1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
15 #include "RuntimeDyldCOFF.h"
16 #include "RuntimeDyldCheckerImpl.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Object/COFF.h"
21 #include "llvm/Object/ELFObjectFile.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/MutexGuard.h"
25
26 using namespace llvm;
27 using namespace llvm::object;
28
29 #define DEBUG_TYPE "dyld"
30
31 namespace {
32
33 enum RuntimeDyldErrorCode {
34 GenericRTDyldError = 1
35 };
36
37 // FIXME: This class is only here to support the transition to llvm::Error. It
38 // will be removed once this transition is complete. Clients should prefer to
39 // deal with the Error value directly, rather than converting to error_code.
40 class RuntimeDyldErrorCategory : public std::error_category {
41 public:
name() const42 const char *name() const noexcept override { return "runtimedyld"; }
43
message(int Condition) const44 std::string message(int Condition) const override {
45 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
46 case GenericRTDyldError: return "Generic RuntimeDyld error";
47 }
48 llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
49 }
50 };
51
52 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
53
54 }
55
56 char RuntimeDyldError::ID = 0;
57
log(raw_ostream & OS) const58 void RuntimeDyldError::log(raw_ostream &OS) const {
59 OS << ErrMsg << "\n";
60 }
61
convertToErrorCode() const62 std::error_code RuntimeDyldError::convertToErrorCode() const {
63 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
64 }
65
66 // Empty out-of-line virtual destructor as the key function.
~RuntimeDyldImpl()67 RuntimeDyldImpl::~RuntimeDyldImpl() {}
68
69 // Pin LoadedObjectInfo's vtables to this file.
anchor()70 void RuntimeDyld::LoadedObjectInfo::anchor() {}
71
72 namespace llvm {
73
registerEHFrames()74 void RuntimeDyldImpl::registerEHFrames() {}
75
deregisterEHFrames()76 void RuntimeDyldImpl::deregisterEHFrames() {
77 MemMgr.deregisterEHFrames();
78 }
79
80 #ifndef NDEBUG
dumpSectionMemory(const SectionEntry & S,StringRef State)81 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
82 dbgs() << "----- Contents of section " << S.getName() << " " << State
83 << " -----";
84
85 if (S.getAddress() == nullptr) {
86 dbgs() << "\n <section not emitted>\n";
87 return;
88 }
89
90 const unsigned ColsPerRow = 16;
91
92 uint8_t *DataAddr = S.getAddress();
93 uint64_t LoadAddr = S.getLoadAddress();
94
95 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
96 unsigned BytesRemaining = S.getSize();
97
98 if (StartPadding) {
99 dbgs() << "\n" << format("0x%016" PRIx64,
100 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
101 while (StartPadding--)
102 dbgs() << " ";
103 }
104
105 while (BytesRemaining > 0) {
106 if ((LoadAddr & (ColsPerRow - 1)) == 0)
107 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
108
109 dbgs() << " " << format("%02x", *DataAddr);
110
111 ++DataAddr;
112 ++LoadAddr;
113 --BytesRemaining;
114 }
115
116 dbgs() << "\n";
117 }
118 #endif
119
120 // Resolve the relocations for all symbols we currently know about.
resolveRelocations()121 void RuntimeDyldImpl::resolveRelocations() {
122 MutexGuard locked(lock);
123
124 // Print out the sections prior to relocation.
125 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
126 dumpSectionMemory(Sections[i], "before relocations"););
127
128 // First, resolve relocations associated with external symbols.
129 if (auto Err = resolveExternalSymbols()) {
130 HasError = true;
131 ErrorStr = toString(std::move(Err));
132 }
133
134 // Iterate over all outstanding relocations
135 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
136 // The Section here (Sections[i]) refers to the section in which the
137 // symbol for the relocation is located. The SectionID in the relocation
138 // entry provides the section to which the relocation will be applied.
139 int Idx = it->first;
140 uint64_t Addr = Sections[Idx].getLoadAddress();
141 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
142 << format("%p", (uintptr_t)Addr) << "\n");
143 resolveRelocationList(it->second, Addr);
144 }
145 Relocations.clear();
146
147 // Print out sections after relocation.
148 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
149 dumpSectionMemory(Sections[i], "after relocations"););
150 }
151
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)152 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
153 uint64_t TargetAddress) {
154 MutexGuard locked(lock);
155 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
156 if (Sections[i].getAddress() == LocalAddress) {
157 reassignSectionAddress(i, TargetAddress);
158 return;
159 }
160 }
161 llvm_unreachable("Attempting to remap address of unknown section!");
162 }
163
getOffset(const SymbolRef & Sym,SectionRef Sec,uint64_t & Result)164 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
165 uint64_t &Result) {
166 Expected<uint64_t> AddressOrErr = Sym.getAddress();
167 if (!AddressOrErr)
168 return AddressOrErr.takeError();
169 Result = *AddressOrErr - Sec.getAddress();
170 return Error::success();
171 }
172
173 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
loadObjectImpl(const object::ObjectFile & Obj)174 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
175 MutexGuard locked(lock);
176
177 // Save information about our target
178 Arch = (Triple::ArchType)Obj.getArch();
179 IsTargetLittleEndian = Obj.isLittleEndian();
180 setMipsABI(Obj);
181
182 // Compute the memory size required to load all sections to be loaded
183 // and pass this information to the memory manager
184 if (MemMgr.needsToReserveAllocationSpace()) {
185 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
186 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
187 if (auto Err = computeTotalAllocSize(Obj,
188 CodeSize, CodeAlign,
189 RODataSize, RODataAlign,
190 RWDataSize, RWDataAlign))
191 return std::move(Err);
192 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
193 RWDataSize, RWDataAlign);
194 }
195
196 // Used sections from the object file
197 ObjSectionToIDMap LocalSections;
198
199 // Common symbols requiring allocation, with their sizes and alignments
200 CommonSymbolList CommonSymbolsToAllocate;
201
202 uint64_t CommonSize = 0;
203 uint32_t CommonAlign = 0;
204
205 // First, collect all weak and common symbols. We need to know if stronger
206 // definitions occur elsewhere.
