• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //---------------------------------------------------------------------------------
2 //
3 //  Little Color Management System
4 //  Copyright (c) 1998-2016 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
12 //
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
15 //
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 //
24 //---------------------------------------------------------------------------------
25 //
26 
27 #include "lcms2_internal.h"
28 
29 //      inter PCS conversions XYZ <-> CIE L* a* b*
30 /*
31 
32 
33        CIE 15:2004 CIELab is defined as:
34 
35        L* = 116*f(Y/Yn) - 16                     0 <= L* <= 100
36        a* = 500*[f(X/Xn) - f(Y/Yn)]
37        b* = 200*[f(Y/Yn) - f(Z/Zn)]
38 
39        and
40 
41               f(t) = t^(1/3)                     1 >= t >  (24/116)^3
42                      (841/108)*t + (16/116)      0 <= t <= (24/116)^3
43 
44 
45        Reverse transform is:
46 
47        X = Xn*[a* / 500 + (L* + 16) / 116] ^ 3   if (X/Xn) > (24/116)
48          = Xn*(a* / 500 + L* / 116) / 7.787      if (X/Xn) <= (24/116)
49 
50 
51 
52        PCS in Lab2 is encoded as:
53 
54               8 bit Lab PCS:
55 
56                      L*      0..100 into a 0..ff byte.
57                      a*      t + 128 range is -128.0  +127.0
58                      b*
59 
60              16 bit Lab PCS:
61 
62                      L*     0..100  into a 0..ff00 word.
63                      a*     t + 128  range is  -128.0  +127.9961
64                      b*
65 
66 
67 
68 Interchange Space   Component     Actual Range        Encoded Range
69 CIE XYZ             X             0 -> 1.99997        0x0000 -> 0xffff
70 CIE XYZ             Y             0 -> 1.99997        0x0000 -> 0xffff
71 CIE XYZ             Z             0 -> 1.99997        0x0000 -> 0xffff
72 
73 Version 2,3
74 -----------
75 
76 CIELAB (16 bit)     L*            0 -> 100.0          0x0000 -> 0xff00
77 CIELAB (16 bit)     a*            -128.0 -> +127.996  0x0000 -> 0x8000 -> 0xffff
78 CIELAB (16 bit)     b*            -128.0 -> +127.996  0x0000 -> 0x8000 -> 0xffff
79 
80 
81 Version 4
82 ---------
83 
84 CIELAB (16 bit)     L*            0 -> 100.0          0x0000 -> 0xffff
85 CIELAB (16 bit)     a*            -128.0 -> +127      0x0000 -> 0x8080 -> 0xffff
86 CIELAB (16 bit)     b*            -128.0 -> +127      0x0000 -> 0x8080 -> 0xffff
87 
88 */
89 
90 // Conversions
cmsXYZ2xyY(cmsCIExyY * Dest,const cmsCIEXYZ * Source)91 void CMSEXPORT cmsXYZ2xyY(cmsCIExyY* Dest, const cmsCIEXYZ* Source)
92 {
93     cmsFloat64Number ISum;
94 
95     ISum = 1./(Source -> X + Source -> Y + Source -> Z);
96 
97     Dest -> x = (Source -> X) * ISum;
98     Dest -> y = (Source -> Y) * ISum;
99     Dest -> Y = Source -> Y;
100 }
101 
cmsxyY2XYZ(cmsCIEXYZ * Dest,const cmsCIExyY * Source)102 void CMSEXPORT cmsxyY2XYZ(cmsCIEXYZ* Dest, const cmsCIExyY* Source)
103 {
104     Dest -> X = (Source -> x / Source -> y) * Source -> Y;
105     Dest -> Y = Source -> Y;
106     Dest -> Z = ((1 - Source -> x - Source -> y) / Source -> y) * Source -> Y;
107 }
108 
109 /*
110        The break point (24/116)^3 = (6/29)^3 is a very small amount of tristimulus
111        primary (0.008856).  Generally, this only happens for
112        nearly ideal blacks and for some orange / amber colors in transmission mode.
113        For example, the Z value of the orange turn indicator lamp lens on an
114        automobile will often be below this value.  But the Z does not
115        contribute to the perceived color directly.
