• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
15 #include "RuntimeDyldCOFF.h"
16 #include "RuntimeDyldCheckerImpl.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Object/COFF.h"
21 #include "llvm/Object/ELFObjectFile.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/MutexGuard.h"
25 
26 using namespace llvm;
27 using namespace llvm::object;
28 
29 #define DEBUG_TYPE "dyld"
30 
31 namespace {
32 
33 enum RuntimeDyldErrorCode {
34   GenericRTDyldError = 1
35 };
36 
37 // FIXME: This class is only here to support the transition to llvm::Error. It
38 // will be removed once this transition is complete. Clients should prefer to
39 // deal with the Error value directly, rather than converting to error_code.
40 class RuntimeDyldErrorCategory : public std::error_category {
41 public:
name() const42   const char *name() const noexcept override { return "runtimedyld"; }
43 
message(int Condition) const44   std::string message(int Condition) const override {
45     switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
46       case GenericRTDyldError: return "Generic RuntimeDyld error";
47     }
48     llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
49   }
50 };
51 
52 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
53 
54 }
55 
56 char RuntimeDyldError::ID = 0;
57 
log(raw_ostream & OS) const58 void RuntimeDyldError::log(raw_ostream &OS) const {
59   OS << ErrMsg << "\n";
60 }
61 
convertToErrorCode() const62 std::error_code RuntimeDyldError::convertToErrorCode() const {
63   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
64 }
65 
66 // Empty out-of-line virtual destructor as the key function.
~RuntimeDyldImpl()67 RuntimeDyldImpl::~RuntimeDyldImpl() {}
68 
69 // Pin LoadedObjectInfo's vtables to this file.
anchor()70 void RuntimeDyld::LoadedObjectInfo::anchor() {}
71 
72 namespace llvm {
73 
registerEHFrames()74 void RuntimeDyldImpl::registerEHFrames() {}
75 
deregisterEHFrames()76 void RuntimeDyldImpl::deregisterEHFrames() {
77   MemMgr.deregisterEHFrames();
78 }
79 
80 #ifndef NDEBUG
dumpSectionMemory(const SectionEntry & S,StringRef State)81 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
82   dbgs() << "----- Contents of section " << S.getName() << " " << State
83          << " -----";
84 
85   if (S.getAddress() == nullptr) {
86     dbgs() << "\n          <section not emitted>\n";
87     return;
88   }
89 
90   const unsigned ColsPerRow = 16;
91 
92   uint8_t *DataAddr = S.getAddress();
93   uint64_t LoadAddr = S.getLoadAddress();
94 
95   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
96   unsigned BytesRemaining = S.getSize();
97 
98   if (StartPadding) {
99     dbgs() << "\n" << format("0x%016" PRIx64,
100                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
101     while (StartPadding--)
102       dbgs() << "   ";
103   }
104 
105   while (BytesRemaining > 0) {
106     if ((LoadAddr & (ColsPerRow - 1)) == 0)
107       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
108 
109     dbgs() << " " << format("%02x", *DataAddr);
110 
111     ++DataAddr;
112     ++LoadAddr;
113     --BytesRemaining;
114   }
115 
116   dbgs() << "\n";
117 }
118 #endif
119 
120 // Resolve the relocations for all symbols we currently know about.
resolveRelocations()121 void RuntimeDyldImpl::resolveRelocations() {
122   MutexGuard locked(lock);
123 
124   // Print out the sections prior to relocation.
125   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
126                  dumpSectionMemory(Sections[i], "before relocations"););
127 
128   // First, resolve relocations associated with external symbols.
129   if (auto Err = resolveExternalSymbols()) {
130     HasError = true;
131     ErrorStr = toString(std::move(Err));
132   }
133 
134   // Iterate over all outstanding relocations
135   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
136     // The Section here (Sections[i]) refers to the section in which the
137     // symbol for the relocation is located.  The SectionID in the relocation
138     // entry provides the section to which the relocation will be applied.
139     int Idx = it->first;
140     uint64_t Addr = Sections[Idx].getLoadAddress();
141     LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
142                       << format("%p", (uintptr_t)Addr) << "\n");
143     resolveRelocationList(it->second, Addr);
144   }
145   Relocations.clear();
146 
147   // Print out sections after relocation.
148   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
149                  dumpSectionMemory(Sections[i], "after relocations"););
150 }
151 
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)152 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
153                                         uint64_t TargetAddress) {
154   MutexGuard locked(lock);
155   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
156     if (Sections[i].getAddress() == LocalAddress) {
157       reassignSectionAddress(i, TargetAddress);
158       return;
159     }
160   }
161   llvm_unreachable("Attempting to remap address of unknown section!");
162 }
163 
getOffset(const SymbolRef & Sym,SectionRef Sec,uint64_t & Result)164 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
165                        uint64_t &Result) {
166   Expected<uint64_t> AddressOrErr = Sym.getAddress();
167   if (!AddressOrErr)
168     return AddressOrErr.takeError();
169   Result = *AddressOrErr - Sec.getAddress();
170   return Error::success();
171 }
172 
173 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
loadObjectImpl(const object::ObjectFile & Obj)174 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
175   MutexGuard locked(lock);
176 
177   // Save information about our target
178   Arch = (Triple::ArchType)Obj.getArch();
179   IsTargetLittleEndian = Obj.isLittleEndian();
180   setMipsABI(Obj);
181 
182   // Compute the memory size required to load all sections to be loaded
183   // and pass this information to the memory manager
184   if (MemMgr.needsToReserveAllocationSpace()) {
185     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
186     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
187     if (auto Err = computeTotalAllocSize(Obj,
188                                          CodeSize, CodeAlign,
189                                          RODataSize, RODataAlign,
190                                          RWDataSize, RWDataAlign))
191       return std::move(Err);
192     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
193                                   RWDataSize, RWDataAlign);
194   }
195 
196   // Used sections from the object file
197   ObjSectionToIDMap LocalSections;
198 
199   // Common symbols requiring allocation, with their sizes and alignments
200   CommonSymbolList CommonSymbolsToAllocate;
201 
202   uint64_t CommonSize = 0;
203   uint32_t CommonAlign = 0;
204 
205   // First, collect all weak and common symbols. We need to know if stronger
206   // definitions occur elsewhere.