207 JITSymbolResolver::LookupFlagsResult SymbolFlags;
208 {
209 JITSymbolResolver::LookupSet Symbols;
210 for (auto &Sym : Obj.symbols()) {
211 uint32_t Flags = Sym.getFlags();
212 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
213 // Get symbol name.
214 if (auto NameOrErr = Sym.getName())
215 Symbols.insert(*NameOrErr);
216 else
217 return NameOrErr.takeError();
218 }
219 }
220
221 if (auto FlagsResultOrErr = Resolver.lookupFlags(Symbols))
222 SymbolFlags = std::move(*FlagsResultOrErr);
223 else
224 return FlagsResultOrErr.takeError();
225 }
226
227 // Parse symbols
228 LLVM_DEBUG(dbgs() << "Parse symbols:\n");
229 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
230 ++I) {
231 uint32_t Flags = I->getFlags();
232
233 // Skip undefined symbols.
234 if (Flags & SymbolRef::SF_Undefined)
235 continue;
236
237 // Get the symbol type.
238 object::SymbolRef::Type SymType;
239 if (auto SymTypeOrErr = I->getType())
240 SymType = *SymTypeOrErr;
241 else
242 return SymTypeOrErr.takeError();
243
244 // Get symbol name.
245 StringRef Name;
246 if (auto NameOrErr = I->getName())
247 Name = *NameOrErr;
248 else
249 return NameOrErr.takeError();
250
251 // Compute JIT symbol flags.
252 JITSymbolFlags JITSymFlags = getJITSymbolFlags(*I);
253
254 // If this is a weak definition, check to see if there's a strong one.
255 // If there is, skip this symbol (we won't be providing it: the strong
256 // definition will). If there's no strong definition, make this definition
257 // strong.
258 if (JITSymFlags.isWeak() || JITSymFlags.isCommon()) {
259 // First check whether there's already a definition in this instance.
260 // FIXME: Override existing weak definitions with strong ones.
261 if (GlobalSymbolTable.count(Name))
262 continue;
263
264 // Then check whether we found flags for an existing symbol during the
265 // flags lookup earlier.
266 auto FlagsI = SymbolFlags.find(Name);
267 if (FlagsI == SymbolFlags.end() ||
268 (JITSymFlags.isWeak() && !FlagsI->second.isStrong()) ||
269 (JITSymFlags.isCommon() && FlagsI->second.isCommon())) {
270 if (JITSymFlags.isWeak())
271 JITSymFlags &= ~JITSymbolFlags::Weak;
272 if (JITSymFlags.isCommon()) {
273 JITSymFlags &= ~JITSymbolFlags::Common;
274 uint32_t Align = I->getAlignment();
275 uint64_t Size = I->getCommonSize();
276 if (!CommonAlign)
277 CommonAlign = Align;
278 CommonSize = alignTo(CommonSize, Align) + Size;
279 CommonSymbolsToAllocate.push_back(*I);
280 }
281 } else
282 continue;
283 }
284
285 if (Flags & SymbolRef::SF_Absolute &&
286 SymType != object::SymbolRef::ST_File) {
287 uint64_t Addr = 0;
288 if (auto AddrOrErr = I->getAddress())
289 Addr = *AddrOrErr;
290 else
291 return AddrOrErr.takeError();
292
293 unsigned SectionID = AbsoluteSymbolSection;
294
295 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
296 << " SID: " << SectionID
297 << " Offset: " << format("%p", (uintptr_t)Addr)
298 << " flags: " << Flags << "\n");
299 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, JITSymFlags);
300 } else if (SymType == object::SymbolRef::ST_Function ||
301 SymType == object::SymbolRef::ST_Data ||
302 SymType == object::SymbolRef::ST_Unknown ||
303 SymType == object::SymbolRef::ST_Other) {
304
305 section_iterator SI = Obj.section_end();
306 if (auto SIOrErr = I->getSection())
307 SI = *SIOrErr;
308 else
309 return SIOrErr.takeError();
310
311 if (SI == Obj.section_end())
312 continue;
313
314 // Get symbol offset.