116 */
117 
118 static
f(cmsFloat64Number t)119 cmsFloat64Number f(cmsFloat64Number t)
120 {
121     const cmsFloat64Number Limit = (24.0/116.0) * (24.0/116.0) * (24.0/116.0);
122 
123     if (t <= Limit)
124         return (841.0/108.0) * t + (16.0/116.0);
125     else
126         return pow(t, 1.0/3.0);
127 }
128 
129 static
f_1(cmsFloat64Number t)130 cmsFloat64Number f_1(cmsFloat64Number t)
131 {
132     const cmsFloat64Number Limit = (24.0/116.0);
133 
134     if (t <= Limit) {
135         return (108.0/841.0) * (t - (16.0/116.0));
136     }
137 
138     return t * t * t;
139 }
140 
141 
142 // Standard XYZ to Lab. it can handle negative XZY numbers in some cases
cmsXYZ2Lab(const cmsCIEXYZ * WhitePoint,cmsCIELab * Lab,const cmsCIEXYZ * xyz)143 void CMSEXPORT cmsXYZ2Lab(const cmsCIEXYZ* WhitePoint, cmsCIELab* Lab, const cmsCIEXYZ* xyz)
144 {
145     cmsFloat64Number fx, fy, fz;
146 
147     if (WhitePoint == NULL)
148         WhitePoint = cmsD50_XYZ();
149 
150     fx = f(xyz->X / WhitePoint->X);
151     fy = f(xyz->Y / WhitePoint->Y);
152     fz = f(xyz->Z / WhitePoint->Z);
153 
154     Lab->L = 116.0*fy - 16.0;
155     Lab->a = 500.0*(fx - fy);
156     Lab->b = 200.0*(fy - fz);
157 }
158 
159 
160 // Standard XYZ to Lab. It can return negative XYZ in some cases
cmsLab2XYZ(const cmsCIEXYZ * WhitePoint,cmsCIEXYZ * xyz,const cmsCIELab * Lab)161 void CMSEXPORT cmsLab2XYZ(const cmsCIEXYZ* WhitePoint, cmsCIEXYZ* xyz,  const cmsCIELab* Lab)
162 {
163     cmsFloat64Number x, y, z;
164 
165     if (WhitePoint == NULL)
166         WhitePoint = cmsD50_XYZ();
167 
168     y = (Lab-> L + 16.0) / 116.0;
169     x = y + 0.002 * Lab -> a;
170     z = y - 0.005 * Lab -> b;
171 
172     xyz -> X = f_1(x) * WhitePoint -> X;
173     xyz -> Y = f_1(y) * WhitePoint -> Y;
174     xyz -> Z = f_1(z) * WhitePoint -> Z;
175 
176 }
177 
178 static
L2float2(cmsUInt16Number v)179 cmsFloat64Number L2float2(cmsUInt16Number v)
180 {
181     return (cmsFloat64Number) v / 652.800;
182 }
183 
184 // the a/b part
185 static
ab2float2(cmsUInt16Number v)186 cmsFloat64Number ab2float2(cmsUInt16Number v)
187 {
188     return ((cmsFloat64Number) v / 256.0) - 128.0;
189 }
190 
191 static
L2Fix2(cmsFloat64Number L)192 cmsUInt16Number L2Fix2(cmsFloat64Number L)
193 {
194     return _cmsQuickSaturateWord(L *  652.8);
195 }
196 
197 static
ab2Fix2(cmsFloat64Number ab)198 cmsUInt16Number ab2Fix2(cmsFloat64Number ab)
199 {
200     return _cmsQuickSaturateWord((ab + 128.0) * 256.0);
201 }
202 
203 
204 static
L2float4(cmsUInt16Number v)205 cmsFloat64Number L2float4(cmsUInt16Number v)
206 {
207     return (cmsFloat64Number) v / 655.35;
208 }
209 
210 // the a/b part
211 static
ab2float4(cmsUInt16Number v)212 cmsFloat64Number ab2float4(cmsUInt16Number v)
213 {
214     return ((cmsFloat64Number) v / 257.0) - 128.0;
215 }
216 
217 
cmsLabEncoded2FloatV2(cmsCIELab * Lab,const cmsUInt16Number wLab[3])218 void CMSEXPORT cmsLabEncoded2FloatV2(cmsCIELab* Lab, const cmsUInt16Number wLab[3])
219 {
220         Lab->L = L2float2(wLab[0]);
221         Lab->a = ab2float2(wLab[1]);
222         Lab->b = ab2float2(wLab[2]);
223 }
224 
225 
cmsLabEncoded2Float(cmsCIELab * Lab,const cmsUInt16Number wLab[3])226 void CMSEXPORT cmsLabEncoded2Float(cmsCIELab* Lab, const cmsUInt16Number wLab[3])
227 {
228         Lab->L = L2float4(wLab[0]);
229         Lab->a = ab2float4(wLab[1]);
230         Lab->b = ab2float4(wLab[2]);
231 }
232 
233 static
Clamp_L_doubleV2(cmsFloat64Number L)234 cmsFloat64Number Clamp_L_doubleV2(cmsFloat64Number L)
235 {
236     const cmsFloat64Number L_max = (cmsFloat64Number) (0xFFFF * 100.0) / 0xFF00;
237 
238     if (L < 0) L = 0;
239     if (L > L_max) L = L_max;
240 
241     return L;
242 }
243 
244 
245 static
Clamp_ab_doubleV2(cmsFloat64Number ab)246 cmsFloat64Number Clamp_ab_doubleV2(cmsFloat64Number ab)
247 {
248     if (ab < MIN_ENCODEABLE_ab2) ab = MIN_ENCODEABLE_ab2;
