1 // SPDX-License-Identifier: GPL-2.0+
2
3 /*
4 * sun9i specific clock code
5 *
6 * (C) Copyright 2015 Hans de Goede <hdegoede@redhat.com>
7 *
8 * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
9 * Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
10 */
11
12 #include <common.h>
13 #include <asm/io.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/prcm.h>
16 #include <asm/arch/sys_proto.h>
17
18
19 #ifdef CONFIG_SPL_BUILD
20
clock_init_safe(void)21 void clock_init_safe(void)
22 {
23 struct sunxi_ccm_reg * const ccm =
24 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
25
26 /* Set up PLL12 (peripheral 1) */
27 clock_set_pll12(1200000000);
28
29 /* Set up PLL1 (cluster 0) and PLL2 (cluster 1) */
30 clock_set_pll1(408000000);
31 clock_set_pll2(408000000);
32
33 /* Set up PLL4 (peripheral 0) */
34 clock_set_pll4(960000000);
35
36 /* Set up dividers for AXI0 and APB0 on cluster 0: PLL1 / 2 = 204MHz */
37 writel(C0_CFG_AXI0_CLK_DIV_RATIO(2) |
38 C0_CFG_APB0_CLK_DIV_RATIO(2), &ccm->c0_cfg);
39
40 /* AHB0: 120 MHz (PLL_PERIPH0 / 8) */
41 writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8),
42 &ccm->ahb0_cfg);
43 /* AHB1: 240 MHz (PLL_PERIPH0 / 4) */
44 writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(4),
45 &ccm->ahb1_cfg);
46 /* AHB2: 120 MHz (PLL_PERIPH0 / 8) */
47 writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8),
48 &ccm->ahb2_cfg);
49 /* APB0: 120 MHz (PLL_PERIPH0 / 8) */
50 writel(APB0_SRC_PLL_PERIPH0 | APB0_CLK_DIV_RATIO(8),
51 &ccm->apb0_cfg);
52
53 /* GTBUS: 400MHz (PERIPH0 div 3) */
54 writel(GTBUS_SRC_PLL_PERIPH1 | GTBUS_CLK_DIV_RATIO(3),
55 &ccm->gtbus_cfg);
56 /* CCI400: 480MHz (PERIPH1 div 2) */
57 writel(CCI400_SRC_PLL_PERIPH0 | CCI400_CLK_DIV_RATIO(2),
58 &ccm->cci400_cfg);
59
60 /* Deassert DMA reset and open clock gating for DMA */
61 setbits_le32(&ccm->ahb_reset1_cfg, (1 << 24));
62 setbits_le32(&ccm->apb1_gate, (1 << 24));
63
64 /* set enable-bit in TSTAMP_CTRL_REG */
65 writel(1, 0x01720000);
66 }
67 #endif
68
clock_init_uart(void)69 void clock_init_uart(void)
70 {
71 struct sunxi_ccm_reg *const ccm =
72 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
73
74 /* open the clock for uart */
75 setbits_le32(&ccm->apb1_gate,
76 CLK_GATE_OPEN << (APB1_GATE_UART_SHIFT +
77 CONFIG_CONS_INDEX - 1));
78 /* deassert uart reset */
79 setbits_le32(&ccm->apb1_reset_cfg,
80 1 << (APB1_RESET_UART_SHIFT +
81 CONFIG_CONS_INDEX - 1));
82 }
83
84 #ifdef CONFIG_SPL_BUILD
clock_set_pll1(unsigned int clk)85 void clock_set_pll1(unsigned int clk)
86 {
87 struct sunxi_ccm_reg * const ccm =
88 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
89 const int p = 0;
90
91 /* Switch cluster 0 to 24MHz clock while changing PLL1 */
92 clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK,
93 C0_CPUX_CLK_SRC_OSC24M);
94
95 writel(CCM_PLL1_CTRL_EN | CCM_PLL1_CTRL_P(p) |
96 CCM_PLL1_CLOCK_TIME_2 |
97 CCM_PLL1_CTRL_N(clk / 24000000),
98 &ccm->pll1_c0_cfg);
99 /*
100 * Don't bother with the stable-time registers, as it doesn't
101 * wait until the PLL is stable. Note, that even Allwinner
102 * just uses a delay loop (or rather the AVS timer) for this
103 * instead of the PLL_STABLE_STATUS register.