207   JITSymbolResolver::LookupFlagsResult SymbolFlags;
208   {
209     JITSymbolResolver::LookupSet Symbols;
210     for (auto &Sym : Obj.symbols()) {
211       uint32_t Flags = Sym.getFlags();
212       if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
213         // Get symbol name.
214         if (auto NameOrErr = Sym.getName())
215           Symbols.insert(*NameOrErr);
216         else
217           return NameOrErr.takeError();
218       }
219     }
220 
221     if (auto FlagsResultOrErr = Resolver.lookupFlags(Symbols))
222       SymbolFlags = std::move(*FlagsResultOrErr);
223     else
224       return FlagsResultOrErr.takeError();
225   }
226 
227   // Parse symbols
228   LLVM_DEBUG(dbgs() << "Parse symbols:\n");
229   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
230        ++I) {
231     uint32_t Flags = I->getFlags();
232 
233     // Skip undefined symbols.
234     if (Flags & SymbolRef::SF_Undefined)
235       continue;
236 
237     // Get the symbol type.
238     object::SymbolRef::Type SymType;
239     if (auto SymTypeOrErr = I->getType())
240       SymType = *SymTypeOrErr;
241     else
242       return SymTypeOrErr.takeError();
243 
244     // Get symbol name.
245     StringRef Name;
246     if (auto NameOrErr = I->getName())
247       Name = *NameOrErr;
248     else
249       return NameOrErr.takeError();
250 
251     // Compute JIT symbol flags.
252     JITSymbolFlags JITSymFlags = getJITSymbolFlags(*I);
253 
254     // If this is a weak definition, check to see if there's a strong one.
255     // If there is, skip this symbol (we won't be providing it: the strong
256     // definition will). If there's no strong definition, make this definition
257     // strong.
258     if (JITSymFlags.isWeak() || JITSymFlags.isCommon()) {
259       // First check whether there's already a definition in this instance.
260       // FIXME: Override existing weak definitions with strong ones.
261       if (GlobalSymbolTable.count(Name))
262         continue;
263 
264       // Then check whether we found flags for an existing symbol during the
265       // flags lookup earlier.
266       auto FlagsI = SymbolFlags.find(Name);
267       if (FlagsI == SymbolFlags.end() ||
268           (JITSymFlags.isWeak() && !FlagsI->second.isStrong()) ||
269           (JITSymFlags.isCommon() && FlagsI->second.isCommon())) {
270         if (JITSymFlags.isWeak())
271           JITSymFlags &= ~JITSymbolFlags::Weak;
272         if (JITSymFlags.isCommon()) {
273           JITSymFlags &= ~JITSymbolFlags::Common;
274           uint32_t Align = I->getAlignment();
275           uint64_t Size = I->getCommonSize();
276           if (!CommonAlign)
277             CommonAlign = Align;
278           CommonSize = alignTo(CommonSize, Align) + Size;
279           CommonSymbolsToAllocate.push_back(*I);
280         }
281       } else
282         continue;
283     }
284 
285     if (Flags & SymbolRef::SF_Absolute &&
286         SymType != object::SymbolRef::ST_File) {
287       uint64_t Addr = 0;
288       if (auto AddrOrErr = I->getAddress())
289         Addr = *AddrOrErr;
290       else
291         return AddrOrErr.takeError();
292 
293       unsigned SectionID = AbsoluteSymbolSection;
294 
295       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
296                         << " SID: " << SectionID
297                         << " Offset: " << format("%p", (uintptr_t)Addr)
298                         << " flags: " << Flags << "\n");
299       GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, JITSymFlags);
300     } else if (SymType == object::SymbolRef::ST_Function ||
301                SymType == object::SymbolRef::ST_Data ||
302                SymType == object::SymbolRef::ST_Unknown ||
303                SymType == object::SymbolRef::ST_Other) {
304 
305       section_iterator SI = Obj.section_end();
306       if (auto SIOrErr = I->getSection())
307         SI = *SIOrErr;
308       else
309         return SIOrErr.takeError();
310 
311       if (SI == Obj.section_end())
312         continue;
313 
314       // Get symbol offset.