249     if (ab > MAX_ENCODEABLE_ab2) ab = MAX_ENCODEABLE_ab2;
250 
251     return ab;
252 }
253 
cmsFloat2LabEncodedV2(cmsUInt16Number wLab[3],const cmsCIELab * fLab)254 void CMSEXPORT cmsFloat2LabEncodedV2(cmsUInt16Number wLab[3], const cmsCIELab* fLab)
255 {
256     cmsCIELab Lab;
257 
258     Lab.L = Clamp_L_doubleV2(fLab ->L);
259     Lab.a = Clamp_ab_doubleV2(fLab ->a);
260     Lab.b = Clamp_ab_doubleV2(fLab ->b);
261 
262     wLab[0] = L2Fix2(Lab.L);
263     wLab[1] = ab2Fix2(Lab.a);
264     wLab[2] = ab2Fix2(Lab.b);
265 }
266 
267 
268 static
Clamp_L_doubleV4(cmsFloat64Number L)269 cmsFloat64Number Clamp_L_doubleV4(cmsFloat64Number L)
270 {
271     if (L < 0) L = 0;
272     if (L > 100.0) L = 100.0;
273 
274     return L;
275 }
276 
277 static
Clamp_ab_doubleV4(cmsFloat64Number ab)278 cmsFloat64Number Clamp_ab_doubleV4(cmsFloat64Number ab)
279 {
280     if (ab < MIN_ENCODEABLE_ab4) ab = MIN_ENCODEABLE_ab4;
281     if (ab > MAX_ENCODEABLE_ab4) ab = MAX_ENCODEABLE_ab4;
282 
283     return ab;
284 }
285 
286 static
L2Fix4(cmsFloat64Number L)287 cmsUInt16Number L2Fix4(cmsFloat64Number L)
288 {
289     return _cmsQuickSaturateWord(L *  655.35);
290 }
291 
292 static
ab2Fix4(cmsFloat64Number ab)293 cmsUInt16Number ab2Fix4(cmsFloat64Number ab)
294 {
295     return _cmsQuickSaturateWord((ab + 128.0) * 257.0);
296 }
297 
cmsFloat2LabEncoded(cmsUInt16Number wLab[3],const cmsCIELab * fLab)298 void CMSEXPORT cmsFloat2LabEncoded(cmsUInt16Number wLab[3], const cmsCIELab* fLab)
299 {
300     cmsCIELab Lab;
301 
302     Lab.L = Clamp_L_doubleV4(fLab ->L);
303     Lab.a = Clamp_ab_doubleV4(fLab ->a);
304     Lab.b = Clamp_ab_doubleV4(fLab ->b);
305 
306     wLab[0] = L2Fix4(Lab.L);
307     wLab[1] = ab2Fix4(Lab.a);
308     wLab[2] = ab2Fix4(Lab.b);
309 }
310 
311 // Auxiliary: convert to Radians
312 static
RADIANS(cmsFloat64Number deg)313 cmsFloat64Number RADIANS(cmsFloat64Number deg)
314 {
315     return (deg * M_PI) / 180.;
316 }
317 
318 
319 // Auxiliary: atan2 but operating in degrees and returning 0 if a==b==0
320 static
atan2deg(cmsFloat64Number a,cmsFloat64Number b)321 cmsFloat64Number atan2deg(cmsFloat64Number a, cmsFloat64Number b)
322 {
323    cmsFloat64Number h;
324 
325    if (a == 0 && b == 0)
326             h   = 0;
327     else
328             h = atan2(a, b);
329 
330     h *= (180. / M_PI);
331 
332     while (h > 360.)
333         h -= 360.;
334 
335     while ( h < 0)
336         h += 360.;
337 
338     return h;
339 }
340 
341 
342 // Auxiliary: Square
343 static
Sqr(cmsFloat64Number v)344 cmsFloat64Number Sqr(cmsFloat64Number v)
345 {
346     return v *  v;
347 }
348 // From cylindrical coordinates. No check is performed, then negative values are allowed
cmsLab2LCh(cmsCIELCh * LCh,const cmsCIELab * Lab)349 void CMSEXPORT cmsLab2LCh(cmsCIELCh* LCh, const cmsCIELab* Lab)
350 {
351     LCh -> L = Lab -> L;
352     LCh -> C = pow(Sqr(Lab ->a) + Sqr(Lab ->b), 0.5);
353     LCh -> h = atan2deg(Lab ->b, Lab ->a);
354 }
355 
356 
357 // To cylindrical coordinates. No check is performed, then negative values are allowed
cmsLCh2Lab(cmsCIELab * Lab,const cmsCIELCh * LCh)358 void CMSEXPORT cmsLCh2Lab(cmsCIELab* Lab, const cmsCIELCh* LCh)
359 {
360     cmsFloat64Number h = (LCh -> h * M_PI) / 180.0;
361 
362     Lab -> L = LCh -> L;
363     Lab -> a = LCh -> C * cos(h);
364     Lab -> b = LCh -> C * sin(h);
365 }
366 
367 // In XYZ All 3 components are encoded using 1.15 fixed point
368 static
XYZ2Fix(cmsFloat64Number d)369 cmsUInt16Number XYZ2Fix(cmsFloat64Number d)
370 {
371     return _cmsQuickSaturateWord(d * 32768.0);
372 }
373 
cmsFloat2XYZEncoded(cmsUInt16Number XYZ[3],const cmsCIEXYZ * fXYZ)374 void CMSEXPORT cmsFloat2XYZEncoded(cmsUInt16Number XYZ[3], const cmsCIEXYZ* fXYZ)
375 {
376     cmsCIEXYZ xyz;
377 
378     xyz.X = fXYZ -> X;
379     xyz.Y = fXYZ -> Y;
380     xyz.Z = fXYZ -> Z;
381 
382     // Clamp to encodeable values.
