);
7542 }
7543 }
7544 ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
7545 "%p AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
7546 this, frameCount, mFrameCount);
7547 } else {
7548 ALOGV("%p AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
7549 "format=%#x isLinear=%d mFormat=%#x channelMask=%#x sampleRate=%u mSampleRate=%u "
7550 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
7551 this, frameCount, mFrameCount, mPipeFramesP2,
7552 format, audio_is_linear_pcm(format), mFormat, channelMask, sampleRate, mSampleRate,
7553 hasFastCapture(), tid, mFastTrackAvail);
7554 *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
7555 }
7556 }
7557
7558 // If FAST or RAW flags were corrected, ask caller to request new input from audio policy
7559 if ((*flags & AUDIO_INPUT_FLAG_FAST) !=
7560 (requestedFlags & AUDIO_INPUT_FLAG_FAST)) {
7561 *flags = (audio_input_flags_t) (*flags & ~(AUDIO_INPUT_FLAG_FAST | AUDIO_INPUT_FLAG_RAW));
7562 lStatus = BAD_TYPE;
7563 goto Exit;
7564 }
7565
7566 // compute track buffer size in frames, and suggest the notification frame count
7567 if (*flags & AUDIO_INPUT_FLAG_FAST) {
7568 // fast track: frame count is exactly the pipe depth
7569 frameCount = mPipeFramesP2;
7570 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
7571 notificationFrameCount = mFrameCount;
7572 } else {
7573 // not fast track: max notification period is resampled equivalent of one HAL buffer time
7574 // or 20 ms if there is a fast capture
7575 // TODO This could be a roundupRatio inline, and const
7576 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
7577 * sampleRate + mSampleRate - 1) / mSampleRate;
7578 // minimum number of notification periods is at least kMinNotifications,
7579 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
7580 static const size_t kMinNotifications = 3;
7581 static const uint32_t kMinMs = 30;
7582 // TODO This could be a roundupRatio inline
7583 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
7584 // TODO This could be a roundupRatio inline
7585 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
7586 maxNotificationFrames;
7587 const size_t minFrameCount = maxNotificationFrames *
7588 max(kMinNotifications, minNotificationsByMs);
7589 frameCount = max(frameCount, minFrameCount);
7590 if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
7591 notificationFrameCount = maxNotificationFrames;
7592 }
7593 }
7594 *pFrameCount = frameCount;
7595 *pNotificationFrameCount = notificationFrameCount;
7596
7597 { // scope for mLock
7598 Mutex::Autolock _l(mLock);
7599
7600 track = new RecordTrack(this, client, attr, sampleRate,
7601 format, channelMask, frameCount,
7602 nullptr /* buffer */, (size_t)0 /* bufferSize */, sessionId, creatorPid, uid,
7603 *flags, TrackBase::TYPE_DEFAULT, opPackageName, portId);
7604
7605 lStatus = track->initCheck();
7606 if (lStatus != NO_ERROR) {
7607 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
7608 // track must be cleared from the caller as the caller has the AF lock
7609 goto Exit;
7610 }
7611 mTracks.add(track);
7612
7613 if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
7614 pid_t callingPid = IPCThreadState::self()->getCallingPid();
7615 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
7616 // so ask activity manager to do this on our behalf
7617 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
7618 }
7619 }
7620
7621 lStatus = NO_ERROR;
7622
7623 Exit:
7624 *status = lStatus;
7625 return track;
7626 }
7627
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,audio_session_t triggerSession)7628 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
7629 AudioSystem::sync_event_t event,
7630 audio_session_t triggerSession)
7631 {
7632 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
7633 sp<ThreadBase> strongMe = this;
7634 status_t status = NO_ERROR;
7635
7636 if (event == AudioSystem::SYNC_EVENT_NONE) {
7637 recordTrack->clearSyncStartEvent();
7638 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
7639 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
7640 triggerSession,
7641 recordTrack->sessionId(),
7642 syncStartEventCallback,
7643 recordTrack);
7644 // Sync event can be cancelled by the trigger session if the track is not in a
7645 // compatible state in which case we start record immediately
7646 if (recordTrack->mSyncStartEvent->isCancelled()) {
7647 recordTrack->clearSyncStartEvent();
7648 } else {
7649 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
7650 recordTrack->mFramesToDrop = -(ssize_t)
7651 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
7652 }
7653 }
7654
7655 {
7656 // This section is a rendezvous between binder thread executing start() and RecordThread
7657 AutoMutex lock(mLock);
7658 if (recordTrack->isInvalid()) {
7659 recordTrack->clearSyncStartEvent();
7660 return INVALID_OPERATION;
7661 }
7662 if (mActiveTracks.indexOf(recordTrack) >= 0) {
7663 if (recordTrack->mState == TrackBase::PAUSING) {
7664 // We haven't stopped yet (moved to PAUSED and not in mActiveTracks)
7665 // so no need to startInput().
7666 ALOGV("active record track PAUSING -> ACTIVE");
7667 recordTrack->mState = TrackBase::ACTIVE;
7668 } else {
7669 ALOGV("active record track state %d", recordTrack->mState);
7670 }
7671 return status;
7672 }
7673
7674 // TODO consider other ways of handling this, such as changing the state to :STARTING and
7675 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
7676 // or using a separate command thread
7677 recordTrack->mState = TrackBase::STARTING_1;
7678 mActiveTracks.add(recordTrack);
7679 status_t status = NO_ERROR;
7680 if (recordTrack->isExternalTrack()) {
7681 mLock.unlock();
7682 status = AudioSystem::startInput(recordTrack->portId());
7683 mLock.lock();
7684 if (recordTrack->isInvalid()) {
7685 recordTrack->clearSyncStartEvent();
7686 if (status == NO_ERROR && recordTrack->mState == TrackBase::STARTING_1) {
7687 recordTrack->mState = TrackBase::STARTING_2;
7688 // STARTING_2 forces destroy to call stopInput.
7689 }
7690 return INVALID_OPERATION;
7691 }
7692 if (recordTrack->mState != TrackBase::STARTING_1) {
7693 ALOGW("%s(%d): unsynchronized mState:%d change",
7694 __func__, recordTrack->id(), recordTrack->mState);
7695 // Someone else has changed state, let them take over,
7696 // leave mState in the new state.
7697 recordTrack->clearSyncStartEvent();
7698 return INVALID_OPERATION;
7699 }
7700 // we're ok, but perhaps startInput has failed
7701 if (status != NO_ERROR) {
7702 ALOGW("%s(%d): startInput failed, status %d",
7703 __func__, recordTrack->id(), status);
7704 // We are in ActiveTracks if STARTING_1 and valid, so remove from ActiveTracks,
7705 // leave in STARTING_1, so destroy() will not call stopInput.
7706 mActiveTracks.remove(recordTrack);
7707 recordTrack->clearSyncStartEvent();
7708 return status;
7709 }
7710 sendIoConfigEvent_l(
7711 AUDIO_CLIENT_STARTED, recordTrack->creatorPid(), recordTrack->portId());
7712 }
7713 // Catch up with current buffer indices if thread is already running.
7714 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
7715 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
7716 // see previously buffered data before it called start(), but with greater risk of overrun.
7717
7718 recordTrack->mResamplerBufferProvider->reset();
7719 if (!recordTrack->isDirect()) {
7720 // clear any converter state as new data will be discontinuous
7721 recordTrack->mRecordBufferConverter->reset();
7722 }
7723 recordTrack->mState = TrackBase::STARTING_2;
7724 // signal thread to start
7725 mWaitWorkCV.broadcast();
7726 return status;
7727 }
7728 }
7729
syncStartEventCallback(const wp<SyncEvent> & event)7730 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
7731 {
7732 sp<SyncEvent> strongEvent = event.promote();
7733
7734 if (strongEvent != 0) {
7735 sp<RefBase> ptr = strongEvent->cookie().promote();
7736 if (ptr != 0) {
7737 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
7738 recordTrack->handleSyncStartEvent(strongEvent);
7739 }
7740 }
7741 }
7742
stop(RecordThread::RecordTrack * recordTrack)7743 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
7744 ALOGV("RecordThread::stop");
7745 AutoMutex _l(mLock);
7746 // if we're invalid, we can't be on the ActiveTracks.
7747 if (mActiveTracks.indexOf(recordTrack) < 0 || recordTrack->mState == TrackBase::PAUSING) {
7748 return false;
7749 }
7750 // note that threadLoop may still be processing the track at this point [without lock]
7751 recordTrack->mState = TrackBase::PAUSING;
7752
7753 // NOTE: Waiting here is important to keep stop synchronous.
7754 // This is needed for proper patchRecord peer release.
