• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2008-2016 Freescale Semiconductor, Inc.
4  * Copyright 2017-2018 NXP Semiconductor
5  */
6 
7 #include <common.h>
8 #include <fsl_ddr_sdram.h>
9 
10 #include <fsl_ddr.h>
11 
12 #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
13 static unsigned int
compute_cas_latency(const unsigned int ctrl_num,const dimm_params_t * dimm_params,common_timing_params_t * outpdimm,unsigned int number_of_dimms)14 compute_cas_latency(const unsigned int ctrl_num,
15 		    const dimm_params_t *dimm_params,
16 		    common_timing_params_t *outpdimm,
17 		    unsigned int number_of_dimms)
18 {
19 	unsigned int i;
20 	unsigned int common_caslat;
21 	unsigned int caslat_actual;
22 	unsigned int retry = 16;
23 	unsigned int tmp = ~0;
24 	const unsigned int mclk_ps = get_memory_clk_period_ps(ctrl_num);
25 #ifdef CONFIG_SYS_FSL_DDR3
26 	const unsigned int taamax = 20000;
27 #else
28 	const unsigned int taamax = 18000;
29 #endif
30 
31 	/* compute the common CAS latency supported between slots */
32 	for (i = 0; i < number_of_dimms; i++) {
33 		if (dimm_params[i].n_ranks)
34 			tmp &= dimm_params[i].caslat_x;
35 	}
36 	common_caslat = tmp;
37 
38 	/* validate if the memory clk is in the range of dimms */
39 	if (mclk_ps < outpdimm->tckmin_x_ps) {
40 		printf("DDR clock (MCLK cycle %u ps) is faster than "
41 			"the slowest DIMM(s) (tCKmin %u ps) can support.\n",
42 			mclk_ps, outpdimm->tckmin_x_ps);
43 	}
44 #ifdef CONFIG_SYS_FSL_DDR4
45 	if (mclk_ps > outpdimm->tckmax_ps) {
46 		printf("DDR clock (MCLK cycle %u ps) is slower than DIMM(s) (tCKmax %u ps) can support.\n",
47 		       mclk_ps, outpdimm->tckmax_ps);
48 	}
49 #endif
50 	/* determine the acutal cas latency */
51 	caslat_actual = (outpdimm->taamin_ps + mclk_ps - 1) / mclk_ps;
52 	/* check if the dimms support the CAS latency */
53 	while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
54 		caslat_actual++;
55 		retry--;
56 	}
57 	/* once the caculation of caslat_actual is completed
58 	 * we must verify that this CAS latency value does not
59 	 * exceed tAAmax, which is 20 ns for all DDR3 speed grades,
60 	 * 18ns for all DDR4 speed grades.
61 	 */
62 	if (caslat_actual * mclk_ps > taamax) {
63 		printf("The chosen cas latency %d is too large\n",
64 		       caslat_actual);
65 	}
66 	outpdimm->lowest_common_spd_caslat = caslat_actual;
67 	debug("lowest_common_spd_caslat is 0x%x\n", caslat_actual);
68 
69 	return 0;
70 }
71 #else	/* for DDR1 and DDR2 */
72 static unsigned int
compute_cas_latency(const unsigned int ctrl_num,const dimm_params_t * dimm_params,common_timing_params_t * outpdimm,unsigned int number_of_dimms)73 compute_cas_latency(const unsigned int ctrl_num,
74 		    const dimm_params_t *dimm_params,
75 		    common_timing_params_t *outpdimm,
76 		    unsigned int number_of_dimms)
77 {
78 	int i;
79 	const unsigned int mclk_ps = get_memory_clk_period_ps(ctrl_num);
80 	unsigned int lowest_good_caslat;
81 	unsigned int not_ok;
82 	unsigned int temp1, temp2;
83 
84 	debug("using mclk_ps = %u\n", mclk_ps);
85 	if (mclk_ps > outpdimm->tckmax_ps) {
86 		printf("Warning: DDR clock (%u ps) is slower than DIMM(s) (tCKmax %u ps)\n",
87 		       mclk_ps, outpdimm->tckmax_ps);
88 	}
89 
90 	/*
91 	 * Compute a CAS latency suitable for all DIMMs
92 	 *
93 	 * Strategy for SPD-defined latencies: compute only
94 	 * CAS latency defined by all DIMMs.
95 	 */
96 
97 	/*
98 	 * Step 1: find CAS latency common to all DIMMs using bitwise
99 	 * operation.