315 uint64_t SectOffset;
316 if (auto Err = getOffset(*I, *SI, SectOffset))
317 return std::move(Err);
318
319 bool IsCode = SI->isText();
320 unsigned SectionID;
321 if (auto SectionIDOrErr =
322 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
323 SectionID = *SectionIDOrErr;
324 else
325 return SectionIDOrErr.takeError();
326
327 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
328 << " SID: " << SectionID
329 << " Offset: " << format("%p", (uintptr_t)SectOffset)
330 << " flags: " << Flags << "\n");
331 GlobalSymbolTable[Name] =
332 SymbolTableEntry(SectionID, SectOffset, JITSymFlags);
333 }
334 }
335
336 // Allocate common symbols
337 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
338 CommonAlign))
339 return std::move(Err);
340
341 // Parse and process relocations
342 LLVM_DEBUG(dbgs() << "Parse relocations:\n");
343 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
344 SI != SE; ++SI) {
345 StubMap Stubs;
346 section_iterator RelocatedSection = SI->getRelocatedSection();
347
348 if (RelocatedSection == SE)
349 continue;
350
351 relocation_iterator I = SI->relocation_begin();
352 relocation_iterator E = SI->relocation_end();
353
354 if (I == E && !ProcessAllSections)
355 continue;
356
357 bool IsCode = RelocatedSection->isText();
358 unsigned SectionID = 0;
359 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
360 LocalSections))
361 SectionID = *SectionIDOrErr;
362 else
363 return SectionIDOrErr.takeError();
364
365 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
366
367 for (; I != E;)
368 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
369 I = *IOrErr;
370 else
371 return IOrErr.takeError();
372
373 // If there is an attached checker, notify it about the stubs for this
374 // section so that they can be verified.
375 if (Checker)
376 Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
377 }
378
379 // Give the subclasses a chance to tie-up any loose ends.
380 if (auto Err = finalizeLoad(Obj, LocalSections))
381 return std::move(Err);
382
383 // for (auto E : LocalSections)
384 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
385
386 return LocalSections;
387 }
388
389 // A helper method for computeTotalAllocSize.
390 // Computes the memory size required to allocate sections with the given sizes,
391 // assuming that all sections are allocated with the given alignment
392 static uint64_t
computeAllocationSizeForSections(std::vector<uint64_t> & SectionSizes,uint64_t Alignment)393 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
394 uint64_t Alignment) {
395 uint64_t TotalSize = 0;
396 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
397 uint64_t AlignedSize =
398 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
399 TotalSize += AlignedSize;
400 }
401 return TotalSize;
402 }
403
isRequiredForExecution(const SectionRef Section)404 static bool isRequiredForExecution(const SectionRef Section) {
405 const ObjectFile *Obj = Section.getObject();
406 if (isa<object::ELFObjectFileBase>(Obj))
407 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
408 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
409 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
410 // Avoid loading zero-sized COFF sections.
411 // In PE files, VirtualSize gives the section size, and SizeOfRawData
412 // may be zero for sections with content. In Obj files, SizeOfRawData
413 // gives the section size, and VirtualSize is always zero. Hence
414 // the need to check for both cases below.
415 bool HasContent =
416 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
417 bool IsDiscardable =
418 CoffSection->Characteristics &
419 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
420 return HasContent && !IsDiscardable;
421 }
422
423 assert(isa<MachOObjectFile>(Obj));
424 return true;
425 }
426
isReadOnlyData(const SectionRef Section)427 static bool isReadOnlyData(const SectionRef Section) {
428 const ObjectFile *Obj = Section.getObject();
429 if (isa<object::ELFObjectFileBase>(Obj))
430 return !(ELFSectionRef(Section).getFlags() &
431 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
432 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
433 return ((COFFObj->getCOFFSection(Section)->Characteristics &
434 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
435 | COFF::IMAGE_SCN_MEM_READ
436 | COFF::IMAGE_SCN_MEM_WRITE))
437 ==
438 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
439 | COFF::IMAGE_SCN_MEM_READ));
440
441 assert(isa<MachOObjectFile>(Obj));
442 return false;
443 }
444
isZeroInit(const SectionRef Section)445 static bool isZeroInit(const SectionRef Section) {
446 const ObjectFile *Obj = Section.getObject();
447 if (isa<object::ELFObjectFileBase>(Obj))
448 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
449 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
450 return COFFObj->getCOFFSection(Section)->Characteristics &
451 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
452
453 auto *MachO = cast<MachOObjectFile>(Obj);
454 unsigned SectionType = MachO->getSectionType(Section);
455 return SectionType == MachO::S_ZEROFILL ||
456 SectionType == MachO::S_GB_ZEROFILL;
457 }
458
459 // Compute an upper bound of the memory size that is required to load all
460 // sections
computeTotalAllocSize(const ObjectFile & Obj,uint64_t & CodeSize,uint32_t & CodeAlign,uint64_t & RODataSize,uint32_t & RODataAlign,uint64_t & RWDataSize,uint32_t & RWDataAlign)461 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
462 uint64_t &CodeSize,
463 uint32_t &CodeAlign,
464 uint64_t &RODataSize,
465 uint32_t &RODataAlign,
466 uint64_t &RWDataSize,
467 uint32_t &RWDataAlign) {
468 // Compute the size of all sections required for execution
469 std::vector<uint64_t> CodeSectionSizes;
470 std::vector<uint64_t> ROSectionSizes;
471 std::vector<uint64_t> RWSectionSizes;
472
473 // Collect sizes of all sections to be loaded;
474 // also determine the max alignment of all sections
475 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
476 SI != SE; ++SI) {
477 const SectionRef &Section = *SI;
478
479 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
480
481 // Consider only the sections that are required to be loaded for execution
482 if (IsRequired) {
483 uint64_t DataSize = Section.getSize();
484 uint64_t Alignment64 = Section.getAlignment();
485 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
486 bool IsCode = Section.isText();
487 bool IsReadOnly = isReadOnlyData(Section);
488
489 StringRef Name;
490 if (auto EC = Section.getName(Name))
491 return errorCodeToError(EC);
492
493 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
494 uint64_t SectionSize = DataSize + StubBufSize;
495
496 // The .eh_frame section (at least on Linux) needs an extra four bytes
497 // padded
498 // with zeroes added at the end. For MachO objects, this section has a
499 // slightly different name, so this won't have any effect for MachO
500 // objects.