7755 while (recordTrack->mState == TrackBase::PAUSING && !recordTrack->isInvalid()) {
7756 mWaitWorkCV.broadcast(); // signal thread to stop
7757 mStartStopCond.wait(mLock);
7758 }
7759
7760 if (recordTrack->mState == TrackBase::PAUSED) { // successful stop
7761 ALOGV("Record stopped OK");
7762 return true;
7763 }
7764
7765 // don't handle anything - we've been invalidated or restarted and in a different state
7766 ALOGW_IF("%s(%d): unsynchronized stop, state: %d",
7767 __func__, recordTrack->id(), recordTrack->mState);
7768 return false;
7769 }
7770
isValidSyncEvent(const sp<SyncEvent> & event __unused) const7771 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
7772 {
7773 return false;
7774 }
7775
setSyncEvent(const sp<SyncEvent> & event __unused)7776 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
7777 {
7778 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
7779 if (!isValidSyncEvent(event)) {
7780 return BAD_VALUE;
7781 }
7782
7783 audio_session_t eventSession = event->triggerSession();
7784 status_t ret = NAME_NOT_FOUND;
7785
7786 Mutex::Autolock _l(mLock);
7787
7788 for (size_t i = 0; i < mTracks.size(); i++) {
7789 sp<RecordTrack> track = mTracks[i];
7790 if (eventSession == track->sessionId()) {
7791 (void) track->setSyncEvent(event);
7792 ret = NO_ERROR;
7793 }
7794 }
7795 return ret;
7796 #else
7797 return BAD_VALUE;
7798 #endif
7799 }
7800
getActiveMicrophones(std::vector<media::MicrophoneInfo> * activeMicrophones)7801 status_t AudioFlinger::RecordThread::getActiveMicrophones(
7802 std::vector<media::MicrophoneInfo>* activeMicrophones)
7803 {
7804 ALOGV("RecordThread::getActiveMicrophones");
7805 AutoMutex _l(mLock);
7806 status_t status = mInput->stream->getActiveMicrophones(activeMicrophones);
7807 return status;
7808 }
7809
setPreferredMicrophoneDirection(audio_microphone_direction_t direction)7810 status_t AudioFlinger::RecordThread::setPreferredMicrophoneDirection(
7811 audio_microphone_direction_t direction)
7812 {
7813 ALOGV("setPreferredMicrophoneDirection(%d)", direction);
7814 AutoMutex _l(mLock);
7815 return mInput->stream->setPreferredMicrophoneDirection(direction);
7816 }
7817
setPreferredMicrophoneFieldDimension(float zoom)7818 status_t AudioFlinger::RecordThread::setPreferredMicrophoneFieldDimension(float zoom)
7819 {
7820 ALOGV("setPreferredMicrophoneFieldDimension(%f)", zoom);
7821 AutoMutex _l(mLock);
7822 return mInput->stream->setPreferredMicrophoneFieldDimension(zoom);
7823 }
7824
updateMetadata_l()7825 void AudioFlinger::RecordThread::updateMetadata_l()
7826 {
7827 if (mInput == nullptr || mInput->stream == nullptr ||
7828 !mActiveTracks.readAndClearHasChanged()) {
7829 return;
7830 }
7831 StreamInHalInterface::SinkMetadata metadata;
7832 for (const sp<RecordTrack> &track : mActiveTracks) {
7833 // No track is invalid as this is called after prepareTrack_l in the same critical section
7834 metadata.tracks.push_back({
7835 .source = track->attributes().source,
7836 .gain = 1, // capture tracks do not have volumes
7837 });
7838 }
7839 mInput->stream->updateSinkMetadata(metadata);
7840 }
7841
7842 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)7843 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
7844 {
7845 track->terminate();
7846 track->mState = TrackBase::STOPPED;
7847 // active tracks are removed by threadLoop()
7848 if (mActiveTracks.indexOf(track) < 0) {
7849 removeTrack_l(track);
7850 }
7851 }
7852
removeTrack_l(const sp<RecordTrack> & track)7853 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
7854 {
7855 String8 result;
7856 track->appendDump(result, false /* active */);
7857 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
7858
7859 mTracks.remove(track);
7860 // need anything related to effects here?
7861 if (track->isFastTrack()) {
7862 ALOG_ASSERT(!mFastTrackAvail);
7863 mFastTrackAvail = true;
7864 }
7865 }
7866
dumpInternals_l(int fd,const Vector<String16> & args __unused)7867 void AudioFlinger::RecordThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
7868 {
7869 AudioStreamIn *input = mInput;
7870 audio_input_flags_t flags = input != NULL ? input->flags : AUDIO_INPUT_FLAG_NONE;
7871 dprintf(fd, " AudioStreamIn: %p flags %#x (%s)\n",
7872 input, flags, toString(flags).c_str());
7873 dprintf(fd, " Frames read: %lld\n", (long long)mFramesRead);
7874 if (mActiveTracks.isEmpty()) {
7875 dprintf(fd, " No active record clients\n");
7876 }
7877
7878 if (input != nullptr) {
7879 dprintf(fd, " Hal stream dump:\n");
7880 (void)input->stream->dump(fd);
7881 }
7882
7883 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
7884 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
7885
7886 // Make a non-atomic copy of fast capture dump state so it won't change underneath us
7887 // while we are dumping it. It may be inconsistent, but it won't mutate!
7888 // This is a large object so we place it on the heap.
7889 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
7890 const std::unique_ptr<FastCaptureDumpState> copy =
7891 std::make_unique<FastCaptureDumpState>(mFastCaptureDumpState);
7892 copy->dump(fd);
7893 }
7894
dumpTracks_l(int fd,const Vector<String16> & args __unused)7895 void AudioFlinger::RecordThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
7896 {
7897 String8 result;
7898 size_t numtracks = mTracks.size();
7899 size_t numactive = mActiveTracks.size();
7900 size_t numactiveseen = 0;
7901 dprintf(fd, " %zu Tracks", numtracks);
7902 const char *prefix = " ";
7903 if (numtracks) {
7904 dprintf(fd, " of which %zu are active\n", numactive);
7905 result.append(prefix);
7906 mTracks[0]->appendDumpHeader(result);
7907 for (size_t i = 0; i < numtracks ; ++i) {
7908 sp<RecordTrack> track = mTracks[i];
7909 if (track != 0) {
7910 bool active = mActiveTracks.indexOf(track) >= 0;
7911 if (active) {
7912 numactiveseen++;
7913 }
7914 result.append(prefix);
7915 track->appendDump(result, active);
7916 }
7917 }
7918 } else {
7919 dprintf(fd, "\n");
7920 }
7921
7922 if (numactiveseen != numactive) {
7923 result.append(" The following tracks are in the active list but"
7924 " not in the track list\n");
7925 result.append(prefix);
7926 mActiveTracks[0]->appendDumpHeader(result);
7927 for (size_t i = 0; i < numactive; ++i) {
7928 sp<RecordTrack> track = mActiveTracks[i];
7929 if (mTracks.indexOf(track) < 0) {
7930 result.append(prefix);
7931 track->appendDump(result, true /* active */);
7932 }
7933 }
7934
7935 }
7936 write(fd, result.string(), result.size());
7937 }
7938
setRecordSilenced(uid_t uid,bool silenced)7939 void AudioFlinger::RecordThread::setRecordSilenced(uid_t uid, bool silenced)
7940 {
7941 Mutex::Autolock _l(mLock);
7942 for (size_t i = 0; i < mTracks.size() ; i++) {
7943 sp<RecordTrack> track = mTracks[i];
7944 if (track != 0 && track->uid() == uid) {
7945 track->setSilenced(silenced);
7946 }
7947 }
7948 }
7949
reset()7950 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
7951 {
7952 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
7953 RecordThread *recordThread = (RecordThread *) threadBase.get();
7954 mRsmpInFront = recordThread->mRsmpInRear;
7955 mRsmpInUnrel = 0;
7956 }
7957
sync(size_t * framesAvailable,bool * hasOverrun)7958 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
7959 size_t *framesAvailable, bool *hasOverrun)
7960 {
7961 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
7962 RecordThread *recordThread = (RecordThread *) threadBase.get();
7963 const int32_t rear = recordThread->mRsmpInRear;
7964 const int32_t front = mRsmpInFront;
7965 const ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
7966
7967 size_t framesIn;
7968 bool overrun = false;
7969 if (filled < 0) {
7970 // should not happen, but treat like a massive overrun and re-sync
7971 framesIn = 0;
7972 mRsmpInFront = rear;
7973 overrun = true;
7974 } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
7975 framesIn = (size_t) filled;
7976 } else {
7977 // client is not keeping up with server, but give it latest data
7978 framesIn = recordThread->mRsmpInFrames;
7979 mRsmpInFront = /* front = */ audio_utils::safe_sub_overflow(
7980 rear, static_cast<int32_t>(framesIn));
7981 overrun = true;
7982 }
7983 if (framesAvailable != NULL) {
7984 *framesAvailable = framesIn;
7985 }
7986 if (hasOverrun != NULL) {
7987 *hasOverrun = overrun;
7988 }
7989 }
7990
7991 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer)7992 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
7993 AudioBufferProvider::Buffer* buffer)
7994 {
7995 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
7996 if (threadBase == 0) {
7997 buffer->frameCount = 0;
7998 buffer->raw = NULL;
7999 return NOT_ENOUGH_DATA;
8000 }
8001 RecordThread *recordThread = (RecordThread *) threadBase.get();
8002 int32_t rear = recordThread->mRsmpInRear;
8003 int32_t front = mRsmpInFront;
8004 ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
8005 // FIXME should not be P2 (don't want to increase latency)
8006 // FIXME if client not keeping up, discard
8007 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
8008 // 'filled' may be non-contiguous, so return only the first contiguous chunk
8009 front &= recordThread->mRsmpInFramesP2 - 1;
8010 size_t part1 = recordThread->mRsmpInFramesP2 - front;
8011 if (part1 > (size_t) filled) {
8012 part1 = filled;
8013 }
8014 size_t ask = buffer->frameCount;
8015 ALOG_ASSERT(ask > 0);
8016 if (part1 > ask) {
8017 part1 = ask;
8018 }
8019 if (part1 == 0) {
8020 // out of data is fine since the resampler will return a short-count.
