• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Example code illustrating the theory exposed in doc/quantization.md
2 
3 /* Command line to build and run on x86:
4 
5 c++ doc/quantization_example.cc -I . --std=c++11 -msse4.1 -lpthread \
6   -o /tmp/quantization_example && \
7 /tmp/quantization_example
8 
9 */
10 
11 #include <algorithm>
12 #include <cassert>
13 #include <cmath>
14 #include <cstdint>
15 #include <iostream>
16 #include <random>
17 #include <vector>
18 #include "../public/gemmlowp.h"
19 #include "../public/output_stages.h"
20 
21 // We will handle both float and quantized matrices, which we will
22 // represent as gemmlowp::MatrixMap.
23 // We will need to be able to print them.
24 
25 // Output a matrix to a std::ostream
26 template <typename tScalar, gemmlowp::MapOrder tOrder>
operator <<(std::ostream & s,const gemmlowp::MatrixMap<tScalar,tOrder> & m)27 std::ostream& operator<<(std::ostream& s,
28                          const gemmlowp::MatrixMap<tScalar, tOrder>& m) {
29   for (int i = 0; i < m.rows(); i++) {
30     for (int j = 0; j < m.cols(); j++) {
31       if (j) {
32         s << '\t';
33       }
34       s << static_cast<float>(m(i, j));
35     }
36     s << '\n';
37   }
38   return s;
39 }
40 
41 // Find the min and max value in a float matrix.
42 template <gemmlowp::MapOrder tOrder>
FindMinMax(const gemmlowp::MatrixMap<float,tOrder> & m,float * min,float * max)43 void FindMinMax(const gemmlowp::MatrixMap<float, tOrder>& m, float* min,
44                 float* max) {
45   *min = *max = m(0, 0);
46   for (int i = 0; i < m.rows(); i++) {
47     for (int j = 0; j < m.cols(); j++) {
48       const float val = m(i, j);
49       *min = std::min(*min, val);
50       *max = std::max(*max, val);
51     }
52   }
53 }
54 
55 // A structure to hold quantization parameters 'scale' and 'zero_point'
56 // as discussed in doc/quantization.md. As explained there, the meaning
57 // of these values is as the constants in the quantization equation
58 //
59 //   real_value = scale * (quantized_value - zero_point)
60 //
61 // In other words, 'zero_point' is the quantized value that corresponds
62 // to the real value 0, and 'scale' is the difference of real values
63 // corresponding to consecutive quantized values.
64 struct QuantizationParams {
65   float scale;
66   std::uint8_t zero_point;
67 };
68 
69 // Given the min and max values of a float array, return
70 // reasonable quantization parameters to use for this array.
ChooseQuantizationParams(float min,float max)71 QuantizationParams ChooseQuantizationParams(float min, float max) {
72   // We extend the [min, max] interval to ensure that it contains 0.
73   // Otherwise, we would not meet the requirement that 0 be an exactly
74   // representable value.
75   min = std::min(min, 0.f);
76   max = std::max(max, 0.f);
77 
78   // the min and max quantized values, as floating-point values
79   const float qmin = 0;
80   const float qmax = 255;
81 
82   // First determine the scale.
83   const double scale = (max - min) / (qmax - qmin);
84 
85   // Zero-point computation.
86   // First the initial floating-point computation. The zero-point can be
87   // determined from solving an affine equation for any known pair
88   // (real value, corresponding quantized value).
89   // We know two such pairs: (rmin, qmin) and (rmax, qmax).
90   // Let's use the first one here.
91   const double initial_zero_point = qmin - min / scale;
92 
93   // Now we need to nudge the zero point to be an integer
94   // (our zero points are integer, and this is motivated by the requirement
95   // to be able to represent the real value "0" exactly as a quantized value,
96   // which is required in multiple places, for example in Im2col with SAME
97   // padding).