315       uint64_t SectOffset;
316       if (auto Err = getOffset(*I, *SI, SectOffset))
317         return std::move(Err);
318 
319       bool IsCode = SI->isText();
320       unsigned SectionID;
321       if (auto SectionIDOrErr =
322               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
323         SectionID = *SectionIDOrErr;
324       else
325         return SectionIDOrErr.takeError();
326 
327       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
328                         << " SID: " << SectionID
329                         << " Offset: " << format("%p", (uintptr_t)SectOffset)
330                         << " flags: " << Flags << "\n");
331       GlobalSymbolTable[Name] =
332           SymbolTableEntry(SectionID, SectOffset, JITSymFlags);
333     }
334   }
335 
336   // Allocate common symbols
337   if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
338                                    CommonAlign))
339     return std::move(Err);
340 
341   // Parse and process relocations
342   LLVM_DEBUG(dbgs() << "Parse relocations:\n");
343   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
344        SI != SE; ++SI) {
345     StubMap Stubs;
346     section_iterator RelocatedSection = SI->getRelocatedSection();
347 
348     if (RelocatedSection == SE)
349       continue;
350 
351     relocation_iterator I = SI->relocation_begin();
352     relocation_iterator E = SI->relocation_end();
353 
354     if (I == E && !ProcessAllSections)
355       continue;
356 
357     bool IsCode = RelocatedSection->isText();
358     unsigned SectionID = 0;
359     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
360                                                 LocalSections))
361       SectionID = *SectionIDOrErr;
362     else
363       return SectionIDOrErr.takeError();
364 
365     LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
366 
367     for (; I != E;)
368       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
369         I = *IOrErr;
370       else
371         return IOrErr.takeError();
372 
373     // If there is an attached checker, notify it about the stubs for this
374     // section so that they can be verified.
375     if (Checker)
376       Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
377   }
378 
379   // Give the subclasses a chance to tie-up any loose ends.
380   if (auto Err = finalizeLoad(Obj, LocalSections))
381     return std::move(Err);
382 
383 //   for (auto E : LocalSections)
384 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
385 
386   return LocalSections;
387 }
388 
389 // A helper method for computeTotalAllocSize.
390 // Computes the memory size required to allocate sections with the given sizes,
391 // assuming that all sections are allocated with the given alignment
392 static uint64_t
computeAllocationSizeForSections(std::vector<uint64_t> & SectionSizes,uint64_t Alignment)393 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
394                                  uint64_t Alignment) {
395   uint64_t TotalSize = 0;
396   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
397     uint64_t AlignedSize =
398         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
399     TotalSize += AlignedSize;
400   }
401   return TotalSize;
402 }
403 
isRequiredForExecution(const SectionRef Section)404 static bool isRequiredForExecution(const SectionRef Section) {
405   const ObjectFile *Obj = Section.getObject();
406   if (isa<object::ELFObjectFileBase>(Obj))
407     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
408   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
409     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
410     // Avoid loading zero-sized COFF sections.
411     // In PE files, VirtualSize gives the section size, and SizeOfRawData
412     // may be zero for sections with content. In Obj files, SizeOfRawData
413     // gives the section size, and VirtualSize is always zero. Hence
414     // the need to check for both cases below.
415     bool HasContent =
416         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
417     bool IsDiscardable =
418         CoffSection->Characteristics &
419         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
420     return HasContent && !IsDiscardable;
421   }
422 
423   assert(isa<MachOObjectFile>(Obj));
424   return true;
425 }
426 
isReadOnlyData(const SectionRef Section)427 static bool isReadOnlyData(const SectionRef Section) {
428   const ObjectFile *Obj = Section.getObject();
429   if (isa<object::ELFObjectFileBase>(Obj))
430     return !(ELFSectionRef(Section).getFlags() &
431              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
432   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
433     return ((COFFObj->getCOFFSection(Section)->Characteristics &
434              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
435              | COFF::IMAGE_SCN_MEM_READ
436              | COFF::IMAGE_SCN_MEM_WRITE))
437              ==
438              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
439              | COFF::IMAGE_SCN_MEM_READ));
440 
441   assert(isa<MachOObjectFile>(Obj));
442   return false;
443 }
444 
isZeroInit(const SectionRef Section)445 static bool isZeroInit(const SectionRef Section) {
446   const ObjectFile *Obj = Section.getObject();
447   if (isa<object::ELFObjectFileBase>(Obj))
448     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
449   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
450     return COFFObj->getCOFFSection(Section)->Characteristics &
451             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
452 
453   auto *MachO = cast<MachOObjectFile>(Obj);
454   unsigned SectionType = MachO->getSectionType(Section);
455   return SectionType == MachO::S_ZEROFILL ||
456          SectionType == MachO::S_GB_ZEROFILL;
457 }
458 
459 // Compute an upper bound of the memory size that is required to load all
460 // sections
computeTotalAllocSize(const ObjectFile & Obj,uint64_t & CodeSize,uint32_t & CodeAlign,uint64_t & RODataSize,uint32_t & RODataAlign,uint64_t & RWDataSize,uint32_t & RWDataAlign)461 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
462                                              uint64_t &CodeSize,
463                                              uint32_t &CodeAlign,
464                                              uint64_t &RODataSize,
465                                              uint32_t &RODataAlign,
466                                              uint64_t &RWDataSize,
467                                              uint32_t &RWDataAlign) {
468   // Compute the size of all sections required for execution
469   std::vector<uint64_t> CodeSectionSizes;
470   std::vector<uint64_t> ROSectionSizes;
471   std::vector<uint64_t> RWSectionSizes;
472 
473   // Collect sizes of all sections to be loaded;
474   // also determine the max alignment of all sections
475   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
476        SI != SE; ++SI) {
477     const SectionRef &Section = *SI;
478 
479     bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
480 
481     // Consider only the sections that are required to be loaded for execution
482     if (IsRequired) {
483       uint64_t DataSize = Section.getSize();
484       uint64_t Alignment64 = Section.getAlignment();
485       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
486       bool IsCode = Section.isText();
487       bool IsReadOnly = isReadOnlyData(Section);
488 
489       StringRef Name;
490       if (auto EC = Section.getName(Name))
491         return errorCodeToError(EC);
492 
493       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
494       uint64_t SectionSize = DataSize + StubBufSize;
495 
496       // The .eh_frame section (at least on Linux) needs an extra four bytes
497       // padded
498       // with zeroes added at the end.  For MachO objects, this section has a
499       // slightly different name, so this won't have any effect for MachO
500       // objects.