8021 buffer->raw = NULL;
8022 buffer->frameCount = 0;
8023 mRsmpInUnrel = 0;
8024 return NOT_ENOUGH_DATA;
8025 }
8026
8027 buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
8028 buffer->frameCount = part1;
8029 mRsmpInUnrel = part1;
8030 return NO_ERROR;
8031 }
8032
8033 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)8034 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
8035 AudioBufferProvider::Buffer* buffer)
8036 {
8037 int32_t stepCount = static_cast<int32_t>(buffer->frameCount);
8038 if (stepCount == 0) {
8039 return;
8040 }
8041 ALOG_ASSERT(stepCount <= mRsmpInUnrel);
8042 mRsmpInUnrel -= stepCount;
8043 mRsmpInFront = audio_utils::safe_add_overflow(mRsmpInFront, stepCount);
8044 buffer->raw = NULL;
8045 buffer->frameCount = 0;
8046 }
8047
checkBtNrec()8048 void AudioFlinger::RecordThread::checkBtNrec()
8049 {
8050 Mutex::Autolock _l(mLock);
8051 checkBtNrec_l();
8052 }
8053
checkBtNrec_l()8054 void AudioFlinger::RecordThread::checkBtNrec_l()
8055 {
8056 // disable AEC and NS if the device is a BT SCO headset supporting those
8057 // pre processings
8058 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
8059 mAudioFlinger->btNrecIsOff();
8060 if (mBtNrecSuspended.exchange(suspend) != suspend) {
8061 for (size_t i = 0; i < mEffectChains.size(); i++) {
8062 setEffectSuspended_l(FX_IID_AEC, suspend, mEffectChains[i]->sessionId());
8063 setEffectSuspended_l(FX_IID_NS, suspend, mEffectChains[i]->sessionId());
8064 }
8065 }
8066 }
8067
8068
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)8069 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
8070 status_t& status)
8071 {
8072 bool reconfig = false;
8073
8074 status = NO_ERROR;
8075
8076 audio_format_t reqFormat = mFormat;
8077 uint32_t samplingRate = mSampleRate;
8078 // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
8079 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
8080
8081 AudioParameter param = AudioParameter(keyValuePair);
8082 int value;
8083
8084 // scope for AutoPark extends to end of method
8085 AutoPark<FastCapture> park(mFastCapture);
8086
8087 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
8088 // channel count change can be requested. Do we mandate the first client defines the
8089 // HAL sampling rate and channel count or do we allow changes on the fly?
8090 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
8091 samplingRate = value;
8092 reconfig = true;
8093 }
8094 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
8095 if (!audio_is_linear_pcm((audio_format_t) value)) {
8096 status = BAD_VALUE;
8097 } else {
8098 reqFormat = (audio_format_t) value;
8099 reconfig = true;
8100 }
8101 }
8102 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
8103 audio_channel_mask_t mask = (audio_channel_mask_t) value;
8104 if (!audio_is_input_channel(mask) ||
8105 audio_channel_count_from_in_mask(mask) > FCC_8) {
8106 status = BAD_VALUE;
8107 } else {
8108 channelMask = mask;
8109 reconfig = true;
8110 }
8111 }
8112 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
8113 // do not accept frame count changes if tracks are open as the track buffer
8114 // size depends on frame count and correct behavior would not be guaranteed
8115 // if frame count is changed after track creation
8116 if (mActiveTracks.size() > 0) {
8117 status = INVALID_OPERATION;
8118 } else {
8119 reconfig = true;
8120 }
8121 }
8122 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
8123 // forward device change to effects that have requested to be
8124 // aware of attached audio device.
8125 for (size_t i = 0; i < mEffectChains.size(); i++) {
8126 mEffectChains[i]->setDevice_l(value);
8127 }
8128
8129 // store input device and output device but do not forward output device to audio HAL.
8130 // Note that status is ignored by the caller for output device
8131 // (see AudioFlinger::setParameters()
8132 if (audio_is_output_devices(value)) {
8133 mOutDevice = value;
8134 status = BAD_VALUE;
8135 } else {
8136 mInDevice = value;
8137 if (value != AUDIO_DEVICE_NONE) {
8138 mPrevInDevice = value;
8139 }
8140 checkBtNrec_l();
8141 }
8142 }
8143 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
8144 mAudioSource != (audio_source_t)value) {
8145 // forward device change to effects that have requested to be
8146 // aware of attached audio device.
8147 for (size_t i = 0; i < mEffectChains.size(); i++) {
8148 mEffectChains[i]->setAudioSource_l((audio_source_t)value);
8149 }
8150 mAudioSource = (audio_source_t)value;
8151 }
8152
8153 if (status == NO_ERROR) {
8154 status = mInput->stream->setParameters(keyValuePair);
8155 if (status == INVALID_OPERATION) {
8156 inputStandBy();
8157 status = mInput->stream->setParameters(keyValuePair);
8158 }
8159 if (reconfig) {
8160 if (status == BAD_VALUE) {
8161 uint32_t sRate;
8162 audio_channel_mask_t channelMask;
8163 audio_format_t format;
8164 if (mInput->stream->getAudioProperties(&sRate, &channelMask, &format) == OK &&
8165 audio_is_linear_pcm(format) && audio_is_linear_pcm(reqFormat) &&
8166 sRate <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate) &&
8167 audio_channel_count_from_in_mask(channelMask) <= FCC_8) {
8168 status = NO_ERROR;
8169 }
8170 }
8171 if (status == NO_ERROR) {
8172 readInputParameters_l();
8173 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8174 }
8175 }
8176 }
8177
8178 return reconfig;
8179 }
8180
getParameters(const String8 & keys)8181 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
8182 {
8183 Mutex::Autolock _l(mLock);
8184 if (initCheck() == NO_ERROR) {
8185 String8 out_s8;
8186 if (mInput->stream->getParameters(keys, &out_s8) == OK) {
8187 return out_s8;
8188 }
8189 }
8190 return String8();
8191 }
8192
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)8193 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
8194 audio_port_handle_t portId) {
8195 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
8196
8197 desc->mIoHandle = mId;
8198
8199 switch (event) {
8200 case AUDIO_INPUT_OPENED:
8201 case AUDIO_INPUT_REGISTERED:
8202 case AUDIO_INPUT_CONFIG_CHANGED:
8203 desc->mPatch = mPatch;
8204 desc->mChannelMask = mChannelMask;
8205 desc->mSamplingRate = mSampleRate;
8206 desc->mFormat = mFormat;
8207 desc->mFrameCount = mFrameCount;
8208 desc->mFrameCountHAL = mFrameCount;
8209 desc->mLatency = 0;
8210 break;
8211 case AUDIO_CLIENT_STARTED:
8212 desc->mPatch = mPatch;
8213 desc->mPortId = portId;
8214 break;
8215 case AUDIO_INPUT_CLOSED:
8216 default:
8217 break;
8218 }
8219 mAudioFlinger->ioConfigChanged(event, desc, pid);
8220 }
8221
readInputParameters_l()8222 void AudioFlinger::RecordThread::readInputParameters_l()
8223 {
8224 status_t result = mInput->stream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
8225 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
8226 mFormat = mHALFormat;
8227 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
8228 if (audio_is_linear_pcm(mFormat)) {
8229 LOG_ALWAYS_FATAL_IF(mChannelCount > FCC_8, "HAL channel count %d > %d",
8230 mChannelCount, FCC_8);
8231 } else {
8232 // Can have more that FCC_8 channels in encoded streams.
8233 ALOGI("HAL format %#x is not linear pcm", mFormat);
8234 }
8235 result = mInput->stream->getFrameSize(&mFrameSize);
8236 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
8237 result = mInput->stream->getBufferSize(&mBufferSize);
8238 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
8239 mFrameCount = mBufferSize / mFrameSize;
8240 ALOGV("%p RecordThread params: mChannelCount=%u, mFormat=%#x, mFrameSize=%lld, "
8241 "mBufferSize=%lld, mFrameCount=%lld",
8242 this, mChannelCount, mFormat, (long long)mFrameSize, (long long)mBufferSize,
8243 (long long)mFrameCount);
8244 // This is the formula for calculating the temporary buffer size.
8245 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
8246 // 1 full output buffer, regardless of the alignment of the available input.
8247 // The value is somewhat arbitrary, and could probably be even larger.
8248 // A larger value should allow more old data to be read after a track calls start(),
8249 // without increasing latency.
8250 //
8251 // Note this is independent of the maximum downsampling ratio permitted for capture.
8252 mRsmpInFrames = mFrameCount * 7;
8253 mRsmpInFramesP2 = roundup(mRsmpInFrames);
8254 free(mRsmpInBuffer);
8255 mRsmpInBuffer = NULL;
8256
8257 // TODO optimize audio capture buffer sizes ...
8258 // Here we calculate the size of the sliding buffer used as a source
8259 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
8260 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
8261 // be better to have it derived from the pipe depth in the long term.