98   std::uint8_t nudged_zero_point = 0;
99   if (initial_zero_point < qmin) {
100     nudged_zero_point = qmin;
101   } else if (initial_zero_point > qmax) {
102     nudged_zero_point = qmax;
103   } else {
104     nudged_zero_point =
105         static_cast<std::uint8_t>(std::round(initial_zero_point));
106   }
107 
108   QuantizationParams result;
109   result.scale = scale;
110   result.zero_point = nudged_zero_point;
111   return result;
112 }
113 
114 template <gemmlowp::MapOrder tLhsOrder, gemmlowp::MapOrder tRhsOrder,
115           gemmlowp::MapOrder tResultOrder>
FloatMatrixMultiplication(const gemmlowp::MatrixMap<const float,tLhsOrder> & lhs,const gemmlowp::MatrixMap<const float,tRhsOrder> & rhs,gemmlowp::MatrixMap<float,tResultOrder> * result)116 void FloatMatrixMultiplication(
117     const gemmlowp::MatrixMap<const float, tLhsOrder>& lhs,
118     const gemmlowp::MatrixMap<const float, tRhsOrder>& rhs,
119     gemmlowp::MatrixMap<float, tResultOrder>* result) {
120   assert(lhs.cols() == rhs.rows());
121   assert(lhs.rows() == result->rows());
122   assert(rhs.cols() == result->cols());
123   for (int i = 0; i < lhs.rows(); i++) {
124     for (int k = 0; k < rhs.cols(); k++) {
125       (*result)(i, k) = 0;
126       for (int j = 0; j < lhs.cols(); j++) {
127         (*result)(i, k) += lhs(i, j) * rhs(j, k);
128       }
129     }
130   }
131 }
132 
Quantize(const QuantizationParams & qparams,const std::vector<float> & src,std::vector<std::uint8_t> * dst)133 void Quantize(const QuantizationParams& qparams, const std::vector<float>& src,
134               std::vector<std::uint8_t>* dst) {
135   assert(src.size() == dst->size());
136   for (std::size_t i = 0; i < src.size(); i++) {
137     const float real_val = src[i];
138     const float transformed_val = qparams.zero_point + real_val / qparams.scale;
139     const float clamped_val = std::max(0.f, std::min(255.f, transformed_val));
140     (*dst)[i] = static_cast<std::uint8_t>(std::round(clamped_val));
141   }
142 }
143 
Dequantize(const QuantizationParams & qparams,const std::vector<std::uint8_t> & src,std::vector<float> * dst)144 void Dequantize(const QuantizationParams& qparams,
145                 const std::vector<std::uint8_t>& src, std::vector<float>* dst) {
146   assert(src.size() == dst->size());
147   for (std::size_t i = 0; i < src.size(); i++) {
148     const std::uint8_t quantized_val = src[i];
149     (*dst)[i] = qparams.scale * (quantized_val - qparams.zero_point);
150   }
151 }
152 
153 template <typename tScalar, gemmlowp::MapOrder tOrder>
154 class MatrixWithStorage {
155  public:
MatrixWithStorage(int rows,int cols)156   MatrixWithStorage(int rows, int cols)
157       : storage(rows * cols), matrix_map(storage.data(), rows, cols) {}
MakeRandom()158   void MakeRandom() {
159     static std::mt19937 random_engine;
160     std::uniform_real_distribution<float> distribution(-1, 1);
161     for (auto& x : storage) {
162       x = static_cast<tScalar>(distribution(random_engine));
163     }
164   }
ConstMap() const165   gemmlowp::MatrixMap<const tScalar, tOrder> ConstMap() const {
166     return gemmlowp::MatrixMap<const tScalar, tOrder>(
167         storage.data(), matrix_map.rows(), matrix_map.cols());
168   }
Map()169   gemmlowp::MatrixMap<tScalar, tOrder> Map() {
170     return gemmlowp::MatrixMap<tScalar, tOrder>(
171         storage.data(), matrix_map.rows(), matrix_map.cols());
172   }
Storage() const173   const std::vector<tScalar>& Storage() const { return storage; }
Storage()174   std::vector<tScalar>& Storage() { return storage; }
175 
176  private:
177   std::vector<tScalar> storage;
178   gemmlowp::MatrixMap<tScalar, tOrder> matrix_map;
179 };
180 
181 template <typename tScalar, gemmlowp::MapOrder tOrder>
operator <<(std::ostream & s,const MatrixWithStorage<tScalar,tOrder> & m)182 std::ostream& operator<<(std::ostream& s,
183                          const MatrixWithStorage<tScalar, tOrder>& m) {
184   return s << m.ConstMap();
185 }
186 
187 // Given a real_multiplier in the interval (0, 1),
188 // produces a pair (quantized_multiplier, right_shift) where
189 // quantized_multiplier is an int32 representing a fixed-point value
190 // in the interval [-1, 1)  (in practice we only produce positive values)
191 // and right_shift is an amount to shift right by, so that the
192 // floating-point multiplication of some int32 input value by real_multiplier,
193 //
194 //   return static_cast<int32>(int32_value * real_multiplier);
195 //
196 // is best approximated by the integer-arithmetic-only code
197 //
198 //   return RoundingRightShift(
199 //       FixedPointMultiplication(int32_value, quantized_multiplier),
200 //       right_shift);
201 //
202 // This is how to obtain the fixed-point multiplier and right shift
203 // parameters to pass to
204 // OutputStageQuantizeDownInt32ByFixedPoint.
205 //
206 // Note: all this code only needs to run offline to generate the quantized
207 // neural network workload, not at runtime on the
208 // device on which quantized neural networks need to run. So it's not
209 // performance-critical at all.