383     if (xyz.Y <= 0) {
384 
385         xyz.X = 0;
386         xyz.Y = 0;
387         xyz.Z = 0;
388     }
389 
390     if (xyz.X > MAX_ENCODEABLE_XYZ)
391         xyz.X = MAX_ENCODEABLE_XYZ;
392 
393     if (xyz.X < 0)
394         xyz.X = 0;
395 
396     if (xyz.Y > MAX_ENCODEABLE_XYZ)
397         xyz.Y = MAX_ENCODEABLE_XYZ;
398 
399     if (xyz.Y < 0)
400         xyz.Y = 0;
401 
402     if (xyz.Z > MAX_ENCODEABLE_XYZ)
403         xyz.Z = MAX_ENCODEABLE_XYZ;
404 
405     if (xyz.Z < 0)
406         xyz.Z = 0;
407 
408 
409     XYZ[0] = XYZ2Fix(xyz.X);
410     XYZ[1] = XYZ2Fix(xyz.Y);
411     XYZ[2] = XYZ2Fix(xyz.Z);
412 }
413 
414 
415 //  To convert from Fixed 1.15 point to cmsFloat64Number
416 static
XYZ2float(cmsUInt16Number v)417 cmsFloat64Number XYZ2float(cmsUInt16Number v)
418 {
419     cmsS15Fixed16Number fix32;
420 
421     // From 1.15 to 15.16
422     fix32 = v << 1;
423 
424     // From fixed 15.16 to cmsFloat64Number
425     return _cms15Fixed16toDouble(fix32);
426 }
427 
428 
cmsXYZEncoded2Float(cmsCIEXYZ * fXYZ,const cmsUInt16Number XYZ[3])429 void CMSEXPORT cmsXYZEncoded2Float(cmsCIEXYZ* fXYZ, const cmsUInt16Number XYZ[3])
430 {
431     fXYZ -> X = XYZ2float(XYZ[0]);
432     fXYZ -> Y = XYZ2float(XYZ[1]);
433     fXYZ -> Z = XYZ2float(XYZ[2]);
434 }
435 
436 
437 // Returns dE on two Lab values
cmsDeltaE(const cmsCIELab * Lab1,const cmsCIELab * Lab2)438 cmsFloat64Number CMSEXPORT cmsDeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2)
439 {
440     cmsFloat64Number dL, da, db;
441 
442     dL = fabs(Lab1 -> L - Lab2 -> L);
443     da = fabs(Lab1 -> a - Lab2 -> a);
444     db = fabs(Lab1 -> b - Lab2 -> b);
445 
446     return pow(Sqr(dL) + Sqr(da) + Sqr(db), 0.5);
447 }
448 
449 
450 // Return the CIE94 Delta E
cmsCIE94DeltaE(const cmsCIELab * Lab1,const cmsCIELab * Lab2)451 cmsFloat64Number CMSEXPORT cmsCIE94DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2)
452 {
453     cmsCIELCh LCh1, LCh2;
454     cmsFloat64Number dE, dL, dC, dh, dhsq;
455     cmsFloat64Number c12, sc, sh;
456 
457     dL = fabs(Lab1 ->L - Lab2 ->L);
458 
459     cmsLab2LCh(&LCh1, Lab1);
460     cmsLab2LCh(&LCh2, Lab2);
461 
462     dC  = fabs(LCh1.C - LCh2.C);
463     dE  = cmsDeltaE(Lab1, Lab2);
464 
465     dhsq = Sqr(dE) - Sqr(dL) - Sqr(dC);
466     if (dhsq < 0)
467         dh = 0;
468     else
469         dh = pow(dhsq, 0.5);
470 
471     c12 = sqrt(LCh1.C * LCh2.C);
472 
473     sc = 1.0 + (0.048 * c12);
474     sh = 1.0 + (0.014 * c12);
475 
476     return sqrt(Sqr(dL)  + Sqr(dC) / Sqr(sc) + Sqr(dh) / Sqr(sh));
477 }
478 
479 
480 // Auxiliary
481 static
ComputeLBFD(const cmsCIELab * Lab)482 cmsFloat64Number ComputeLBFD(const cmsCIELab* Lab)
483 {
484   cmsFloat64Number yt;
485 
486   if (Lab->L > 7.996969)
487         yt = (Sqr((Lab->L+16)/116)*((Lab->L+16)/116))*100;
488   else
489         yt = 100 * (Lab->L / 903.3);
490 
491   return (54.6 * (M_LOG10E * (log(yt + 1.5))) - 9.6);
492 }
493 
494 
495 
496 // bfd - gets BFD(1:1) difference between Lab1, Lab2
cmsBFDdeltaE(const cmsCIELab * Lab1,const cmsCIELab * Lab2)497 cmsFloat64Number CMSEXPORT cmsBFDdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2)
498 {
499     cmsFloat64Number lbfd1,lbfd2,AveC,Aveh,dE,deltaL,
500         deltaC,deltah,dc,t,g,dh,rh,rc,rt,bfd;