8262 // The current value is higher than necessary. However it should not add to latency.
8263
8264 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
8265 mRsmpInFramesOA = mRsmpInFramesP2 + mFrameCount - 1;
8266 (void)posix_memalign(&mRsmpInBuffer, 32, mRsmpInFramesOA * mFrameSize);
8267 // if posix_memalign fails, will segv here.
8268 memset(mRsmpInBuffer, 0, mRsmpInFramesOA * mFrameSize);
8269
8270 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
8271 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
8272 }
8273
getInputFramesLost()8274 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
8275 {
8276 Mutex::Autolock _l(mLock);
8277 uint32_t result;
8278 if (initCheck() == NO_ERROR && mInput->stream->getInputFramesLost(&result) == OK) {
8279 return result;
8280 }
8281 return 0;
8282 }
8283
sessionIds() const8284 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
8285 {
8286 KeyedVector<audio_session_t, bool> ids;
8287 Mutex::Autolock _l(mLock);
8288 for (size_t j = 0; j < mTracks.size(); ++j) {
8289 sp<RecordThread::RecordTrack> track = mTracks[j];
8290 audio_session_t sessionId = track->sessionId();
8291 if (ids.indexOfKey(sessionId) < 0) {
8292 ids.add(sessionId, true);
8293 }
8294 }
8295 return ids;
8296 }
8297
clearInput()8298 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
8299 {
8300 Mutex::Autolock _l(mLock);
8301 AudioStreamIn *input = mInput;
8302 mInput = NULL;
8303 return input;
8304 }
8305
8306 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const8307 sp<StreamHalInterface> AudioFlinger::RecordThread::stream() const
8308 {
8309 if (mInput == NULL) {
8310 return NULL;
8311 }
8312 return mInput->stream;
8313 }
8314
addEffectChain_l(const sp<EffectChain> & chain)8315 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
8316 {
8317 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
8318 chain->setThread(this);
8319 chain->setInBuffer(NULL);
8320 chain->setOutBuffer(NULL);
8321
8322 checkSuspendOnAddEffectChain_l(chain);
8323
8324 // make sure enabled pre processing effects state is communicated to the HAL as we
8325 // just moved them to a new input stream.
8326 chain->syncHalEffectsState();
8327
8328 mEffectChains.add(chain);
8329
8330 return NO_ERROR;
8331 }
8332
removeEffectChain_l(const sp<EffectChain> & chain)8333 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
8334 {
8335 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
8336
8337 for (size_t i = 0; i < mEffectChains.size(); i++) {
8338 if (chain == mEffectChains[i]) {
8339 mEffectChains.removeAt(i);
8340 break;
8341 }
8342 }
8343 return mEffectChains.size();
8344 }
8345
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)8346 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
8347 audio_patch_handle_t *handle)
8348 {
8349 status_t status = NO_ERROR;
8350
8351 // store new device and send to effects
8352 mInDevice = patch->sources[0].ext.device.type;
8353 audio_port_handle_t deviceId = patch->sources[0].id;
8354 mPatch = *patch;
8355 for (size_t i = 0; i < mEffectChains.size(); i++) {
8356 mEffectChains[i]->setDevice_l(mInDevice);
8357 }
8358
8359 checkBtNrec_l();
8360
8361 // store new source and send to effects
8362 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
8363 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
8364 for (size_t i = 0; i < mEffectChains.size(); i++) {
8365 mEffectChains[i]->setAudioSource_l(mAudioSource);
8366 }
8367 }
8368
8369 if (mInput->audioHwDev->supportsAudioPatches()) {
8370 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
8371 status = hwDevice->createAudioPatch(patch->num_sources,
8372 patch->sources,
8373 patch->num_sinks,
8374 patch->sinks,
8375 handle);
8376 } else {
8377 char *address;
8378 if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
8379 address = audio_device_address_to_parameter(
8380 patch->sources[0].ext.device.type,
8381 patch->sources[0].ext.device.address);
8382 } else {
8383 address = (char *)calloc(1, 1);
8384 }
8385 AudioParameter param = AudioParameter(String8(address));
8386 free(address);
8387 param.addInt(String8(AudioParameter::keyRouting),
8388 (int)patch->sources[0].ext.device.type);
8389 param.addInt(String8(AudioParameter::keyInputSource),
8390 (int)patch->sinks[0].ext.mix.usecase.source);
8391 status = mInput->stream->setParameters(param.toString());
8392 *handle = AUDIO_PATCH_HANDLE_NONE;
8393 }
8394
8395 if ((mInDevice != mPrevInDevice) || (mDeviceId != deviceId)) {
8396 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8397 mPrevInDevice = mInDevice;
8398 mDeviceId = deviceId;
8399 }
8400
8401 return status;
8402 }
8403
releaseAudioPatch_l(const audio_patch_handle_t handle)8404 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
8405 {
8406 status_t status = NO_ERROR;
8407
8408 mInDevice = AUDIO_DEVICE_NONE;
8409
8410 if (mInput->audioHwDev->supportsAudioPatches()) {
8411 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
8412 status = hwDevice->releaseAudioPatch(handle);
8413 } else {
8414 AudioParameter param;
8415 param.addInt(String8(AudioParameter::keyRouting), 0);
8416 status = mInput->stream->setParameters(param.toString());
8417 }
8418 return status;
8419 }
8420
addPatchTrack(const sp<PatchRecord> & record)8421 void AudioFlinger::RecordThread::addPatchTrack(const sp<PatchRecord>& record)
8422 {
8423 Mutex::Autolock _l(mLock);
8424 mTracks.add(record);
8425 }
8426
deletePatchTrack(const sp<PatchRecord> & record)8427 void AudioFlinger::RecordThread::deletePatchTrack(const sp<PatchRecord>& record)
8428 {
8429 Mutex::Autolock _l(mLock);
8430 destroyTrack_l(record);
8431 }
8432
toAudioPortConfig(struct audio_port_config * config)8433 void AudioFlinger::RecordThread::toAudioPortConfig(struct audio_port_config *config)
8434 {
8435 ThreadBase::toAudioPortConfig(config);
8436 config->role = AUDIO_PORT_ROLE_SINK;
8437 config->ext.mix.hw_module = mInput->audioHwDev->handle();
8438 config->ext.mix.usecase.source = mAudioSource;
8439 if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
8440 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
8441 config->flags.input = mInput->flags;
8442 }
8443 }
8444
8445 // ----------------------------------------------------------------------------
8446 // Mmap
8447 // ----------------------------------------------------------------------------
8448
MmapThreadHandle(const sp<MmapThread> & thread)8449 AudioFlinger::MmapThreadHandle::MmapThreadHandle(const sp<MmapThread>& thread)
8450 : mThread(thread)
8451 {
8452 assert(thread != 0); // thread must start non-null and stay non-null
8453 }
8454
~MmapThreadHandle()8455 AudioFlinger::MmapThreadHandle::~MmapThreadHandle()
8456 {
8457 mThread->disconnect();
8458 }
8459
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)8460 status_t AudioFlinger::MmapThreadHandle::createMmapBuffer(int32_t minSizeFrames,
8461 struct audio_mmap_buffer_info *info)
8462 {
8463 return mThread->createMmapBuffer(minSizeFrames, info);
8464 }
8465
getMmapPosition(struct audio_mmap_position * position)8466 status_t AudioFlinger::MmapThreadHandle::getMmapPosition(struct audio_mmap_position *position)
8467 {
8468 return mThread->getMmapPosition(position);
8469 }
8470
start(const AudioClient & client,audio_port_handle_t * handle)8471 status_t AudioFlinger::MmapThreadHandle::start(const AudioClient& client,
8472 audio_port_handle_t *handle)
8473
8474 {
8475 return mThread->start(client, handle);
8476 }
8477
stop(audio_port_handle_t handle)8478 status_t AudioFlinger::MmapThreadHandle::stop(audio_port_handle_t handle)
8479 {
8480 return mThread->stop(handle);
8481 }
8482
standby()8483 status_t AudioFlinger::MmapThreadHandle::standby()
8484 {
8485 return mThread->standby();
8486 }
8487
8488
MmapThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,sp<StreamHalInterface> stream,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)8489 AudioFlinger::MmapThread::MmapThread(
8490 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
8491 AudioHwDevice *hwDev, sp<StreamHalInterface> stream,
8492 audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady)
8493 : ThreadBase(audioFlinger, id, outDevice, inDevice, MMAP, systemReady),
8494 mSessionId(AUDIO_SESSION_NONE),
8495 mPortId(AUDIO_PORT_HANDLE_NONE),
8496 mHalStream(stream), mHalDevice(hwDev->hwDevice()), mAudioHwDev(hwDev),
8497 mActiveTracks(&this->mLocalLog),
8498 mHalVolFloat(-1.0f), // Initialize to illegal value so it always gets set properly later.