QuantizeMultiplierSmallerThanOne(float real_multiplier,std::int32_t * quantized_multiplier,int * right_shift)210 void QuantizeMultiplierSmallerThanOne(float real_multiplier,
211                                       std::int32_t* quantized_multiplier,
212                                       int* right_shift) {
213   assert(real_multiplier > 0.f);
214   assert(real_multiplier < 1.f);
215   int s = 0;
216   // We want to bring the real multiplier into the interval [1/2, 1).
217   // We can do so by multiplying it by two, and recording how many times
218   // we multiplied by two so that we can compensate that by a right
219   // shift by the same amount.
220   while (real_multiplier < 0.5f) {
221     real_multiplier *= 2.0f;
222     s++;
223   }
224   // Now that the real multiplier is in [1/2, 1), we convert it
225   // into a fixed-point number.
226   std::int64_t q =
227       static_cast<std::int64_t>(std::round(real_multiplier * (1ll << 31)));
228   assert(q <= (1ll << 31));
229   // Handle the special case when the real multiplier was so close to 1
230   // that its fixed-point approximation was undistinguishable from 1.
231   // We handle this by dividing it by two, and remembering to decrement
232   // the right shift amount.
233   if (q == (1ll << 31)) {
234     q /= 2;
235     s--;
236   }
237   assert(s >= 0);
238   assert(q <= std::numeric_limits<std::int32_t>::max());
239   *quantized_multiplier = static_cast<std::int32_t>(q);
240   *right_shift = s;
241 }
242 
main()243 int main() {
244   std::cout.precision(3);
245 
246   const int rows = 2;
247   const int depth = 4;
248   const int cols = 3;
249   const auto kOrder = gemmlowp::MapOrder::ColMajor;
250 
251   std::cout << "First, let us make some float matrices LHS and RHS, "
252             << "and compute their product.\n"
253             << std::endl;
254   MatrixWithStorage<float, kOrder> float_lhs(rows, depth);
255   float_lhs.MakeRandom();
256   MatrixWithStorage<float, kOrder> float_rhs(depth, cols);
257   float_rhs.MakeRandom();
258   MatrixWithStorage<float, kOrder> reference_float_result(rows, cols);
259   auto reference_float_result_map = reference_float_result.Map();
260   FloatMatrixMultiplication(float_lhs.ConstMap(), float_rhs.ConstMap(),
261                             &reference_float_result_map);
262   std::cout << "Here is the float LHS matrix:\n" << float_lhs << std::endl;
263   std::cout << "Here is the float RHS matrix:\n" << float_rhs << std::endl;
264   std::cout << "Here is the float product (LHS * RHS) matrix obtained by "
265             << "ordinary float matrix multiplication, i.e. as far as we are "
266             << "concerned, the REFERENCE RESULT:\n"
267             << reference_float_result << std::endl;
268 
269   std::cout
270       << "Now we embark on reproducing this result using "
271       << "quantized arithmetic. The code below splits into two parts: "
272       << "quantization code that only needs to run offline (e.g. to "
273       << "generate a quantized neural network workload), and actual "
274       << "runtime quantized code, which is typically performance-critical "
275       << "and where we typically do not want to use any floating-point "
276       << "arithmetic. We want to clearly distinguish between the two.\n"
277       << std::endl;
278 
279   std::cout << "The below is OFFLINE QUANTIZATION CODE. We still use some "
280             << "floating-point arithmetic in the process of generating the "
281             << "quantized workload to be run on-device.\n"
282             << std::endl;
283 
284   std::cout
285       << "Now, let us choose quantization parameters for these matrices. "
286       << "You might ask, what good is quantization if we need to pick "
287       << "quantization parameters for the result before we can run the "
288       << "quantized computation to obtain the result? The idea is that we "
289       << "target applications such as neural networks, where unknown results "
290       << "are only allowed to vary within preexisting bounds. In practice, the "
291       << "bounds for the results are typically learned during the neural "
292          "network "
293       << "training process. The min and max of the result do not have to be "
294       << "exact. If they are too broad, we just get lower quantization "
295          "accuracy. "
296       << "If they are too narrow, we just get clamping at the bounds.\n"
297       << std::endl;
298 
299   float lhs_min, lhs_max, rhs_min, rhs_max, result_min, result_max;