501       if (Name == ".eh_frame")
502         SectionSize += 4;
503 
504       if (!SectionSize)
505         SectionSize = 1;
506 
507       if (IsCode) {
508         CodeAlign = std::max(CodeAlign, Alignment);
509         CodeSectionSizes.push_back(SectionSize);
510       } else if (IsReadOnly) {
511         RODataAlign = std::max(RODataAlign, Alignment);
512         ROSectionSizes.push_back(SectionSize);
513       } else {
514         RWDataAlign = std::max(RWDataAlign, Alignment);
515         RWSectionSizes.push_back(SectionSize);
516       }
517     }
518   }
519 
520   // Compute Global Offset Table size. If it is not zero we
521   // also update alignment, which is equal to a size of a
522   // single GOT entry.
523   if (unsigned GotSize = computeGOTSize(Obj)) {
524     RWSectionSizes.push_back(GotSize);
525     RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
526   }
527 
528   // Compute the size of all common symbols
529   uint64_t CommonSize = 0;
530   uint32_t CommonAlign = 1;
531   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
532        ++I) {
533     uint32_t Flags = I->getFlags();
534     if (Flags & SymbolRef::SF_Common) {
535       // Add the common symbols to a list.  We'll allocate them all below.
536       uint64_t Size = I->getCommonSize();
537       uint32_t Align = I->getAlignment();
538       // If this is the first common symbol, use its alignment as the alignment
539       // for the common symbols section.
540       if (CommonSize == 0)
541         CommonAlign = Align;
542       CommonSize = alignTo(CommonSize, Align) + Size;
543     }
544   }
545   if (CommonSize != 0) {
546     RWSectionSizes.push_back(CommonSize);
547     RWDataAlign = std::max(RWDataAlign, CommonAlign);
548   }
549 
550   // Compute the required allocation space for each different type of sections
551   // (code, read-only data, read-write data) assuming that all sections are
552   // allocated with the max alignment. Note that we cannot compute with the
553   // individual alignments of the sections, because then the required size
554   // depends on the order, in which the sections are allocated.
555   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
556   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
557   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
558 
559   return Error::success();
560 }
561 
562 // compute GOT size
computeGOTSize(const ObjectFile & Obj)563 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
564   size_t GotEntrySize = getGOTEntrySize();
565   if (!GotEntrySize)
566     return 0;
567 
568   size_t GotSize = 0;
569   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
570        SI != SE; ++SI) {
571 
572     for (const RelocationRef &Reloc : SI->relocations())
573       if (relocationNeedsGot(Reloc))
574         GotSize += GotEntrySize;
575   }
576 
577   return GotSize;
578 }
579 
580 // compute stub buffer size for the given section
computeSectionStubBufSize(const ObjectFile & Obj,const SectionRef & Section)581 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
582                                                     const SectionRef &Section) {
583   unsigned StubSize = getMaxStubSize();
584   if (StubSize == 0) {
585     return 0;
586   }
587   // FIXME: this is an inefficient way to handle this. We should computed the
588   // necessary section allocation size in loadObject by walking all the sections
589   // once.
590   unsigned StubBufSize = 0;
591   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
592        SI != SE; ++SI) {
593     section_iterator RelSecI = SI->getRelocatedSection();
594     if (!(RelSecI == Section))
595       continue;
596 
597     for (const RelocationRef &Reloc : SI->relocations())
598       if (relocationNeedsStub(Reloc))
599         StubBufSize += StubSize;
600   }
601 
602   // Get section data size and alignment
603   uint64_t DataSize = Section.getSize();
604   uint64_t Alignment64 = Section.getAlignment();
605 
606   // Add stubbuf size alignment
607   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
608   unsigned StubAlignment = getStubAlignment();
609   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
610   if (StubAlignment > EndAlignment)
611     StubBufSize += StubAlignment - EndAlignment;
612   return StubBufSize;
613 }
614 
readBytesUnaligned(uint8_t * Src,unsigned Size) const615 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
616                                              unsigned Size) const {
617   uint64_t Result = 0;
618   if (IsTargetLittleEndian) {
619     Src += Size - 1;
620     while (Size--)
621       Result = (Result << 8) | *Src--;
622   } else
623     while (Size--)
624       Result = (Result << 8) | *Src++;
625 
626   return Result;
627 }
628 
writeBytesUnaligned(uint64_t Value,uint8_t * Dst,unsigned Size) const629 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
630                                           unsigned Size) const {
631   if (IsTargetLittleEndian) {
632     while (Size--) {
633       *Dst++ = Value & 0xFF;
634       Value >>= 8;
635     }
636   } else {
637     Dst += Size - 1;
638     while (Size--) {
639       *Dst-- = Value & 0xFF;
640       Value >>= 8;
641     }
642   }
643 }
644 
getJITSymbolFlags(const BasicSymbolRef & SR)645 JITSymbolFlags RuntimeDyldImpl::getJITSymbolFlags(const BasicSymbolRef &SR) {
646   return JITSymbolFlags::fromObjectSymbol(SR);
647 }
648 
emitCommonSymbols(const ObjectFile & Obj,CommonSymbolList & SymbolsToAllocate,uint64_t CommonSize,uint32_t CommonAlign)649 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
650                                          CommonSymbolList &SymbolsToAllocate,
651                                          uint64_t CommonSize,
652                                          uint32_t CommonAlign) {
653   if (SymbolsToAllocate.empty())
654     return Error::success();
655 
656   // Allocate memory for the section
657   unsigned SectionID = Sections.size();
658   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
659                                              "<common symbols>", false);
660   if (!Addr)
661     report_fatal_error("Unable to allocate memory for common symbols!");
662   uint64_t Offset = 0;
663   Sections.push_back(
664       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
665   memset(Addr, 0, CommonSize);
666 
667   LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
668                     << " new addr: " << format("%p", Addr)
669                     << " DataSize: " << CommonSize << "\n");
670 
671   // Assign the address of each symbol
672   for (auto &Sym : SymbolsToAllocate) {
673     uint32_t Align = Sym.getAlignment();
674     uint64_t Size = Sym.getCommonSize();
675     StringRef Name;
676     if (auto NameOrErr = Sym.getName())
677       Name = *NameOrErr;
678     else
679       return NameOrErr.takeError();
680     if (Align) {
681       // This symbol has an alignment requirement.