8499 mNoCallbackWarningCount(0)
8500 {
8501 mStandby = true;
8502 readHalParameters_l();
8503 }
8504
~MmapThread()8505 AudioFlinger::MmapThread::~MmapThread()
8506 {
8507 releaseWakeLock_l();
8508 }
8509
onFirstRef()8510 void AudioFlinger::MmapThread::onFirstRef()
8511 {
8512 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
8513 }
8514
disconnect()8515 void AudioFlinger::MmapThread::disconnect()
8516 {
8517 ActiveTracks<MmapTrack> activeTracks;
8518 {
8519 Mutex::Autolock _l(mLock);
8520 for (const sp<MmapTrack> &t : mActiveTracks) {
8521 activeTracks.add(t);
8522 }
8523 }
8524 for (const sp<MmapTrack> &t : activeTracks) {
8525 stop(t->portId());
8526 }
8527 // This will decrement references and may cause the destruction of this thread.
8528 if (isOutput()) {
8529 AudioSystem::releaseOutput(mPortId);
8530 } else {
8531 AudioSystem::releaseInput(mPortId);
8532 }
8533 }
8534
8535
configure(const audio_attributes_t * attr,audio_stream_type_t streamType __unused,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)8536 void AudioFlinger::MmapThread::configure(const audio_attributes_t *attr,
8537 audio_stream_type_t streamType __unused,
8538 audio_session_t sessionId,
8539 const sp<MmapStreamCallback>& callback,
8540 audio_port_handle_t deviceId,
8541 audio_port_handle_t portId)
8542 {
8543 mAttr = *attr;
8544 mSessionId = sessionId;
8545 mCallback = callback;
8546 mDeviceId = deviceId;
8547 mPortId = portId;
8548 }
8549
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)8550 status_t AudioFlinger::MmapThread::createMmapBuffer(int32_t minSizeFrames,
8551 struct audio_mmap_buffer_info *info)
8552 {
8553 if (mHalStream == 0) {
8554 return NO_INIT;
8555 }
8556 mStandby = true;
8557 acquireWakeLock();
8558 return mHalStream->createMmapBuffer(minSizeFrames, info);
8559 }
8560
getMmapPosition(struct audio_mmap_position * position)8561 status_t AudioFlinger::MmapThread::getMmapPosition(struct audio_mmap_position *position)
8562 {
8563 if (mHalStream == 0) {
8564 return NO_INIT;
8565 }
8566 return mHalStream->getMmapPosition(position);
8567 }
8568
exitStandby()8569 status_t AudioFlinger::MmapThread::exitStandby()
8570 {
8571 status_t ret = mHalStream->start();
8572 if (ret != NO_ERROR) {
8573 ALOGE("%s: error mHalStream->start() = %d for first track", __FUNCTION__, ret);
8574 return ret;
8575 }
8576 mStandby = false;
8577 return NO_ERROR;
8578 }
8579
start(const AudioClient & client,audio_port_handle_t * handle)8580 status_t AudioFlinger::MmapThread::start(const AudioClient& client,
8581 audio_port_handle_t *handle)
8582 {
8583 ALOGV("%s clientUid %d mStandby %d mPortId %d *handle %d", __FUNCTION__,
8584 client.clientUid, mStandby, mPortId, *handle);
8585 if (mHalStream == 0) {
8586 return NO_INIT;
8587 }
8588
8589 status_t ret;
8590
8591 if (*handle == mPortId) {
8592 // for the first track, reuse portId and session allocated when the stream was opened
8593 return exitStandby();
8594 }
8595
8596 audio_port_handle_t portId = AUDIO_PORT_HANDLE_NONE;
8597
8598 audio_io_handle_t io = mId;
8599 if (isOutput()) {
8600 audio_config_t config = AUDIO_CONFIG_INITIALIZER;
8601 config.sample_rate = mSampleRate;
8602 config.channel_mask = mChannelMask;
8603 config.format = mFormat;
8604 audio_stream_type_t stream = streamType();
8605 audio_output_flags_t flags =
8606 (audio_output_flags_t)(AUDIO_OUTPUT_FLAG_MMAP_NOIRQ | AUDIO_OUTPUT_FLAG_DIRECT);
8607 audio_port_handle_t deviceId = mDeviceId;
8608 std::vector<audio_io_handle_t> secondaryOutputs;
8609 ret = AudioSystem::getOutputForAttr(&mAttr, &io,
8610 mSessionId,
8611 &stream,
8612 client.clientPid,
8613 client.clientUid,
8614 &config,
8615 flags,
8616 &deviceId,
8617 &portId,
8618 &secondaryOutputs);
8619 ALOGD_IF(!secondaryOutputs.empty(),
8620 "MmapThread::start does not support secondary outputs, ignoring them");
8621 } else {
8622 audio_config_base_t config;
8623 config.sample_rate = mSampleRate;
8624 config.channel_mask = mChannelMask;
8625 config.format = mFormat;
8626 audio_port_handle_t deviceId = mDeviceId;
8627 ret = AudioSystem::getInputForAttr(&mAttr, &io,
8628 RECORD_RIID_INVALID,
8629 mSessionId,
8630 client.clientPid,
8631 client.clientUid,
8632 client.packageName,
8633 &config,
8634 AUDIO_INPUT_FLAG_MMAP_NOIRQ,
8635 &deviceId,
8636 &portId);
8637 }
8638 // APM should not chose a different input or output stream for the same set of attributes
8639 // and audo configuration
8640 if (ret != NO_ERROR || io != mId) {
8641 ALOGE("%s: error getting output or input from APM (error %d, io %d expected io %d)",
8642 __FUNCTION__, ret, io, mId);
8643 return BAD_VALUE;
8644 }
8645
8646 if (isOutput()) {
8647 ret = AudioSystem::startOutput(portId);
8648 } else {
8649 ret = AudioSystem::startInput(portId);
8650 }
8651
8652 Mutex::Autolock _l(mLock);
8653 // abort if start is rejected by audio policy manager
8654 if (ret != NO_ERROR) {
8655 ALOGE("%s: error start rejected by AudioPolicyManager = %d", __FUNCTION__, ret);
8656 if (!mActiveTracks.isEmpty()) {
8657 mLock.unlock();
8658 if (isOutput()) {
8659 AudioSystem::releaseOutput(portId);
8660 } else {
8661 AudioSystem::releaseInput(portId);
8662 }
8663 mLock.lock();
8664 } else {
8665 mHalStream->stop();
8666 }
8667 return PERMISSION_DENIED;
8668 }
8669
8670 // Given that MmapThread::mAttr is mutable, should a MmapTrack have attributes ?
8671 sp<MmapTrack> track = new MmapTrack(this, mAttr, mSampleRate, mFormat, mChannelMask, mSessionId,
8672 isOutput(), client.clientUid, client.clientPid,
8673 IPCThreadState::self()->getCallingPid(), portId);
8674
8675 if (isOutput()) {
8676 // force volume update when a new track is added
8677 mHalVolFloat = -1.0f;
8678 } else if (!track->isSilenced_l()) {
8679 for (const sp<MmapTrack> &t : mActiveTracks) {
8680 if (t->isSilenced_l() && t->uid() != client.clientUid)
8681 t->invalidate();
8682 }
8683 }
8684
8685
8686 mActiveTracks.add(track);
8687 sp<EffectChain> chain = getEffectChain_l(mSessionId);
8688 if (chain != 0) {
8689 chain->setStrategy(AudioSystem::getStrategyForStream(streamType()));
8690 chain->incTrackCnt();
8691 chain->incActiveTrackCnt();
8692 }
8693
8694 *handle = portId;
8695 broadcast_l();
8696
8697 ALOGV("%s DONE handle %d stream %p", __FUNCTION__, *handle, mHalStream.get());
8698
8699 return NO_ERROR;
8700 }
8701
stop(audio_port_handle_t handle)8702 status_t AudioFlinger::MmapThread::stop(audio_port_handle_t handle)
8703 {
8704 ALOGV("%s handle %d", __FUNCTION__, handle);
8705
8706 if (mHalStream == 0) {
8707 return NO_INIT;
8708 }
8709
8710 if (handle == mPortId) {
8711 mHalStream->stop();
8712 return NO_ERROR;
8713 }
8714
8715 Mutex::Autolock _l(mLock);
8716
8717 sp<MmapTrack> track;
8718 for (const sp<MmapTrack> &t : mActiveTracks) {
8719 if (handle == t->portId()) {
8720 track = t;
8721 break;
8722 }
8723 }
8724 if (track == 0) {
8725 return BAD_VALUE;
8726 }
8727
8728 mActiveTracks.remove(track);
8729
8730 mLock.unlock();
8731 if (isOutput()) {
8732 AudioSystem::stopOutput(track->portId());
8733 AudioSystem::releaseOutput(track->portId());
8734 } else {
8735 AudioSystem::stopInput(track->portId());
8736 AudioSystem::releaseInput(track->portId());
8737 }
8738 mLock.lock();
8739
8740 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
8741 if (chain != 0) {
8742 chain->decActiveTrackCnt();
8743 chain->decTrackCnt();
8744 }
8745
8746 broadcast_l();
8747
8748 return NO_ERROR;
8749 }
8750
standby()8751 status_t AudioFlinger::MmapThread::standby()
8752 {
8753 ALOGV("%s", __FUNCTION__);
8754
8755 if (mHalStream == 0) {
8756 return NO_INIT;
8757 }
8758 if (!mActiveTracks.isEmpty()) {
8759 return INVALID_OPERATION;
8760 }
8761 mHalStream->standby();
8762 mStandby = true;
8763 releaseWakeLock();
8764 return NO_ERROR;
8765 }
8766
8767
readHalParameters_l()8768 void AudioFlinger::MmapThread::readHalParameters_l()
8769 {
8770 status_t result = mHalStream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
8771 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
8772 mFormat = mHALFormat;
8773 LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
8774 result = mHalStream->getFrameSize(&mFrameSize);
8775 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
8776 result = mHalStream->getBufferSize(&mBufferSize);
8777 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
8778 mFrameCount = mBufferSize / mFrameSize;
8779 }
8780
threadLoop()8781 bool AudioFlinger::MmapThread::threadLoop()
8782 {
8783 checkSilentMode_l();
8784
8785 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
8786
8787 while (!exitPending())
8788 {
8789 Vector< sp<EffectChain> > effectChains;
8790
8791 { // under Thread lock
8792 Mutex::Autolock _l(mLock);
8793
8794 if (mSignalPending) {
8795 // A signal was raised while we were unlocked
8796 mSignalPending = false;
8797 } else {
8798 if (mConfigEvents.isEmpty()) {
8799 // we're about to wait, flush the binder command buffer
8800 IPCThreadState::self()->flushCommands();
8801
8802 if (exitPending()) {
8803 break;
8804 }
8805
8806 // wait until we have something to do...