501 if (Name == ".eh_frame")
502 SectionSize += 4;
503
504 if (!SectionSize)
505 SectionSize = 1;
506
507 if (IsCode) {
508 CodeAlign = std::max(CodeAlign, Alignment);
509 CodeSectionSizes.push_back(SectionSize);
510 } else if (IsReadOnly) {
511 RODataAlign = std::max(RODataAlign, Alignment);
512 ROSectionSizes.push_back(SectionSize);
513 } else {
514 RWDataAlign = std::max(RWDataAlign, Alignment);
515 RWSectionSizes.push_back(SectionSize);
516 }
517 }
518 }
519
520 // Compute Global Offset Table size. If it is not zero we
521 // also update alignment, which is equal to a size of a
522 // single GOT entry.
523 if (unsigned GotSize = computeGOTSize(Obj)) {
524 RWSectionSizes.push_back(GotSize);
525 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
526 }
527
528 // Compute the size of all common symbols
529 uint64_t CommonSize = 0;
530 uint32_t CommonAlign = 1;
531 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
532 ++I) {
533 uint32_t Flags = I->getFlags();
534 if (Flags & SymbolRef::SF_Common) {
535 // Add the common symbols to a list. We'll allocate them all below.
536 uint64_t Size = I->getCommonSize();
537 uint32_t Align = I->getAlignment();
538 // If this is the first common symbol, use its alignment as the alignment
539 // for the common symbols section.
540 if (CommonSize == 0)
541 CommonAlign = Align;
542 CommonSize = alignTo(CommonSize, Align) + Size;
543 }
544 }
545 if (CommonSize != 0) {
546 RWSectionSizes.push_back(CommonSize);
547 RWDataAlign = std::max(RWDataAlign, CommonAlign);
548 }
549
550 // Compute the required allocation space for each different type of sections
551 // (code, read-only data, read-write data) assuming that all sections are
552 // allocated with the max alignment. Note that we cannot compute with the
553 // individual alignments of the sections, because then the required size
554 // depends on the order, in which the sections are allocated.
555 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
556 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
557 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
558
559 return Error::success();
560 }
561
562 // compute GOT size
computeGOTSize(const ObjectFile & Obj)563 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
564 size_t GotEntrySize = getGOTEntrySize();
565 if (!GotEntrySize)
566 return 0;
567
568 size_t GotSize = 0;
569 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
570 SI != SE; ++SI) {
571
572 for (const RelocationRef &Reloc : SI->relocations())
573 if (relocationNeedsGot(Reloc))
574 GotSize += GotEntrySize;
575 }
576
577 return GotSize;
578 }
579
580 // compute stub buffer size for the given section
computeSectionStubBufSize(const ObjectFile & Obj,const SectionRef & Section)581 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
582 const SectionRef &Section) {
583 unsigned StubSize = getMaxStubSize();
584 if (StubSize == 0) {
585 return 0;
586 }
587 // FIXME: this is an inefficient way to handle this. We should computed the
588 // necessary section allocation size in loadObject by walking all the sections
589 // once.
590 unsigned StubBufSize = 0;
591 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
592 SI != SE; ++SI) {
593 section_iterator RelSecI = SI->getRelocatedSection();
594 if (!(RelSecI == Section))
595 continue;
596
597 for (const RelocationRef &Reloc : SI->relocations())
598 if (relocationNeedsStub(Reloc))
599 StubBufSize += StubSize;
600 }
601
602 // Get section data size and alignment
603 uint64_t DataSize = Section.getSize();
604 uint64_t Alignment64 = Section.getAlignment();
605
606 // Add stubbuf size alignment
607 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
608 unsigned StubAlignment = getStubAlignment();
609 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
610 if (StubAlignment > EndAlignment)
611 StubBufSize += StubAlignment - EndAlignment;
612 return StubBufSize;
613 }
614
readBytesUnaligned(uint8_t * Src,unsigned Size) const615 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
616 unsigned Size) const {
617 uint64_t Result = 0;
618 if (IsTargetLittleEndian) {
619 Src += Size - 1;
620 while (Size--)
621 Result = (Result << 8) | *Src--;
622 } else
623 while (Size--)
624 Result = (Result << 8) | *Src++;
625
626 return Result;
627 }
628
writeBytesUnaligned(uint64_t Value,uint8_t * Dst,unsigned Size) const629 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
630 unsigned Size) const {
631 if (IsTargetLittleEndian) {
632 while (Size--) {
633 *Dst++ = Value & 0xFF;
634 Value >>= 8;
635 }
636 } else {
637 Dst += Size - 1;
638 while (Size--) {
639 *Dst-- = Value & 0xFF;
640 Value >>= 8;
641 }
642 }
643 }
644
getJITSymbolFlags(const BasicSymbolRef & SR)645 JITSymbolFlags RuntimeDyldImpl::getJITSymbolFlags(const BasicSymbolRef &SR) {
646 return JITSymbolFlags::fromObjectSymbol(SR);
647 }
648
emitCommonSymbols(const ObjectFile & Obj,CommonSymbolList & SymbolsToAllocate,uint64_t CommonSize,uint32_t CommonAlign)649 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
650 CommonSymbolList &SymbolsToAllocate,
651 uint64_t CommonSize,
652 uint32_t CommonAlign) {
653 if (SymbolsToAllocate.empty())
654 return Error::success();
655
656 // Allocate memory for the section
657 unsigned SectionID = Sections.size();
658 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
659 "<common symbols>", false);
660 if (!Addr)
661 report_fatal_error("Unable to allocate memory for common symbols!");
662 uint64_t Offset = 0;
663 Sections.push_back(
664 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
665 memset(Addr, 0, CommonSize);
666
667 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
668 << " new addr: " << format("%p", Addr)
669 << " DataSize: " << CommonSize << "\n");
670
671 // Assign the address of each symbol
672 for (auto &Sym : SymbolsToAllocate) {
673 uint32_t Align = Sym.getAlignment();
674 uint64_t Size = Sym.getCommonSize();
675 StringRef Name;
676 if (auto NameOrErr = Sym.getName())
677 Name = *NameOrErr;
678 else
679 return NameOrErr.takeError();
680 if (Align) {
681 // This symbol has an alignment requirement.