682       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
683       Addr += AlignOffset;
684       Offset += AlignOffset;
685     }
686     JITSymbolFlags JITSymFlags = getJITSymbolFlags(Sym);
687     LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
688                       << format("%p", Addr) << "\n");
689     GlobalSymbolTable[Name] =
690       SymbolTableEntry(SectionID, Offset, JITSymFlags);
691     Offset += Size;
692     Addr += Size;
693   }
694 
695   if (Checker)
696     Checker->registerSection(Obj.getFileName(), SectionID);
697 
698   return Error::success();
699 }
700 
701 Expected<unsigned>
emitSection(const ObjectFile & Obj,const SectionRef & Section,bool IsCode)702 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
703                              const SectionRef &Section,
704                              bool IsCode) {
705   StringRef data;
706   uint64_t Alignment64 = Section.getAlignment();
707 
708   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
709   unsigned PaddingSize = 0;
710   unsigned StubBufSize = 0;
711   bool IsRequired = isRequiredForExecution(Section);
712   bool IsVirtual = Section.isVirtual();
713   bool IsZeroInit = isZeroInit(Section);
714   bool IsReadOnly = isReadOnlyData(Section);
715   uint64_t DataSize = Section.getSize();
716 
717   StringRef Name;
718   if (auto EC = Section.getName(Name))
719     return errorCodeToError(EC);
720 
721   StubBufSize = computeSectionStubBufSize(Obj, Section);
722 
723   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
724   // with zeroes added at the end.  For MachO objects, this section has a
725   // slightly different name, so this won't have any effect for MachO objects.
726   if (Name == ".eh_frame")
727     PaddingSize = 4;
728 
729   uintptr_t Allocate;
730   unsigned SectionID = Sections.size();
731   uint8_t *Addr;
732   const char *pData = nullptr;
733 
734   // If this section contains any bits (i.e. isn't a virtual or bss section),
735   // grab a reference to them.
736   if (!IsVirtual && !IsZeroInit) {
737     // In either case, set the location of the unrelocated section in memory,
738     // since we still process relocations for it even if we're not applying them.
739     if (auto EC = Section.getContents(data))
740       return errorCodeToError(EC);
741     pData = data.data();
742   }
743 
744   // Code section alignment needs to be at least as high as stub alignment or
745   // padding calculations may by incorrect when the section is remapped to a
746   // higher alignment.
747   if (IsCode) {
748     Alignment = std::max(Alignment, getStubAlignment());
749     if (StubBufSize > 0)
750       PaddingSize += getStubAlignment() - 1;
751   }
752 
753   // Some sections, such as debug info, don't need to be loaded for execution.
754   // Process those only if explicitly requested.
755   if (IsRequired || ProcessAllSections) {
756     Allocate = DataSize + PaddingSize + StubBufSize;
757     if (!Allocate)
758       Allocate = 1;
759     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
760                                                Name)
761                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
762                                                Name, IsReadOnly);
763     if (!Addr)
764       report_fatal_error("Unable to allocate section memory!");
765 
766     // Zero-initialize or copy the data from the image
767     if (IsZeroInit || IsVirtual)
768       memset(Addr, 0, DataSize);
769     else
770       memcpy(Addr, pData, DataSize);
771 
772     // Fill in any extra bytes we allocated for padding
773     if (PaddingSize != 0) {
774       memset(Addr + DataSize, 0, PaddingSize);
775       // Update the DataSize variable to include padding.
776       DataSize += PaddingSize;
777 
778       // Align DataSize to stub alignment if we have any stubs (PaddingSize will
779       // have been increased above to account for this).
780       if (StubBufSize > 0)
781         DataSize &= ~(getStubAlignment() - 1);
782     }
783 
784     LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
785                       << Name << " obj addr: " << format("%p", pData)
786                       << " new addr: " << format("%p", Addr) << " DataSize: "
787                       << DataSize << " StubBufSize: " << StubBufSize
788                       << " Allocate: " << Allocate << "\n");
789   } else {
790     // Even if we didn't load the section, we need to record an entry for it
791     // to handle later processing (and by 'handle' I mean don't do anything
792     // with these sections).