8807 ALOGV("%s going to sleep", myName.string());
8808 mWaitWorkCV.wait(mLock);
8809 ALOGV("%s waking up", myName.string());
8810
8811 checkSilentMode_l();
8812
8813 continue;
8814 }
8815 }
8816
8817 processConfigEvents_l();
8818
8819 processVolume_l();
8820
8821 checkInvalidTracks_l();
8822
8823 mActiveTracks.updatePowerState(this);
8824
8825 updateMetadata_l();
8826
8827 lockEffectChains_l(effectChains);
8828 } // release Thread lock
8829
8830 for (size_t i = 0; i < effectChains.size(); i ++) {
8831 effectChains[i]->process_l(); // Thread is not locked, but effect chain is locked
8832 }
8833
8834 // enable changes in effect chain, including moving to another thread.
8835 unlockEffectChains(effectChains);
8836 // Effect chains will be actually deleted here if they were removed from
8837 // mEffectChains list during mixing or effects processing
8838 }
8839
8840 threadLoop_exit();
8841
8842 if (!mStandby) {
8843 threadLoop_standby();
8844 mStandby = true;
8845 }
8846
8847 ALOGV("Thread %p type %d exiting", this, mType);
8848 return false;
8849 }
8850
8851 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)8852 bool AudioFlinger::MmapThread::checkForNewParameter_l(const String8& keyValuePair,
8853 status_t& status)
8854 {
8855 AudioParameter param = AudioParameter(keyValuePair);
8856 int value;
8857 bool sendToHal = true;
8858 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
8859 audio_devices_t device = (audio_devices_t)value;
8860 // forward device change to effects that have requested to be
8861 // aware of attached audio device.
8862 if (device != AUDIO_DEVICE_NONE) {
8863 for (size_t i = 0; i < mEffectChains.size(); i++) {
8864 mEffectChains[i]->setDevice_l(device);
8865 }
8866 }
8867 if (audio_is_output_devices(device)) {
8868 mOutDevice = device;
8869 if (!isOutput()) {
8870 sendToHal = false;
8871 }
8872 } else {
8873 mInDevice = device;
8874 if (device != AUDIO_DEVICE_NONE) {
8875 mPrevInDevice = value;
8876 }
8877 // TODO: implement and call checkBtNrec_l();
8878 }
8879 }
8880 if (sendToHal) {
8881 status = mHalStream->setParameters(keyValuePair);
8882 } else {
8883 status = NO_ERROR;
8884 }
8885
8886 return false;
8887 }
8888
getParameters(const String8 & keys)8889 String8 AudioFlinger::MmapThread::getParameters(const String8& keys)
8890 {
8891 Mutex::Autolock _l(mLock);
8892 String8 out_s8;
8893 if (initCheck() == NO_ERROR && mHalStream->getParameters(keys, &out_s8) == OK) {
8894 return out_s8;
8895 }
8896 return String8();
8897 }
8898
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId __unused)8899 void AudioFlinger::MmapThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
8900 audio_port_handle_t portId __unused) {
8901 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
8902
8903 desc->mIoHandle = mId;
8904
8905 switch (event) {
8906 case AUDIO_INPUT_OPENED:
8907 case AUDIO_INPUT_REGISTERED:
8908 case AUDIO_INPUT_CONFIG_CHANGED:
8909 case AUDIO_OUTPUT_OPENED:
8910 case AUDIO_OUTPUT_REGISTERED:
8911 case AUDIO_OUTPUT_CONFIG_CHANGED:
8912 desc->mPatch = mPatch;
8913 desc->mChannelMask = mChannelMask;
8914 desc->mSamplingRate = mSampleRate;
8915 desc->mFormat = mFormat;
8916 desc->mFrameCount = mFrameCount;
8917 desc->mFrameCountHAL = mFrameCount;
8918 desc->mLatency = 0;
8919 break;
8920
8921 case AUDIO_INPUT_CLOSED:
8922 case AUDIO_OUTPUT_CLOSED:
8923 default:
8924 break;
8925 }
8926 mAudioFlinger->ioConfigChanged(event, desc, pid);
8927 }
8928
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)8929 status_t AudioFlinger::MmapThread::createAudioPatch_l(const struct audio_patch *patch,
8930 audio_patch_handle_t *handle)
8931 {
8932 status_t status = NO_ERROR;
8933
8934 // store new device and send to effects
8935 audio_devices_t type = AUDIO_DEVICE_NONE;
8936 audio_port_handle_t deviceId;
8937 if (isOutput()) {
8938 for (unsigned int i = 0; i < patch->num_sinks; i++) {
8939 type |= patch->sinks[i].ext.device.type;
8940 }
8941 deviceId = patch->sinks[0].id;
8942 } else {
8943 type = patch->sources[0].ext.device.type;
8944 deviceId = patch->sources[0].id;
8945 }
8946
8947 for (size_t i = 0; i < mEffectChains.size(); i++) {
8948 mEffectChains[i]->setDevice_l(type);
8949 }
8950
8951 if (isOutput()) {
8952 mOutDevice = type;
8953 } else {
8954 mInDevice = type;
8955 // store new source and send to effects
8956 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
8957 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
8958 for (size_t i = 0; i < mEffectChains.size(); i++) {
8959 mEffectChains[i]->setAudioSource_l(mAudioSource);
8960 }
8961 }
8962 }
8963
8964 if (mAudioHwDev->supportsAudioPatches()) {
8965 status = mHalDevice->createAudioPatch(patch->num_sources,
8966 patch->sources,
8967 patch->num_sinks,
8968 patch->sinks,
8969 handle);
8970 } else {
8971 char *address;
8972 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
8973 //FIXME: we only support address on first sink with HAL version < 3.0
8974 address = audio_device_address_to_parameter(
8975 patch->sinks[0].ext.device.type,
8976 patch->sinks[0].ext.device.address);
8977 } else {
8978 address = (char *)calloc(1, 1);
8979 }
8980 AudioParameter param = AudioParameter(String8(address));
8981 free(address);
8982 param.addInt(String8(AudioParameter::keyRouting), (int)type);
8983 if (!isOutput()) {
8984 param.addInt(String8(AudioParameter::keyInputSource),
8985 (int)patch->sinks[0].ext.mix.usecase.source);
8986 }
8987 status = mHalStream->setParameters(param.toString());
8988 *handle = AUDIO_PATCH_HANDLE_NONE;
8989 }
8990
8991 if (isOutput() && (mPrevOutDevice != mOutDevice || mDeviceId != deviceId)) {
8992 mPrevOutDevice = type;
8993 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
8994 sp<MmapStreamCallback> callback = mCallback.promote();
8995 if (mDeviceId != deviceId && callback != 0) {
8996 mLock.unlock();
8997 callback->onRoutingChanged(deviceId);
8998 mLock.lock();
8999 }
9000 mDeviceId = deviceId;
9001 }
9002 if (!isOutput() && (mPrevInDevice != mInDevice || mDeviceId != deviceId)) {
9003 mPrevInDevice = type;
9004 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
9005 sp<MmapStreamCallback> callback = mCallback.promote();
9006 if (mDeviceId != deviceId && callback != 0) {
9007 mLock.unlock();
9008 callback->onRoutingChanged(deviceId);
9009 mLock.lock();
9010 }
9011 mDeviceId = deviceId;
9012 }
9013 return status;
9014 }
9015
releaseAudioPatch_l(const audio_patch_handle_t handle)9016 status_t AudioFlinger::MmapThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
9017 {
9018 status_t status = NO_ERROR;
9019
9020 mInDevice = AUDIO_DEVICE_NONE;
9021
9022 bool supportsAudioPatches = mHalDevice->supportsAudioPatches(&supportsAudioPatches) == OK ?