682 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
683 Addr += AlignOffset;
684 Offset += AlignOffset;
685 }
686 JITSymbolFlags JITSymFlags = getJITSymbolFlags(Sym);
687 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
688 << format("%p", Addr) << "\n");
689 GlobalSymbolTable[Name] =
690 SymbolTableEntry(SectionID, Offset, JITSymFlags);
691 Offset += Size;
692 Addr += Size;
693 }
694
695 if (Checker)
696 Checker->registerSection(Obj.getFileName(), SectionID);
697
698 return Error::success();
699 }
700
701 Expected<unsigned>
emitSection(const ObjectFile & Obj,const SectionRef & Section,bool IsCode)702 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
703 const SectionRef &Section,
704 bool IsCode) {
705 StringRef data;
706 uint64_t Alignment64 = Section.getAlignment();
707
708 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
709 unsigned PaddingSize = 0;
710 unsigned StubBufSize = 0;
711 bool IsRequired = isRequiredForExecution(Section);
712 bool IsVirtual = Section.isVirtual();
713 bool IsZeroInit = isZeroInit(Section);
714 bool IsReadOnly = isReadOnlyData(Section);
715 uint64_t DataSize = Section.getSize();
716
717 StringRef Name;
718 if (auto EC = Section.getName(Name))
719 return errorCodeToError(EC);
720
721 StubBufSize = computeSectionStubBufSize(Obj, Section);
722
723 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
724 // with zeroes added at the end. For MachO objects, this section has a
725 // slightly different name, so this won't have any effect for MachO objects.
726 if (Name == ".eh_frame")
727 PaddingSize = 4;
728
729 uintptr_t Allocate;
730 unsigned SectionID = Sections.size();
731 uint8_t *Addr;
732 const char *pData = nullptr;
733
734 // If this section contains any bits (i.e. isn't a virtual or bss section),
735 // grab a reference to them.
736 if (!IsVirtual && !IsZeroInit) {
737 // In either case, set the location of the unrelocated section in memory,
738 // since we still process relocations for it even if we're not applying them.
739 if (auto EC = Section.getContents(data))
740 return errorCodeToError(EC);
741 pData = data.data();
742 }
743
744 // Code section alignment needs to be at least as high as stub alignment or
745 // padding calculations may by incorrect when the section is remapped to a
746 // higher alignment.
747 if (IsCode) {
748 Alignment = std::max(Alignment, getStubAlignment());
749 if (StubBufSize > 0)
750 PaddingSize += getStubAlignment() - 1;
751 }
752
753 // Some sections, such as debug info, don't need to be loaded for execution.
754 // Process those only if explicitly requested.
755 if (IsRequired || ProcessAllSections) {
756 Allocate = DataSize + PaddingSize + StubBufSize;
757 if (!Allocate)
758 Allocate = 1;
759 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
760 Name)
761 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
762 Name, IsReadOnly);
763 if (!Addr)
764 report_fatal_error("Unable to allocate section memory!");
765
766 // Zero-initialize or copy the data from the image
767 if (IsZeroInit || IsVirtual)
768 memset(Addr, 0, DataSize);
769 else
770 memcpy(Addr, pData, DataSize);
771
772 // Fill in any extra bytes we allocated for padding
773 if (PaddingSize != 0) {
774 memset(Addr + DataSize, 0, PaddingSize);
775 // Update the DataSize variable to include padding.
776 DataSize += PaddingSize;
777
778 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
779 // have been increased above to account for this).
780 if (StubBufSize > 0)
781 DataSize &= ~(getStubAlignment() - 1);
782 }
783
784 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
785 << Name << " obj addr: " << format("%p", pData)
786 << " new addr: " << format("%p", Addr) << " DataSize: "
787 << DataSize << " StubBufSize: " << StubBufSize
788 << " Allocate: " << Allocate << "\n");
789 } else {
790 // Even if we didn't load the section, we need to record an entry for it
791 // to handle later processing (and by 'handle' I mean don't do anything
792 // with these sections).