501     cmsCIELCh LCh1, LCh2;
502 
503 
504     lbfd1 = ComputeLBFD(Lab1);
505     lbfd2 = ComputeLBFD(Lab2);
506     deltaL = lbfd2 - lbfd1;
507 
508     cmsLab2LCh(&LCh1, Lab1);
509     cmsLab2LCh(&LCh2, Lab2);
510 
511     deltaC = LCh2.C - LCh1.C;
512     AveC = (LCh1.C+LCh2.C)/2;
513     Aveh = (LCh1.h+LCh2.h)/2;
514 
515     dE = cmsDeltaE(Lab1, Lab2);
516 
517     if (Sqr(dE)>(Sqr(Lab2->L-Lab1->L)+Sqr(deltaC)))
518         deltah = sqrt(Sqr(dE)-Sqr(Lab2->L-Lab1->L)-Sqr(deltaC));
519     else
520         deltah =0;
521 
522 
523     dc   = 0.035 * AveC / (1 + 0.00365 * AveC)+0.521;
524     g    = sqrt(Sqr(Sqr(AveC))/(Sqr(Sqr(AveC))+14000));
525     t    = 0.627+(0.055*cos((Aveh-254)/(180/M_PI))-
526            0.040*cos((2*Aveh-136)/(180/M_PI))+
527            0.070*cos((3*Aveh-31)/(180/M_PI))+
528            0.049*cos((4*Aveh+114)/(180/M_PI))-
529            0.015*cos((5*Aveh-103)/(180/M_PI)));
530 
531     dh    = dc*(g*t+1-g);
532     rh    = -0.260*cos((Aveh-308)/(180/M_PI))-
533            0.379*cos((2*Aveh-160)/(180/M_PI))-
534            0.636*cos((3*Aveh+254)/(180/M_PI))+
535            0.226*cos((4*Aveh+140)/(180/M_PI))-
536            0.194*cos((5*Aveh+280)/(180/M_PI));
537 
538     rc = sqrt((AveC*AveC*AveC*AveC*AveC*AveC)/((AveC*AveC*AveC*AveC*AveC*AveC)+70000000));
539     rt = rh*rc;
540 
541     bfd = sqrt(Sqr(deltaL)+Sqr(deltaC/dc)+Sqr(deltah/dh)+(rt*(deltaC/dc)*(deltah/dh)));
542 
543     return bfd;
544 }
545 
546 
547 //  cmc - CMC(l:c) difference between Lab1, Lab2
cmsCMCdeltaE(const cmsCIELab * Lab1,const cmsCIELab * Lab2,cmsFloat64Number l,cmsFloat64Number c)548 cmsFloat64Number CMSEXPORT cmsCMCdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2, cmsFloat64Number l, cmsFloat64Number c)
549 {
550   cmsFloat64Number dE,dL,dC,dh,sl,sc,sh,t,f,cmc;
551   cmsCIELCh LCh1, LCh2;
552 
553   if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
554 
555   cmsLab2LCh(&LCh1, Lab1);
556   cmsLab2LCh(&LCh2, Lab2);
557 
558 
559   dL = Lab2->L-Lab1->L;
560   dC = LCh2.C-LCh1.C;
561 
562   dE = cmsDeltaE(Lab1, Lab2);
563 
564   if (Sqr(dE)>(Sqr(dL)+Sqr(dC)))
565             dh = sqrt(Sqr(dE)-Sqr(dL)-Sqr(dC));
566   else
567             dh =0;
568 
569   if ((LCh1.h > 164) && (LCh1.h < 345))
570       t = 0.56 + fabs(0.2 * cos(((LCh1.h + 168)/(180/M_PI))));
571   else
572       t = 0.36 + fabs(0.4 * cos(((LCh1.h + 35 )/(180/M_PI))));
573 
574    sc  = 0.0638   * LCh1.C / (1 + 0.0131  * LCh1.C) + 0.638;
575    sl  = 0.040975 * Lab1->L /(1 + 0.01765 * Lab1->L);
576 
577    if (Lab1->L<16)
578          sl = 0.511;
579 
580    f   = sqrt((LCh1.C * LCh1.C * LCh1.C * LCh1.C)/((LCh1.C * LCh1.C * LCh1.C * LCh1.C)+1900));
581    sh  = sc*(t*f+1-f);
582    cmc = sqrt(Sqr(dL/(l*sl))+Sqr(dC/(c*sc))+Sqr(dh/sh));
583 
584    return cmc;
585 }
586 
587 // dE2000 The weightings KL, KC and KH can be modified to reflect the relative
588 // importance of lightness, chroma and hue in different industrial applications
cmsCIE2000DeltaE(const cmsCIELab * Lab1,const cmsCIELab * Lab2,cmsFloat64Number Kl,cmsFloat64Number Kc,cmsFloat64Number Kh)589 cmsFloat64Number CMSEXPORT cmsCIE2000DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2,
590                                   cmsFloat64Number Kl, cmsFloat64Number Kc, cmsFloat64Number Kh)