9023 supportsAudioPatches : false;
9024
9025 if (supportsAudioPatches) {
9026 status = mHalDevice->releaseAudioPatch(handle);
9027 } else {
9028 AudioParameter param;
9029 param.addInt(String8(AudioParameter::keyRouting), 0);
9030 status = mHalStream->setParameters(param.toString());
9031 }
9032 return status;
9033 }
9034
toAudioPortConfig(struct audio_port_config * config)9035 void AudioFlinger::MmapThread::toAudioPortConfig(struct audio_port_config *config)
9036 {
9037 ThreadBase::toAudioPortConfig(config);
9038 if (isOutput()) {
9039 config->role = AUDIO_PORT_ROLE_SOURCE;
9040 config->ext.mix.hw_module = mAudioHwDev->handle();
9041 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
9042 } else {
9043 config->role = AUDIO_PORT_ROLE_SINK;
9044 config->ext.mix.hw_module = mAudioHwDev->handle();
9045 config->ext.mix.usecase.source = mAudioSource;
9046 }
9047 }
9048
addEffectChain_l(const sp<EffectChain> & chain)9049 status_t AudioFlinger::MmapThread::addEffectChain_l(const sp<EffectChain>& chain)
9050 {
9051 audio_session_t session = chain->sessionId();
9052
9053 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
9054 // Attach all tracks with same session ID to this chain.
9055 // indicate all active tracks in the chain
9056 for (const sp<MmapTrack> &track : mActiveTracks) {
9057 if (session == track->sessionId()) {
9058 chain->incTrackCnt();
9059 chain->incActiveTrackCnt();
9060 }
9061 }
9062
9063 chain->setThread(this);
9064 chain->setInBuffer(nullptr);
9065 chain->setOutBuffer(nullptr);
9066 chain->syncHalEffectsState();
9067
9068 mEffectChains.add(chain);
9069 checkSuspendOnAddEffectChain_l(chain);
9070 return NO_ERROR;
9071 }
9072
removeEffectChain_l(const sp<EffectChain> & chain)9073 size_t AudioFlinger::MmapThread::removeEffectChain_l(const sp<EffectChain>& chain)
9074 {
9075 audio_session_t session = chain->sessionId();
9076
9077 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
9078
9079 for (size_t i = 0; i < mEffectChains.size(); i++) {
9080 if (chain == mEffectChains[i]) {
9081 mEffectChains.removeAt(i);
9082 // detach all active tracks from the chain
9083 // detach all tracks with same session ID from this chain
9084 for (const sp<MmapTrack> &track : mActiveTracks) {
9085 if (session == track->sessionId()) {
9086 chain->decActiveTrackCnt();
9087 chain->decTrackCnt();
9088 }
9089 }
9090 break;
9091 }
9092 }
9093 return mEffectChains.size();
9094 }
9095
threadLoop_standby()9096 void AudioFlinger::MmapThread::threadLoop_standby()
9097 {
9098 mHalStream->standby();
9099 }
9100
threadLoop_exit()9101 void AudioFlinger::MmapThread::threadLoop_exit()
9102 {
9103 // Do not call callback->onTearDown() because it is redundant for thread exit
9104 // and because it can cause a recursive mutex lock on stop().
9105 }
9106
setSyncEvent(const sp<SyncEvent> & event __unused)9107 status_t AudioFlinger::MmapThread::setSyncEvent(const sp<SyncEvent>& event __unused)
9108 {
9109 return BAD_VALUE;
9110 }
9111
isValidSyncEvent(const sp<SyncEvent> & event __unused) const9112 bool AudioFlinger::MmapThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
9113 {
9114 return false;
9115 }
9116
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)9117 status_t AudioFlinger::MmapThread::checkEffectCompatibility_l(
9118 const effect_descriptor_t *desc, audio_session_t sessionId)
9119 {
9120 // No global effect sessions on mmap threads
9121 if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
9122 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
9123 desc->name, mThreadName);
9124 return BAD_VALUE;
9125 }
9126
9127 if (!isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC)) {
9128 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on capture mmap thread",
9129 desc->name);
9130 return BAD_VALUE;
9131 }
9132 if (isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
9133 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback mmap "
9134 "thread", desc->name);
9135 return BAD_VALUE;
9136 }
9137
9138 // Only allow effects without processing load or latency
9139 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) != EFFECT_FLAG_NO_PROCESS) {
9140 return BAD_VALUE;
9141 }
9142
9143 return NO_ERROR;
9144
9145 }
9146
checkInvalidTracks_l()9147 void AudioFlinger::MmapThread::checkInvalidTracks_l()
9148 {
9149 for (const sp<MmapTrack> &track : mActiveTracks) {
9150 if (track->isInvalid()) {
9151 sp<MmapStreamCallback> callback = mCallback.promote();
9152 if (callback != 0) {
9153 mLock.unlock();
9154 callback->onTearDown(track->portId());
9155 mLock.lock();
9156 } else if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9157 ALOGW("Could not notify MMAP stream tear down: no onTearDown callback!");
9158 mNoCallbackWarningCount++;
9159 }
9160 }
9161 }
9162 }
9163
dumpInternals_l(int fd,const Vector<String16> & args __unused)9164 void AudioFlinger::MmapThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
9165 {
9166 dprintf(fd, " Attributes: content type %d usage %d source %d\n",
9167 mAttr.content_type, mAttr.usage, mAttr.source);
9168 dprintf(fd, " Session: %d port Id: %d\n", mSessionId, mPortId);
9169 if (mActiveTracks.isEmpty()) {
9170 dprintf(fd, " No active clients\n");
9171 }
9172 }
9173
dumpTracks_l(int fd,const Vector<String16> & args __unused)9174 void AudioFlinger::MmapThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
9175 {
9176 String8 result;
9177 size_t numtracks = mActiveTracks.size();
9178 dprintf(fd, " %zu Tracks\n", numtracks);
9179 const char *prefix = " ";
9180 if (numtracks) {
9181 result.append(prefix);
9182 mActiveTracks[0]->appendDumpHeader(result);
9183 for (size_t i = 0; i < numtracks ; ++i) {
9184 sp<MmapTrack> track = mActiveTracks[i];
9185 result.append(prefix);
9186 track->appendDump(result, true /* active */);
9187 }
9188 } else {
9189 dprintf(fd, "\n");
9190 }
9191 write(fd, result.string(), result.size());
9192 }
9193
MmapPlaybackThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamOut * output,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)9194 AudioFlinger::MmapPlaybackThread::MmapPlaybackThread(
9195 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
9196 AudioHwDevice *hwDev, AudioStreamOut *output,
9197 audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady)
9198 : MmapThread(audioFlinger, id, hwDev, output->stream, outDevice, inDevice, systemReady),
9199 mStreamType(AUDIO_STREAM_MUSIC),
9200 mStreamVolume(1.0),
9201 mStreamMute(false),
9202 mOutput(output)
9203 {
9204 snprintf(mThreadName, kThreadNameLength, "AudioMmapOut_%X", id);
9205 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
9206 mMasterVolume = audioFlinger->masterVolume_l();
9207 mMasterMute = audioFlinger->masterMute_l();
9208 if (mAudioHwDev) {
9209 if (mAudioHwDev->canSetMasterVolume()) {
9210 mMasterVolume = 1.0;
9211 }
9212
9213 if (mAudioHwDev->canSetMasterMute()) {
9214 mMasterMute = false;
9215 }
9216 }
9217 }
9218
configure(const audio_attributes_t * attr,audio_stream_type_t streamType,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)9219 void AudioFlinger::MmapPlaybackThread::configure(const audio_attributes_t *attr,
9220 audio_stream_type_t streamType,
9221 audio_session_t sessionId,
9222 const sp<MmapStreamCallback>& callback,
9223 audio_port_handle_t deviceId,
9224 audio_port_handle_t portId)
9225 {
9226 MmapThread::configure(attr, streamType, sessionId, callback, deviceId, portId);
9227 mStreamType = streamType;
9228 }
9229
clearOutput()9230 AudioStreamOut* AudioFlinger::MmapPlaybackThread::clearOutput()
9231 {
9232 Mutex::Autolock _l(mLock);
9233 AudioStreamOut *output = mOutput;
9234 mOutput = NULL;
9235 return output;
9236 }
9237
setMasterVolume(float value)9238 void AudioFlinger::MmapPlaybackThread::setMasterVolume(float value)
9239 {
9240 Mutex::Autolock _l(mLock);
9241 // Don't apply master volume in SW if our HAL can do it for us.
9242 if (mAudioHwDev &&
9243 mAudioHwDev->canSetMasterVolume()) {
9244 mMasterVolume = 1.0;
9245 } else {
9246 mMasterVolume = value;
9247 }
9248 }
9249
setMasterMute(bool muted)9250 void AudioFlinger::MmapPlaybackThread::setMasterMute(bool muted)
9251 {
9252 Mutex::Autolock _l(mLock);
9253 // Don't apply master mute in SW if our HAL can do it for us.