793 Allocate = 0;
794 Addr = nullptr;
795 LLVM_DEBUG(
796 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
797 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
798 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
799 << " Allocate: " << Allocate << "\n");
800 }
801
802 Sections.push_back(
803 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
804
805 // Debug info sections are linked as if their load address was zero
806 if (!IsRequired)
807 Sections.back().setLoadAddress(0);
808
809 if (Checker)
810 Checker->registerSection(Obj.getFileName(), SectionID);
811
812 return SectionID;
813 }
814
815 Expected<unsigned>
findOrEmitSection(const ObjectFile & Obj,const SectionRef & Section,bool IsCode,ObjSectionToIDMap & LocalSections)816 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
817 const SectionRef &Section,
818 bool IsCode,
819 ObjSectionToIDMap &LocalSections) {
820
821 unsigned SectionID = 0;
822 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
823 if (i != LocalSections.end())
824 SectionID = i->second;
825 else {
826 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
827 SectionID = *SectionIDOrErr;
828 else
829 return SectionIDOrErr.takeError();
830 LocalSections[Section] = SectionID;
831 }
832 return SectionID;
833 }
834
addRelocationForSection(const RelocationEntry & RE,unsigned SectionID)835 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
836 unsigned SectionID) {
837 Relocations[SectionID].push_back(RE);
838 }
839
addRelocationForSymbol(const RelocationEntry & RE,StringRef SymbolName)840 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
841 StringRef SymbolName) {
842 // Relocation by symbol. If the symbol is found in the global symbol table,
843 // create an appropriate section relocation. Otherwise, add it to
844 // ExternalSymbolRelocations.
845 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
846 if (Loc == GlobalSymbolTable.end()) {
847 ExternalSymbolRelocations[SymbolName].push_back(RE);
848 } else {
849 // Copy the RE since we want to modify its addend.
850 RelocationEntry RECopy = RE;
851 const auto &SymInfo = Loc->second;
852 RECopy.Addend += SymInfo.getOffset();
853 Relocations[SymInfo.getSectionID()].push_back(RECopy);
854 }
855 }
856
createStubFunction(uint8_t * Addr,unsigned AbiVariant)857 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
858 unsigned AbiVariant) {
859 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
860 // This stub has to be able to access the full address space,
861 // since symbol lookup won't necessarily find a handy, in-range,
862 // PLT stub for functions which could be anywhere.
863 // Stub can use ip0 (== x16) to calculate address
864 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
865 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
866 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
867 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
868 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
869
870 return Addr;
871 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
872 // TODO: There is only ARM far stub now. We should add the Thumb stub,
873 // and stubs for branches Thumb - ARM and ARM - Thumb.
874 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
875 return Addr + 4;
876 } else if (IsMipsO32ABI || IsMipsN32ABI) {
877 // 0: 3c190000 lui t9,%hi(addr).
878 // 4: 27390000 addiu t9,t9,%lo(addr).
879 // 8: 03200008 jr t9.
880 // c: 00000000 nop.
881 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
882 const unsigned NopInstr = 0x0;
883 unsigned JrT9Instr = 0x03200008;
884 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
885 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
886 JrT9Instr = 0x03200009;
887
888 writeBytesUnaligned(LuiT9Instr, Addr, 4);
889 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
890 writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
891 writeBytesUnaligned(NopInstr, Addr + 12, 4);
892 return Addr;
893 } else if (IsMipsN64ABI) {
894 // 0: 3c190000 lui t9,%highest(addr).
895 // 4: 67390000 daddiu t9,t9,%higher(addr).
896 // 8: 0019CC38 dsll t9,t9,16.
897 // c: 67390000 daddiu t9,t9,%hi(addr).
898 // 10: 0019CC38 dsll t9,t9,16.
899 // 14: 67390000 daddiu t9,t9,%lo(addr).
900 // 18: 03200008 jr t9.
901 // 1c: 00000000 nop.
902 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
903 DsllT9Instr = 0x19CC38;
904 const unsigned NopInstr = 0x0;
905 unsigned JrT9Instr = 0x03200008;
906 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
907 JrT9Instr = 0x03200009;
908
909 writeBytesUnaligned(LuiT9Instr, Addr, 4);
910 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
911 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
912 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
913 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
914 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
915 writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
916 writeBytesUnaligned(NopInstr, Addr + 28, 4);
917 return Addr;
918 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
919 // Depending on which version of the ELF ABI is in use, we need to
920 // generate one of two variants of the stub. They both start with
921 // the same sequence to load the target address into r12.
922 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
923 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
924 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
925 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
926 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
927 if (AbiVariant == 2) {
928 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
929 // The address is already in r12 as required by the ABI. Branch to it.
930 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
931 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
932 writeInt32BE(Addr+28, 0x4E800420); // bctr
933 } else {
934 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
935 // Load the function address on r11 and sets it to control register. Also
936 // loads the function TOC in r2 and environment pointer to r11.
937 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
938 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
939 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
940 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
941 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
942 writeInt32BE(Addr+40, 0x4E800420); // bctr
943 }
944 return Addr;
945 } else if (Arch == Triple::systemz) {
946 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
947 writeInt16BE(Addr+2, 0x0000);
948 writeInt16BE(Addr+4, 0x0004);
949 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
950 // 8-byte address stored at Addr + 8
951 return Addr;
952 } else if (Arch == Triple::x86_64) {
953 *Addr = 0xFF; // jmp
954 *(Addr+1) = 0x25; // rip
955 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
956 } else if (Arch == Triple::x86) {
957 *Addr = 0xE9; // 32-bit pc-relative jump.