591 {
592     cmsFloat64Number L1  = Lab1->L;
593     cmsFloat64Number a1  = Lab1->a;
594     cmsFloat64Number b1  = Lab1->b;
595     cmsFloat64Number C   = sqrt( Sqr(a1) + Sqr(b1) );
596 
597     cmsFloat64Number Ls = Lab2 ->L;
598     cmsFloat64Number as = Lab2 ->a;
599     cmsFloat64Number bs = Lab2 ->b;
600     cmsFloat64Number Cs = sqrt( Sqr(as) + Sqr(bs) );
601 
602     cmsFloat64Number G = 0.5 * ( 1 - sqrt(pow((C + Cs) / 2 , 7.0) / (pow((C + Cs) / 2, 7.0) + pow(25.0, 7.0) ) ));
603 
604     cmsFloat64Number a_p = (1 + G ) * a1;
605     cmsFloat64Number b_p = b1;
606     cmsFloat64Number C_p = sqrt( Sqr(a_p) + Sqr(b_p));
607     cmsFloat64Number h_p = atan2deg(b_p, a_p);
608 
609 
610     cmsFloat64Number a_ps = (1 + G) * as;
611     cmsFloat64Number b_ps = bs;
612     cmsFloat64Number C_ps = sqrt(Sqr(a_ps) + Sqr(b_ps));
613     cmsFloat64Number h_ps = atan2deg(b_ps, a_ps);
614 
615     cmsFloat64Number meanC_p =(C_p + C_ps) / 2;
616 
617     cmsFloat64Number hps_plus_hp  = h_ps + h_p;
618     cmsFloat64Number hps_minus_hp = h_ps - h_p;
619 
620     cmsFloat64Number meanh_p = fabs(hps_minus_hp) <= 180.000001 ? (hps_plus_hp)/2 :
621                             (hps_plus_hp) < 360 ? (hps_plus_hp + 360)/2 :
622                                                  (hps_plus_hp - 360)/2;
623 
624     cmsFloat64Number delta_h = (hps_minus_hp) <= -180.000001 ?  (hps_minus_hp + 360) :
625                             (hps_minus_hp) > 180 ? (hps_minus_hp - 360) :
626                                                     (hps_minus_hp);
627     cmsFloat64Number delta_L = (Ls - L1);
628     cmsFloat64Number delta_C = (C_ps - C_p );
629 
630 
631     cmsFloat64Number delta_H =2 * sqrt(C_ps*C_p) * sin(RADIANS(delta_h) / 2);
632 
633     cmsFloat64Number T = 1 - 0.17 * cos(RADIANS(meanh_p-30))
634                  + 0.24 * cos(RADIANS(2*meanh_p))
635                  + 0.32 * cos(RADIANS(3*meanh_p + 6))
636                  - 0.2  * cos(RADIANS(4*meanh_p - 63));
637 
638     cmsFloat64Number Sl = 1 + (0.015 * Sqr((Ls + L1) /2- 50) )/ sqrt(20 + Sqr( (Ls+L1)/2 - 50) );
639 
640     cmsFloat64Number Sc = 1 + 0.045 * (C_p + C_ps)/2;
641     cmsFloat64Number Sh = 1 + 0.015 * ((C_ps + C_p)/2) * T;
642 
643     cmsFloat64Number delta_ro = 30 * exp( -Sqr(((meanh_p - 275 ) / 25)));
644 
645     cmsFloat64Number Rc = 2 * sqrt(( pow(meanC_p, 7.0) )/( pow(meanC_p, 7.0) + pow(25.0, 7.0)));
646 
647     cmsFloat64Number Rt = -sin(2 * RADIANS(delta_ro)) * Rc;
648 
649     cmsFloat64Number deltaE00 = sqrt( Sqr(delta_L /(Sl * Kl)) +
650                             Sqr(delta_C/(Sc * Kc))  +
651                             Sqr(delta_H/(Sh * Kh))  +
652                             Rt*(delta_C/(Sc * Kc)) * (delta_H / (Sh * Kh)));
653 
654     return deltaE00;
655 }
656 
657 // This function returns a number of gridpoints to be used as LUT table. It assumes same number
658 // of gripdpoints in all dimensions. Flags may override the choice.
_cmsReasonableGridpointsByColorspace(cmsColorSpaceSignature Colorspace,cmsUInt32Number dwFlags)659 int _cmsReasonableGridpointsByColorspace(cmsColorSpaceSignature Colorspace, cmsUInt32Number dwFlags)
660 {
661     int nChannels;
662 
663     // Already specified?