793     Allocate = 0;
794     Addr = nullptr;
795     LLVM_DEBUG(
796         dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
797                << " obj addr: " << format("%p", data.data()) << " new addr: 0"
798                << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
799                << " Allocate: " << Allocate << "\n");
800   }
801 
802   Sections.push_back(
803       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
804 
805   // Debug info sections are linked as if their load address was zero
806   if (!IsRequired)
807     Sections.back().setLoadAddress(0);
808 
809   if (Checker)
810     Checker->registerSection(Obj.getFileName(), SectionID);
811 
812   return SectionID;
813 }
814 
815 Expected<unsigned>
findOrEmitSection(const ObjectFile & Obj,const SectionRef & Section,bool IsCode,ObjSectionToIDMap & LocalSections)816 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
817                                    const SectionRef &Section,
818                                    bool IsCode,
819                                    ObjSectionToIDMap &LocalSections) {
820 
821   unsigned SectionID = 0;
822   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
823   if (i != LocalSections.end())
824     SectionID = i->second;
825   else {
826     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
827       SectionID = *SectionIDOrErr;
828     else
829       return SectionIDOrErr.takeError();
830     LocalSections[Section] = SectionID;
831   }
832   return SectionID;
833 }
834 
addRelocationForSection(const RelocationEntry & RE,unsigned SectionID)835 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
836                                               unsigned SectionID) {
837   Relocations[SectionID].push_back(RE);
838 }
839 
addRelocationForSymbol(const RelocationEntry & RE,StringRef SymbolName)840 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
841                                              StringRef SymbolName) {
842   // Relocation by symbol.  If the symbol is found in the global symbol table,
843   // create an appropriate section relocation.  Otherwise, add it to
844   // ExternalSymbolRelocations.
845   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
846   if (Loc == GlobalSymbolTable.end()) {
847     ExternalSymbolRelocations[SymbolName].push_back(RE);
848   } else {
849     // Copy the RE since we want to modify its addend.
850     RelocationEntry RECopy = RE;
851     const auto &SymInfo = Loc->second;
852     RECopy.Addend += SymInfo.getOffset();
853     Relocations[SymInfo.getSectionID()].push_back(RECopy);
854   }
855 }
856 
createStubFunction(uint8_t * Addr,unsigned AbiVariant)857 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
858                                              unsigned AbiVariant) {
859   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
860     // This stub has to be able to access the full address space,
861     // since symbol lookup won't necessarily find a handy, in-range,
862     // PLT stub for functions which could be anywhere.
863     // Stub can use ip0 (== x16) to calculate address
864     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
865     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
866     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
867     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
868     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
869 
870     return Addr;
871   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
872     // TODO: There is only ARM far stub now. We should add the Thumb stub,
873     // and stubs for branches Thumb - ARM and ARM - Thumb.
874     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
875     return Addr + 4;
876   } else if (IsMipsO32ABI || IsMipsN32ABI) {
877     // 0:   3c190000        lui     t9,%hi(addr).
878     // 4:   27390000        addiu   t9,t9,%lo(addr).
879     // 8:   03200008        jr      t9.
880     // c:   00000000        nop.
881     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
882     const unsigned NopInstr = 0x0;
883     unsigned JrT9Instr = 0x03200008;
884     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
885         (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
886       JrT9Instr = 0x03200009;
887 
888     writeBytesUnaligned(LuiT9Instr, Addr, 4);
889     writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
890     writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
891     writeBytesUnaligned(NopInstr, Addr + 12, 4);
892     return Addr;
893   } else if (IsMipsN64ABI) {
894     // 0:   3c190000        lui     t9,%highest(addr).
895     // 4:   67390000        daddiu  t9,t9,%higher(addr).
896     // 8:   0019CC38        dsll    t9,t9,16.
897     // c:   67390000        daddiu  t9,t9,%hi(addr).
898     // 10:  0019CC38        dsll    t9,t9,16.
899     // 14:  67390000        daddiu  t9,t9,%lo(addr).
900     // 18:  03200008        jr      t9.
901     // 1c:  00000000        nop.
902     const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
903                    DsllT9Instr = 0x19CC38;
904     const unsigned NopInstr = 0x0;
905     unsigned JrT9Instr = 0x03200008;
906     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
907       JrT9Instr = 0x03200009;
908 
909     writeBytesUnaligned(LuiT9Instr, Addr, 4);
910     writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
911     writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
912     writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
913     writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
914     writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
915     writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
916     writeBytesUnaligned(NopInstr, Addr + 28, 4);
917     return Addr;
918   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
919     // Depending on which version of the ELF ABI is in use, we need to
920     // generate one of two variants of the stub.  They both start with
921     // the same sequence to load the target address into r12.
922     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
923     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
924     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
925     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
926     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
927     if (AbiVariant == 2) {
928       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
929       // The address is already in r12 as required by the ABI.  Branch to it.
930       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
931       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
932       writeInt32BE(Addr+28, 0x4E800420); // bctr
933     } else {
934       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
935       // Load the function address on r11 and sets it to control register. Also
936       // loads the function TOC in r2 and environment pointer to r11.
937       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
938       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
939       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
940       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
941       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
942       writeInt32BE(Addr+40, 0x4E800420); // bctr
943     }
944     return Addr;
945   } else if (Arch == Triple::systemz) {
946     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
947     writeInt16BE(Addr+2,  0x0000);
948     writeInt16BE(Addr+4,  0x0004);
949     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
950     // 8-byte address stored at Addr + 8
951     return Addr;
952   } else if (Arch == Triple::x86_64) {
953     *Addr      = 0xFF; // jmp
954     *(Addr+1)  = 0x25; // rip
955     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
956   } else if (Arch == Triple::x86) {
957     *Addr      = 0xE9; // 32-bit pc-relative jump.