9254 if (mAudioHwDev && mAudioHwDev->canSetMasterMute()) {
9255 mMasterMute = false;
9256 } else {
9257 mMasterMute = muted;
9258 }
9259 }
9260
setStreamVolume(audio_stream_type_t stream,float value)9261 void AudioFlinger::MmapPlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
9262 {
9263 Mutex::Autolock _l(mLock);
9264 if (stream == mStreamType) {
9265 mStreamVolume = value;
9266 broadcast_l();
9267 }
9268 }
9269
streamVolume(audio_stream_type_t stream) const9270 float AudioFlinger::MmapPlaybackThread::streamVolume(audio_stream_type_t stream) const
9271 {
9272 Mutex::Autolock _l(mLock);
9273 if (stream == mStreamType) {
9274 return mStreamVolume;
9275 }
9276 return 0.0f;
9277 }
9278
setStreamMute(audio_stream_type_t stream,bool muted)9279 void AudioFlinger::MmapPlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
9280 {
9281 Mutex::Autolock _l(mLock);
9282 if (stream == mStreamType) {
9283 mStreamMute= muted;
9284 broadcast_l();
9285 }
9286 }
9287
invalidateTracks(audio_stream_type_t streamType)9288 void AudioFlinger::MmapPlaybackThread::invalidateTracks(audio_stream_type_t streamType)
9289 {
9290 Mutex::Autolock _l(mLock);
9291 if (streamType == mStreamType) {
9292 for (const sp<MmapTrack> &track : mActiveTracks) {
9293 track->invalidate();
9294 }
9295 broadcast_l();
9296 }
9297 }
9298
processVolume_l()9299 void AudioFlinger::MmapPlaybackThread::processVolume_l()
9300 {
9301 float volume;
9302
9303 if (mMasterMute || mStreamMute) {
9304 volume = 0;
9305 } else {
9306 volume = mMasterVolume * mStreamVolume;
9307 }
9308
9309 if (volume != mHalVolFloat) {
9310
9311 // Convert volumes from float to 8.24
9312 uint32_t vol = (uint32_t)(volume * (1 << 24));
9313
9314 // Delegate volume control to effect in track effect chain if needed
9315 // only one effect chain can be present on DirectOutputThread, so if
9316 // there is one, the track is connected to it
9317 if (!mEffectChains.isEmpty()) {
9318 mEffectChains[0]->setVolume_l(&vol, &vol);
9319 volume = (float)vol / (1 << 24);
9320 }
9321 // Try to use HW volume control and fall back to SW control if not implemented
9322 if (mOutput->stream->setVolume(volume, volume) == NO_ERROR) {
9323 mHalVolFloat = volume; // HW volume control worked, so update value.
9324 mNoCallbackWarningCount = 0;
9325 } else {
9326 sp<MmapStreamCallback> callback = mCallback.promote();
9327 if (callback != 0) {
9328 int channelCount;
9329 if (isOutput()) {
9330 channelCount = audio_channel_count_from_out_mask(mChannelMask);
9331 } else {
9332 channelCount = audio_channel_count_from_in_mask(mChannelMask);
9333 }
9334 Vector<float> values;
9335 for (int i = 0; i < channelCount; i++) {
9336 values.add(volume);
9337 }
9338 mHalVolFloat = volume; // SW volume control worked, so update value.
9339 mNoCallbackWarningCount = 0;
9340 mLock.unlock();
9341 callback->onVolumeChanged(mChannelMask, values);
9342 mLock.lock();
9343 } else {
9344 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9345 ALOGW("Could not set MMAP stream volume: no volume callback!");
9346 mNoCallbackWarningCount++;
9347 }
9348 }
9349 }
9350 }
9351 }
9352
updateMetadata_l()9353 void AudioFlinger::MmapPlaybackThread::updateMetadata_l()
9354 {
9355 if (mOutput == nullptr || mOutput->stream == nullptr ||
9356 !mActiveTracks.readAndClearHasChanged()) {
9357 return;
9358 }
9359 StreamOutHalInterface::SourceMetadata metadata;
9360 for (const sp<MmapTrack> &track : mActiveTracks) {
9361 // No track is invalid as this is called after prepareTrack_l in the same critical section
9362 metadata.tracks.push_back({
9363 .usage = track->attributes().usage,
9364 .content_type = track->attributes().content_type,
9365 .gain = mHalVolFloat, // TODO: propagate from aaudio pre-mix volume
9366 });
9367 }
9368 mOutput->stream->updateSourceMetadata(metadata);
9369 }
9370
checkSilentMode_l()9371 void AudioFlinger::MmapPlaybackThread::checkSilentMode_l()
9372 {
9373 if (!mMasterMute) {
9374 char value[PROPERTY_VALUE_MAX];
9375 if (property_get("ro.audio.silent", value, "0") > 0) {
9376 char *endptr;
9377 unsigned long ul = strtoul(value, &endptr, 0);
9378 if (*endptr == '\0' && ul != 0) {
9379 ALOGD("Silence is golden");
9380 // The setprop command will not allow a property to be changed after
9381 // the first time it is set, so we don't have to worry about un-muting.
9382 setMasterMute_l(true);
9383 }
9384 }
9385 }
9386 }
9387
toAudioPortConfig(struct audio_port_config * config)9388 void AudioFlinger::MmapPlaybackThread::toAudioPortConfig(struct audio_port_config *config)
9389 {
9390 MmapThread::toAudioPortConfig(config);
9391 if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
9392 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
9393 config->flags.output = mOutput->flags;
9394 }
9395 }
9396
dumpInternals_l(int fd,const Vector<String16> & args)9397 void AudioFlinger::MmapPlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args)
9398 {
9399 MmapThread::dumpInternals_l(fd, args);
9400
9401 dprintf(fd, " Stream type: %d Stream volume: %f HAL volume: %f Stream mute %d\n",
9402 mStreamType, mStreamVolume, mHalVolFloat, mStreamMute);
9403 dprintf(fd, " Master volume: %f Master mute %d\n", mMasterVolume, mMasterMute);
9404 }
9405
MmapCaptureThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamIn * input,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)9406 AudioFlinger::MmapCaptureThread::MmapCaptureThread(
9407 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
9408 AudioHwDevice *hwDev, AudioStreamIn *input,
9409 audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady)
9410 : MmapThread(audioFlinger, id, hwDev, input->stream, outDevice, inDevice, systemReady),
9411 mInput(input)
9412 {
9413 snprintf(mThreadName, kThreadNameLength, "AudioMmapIn_%X", id);
9414 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
9415 }
9416
exitStandby()9417 status_t AudioFlinger::MmapCaptureThread::exitStandby()
9418 {
9419 {
9420 // mInput might have been cleared by clearInput()
9421 Mutex::Autolock _l(mLock);
9422 if (mInput != nullptr && mInput->stream != nullptr) {
9423 mInput->stream->setGain(1.0f);
9424 }
9425 }
9426 return MmapThread::exitStandby();
9427 }
9428
clearInput()9429 AudioFlinger::AudioStreamIn* AudioFlinger::MmapCaptureThread::clearInput()
9430 {
9431 Mutex::Autolock _l(mLock);
9432 AudioStreamIn *input = mInput;
9433 mInput = NULL;
9434 return input;
9435 }
9436
9437
processVolume_l()9438 void AudioFlinger::MmapCaptureThread::processVolume_l()
9439 {
9440 bool changed = false;
9441 bool silenced = false;
9442
9443 sp<MmapStreamCallback> callback = mCallback.promote();
9444 if (callback == 0) {
9445 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9446 ALOGW("Could not set MMAP stream silenced: no onStreamSilenced callback!");
9447 mNoCallbackWarningCount++;
9448 }
9449 }
9450
9451 // After a change occurred in track silenced state, mute capture in audio DSP if at least one
9452 // track is silenced and unmute otherwise
9453 for (size_t i = 0; i < mActiveTracks.size() && !silenced; i++) {
9454 if (!mActiveTracks[i]->getAndSetSilencedNotified_l()) {
9455 changed = true;
9456 silenced = mActiveTracks[i]->isSilenced_l();
9457 }
9458 }
9459
9460 if (changed) {
9461 mInput->stream->setGain(silenced ? 0.0f: 1.0f);
9462 }
9463 }
9464
updateMetadata_l()9465 void AudioFlinger::MmapCaptureThread::updateMetadata_l()
9466 {
9467 if (mInput == nullptr || mInput->stream == nullptr ||
9468 !mActiveTracks.readAndClearHasChanged()) {
9469 return;
9470 }
9471 StreamInHalInterface::SinkMetadata metadata;
9472 for (const sp<MmapTrack> &track : mActiveTracks) {
9473 // No track is invalid as this is called after prepareTrack_l in the same critical section
9474 metadata.tracks.push_back({
9475 .source = track->attributes().source,
9476 .gain = 1, // capture tracks do not have volumes
9477 });
9478 }
9479 mInput->stream->updateSinkMetadata(metadata);
9480 }
9481
setRecordSilenced(uid_t uid,bool silenced)9482 void AudioFlinger::MmapCaptureThread::setRecordSilenced(uid_t uid, bool silenced)
9483 {
9484 Mutex::Autolock _l(mLock);
9485 for (size_t i = 0; i < mActiveTracks.size() ; i++) {
9486 if (mActiveTracks[i]->uid() == uid) {
9487 mActiveTracks[i]->setSilenced_l(silenced);
9488 broadcast_l();
9489 }
9490 }
9491 }
9492
toAudioPortConfig(struct audio_port_config * config)9493 void AudioFlinger::MmapCaptureThread::toAudioPortConfig(struct audio_port_config *config)
9494 {
9495 MmapThread::toAudioPortConfig(config);
9496 if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
9497 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
9498 config->flags.input = mInput->flags;
9499 }
9500 }
9501
9502 } // namespace android
9503