664     if (dwFlags & 0x00FF0000) {
665             // Yes, grab'em
666             return (dwFlags >> 16) & 0xFF;
667     }
668 
669     nChannels = cmsChannelsOf(Colorspace);
670 
671     // HighResPrecalc is maximum resolution
672     if (dwFlags & cmsFLAGS_HIGHRESPRECALC) {
673 
674         if (nChannels > 4)
675                 return 7;       // 7 for Hifi
676 
677         if (nChannels == 4)     // 23 for CMYK
678                 return 23;
679 
680         return 49;      // 49 for RGB and others
681     }
682 
683 
684     // LowResPrecal is lower resolution
685     if (dwFlags & cmsFLAGS_LOWRESPRECALC) {
686 
687         if (nChannels > 4)
688                 return 6;       // 6 for more than 4 channels
689 
690         if (nChannels == 1)
691                 return 33;      // For monochrome
692 
693         return 17;              // 17 for remaining
694     }
695 
696     // Default values
697     if (nChannels > 4)
698                 return 7;       // 7 for Hifi
699 
700     if (nChannels == 4)
701                 return 17;      // 17 for CMYK
702 
703     return 33;                  // 33 for RGB
704 }
705 
706 
_cmsEndPointsBySpace(cmsColorSpaceSignature Space,cmsUInt16Number ** White,cmsUInt16Number ** Black,cmsUInt32Number * nOutputs)707 cmsBool  _cmsEndPointsBySpace(cmsColorSpaceSignature Space,
708                              cmsUInt16Number **White,
709                              cmsUInt16Number **Black,
710                              cmsUInt32Number *nOutputs)
711 {
712        // Only most common spaces
713 
714        static cmsUInt16Number RGBblack[4]  = { 0, 0, 0 };
715        static cmsUInt16Number RGBwhite[4]  = { 0xffff, 0xffff, 0xffff };
716        static cmsUInt16Number CMYKblack[4] = { 0xffff, 0xffff, 0xffff, 0xffff };   // 400% of ink
717        static cmsUInt16Number CMYKwhite[4] = { 0, 0, 0, 0 };
718        static cmsUInt16Number LABblack[4]  = { 0, 0x8080, 0x8080 };               // V4 Lab encoding
719        static cmsUInt16Number LABwhite[4]  = { 0xFFFF, 0x8080, 0x8080 };
720        static cmsUInt16Number CMYblack[4]  = { 0xffff, 0xffff, 0xffff };
721        static cmsUInt16Number CMYwhite[4]  = { 0, 0, 0 };
722        static cmsUInt16Number Grayblack[4] = { 0 };
723        static cmsUInt16Number GrayWhite[4] = { 0xffff };
724 
725        switch (Space) {
726 
727        case cmsSigGrayData: if (White)    *White = GrayWhite;
728                            if (Black)    *Black = Grayblack;
729                            if (nOutputs) *nOutputs = 1;
730                            return TRUE;
731 
732        case cmsSigRgbData:  if (White)    *White = RGBwhite;
733                            if (Black)    *Black = RGBblack;
734                            if (nOutputs) *nOutputs = 3;
735                            return TRUE;
736 
737        case cmsSigLabData:  if (White)    *White = LABwhite;
738                            if (Black)    *Black = LABblack;
739                            if (nOutputs) *nOutputs = 3;
740                            return TRUE;
741 
742        case cmsSigCmykData: if (White)    *White = CMYKwhite;
743                            if (Black)    *Black = CMYKblack;
744                            if (nOutputs) *nOutputs = 4;
745                            return TRUE;
746 
747        case cmsSigCmyData:  if (White)    *White = CMYwhite;
748                            if (Black)    *Black = CMYblack;
749                            if (nOutputs) *nOutputs = 3;
750                            return TRUE;
751 
752        default:;
753        }
754 
755   return FALSE;
756 }
757 
758 
759 
760 // Several utilities -------------------------------------------------------
761 
762 // Translate from our colorspace to ICC representation
763 
_cmsICCcolorSpace(int OurNotation)764 cmsColorSpaceSignature CMSEXPORT _cmsICCcolorSpace(int OurNotation)
765 {
766        switch (OurNotation) {
767 
768        case 1:
769        case PT_GRAY: return cmsSigGrayData;
770 
771        case 2:
772        case PT_RGB:  return cmsSigRgbData;
773 
774        case PT_CMY:  return cmsSigCmyData;
775        case PT_CMYK: return cmsSigCmykData;
776        case PT_YCbCr:return cmsSigYCbCrData;
777        case PT_YUV:  return cmsSigLuvData;
778        case PT_XYZ:  return cmsSigXYZData;
779 
780        case PT_LabV2:
781        case PT_Lab:  return cmsSigLabData;
782 
783        case PT_YUVK: return cmsSigLuvKData;
784        case PT_HSV:  return cmsSigHsvData;
785        case PT_HLS:  return cmsSigHlsData;
786        case PT_Yxy:  return cmsSigYxyData;