958   }
959   return Addr;
960 }
961 
962 // Assign an address to a symbol name and resolve all the relocations
963 // associated with it.
reassignSectionAddress(unsigned SectionID,uint64_t Addr)964 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
965                                              uint64_t Addr) {
966   // The address to use for relocation resolution is not
967   // the address of the local section buffer. We must be doing
968   // a remote execution environment of some sort. Relocations can't
969   // be applied until all the sections have been moved.  The client must
970   // trigger this with a call to MCJIT::finalize() or
971   // RuntimeDyld::resolveRelocations().
972   //
973   // Addr is a uint64_t because we can't assume the pointer width
974   // of the target is the same as that of the host. Just use a generic
975   // "big enough" type.
976   LLVM_DEBUG(
977       dbgs() << "Reassigning address for section " << SectionID << " ("
978              << Sections[SectionID].getName() << "): "
979              << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
980              << " -> " << format("0x%016" PRIx64, Addr) << "\n");
981   Sections[SectionID].setLoadAddress(Addr);
982 }
983 
resolveRelocationList(const RelocationList & Relocs,uint64_t Value)984 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
985                                             uint64_t Value) {
986   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
987     const RelocationEntry &RE = Relocs[i];
988     // Ignore relocations for sections that were not loaded
989     if (Sections[RE.SectionID].getAddress() == nullptr)
990       continue;
991     resolveRelocation(RE, Value);
992   }
993 }
994 
resolveExternalSymbols()995 Error RuntimeDyldImpl::resolveExternalSymbols() {
996   StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
997 
998   // Resolution can trigger emission of more symbols, so iterate until
999   // we've resolved *everything*.
1000   {
1001     JITSymbolResolver::LookupSet ResolvedSymbols;
1002 
1003     while (true) {
1004       JITSymbolResolver::LookupSet NewSymbols;
1005 
1006       for (auto &RelocKV : ExternalSymbolRelocations) {
1007         StringRef Name = RelocKV.first();
1008         if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1009             !ResolvedSymbols.count(Name))
1010           NewSymbols.insert(Name);
1011       }
1012 
1013       if (NewSymbols.empty())
1014         break;
1015 
1016       auto NewResolverResults = Resolver.lookup(NewSymbols);
1017       if (!NewResolverResults)
1018         return NewResolverResults.takeError();
1019 
1020       assert(NewResolverResults->size() == NewSymbols.size() &&
1021              "Should have errored on unresolved symbols");
1022 
1023       for (auto &RRKV : *NewResolverResults) {
1024         assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1025         ExternalSymbolMap.insert(RRKV);
1026         ResolvedSymbols.insert(RRKV.first);
1027       }
1028     }
1029   }
1030 
1031   while (!ExternalSymbolRelocations.empty()) {
1032 
1033     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1034 
1035     StringRef Name = i->first();
1036     if (Name.size() == 0) {
1037       // This is an absolute symbol, use an address of zero.
1038       LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1039                         << "\n");
1040       RelocationList &Relocs = i->second;
1041       resolveRelocationList(Relocs, 0);
1042     } else {
1043       uint64_t Addr = 0;
1044       JITSymbolFlags Flags;
1045       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1046       if (Loc == GlobalSymbolTable.end()) {
1047         auto RRI = ExternalSymbolMap.find(Name);
1048         assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1049         Addr = RRI->second.getAddress();
1050         Flags = RRI->second.getFlags();
1051         // The call to getSymbolAddress may have caused additional modules to
1052         // be loaded, which may have added new entries to the
1053         // ExternalSymbolRelocations map.  Consquently, we need to update our
1054         // iterator.  This is also why retrieval of the relocation list
1055         // associated with this symbol is deferred until below this point.
1056         // New entries may have been added to the relocation list.
1057         i = ExternalSymbolRelocations.find(Name);
1058       } else {
1059         // We found the symbol in our global table.  It was probably in a
1060         // Module that we loaded previously.
1061         const auto &SymInfo = Loc->second;
1062         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1063                SymInfo.getOffset();
1064         Flags = SymInfo.getFlags();
1065       }
1066 
1067       // FIXME: Implement error handling that doesn't kill the host program!
1068       if (!Addr)
1069         report_fatal_error("Program used external function '" + Name +
1070                            "' which could not be resolved!");
1071 
1072       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1073       // manually and we shouldn't resolve its relocations.
1074       if (Addr != UINT64_MAX) {
1075 
1076         // Tweak the address based on the symbol flags if necessary.
1077         // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1078         // if the target symbol is Thumb.
1079         Addr = modifyAddressBasedOnFlags(Addr, Flags);
1080 
1081         LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1082                           << format("0x%lx", Addr) << "\n");
1083         // This list may have been updated when we called getSymbolAddress, so
1084         // don't change this code to get the list earlier.
