• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "TestCompliance.h"
18 
19 #include <gtest/gtest.h>
20 
21 #include "ModelBuilder.h"
22 #include "TestNeuralNetworksWrapper.h"
23 #include "Utils.h"
24 
25 namespace compliance_test {
26 
27 using namespace ::android::nn;
28 using HidlModel = V1_2::Model;
29 using WrapperModel = test_wrapper::Model;
30 using WrapperOperandType = test_wrapper::OperandType;
31 using WrapperType = test_wrapper::Type;
32 
33 // Creates a HIDL model from a creator of the wrapper model.
createHidlModel(std::function<void (WrapperModel *)> createModel)34 static HidlModel createHidlModel(std::function<void(WrapperModel*)> createModel) {
35     HidlModel hidlModel;
36     WrapperModel wrapperModel;
37     createModel(&wrapperModel);
38     EXPECT_EQ(wrapperModel.finish(), test_wrapper::Result::NO_ERROR);
39     ModelBuilder* modelBuilder = reinterpret_cast<ModelBuilder*>(wrapperModel.getHandle());
40     modelBuilder->setHidlModel(&hidlModel);
41     return hidlModel;
42 }
43 
testAvailableSinceV1_2(std::function<void (WrapperModel *)> createModel)44 void ComplianceTest::testAvailableSinceV1_2(std::function<void(WrapperModel*)> createModel) {
45     HidlModel model = createHidlModel(createModel);
46     ASSERT_FALSE(compliantWithV1_1(model));
47     ASSERT_FALSE(compliantWithV1_0(model));
48 }
49 
testAvailableSinceV1_1(std::function<void (WrapperModel *)> createModel)50 void ComplianceTest::testAvailableSinceV1_1(std::function<void(WrapperModel*)> createModel) {
51     HidlModel model = createHidlModel(createModel);
52     ASSERT_TRUE(compliantWithV1_1(model));
53     ASSERT_FALSE(compliantWithV1_0(model));
54 }
55 
testAvailableSinceV1_0(std::function<void (WrapperModel *)> createModel)56 void ComplianceTest::testAvailableSinceV1_0(std::function<void(WrapperModel*)> createModel) {
57     HidlModel model = createHidlModel(createModel);
58     ASSERT_TRUE(compliantWithV1_1(model));
59     ASSERT_TRUE(compliantWithV1_0(model));
60 }
61 
62 static const WrapperOperandType kTypeTensorFloat(WrapperType::TENSOR_FLOAT32, {1});
63 static const WrapperOperandType kTypeTensorFloatRank0(WrapperType::TENSOR_FLOAT32, {});
64 static const WrapperOperandType kTypeInt32(WrapperType::INT32, {});
65 
TEST_F(ComplianceTest,Rank0TensorModelInput)66 TEST_F(ComplianceTest, Rank0TensorModelInput) {
67     int32_t act_init = 0;
68     // A simple ADD operation: op1 ADD op2 = op3, with op1 and op2 of rank 0.
69     testAvailableSinceV1_2([&act_init](WrapperModel* model) {
70         auto op1 = model->addOperand(&kTypeTensorFloatRank0);
71         auto op2 = model->addOperand(&kTypeTensorFloatRank0);
72         auto act = model->addOperand(&kTypeInt32);
73         auto op3 = model->addOperand(&kTypeTensorFloat);
74         model->setOperandValue(act, &act_init, sizeof(act_init));
75         model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3});
76         model->identifyInputsAndOutputs({op1, op2}, {op3});
77         assert(model->isValid());
78     });
79 }
80 
TEST_F(ComplianceTest,Rank0TensorModelOutput)81 TEST_F(ComplianceTest, Rank0TensorModelOutput) {
82     int32_t act_init = 0;
83     // A simple ADD operation: op1 ADD op2 = op3, with op3 of rank 0.
84     testAvailableSinceV1_2([&act_init](WrapperModel* model) {
85         auto op1 = model->addOperand(&kTypeTensorFloat);
86         auto op2 = model->addOperand(&kTypeTensorFloat);
87         auto act = model->addOperand(&kTypeInt32);
88         auto op3 = model->addOperand(&kTypeTensorFloatRank0);
89         model->setOperandValue(act, &act_init, sizeof(act_init));
90         model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3});
91         model->identifyInputsAndOutputs({op1, op2}, {op3});
92         assert(model->isValid());
93     });
94 }
95 
TEST_F(ComplianceTest,Rank0TensorTemporaryVariable)96 TEST_F(ComplianceTest, Rank0TensorTemporaryVariable) {
97     int32_t act_init = 0;
98     // Two ADD operations: op1 ADD op2 = op3, op3 ADD op4 = op5, with op3 of rank 0.
99     testAvailableSinceV1_2([&act_init](WrapperModel* model) {
100         auto op1 = model->addOperand(&kTypeTensorFloat);
101         auto op2 = model->addOperand(&kTypeTensorFloat);
102         auto op3 = model->addOperand(&kTypeTensorFloatRank0);
103         auto op4 = model->addOperand(&kTypeTensorFloat);
104         auto op5 = model->addOperand(&kTypeTensorFloat);
105         auto act = model->addOperand(&kTypeInt32);
106         model->setOperandValue(act, &act_init, sizeof(act_init));
107         model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3});
108         model->addOperation(ANEURALNETWORKS_ADD, {op3, op4, act}, {op5});
109         model->identifyInputsAndOutputs({op1, op2, op4}, {op5});
110         assert(model->isValid());
111     });
112 }
113 
TEST_F(ComplianceTest,HardwareBuffer)114 TEST_F(ComplianceTest, HardwareBuffer) {
115     const size_t memorySize = 20;
116     AHardwareBuffer_Desc desc{
117             .width = memorySize,
118             .height = 1,
119             .layers = 1,
120             .format = AHARDWAREBUFFER_FORMAT_BLOB,
121             .usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN,
122     };
123 
124     AHardwareBuffer* buffer = nullptr;
125     ASSERT_EQ(AHardwareBuffer_allocate(&desc, &buffer), 0);
126     test_wrapper::Memory memory(buffer);
127     ASSERT_TRUE(memory.isValid());
128 
129     int32_t act_init = 0;
130 
131     // A simple ADD operation: op1 ADD op2 = op3, with op2 using a const hardware buffer.
132     testAvailableSinceV1_2([&memory, &act_init](WrapperModel* model) {
133         auto op1 = model->addOperand(&kTypeTensorFloat);
134         auto op2 = model->addOperand(&kTypeTensorFloat);
135         auto act = model->addOperand(&kTypeInt32);
136         auto op3 = model->addOperand(&kTypeTensorFloat);
137         model->setOperandValueFromMemory(op2, &memory, 0, sizeof(float));
138         model->setOperandValue(act, &act_init, sizeof(act_init));
139         model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3});
140         model->identifyInputsAndOutputs({op1}, {op3});
141         assert(model->isValid());
142     });
143 
144     AHardwareBuffer_release(buffer);
145 }
146 
147 }  // namespace compliance_test
148