958 }
959 return Addr;
960 }
961
962 // Assign an address to a symbol name and resolve all the relocations
963 // associated with it.
reassignSectionAddress(unsigned SectionID,uint64_t Addr)964 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
965 uint64_t Addr) {
966 // The address to use for relocation resolution is not
967 // the address of the local section buffer. We must be doing
968 // a remote execution environment of some sort. Relocations can't
969 // be applied until all the sections have been moved. The client must
970 // trigger this with a call to MCJIT::finalize() or
971 // RuntimeDyld::resolveRelocations().
972 //
973 // Addr is a uint64_t because we can't assume the pointer width
974 // of the target is the same as that of the host. Just use a generic
975 // "big enough" type.
976 LLVM_DEBUG(
977 dbgs() << "Reassigning address for section " << SectionID << " ("
978 << Sections[SectionID].getName() << "): "
979 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
980 << " -> " << format("0x%016" PRIx64, Addr) << "\n");
981 Sections[SectionID].setLoadAddress(Addr);
982 }
983
resolveRelocationList(const RelocationList & Relocs,uint64_t Value)984 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
985 uint64_t Value) {
986 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
987 const RelocationEntry &RE = Relocs[i];
988 // Ignore relocations for sections that were not loaded
989 if (Sections[RE.SectionID].getAddress() == nullptr)
990 continue;
991 resolveRelocation(RE, Value);
992 }
993 }
994
resolveExternalSymbols()995 Error RuntimeDyldImpl::resolveExternalSymbols() {
996 StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
997
998 // Resolution can trigger emission of more symbols, so iterate until
999 // we've resolved *everything*.
1000 {
1001 JITSymbolResolver::LookupSet ResolvedSymbols;
1002
1003 while (true) {
1004 JITSymbolResolver::LookupSet NewSymbols;
1005
1006 for (auto &RelocKV : ExternalSymbolRelocations) {
1007 StringRef Name = RelocKV.first();
1008 if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1009 !ResolvedSymbols.count(Name))
1010 NewSymbols.insert(Name);
1011 }
1012
1013 if (NewSymbols.empty())
1014 break;
1015
1016 auto NewResolverResults = Resolver.lookup(NewSymbols);
1017 if (!NewResolverResults)
1018 return NewResolverResults.takeError();
1019
1020 assert(NewResolverResults->size() == NewSymbols.size() &&
1021 "Should have errored on unresolved symbols");
1022
1023 for (auto &RRKV : *NewResolverResults) {
1024 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1025 ExternalSymbolMap.insert(RRKV);
1026 ResolvedSymbols.insert(RRKV.first);
1027 }
1028 }
1029 }
1030
1031 while (!ExternalSymbolRelocations.empty()) {
1032
1033 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1034
1035 StringRef Name = i->first();
1036 if (Name.size() == 0) {
1037 // This is an absolute symbol, use an address of zero.
1038 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1039 << "\n");
1040 RelocationList &Relocs = i->second;
1041 resolveRelocationList(Relocs, 0);
1042 } else {
1043 uint64_t Addr = 0;
1044 JITSymbolFlags Flags;
1045 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1046 if (Loc == GlobalSymbolTable.end()) {
1047 auto RRI = ExternalSymbolMap.find(Name);
1048 assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1049 Addr = RRI->second.getAddress();
1050 Flags = RRI->second.getFlags();
1051 // The call to getSymbolAddress may have caused additional modules to
1052 // be loaded, which may have added new entries to the
1053 // ExternalSymbolRelocations map. Consquently, we need to update our
1054 // iterator. This is also why retrieval of the relocation list
1055 // associated with this symbol is deferred until below this point.
1056 // New entries may have been added to the relocation list.
1057 i = ExternalSymbolRelocations.find(Name);
1058 } else {
1059 // We found the symbol in our global table. It was probably in a
1060 // Module that we loaded previously.
1061 const auto &SymInfo = Loc->second;
1062 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1063 SymInfo.getOffset();
1064 Flags = SymInfo.getFlags();
1065 }
1066
1067 // FIXME: Implement error handling that doesn't kill the host program!
1068 if (!Addr)
1069 report_fatal_error("Program used external function '" + Name +
1070 "' which could not be resolved!");
1071
1072 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1073 // manually and we shouldn't resolve its relocations.
1074 if (Addr != UINT64_MAX) {
1075
1076 // Tweak the address based on the symbol flags if necessary.
1077 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1078 // if the target symbol is Thumb.
1079 Addr = modifyAddressBasedOnFlags(Addr, Flags);
1080
1081 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1082 << format("0x%lx", Addr) << "\n");
1083 // This list may have been updated when we called getSymbolAddress, so
1084 // don't change this code to get the list earlier.
1085 RelocationList &Relocs = i->second;
1086 resolveRelocationList(Relocs, Addr);
1087 }
1088 }
1089
1090 ExternalSymbolRelocations.erase(i);
1091 }
1092
1093 return Error::success();
1094 }
1095
1096 //===----------------------------------------------------------------------===//
1097 // RuntimeDyld class implementation
1098
getSectionLoadAddress(const object::SectionRef & Sec) const1099 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1100 const object::SectionRef &Sec) const {
1101
1102 auto I = ObjSecToIDMap.find(Sec);
1103 if (I != ObjSecToIDMap.end())
1104 return RTDyld.Sections[I->second].getLoadAddress();
1105
1106 return 0;
1107 }
1108
anchor()1109 void RuntimeDyld::MemoryManager::anchor() {}
anchor()1110 void JITSymbolResolver::anchor() {}
anchor()1111 void LegacyJITSymbolResolver::anchor() {}
1112
RuntimeDyld(RuntimeDyld::MemoryManager & MemMgr,JITSymbolResolver & Resolver)1113 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1114 JITSymbolResolver &Resolver)
1115 : MemMgr(MemMgr), Resolver(Resolver) {
1116 // FIXME: There's a potential issue lurking here if a single instance of
1117 // RuntimeDyld is used to load multiple objects. The current implementation
1118 // associates a single memory manager with a RuntimeDyld instance. Even
1119 // though the public class spawns a new 'impl' instance for each load,
1120 // they share a single memory manager. This can become a problem when page
1121 // permissions are applied.