1085         RelocationList &Relocs = i->second;
1086         resolveRelocationList(Relocs, Addr);
1087       }
1088     }
1089 
1090     ExternalSymbolRelocations.erase(i);
1091   }
1092 
1093   return Error::success();
1094 }
1095 
1096 //===----------------------------------------------------------------------===//
1097 // RuntimeDyld class implementation
1098 
getSectionLoadAddress(const object::SectionRef & Sec) const1099 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1100                                           const object::SectionRef &Sec) const {
1101 
1102   auto I = ObjSecToIDMap.find(Sec);
1103   if (I != ObjSecToIDMap.end())
1104     return RTDyld.Sections[I->second].getLoadAddress();
1105 
1106   return 0;
1107 }
1108 
anchor()1109 void RuntimeDyld::MemoryManager::anchor() {}
anchor()1110 void JITSymbolResolver::anchor() {}
anchor()1111 void LegacyJITSymbolResolver::anchor() {}
1112 
RuntimeDyld(RuntimeDyld::MemoryManager & MemMgr,JITSymbolResolver & Resolver)1113 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1114                          JITSymbolResolver &Resolver)
1115     : MemMgr(MemMgr), Resolver(Resolver) {
1116   // FIXME: There's a potential issue lurking here if a single instance of
1117   // RuntimeDyld is used to load multiple objects.  The current implementation
1118   // associates a single memory manager with a RuntimeDyld instance.  Even
1119   // though the public class spawns a new 'impl' instance for each load,
1120   // they share a single memory manager.  This can become a problem when page
1121   // permissions are applied.
1122   Dyld = nullptr;
1123   ProcessAllSections = false;
1124   Checker = nullptr;
1125 }
1126 
~RuntimeDyld()1127 RuntimeDyld::~RuntimeDyld() {}
1128 
1129 static std::unique_ptr<RuntimeDyldCOFF>
createRuntimeDyldCOFF(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,JITSymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyldCheckerImpl * Checker)1130 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1131                       JITSymbolResolver &Resolver, bool ProcessAllSections,
1132                       RuntimeDyldCheckerImpl *Checker) {
1133   std::unique_ptr<RuntimeDyldCOFF> Dyld =
1134     RuntimeDyldCOFF::create(Arch, MM, Resolver);
1135   Dyld->setProcessAllSections(ProcessAllSections);
1136   Dyld->setRuntimeDyldChecker(Checker);
1137   return Dyld;
1138 }
1139 
1140 static std::unique_ptr<RuntimeDyldELF>
createRuntimeDyldELF(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,JITSymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyldCheckerImpl * Checker)1141 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1142                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1143                      RuntimeDyldCheckerImpl *Checker) {
1144   std::unique_ptr<RuntimeDyldELF> Dyld =
1145       RuntimeDyldELF::create(Arch, MM, Resolver);
1146   Dyld->setProcessAllSections(ProcessAllSections);
1147   Dyld->setRuntimeDyldChecker(Checker);
1148   return Dyld;
1149 }
1150 
1151 static std::unique_ptr<RuntimeDyldMachO>
createRuntimeDyldMachO(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,JITSymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyldCheckerImpl * Checker)1152 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1153                        JITSymbolResolver &Resolver,
1154                        bool ProcessAllSections,
1155                        RuntimeDyldCheckerImpl *Checker) {
1156   std::unique_ptr<RuntimeDyldMachO> Dyld =
1157     RuntimeDyldMachO::create(Arch, MM, Resolver);
1158   Dyld->setProcessAllSections(ProcessAllSections);
1159   Dyld->setRuntimeDyldChecker(Checker);
1160   return Dyld;
1161 }
1162 
1163 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const ObjectFile & Obj)1164 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1165   if (!Dyld) {
1166     if (Obj.isELF())
1167       Dyld =
1168           createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1169                                MemMgr, Resolver, ProcessAllSections, Checker);
1170     else if (Obj.isMachO())
1171       Dyld = createRuntimeDyldMachO(
1172                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1173                ProcessAllSections, Checker);
1174     else if (Obj.isCOFF())
1175       Dyld = createRuntimeDyldCOFF(
1176                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1177                ProcessAllSections, Checker);
1178     else
1179       report_fatal_error("Incompatible object format!");
1180   }
1181 
1182   if (!Dyld->isCompatibleFile(Obj))
1183     report_fatal_error("Incompatible object format!");
1184 
1185   auto LoadedObjInfo = Dyld->loadObject(Obj);
1186   MemMgr.notifyObjectLoaded(*this, Obj);
1187   return LoadedObjInfo;
1188 }
1189 
getSymbolLocalAddress(StringRef Name) const1190 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1191   if (!Dyld)
1192     return nullptr;
1193   return Dyld->getSymbolLocalAddress(Name);
1194 }
1195 
getSymbol(StringRef Name) const1196 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1197   if (!Dyld)
1198     return nullptr;
1199   return Dyld->getSymbol(Name);
1200 }
1201 
getSymbolTable() const1202 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1203   if (!Dyld)
1204     return std::map<StringRef, JITEvaluatedSymbol>();
1205   return Dyld->getSymbolTable();
1206 }
1207 
resolveRelocations()1208 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1209 
reassignSectionAddress(unsigned SectionID,uint64_t Addr)1210 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1211   Dyld->reassignSectionAddress(SectionID, Addr);
1212 }
1213 
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)1214 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1215                                     uint64_t TargetAddress) {
1216   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1217 }
1218 
hasError()1219 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1220 
getErrorString()1221 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1222 
finalizeWithMemoryManagerLocking()1223 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1224   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1225   MemMgr.FinalizationLocked = true;
1226   resolveRelocations();
1227   registerEHFrames();
1228   if (!MemoryFinalizationLocked) {
1229     MemMgr.finalizeMemory();
1230     MemMgr.FinalizationLocked = false;
1231   }
1232 }
1233 
registerEHFrames()1234 void RuntimeDyld::registerEHFrames() {
1235   if (Dyld)
1236     Dyld->registerEHFrames();
1237 }
1238 
deregisterEHFrames()1239 void RuntimeDyld::deregisterEHFrames() {
1240   if (Dyld)
1241     Dyld->deregisterEHFrames();
1242 }
1243 
1244 } // end namespace llvm
1245