104 */
105 sdelay(2000);
106
107 /* Switch cluster 0 back to PLL1 */
108 clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK,
109 C0_CPUX_CLK_SRC_PLL1);
110 }
111
clock_set_pll2(unsigned int clk)112 void clock_set_pll2(unsigned int clk)
113 {
114 struct sunxi_ccm_reg * const ccm =
115 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
116 const int p = 0;
117
118 /* Switch cluster 1 to 24MHz clock while changing PLL2 */
119 clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK,
120 C1_CPUX_CLK_SRC_OSC24M);
121
122 writel(CCM_PLL2_CTRL_EN | CCM_PLL2_CTRL_P(p) |
123 CCM_PLL2_CLOCK_TIME_2 | CCM_PLL2_CTRL_N(clk / 24000000),
124 &ccm->pll2_c1_cfg);
125
126 sdelay(2000);
127
128 /* Switch cluster 1 back to PLL2 */
129 clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK,
130 C1_CPUX_CLK_SRC_PLL2);
131 }
132
clock_set_pll6(unsigned int clk)133 void clock_set_pll6(unsigned int clk)
134 {
135 struct sunxi_ccm_reg * const ccm =
136 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
137 const int p = 0;
138
139 writel(CCM_PLL6_CTRL_EN | CCM_PLL6_CFG_UPDATE | CCM_PLL6_CTRL_P(p)
140 | CCM_PLL6_CTRL_N(clk / 24000000),
141 &ccm->pll6_ddr_cfg);
142 do { } while (!(readl(&ccm->pll_stable_status) & PLL_DDR_STATUS));
143
144 sdelay(2000);
145 }
146
clock_set_pll12(unsigned int clk)147 void clock_set_pll12(unsigned int clk)
148 {
149 struct sunxi_ccm_reg * const ccm =
150 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
151
152 if (readl(&ccm->pll12_periph1_cfg) & CCM_PLL12_CTRL_EN)
153 return;
154
155 writel(CCM_PLL12_CTRL_EN | CCM_PLL12_CTRL_N(clk / 24000000),
156 &ccm->pll12_periph1_cfg);
157
158 sdelay(2000);
159 }
160
161
clock_set_pll4(unsigned int clk)162 void clock_set_pll4(unsigned int clk)
163 {
164 struct sunxi_ccm_reg * const ccm =
165 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
166
167 writel(CCM_PLL4_CTRL_EN | CCM_PLL4_CTRL_N(clk / 24000000),
168 &ccm->pll4_periph0_cfg);
169
170 sdelay(2000);
171 }
172 #endif
173
clock_twi_onoff(int port,int state)174 int clock_twi_onoff(int port, int state)
175 {
176 struct sunxi_ccm_reg *const ccm =
177 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
178
179 if (port > 4)
180 return -1;
181
182 /* set the apb reset and clock gate for twi */
183 if (state) {
184 setbits_le32(&ccm->apb1_gate,
185 CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port));
186 setbits_le32(&ccm->apb1_reset_cfg,
187 1 << (APB1_RESET_TWI_SHIFT + port));
188 } else {
189 clrbits_le32(&ccm->apb1_reset_cfg,
190 1 << (APB1_RESET_TWI_SHIFT + port));
191 clrbits_le32(&ccm->apb1_gate,
192 CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port));
193 }
194
195 return 0;
196 }
197
clock_get_pll4_periph0(void)198 unsigned int clock_get_pll4_periph0(void)
199 {
200 struct sunxi_ccm_reg *const ccm =
201 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
202 uint32_t rval = readl(&ccm->pll4_periph0_cfg);
203 int n = ((rval & CCM_PLL4_CTRL_N_MASK) >> CCM_PLL4_CTRL_N_SHIFT);
204 int p = ((rval & CCM_PLL4_CTRL_P_MASK) >> CCM_PLL4_CTRL_P_SHIFT);
205 int m = ((rval & CCM_PLL4_CTRL_M_MASK) >> CCM_PLL4_CTRL_M_SHIFT) + 1;
206 const int k = 1;
207
208 return ((24000000 * n * k) >> p) / m;
209 }
210