787 
788        case PT_MCH1: return cmsSigMCH1Data;
789        case PT_MCH2: return cmsSigMCH2Data;
790        case PT_MCH3: return cmsSigMCH3Data;
791        case PT_MCH4: return cmsSigMCH4Data;
792        case PT_MCH5: return cmsSigMCH5Data;
793        case PT_MCH6: return cmsSigMCH6Data;
794        case PT_MCH7: return cmsSigMCH7Data;
795        case PT_MCH8: return cmsSigMCH8Data;
796 
797        case PT_MCH9:  return cmsSigMCH9Data;
798        case PT_MCH10: return cmsSigMCHAData;
799        case PT_MCH11: return cmsSigMCHBData;
800        case PT_MCH12: return cmsSigMCHCData;
801        case PT_MCH13: return cmsSigMCHDData;
802        case PT_MCH14: return cmsSigMCHEData;
803        case PT_MCH15: return cmsSigMCHFData;
804 
805        default:  return (cmsColorSpaceSignature) (-1);
806        }
807 }
808 
809 
_cmsLCMScolorSpace(cmsColorSpaceSignature ProfileSpace)810 int CMSEXPORT _cmsLCMScolorSpace(cmsColorSpaceSignature ProfileSpace)
811 {
812     switch (ProfileSpace) {
813 
814     case cmsSigGrayData: return  PT_GRAY;
815     case cmsSigRgbData:  return  PT_RGB;
816     case cmsSigCmyData:  return  PT_CMY;
817     case cmsSigCmykData: return  PT_CMYK;
818     case cmsSigYCbCrData:return  PT_YCbCr;
819     case cmsSigLuvData:  return  PT_YUV;
820     case cmsSigXYZData:  return  PT_XYZ;
821     case cmsSigLabData:  return  PT_Lab;
822     case cmsSigLuvKData: return  PT_YUVK;
823     case cmsSigHsvData:  return  PT_HSV;
824     case cmsSigHlsData:  return  PT_HLS;
825     case cmsSigYxyData:  return  PT_Yxy;
826 
827     case cmsSig1colorData:
828     case cmsSigMCH1Data: return PT_MCH1;
829 
830     case cmsSig2colorData:
831     case cmsSigMCH2Data: return PT_MCH2;
832 
833     case cmsSig3colorData:
834     case cmsSigMCH3Data: return PT_MCH3;
835 
836     case cmsSig4colorData:
837     case cmsSigMCH4Data: return PT_MCH4;
838 
839     case cmsSig5colorData:
840     case cmsSigMCH5Data: return PT_MCH5;
841 
842     case cmsSig6colorData:
843     case cmsSigMCH6Data: return PT_MCH6;
844 
845     case cmsSigMCH7Data:
846     case cmsSig7colorData:return PT_MCH7;
847 
848     case cmsSigMCH8Data:
849     case cmsSig8colorData:return PT_MCH8;
850 
851     case cmsSigMCH9Data:
852     case cmsSig9colorData:return PT_MCH9;
853 
854     case cmsSigMCHAData:
855     case cmsSig10colorData:return PT_MCH10;
856 
857     case cmsSigMCHBData:
858     case cmsSig11colorData:return PT_MCH11;
859 
860     case cmsSigMCHCData:
861     case cmsSig12colorData:return PT_MCH12;
862 
863     case cmsSigMCHDData:
864     case cmsSig13colorData:return PT_MCH13;
865 
866     case cmsSigMCHEData:
867     case cmsSig14colorData:return PT_MCH14;
868 
869     case cmsSigMCHFData:
870     case cmsSig15colorData:return PT_MCH15;
871 
872     default:  return (cmsColorSpaceSignature) (-1);
873     }
874 }
875 
876 
cmsChannelsOf(cmsColorSpaceSignature ColorSpace)877 cmsUInt32Number CMSEXPORT cmsChannelsOf(cmsColorSpaceSignature ColorSpace)
878 {
879     switch (ColorSpace) {
880 
881     case cmsSigMCH1Data:
882     case cmsSig1colorData:
883     case cmsSigGrayData: return 1;
884 
885     case cmsSigMCH2Data:
886     case cmsSig2colorData:  return 2;
887 
888     case cmsSigXYZData:
889     case cmsSigLabData:
890     case cmsSigLuvData:
891     case cmsSigYCbCrData:
892     case cmsSigYxyData:
893     case cmsSigRgbData:
894     case cmsSigHsvData:
895     case cmsSigHlsData:
896     case cmsSigCmyData:
897     case cmsSigMCH3Data:
898     case cmsSig3colorData:  return 3;
899 
900     case cmsSigLuvKData:
901     case cmsSigCmykData:
902     case cmsSigMCH4Data:
903     case cmsSig4colorData:  return 4;
904 
905     case cmsSigMCH5Data:
906     case cmsSig5colorData:  return 5;
907 
908     case cmsSigMCH6Data:
909     case cmsSig6colorData:  return 6;
910 
911     case cmsSigMCH7Data:
912     case cmsSig7colorData:  return  7;
913 
914     case cmsSigMCH8Data:
915     case cmsSig8colorData:  return  8;
916 
917     case cmsSigMCH9Data:
918     case cmsSig9colorData:  return  9;
919 
920     case cmsSigMCHAData:
921     case cmsSig10colorData: return 10;
922 
923     case cmsSigMCHBData:
924     case cmsSig11colorData: return 11;
925 
926     case cmsSigMCHCData:
927     case cmsSig12colorData: return 12;
928 
929     case cmsSigMCHDData:
930     case cmsSig13colorData: return 13;
931 
932     case cmsSigMCHEData:
933     case cmsSig14colorData: return 14;
934 
935     case cmsSigMCHFData:
936     case cmsSig15colorData: return 15;
937 
938     default: return 3;
939     }
940 }
941