300   FindMinMax(float_lhs.Map(), &lhs_min, &lhs_max);
301   FindMinMax(float_rhs.Map(), &rhs_min, &rhs_max);
302   FindMinMax(reference_float_result.Map(), &result_min, &result_max);
303   const auto lhs_qparams = ChooseQuantizationParams(lhs_min, lhs_max);
304   const auto rhs_qparams = ChooseQuantizationParams(rhs_min, rhs_max);
305   const auto result_qparams = ChooseQuantizationParams(result_min, result_max);
306 
307   std::cout << "For LHS, we have min = " << lhs_min << ", max = " << lhs_max
308             << ", scale = " << lhs_qparams.scale
309             << ", zero_point = " << static_cast<float>(lhs_qparams.zero_point)
310             << std::endl;
311   std::cout << "For RHS, we have min = " << rhs_min << ", max = " << rhs_max
312             << ", scale = " << rhs_qparams.scale
313             << ", zero_point = " << static_cast<float>(rhs_qparams.zero_point)
314             << std::endl;
315   std::cout << "For the result, we have min = " << result_min
316             << ", max = " << result_max << ", scale = " << result_qparams.scale
317             << ", zero_point = "
318             << static_cast<float>(result_qparams.zero_point) << std::endl;
319 
320   std::cout << std::endl;
321 
322   MatrixWithStorage<std::uint8_t, kOrder> uint8_lhs(rows, depth);
323   MatrixWithStorage<std::uint8_t, kOrder> uint8_rhs(depth, cols);
324   MatrixWithStorage<std::uint8_t, kOrder> actual_uint8_result(rows, cols);
325 
326   Quantize(lhs_qparams, float_lhs.Storage(), &uint8_lhs.Storage());
327   Quantize(rhs_qparams, float_rhs.Storage(), &uint8_rhs.Storage());
328 
329   std::cout << "Quantized uint8 LHS matrix:\n" << uint8_lhs << std::endl;
330   std::cout << "Quantized uint8 RHS matrix:\n" << uint8_rhs << std::endl;
331 
332   const int lhs_offset = -lhs_qparams.zero_point;
333   const int rhs_offset = -rhs_qparams.zero_point;
334   const int result_offset = result_qparams.zero_point;
335 
336   const float real_multiplier =
337       lhs_qparams.scale * rhs_qparams.scale / result_qparams.scale;
338   std::int32_t quantized_multiplier;
339   int right_shift;
340   QuantizeMultiplierSmallerThanOne(real_multiplier, &quantized_multiplier,
341                                    &right_shift);
342 
343   std::cout << "End of OFFLINE QUANTIZATION CODE.\n" << std::endl;
344 
345   std::cout << "The below is ON-DEVICE RUNTIME QUANTIZED CODE. "
346             << "This is the part that is performance-critical and may only "
347             << "use quantized arithmetic.\n"
348             << std::endl;
349 
350   gemmlowp::OutputStageQuantizeDownInt32ByFixedPoint
351       quantize_down_stage;
352   quantize_down_stage.result_offset_after_shift = result_offset;
353   quantize_down_stage.result_fixedpoint_multiplier = quantized_multiplier;
354   quantize_down_stage.result_shift = right_shift;
355   gemmlowp::OutputStageSaturatingCastToUint8 saturating_cast_stage;
356   const auto& output_pipeline =
357       std::make_tuple(quantize_down_stage, saturating_cast_stage);
358 
359   auto actual_uint8_result_map = actual_uint8_result.Map();
360   gemmlowp::GemmContext gemm_context;
361   gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::uint8_t,
362                                    gemmlowp::DefaultL8R8BitDepthParams>(
363       &gemm_context, uint8_lhs.ConstMap(), uint8_rhs.ConstMap(),
364       &actual_uint8_result_map, lhs_offset, rhs_offset, output_pipeline);
365 
366   std::cout << "Quantized uint8 result matrix obtained by quantized "
367             << "multiplication:\n"
368             << actual_uint8_result << std::endl;
369 
370   std::cout << "End of ON-DEVICE RUNTIME QUANTIZED CODE.\n" << std::endl;
371 
372   MatrixWithStorage<float, kOrder> actual_float_result(rows, cols);
373   Dequantize(result_qparams, actual_uint8_result.Storage(),
374              &actual_float_result.Storage());
375   std::cout
376       << "Here is the actual float product (LHS * RHS) matrix obtained by "
377       << "dequantizing the above uint8 result, i.e. "
378       << "as far as we are concerned, the ACTUAL RESULT:\n"
379       << actual_float_result << std::endl;
380 
381   MatrixWithStorage<float, kOrder> diff_float_result(rows, cols);
382   for (int i = 0; i < rows; i++) {
383     for (int j = 0; j < cols; j++) {
384       diff_float_result.Map()(i, j) =
385           actual_float_result.Map()(i, j) - reference_float_result.Map()(i, j);
386     }
387   }
388 
389   std::cout << "Difference between ACTUAL and REFERENCE float results:\n"
390             << diff_float_result << std::endl;
391 }