1122 Dyld = nullptr;
1123 ProcessAllSections = false;
1124 Checker = nullptr;
1125 }
1126
~RuntimeDyld()1127 RuntimeDyld::~RuntimeDyld() {}
1128
1129 static std::unique_ptr<RuntimeDyldCOFF>
createRuntimeDyldCOFF(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,JITSymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyldCheckerImpl * Checker)1130 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1131 JITSymbolResolver &Resolver, bool ProcessAllSections,
1132 RuntimeDyldCheckerImpl *Checker) {
1133 std::unique_ptr<RuntimeDyldCOFF> Dyld =
1134 RuntimeDyldCOFF::create(Arch, MM, Resolver);
1135 Dyld->setProcessAllSections(ProcessAllSections);
1136 Dyld->setRuntimeDyldChecker(Checker);
1137 return Dyld;
1138 }
1139
1140 static std::unique_ptr<RuntimeDyldELF>
createRuntimeDyldELF(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,JITSymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyldCheckerImpl * Checker)1141 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1142 JITSymbolResolver &Resolver, bool ProcessAllSections,
1143 RuntimeDyldCheckerImpl *Checker) {
1144 std::unique_ptr<RuntimeDyldELF> Dyld =
1145 RuntimeDyldELF::create(Arch, MM, Resolver);
1146 Dyld->setProcessAllSections(ProcessAllSections);
1147 Dyld->setRuntimeDyldChecker(Checker);
1148 return Dyld;
1149 }
1150
1151 static std::unique_ptr<RuntimeDyldMachO>
createRuntimeDyldMachO(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,JITSymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyldCheckerImpl * Checker)1152 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1153 JITSymbolResolver &Resolver,
1154 bool ProcessAllSections,
1155 RuntimeDyldCheckerImpl *Checker) {
1156 std::unique_ptr<RuntimeDyldMachO> Dyld =
1157 RuntimeDyldMachO::create(Arch, MM, Resolver);
1158 Dyld->setProcessAllSections(ProcessAllSections);
1159 Dyld->setRuntimeDyldChecker(Checker);
1160 return Dyld;
1161 }
1162
1163 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const ObjectFile & Obj)1164 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1165 if (!Dyld) {
1166 if (Obj.isELF())
1167 Dyld =
1168 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1169 MemMgr, Resolver, ProcessAllSections, Checker);
1170 else if (Obj.isMachO())
1171 Dyld = createRuntimeDyldMachO(
1172 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1173 ProcessAllSections, Checker);
1174 else if (Obj.isCOFF())
1175 Dyld = createRuntimeDyldCOFF(
1176 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1177 ProcessAllSections, Checker);
1178 else
1179 report_fatal_error("Incompatible object format!");
1180 }
1181
1182 if (!Dyld->isCompatibleFile(Obj))
1183 report_fatal_error("Incompatible object format!");
1184
1185 auto LoadedObjInfo = Dyld->loadObject(Obj);
1186 MemMgr.notifyObjectLoaded(*this, Obj);
1187 return LoadedObjInfo;
1188 }
1189
getSymbolLocalAddress(StringRef Name) const1190 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1191 if (!Dyld)
1192 return nullptr;
1193 return Dyld->getSymbolLocalAddress(Name);
1194 }
1195
getSymbol(StringRef Name) const1196 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1197 if (!Dyld)
1198 return nullptr;
1199 return Dyld->getSymbol(Name);
1200 }
1201
getSymbolTable() const1202 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1203 if (!Dyld)
1204 return std::map<StringRef, JITEvaluatedSymbol>();
1205 return Dyld->getSymbolTable();
1206 }
1207
resolveRelocations()1208 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1209
reassignSectionAddress(unsigned SectionID,uint64_t Addr)1210 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1211 Dyld->reassignSectionAddress(SectionID, Addr);
1212 }
1213
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)1214 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1215 uint64_t TargetAddress) {
1216 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1217 }
1218
hasError()1219 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1220
getErrorString()1221 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1222
finalizeWithMemoryManagerLocking()1223 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1224 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1225 MemMgr.FinalizationLocked = true;
1226 resolveRelocations();
1227 registerEHFrames();
1228 if (!MemoryFinalizationLocked) {
1229 MemMgr.finalizeMemory();
1230 MemMgr.FinalizationLocked = false;
1231 }
1232 }
1233
registerEHFrames()1234 void RuntimeDyld::registerEHFrames() {
1235 if (Dyld)
1236 Dyld->registerEHFrames();
1237 }
1238
deregisterEHFrames()1239 void RuntimeDyld::deregisterEHFrames() {
1240 if (Dyld)
1241 Dyld->deregisterEHFrames();
1242 }
1243
1244 } // end namespace llvm
1245