100 	 */
101 	temp1 = 0xFF;
102 	for (i = 0; i < number_of_dimms; i++) {
103 		if (dimm_params[i].n_ranks) {
104 			temp2 = 0;
105 			temp2 |= 1 << dimm_params[i].caslat_x;
106 			temp2 |= 1 << dimm_params[i].caslat_x_minus_1;
107 			temp2 |= 1 << dimm_params[i].caslat_x_minus_2;
108 			/*
109 			 * If there was no entry for X-2 (X-1) in
110 			 * the SPD, then caslat_x_minus_2
111 			 * (caslat_x_minus_1) contains either 255 or
112 			 * 0xFFFFFFFF because that's what the glorious
113 			 * __ilog2 function returns for an input of 0.
114 			 * On 32-bit PowerPC, left shift counts with bit
115 			 * 26 set (that the value of 255 or 0xFFFFFFFF
116 			 * will have), cause the destination register to
117 			 * be 0.  That is why this works.
118 			 */
119 			temp1 &= temp2;
120 		}
121 	}
122 
123 	/*
124 	 * Step 2: check each common CAS latency against tCK of each
125 	 * DIMM's SPD.
126 	 */
127 	lowest_good_caslat = 0;
128 	temp2 = 0;
129 	while (temp1) {
130 		not_ok = 0;
131 		temp2 =  __ilog2(temp1);
132 		debug("checking common caslat = %u\n", temp2);
133 
134 		/* Check if this CAS latency will work on all DIMMs at tCK. */
135 		for (i = 0; i < number_of_dimms; i++) {
136 			if (!dimm_params[i].n_ranks)
137 				continue;
138 
139 			if (dimm_params[i].caslat_x == temp2) {
140 				if (mclk_ps >= dimm_params[i].tckmin_x_ps) {
141 					debug("CL = %u ok on DIMM %u at tCK=%u ps with tCKmin_X_ps of %u\n",
142 					      temp2, i, mclk_ps,
143 					      dimm_params[i].tckmin_x_ps);
144 					continue;
145 				} else {
146 					not_ok++;
147 				}
148 			}
149 
150 			if (dimm_params[i].caslat_x_minus_1 == temp2) {
151 				unsigned int tckmin_x_minus_1_ps
152 					= dimm_params[i].tckmin_x_minus_1_ps;
153 				if (mclk_ps >= tckmin_x_minus_1_ps) {
154 					debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_1_ps of %u\n",
155 					      temp2, i, mclk_ps,
156 					      tckmin_x_minus_1_ps);
157 					continue;
158 				} else {
159 					not_ok++;
160 				}
161 			}
162 
163 			if (dimm_params[i].caslat_x_minus_2 == temp2) {
164 				unsigned int tckmin_x_minus_2_ps
165 					= dimm_params[i].tckmin_x_minus_2_ps;
166 				if (mclk_ps >= tckmin_x_minus_2_ps) {
167 					debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_2_ps of %u\n",
168 					      temp2, i, mclk_ps,
169 					      tckmin_x_minus_2_ps);
170 					continue;
171 				} else {
172 					not_ok++;
173 				}
174 			}
175 		}
176 
177 		if (!not_ok)
178 			lowest_good_caslat = temp2;
179 
180 		temp1 &= ~(1 << temp2);
181 	}
182 
183 	debug("lowest common SPD-defined CAS latency = %u\n",
184 	      lowest_good_caslat);
185 	outpdimm->lowest_common_spd_caslat = lowest_good_caslat;
186 
187 
188 	/*
189 	 * Compute a common 'de-rated' CAS latency.
190 	 *
191 	 * The strategy here is to find the *highest* dereated cas latency
192 	 * with the assumption that all of the DIMMs will support a dereated
193 	 * CAS latency higher than or equal to their lowest dereated value.
194 	 */
195 	temp1 = 0;
196 	for (i = 0; i < number_of_dimms; i++)
197 		temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
198 
199 	outpdimm->highest_common_derated_caslat = temp1;
200 	debug("highest common dereated CAS latency = %u\n", temp1);
201 
202 	return 0;
203 }
204 #endif
205 
206 /*
207  * compute_lowest_common_dimm_parameters()
208  *
209  * Determine the worst-case DIMM timing parameters from the set of DIMMs
210  * whose parameters have been computed into the array pointed to
211  * by dimm_params.
212  */
213 unsigned int
compute_lowest_common_dimm_parameters(const unsigned int ctrl_num,const dimm_params_t * dimm_params,common_timing_params_t * outpdimm,const unsigned int number_of_dimms)214 compute_lowest_common_dimm_parameters(const unsigned int ctrl_num,
215 				      const dimm_params_t *dimm_params,
216 				      common_timing_params_t *outpdimm,
217 				      const unsigned int number_of_dimms)
218 {
219 	unsigned int i, j;
220 
221 	unsigned int tckmin_x_ps = 0;
222 	unsigned int tckmax_ps = 0xFFFFFFFF;
223 	unsigned int trcd_ps = 0;
224 	unsigned int trp_ps = 0;
225 	unsigned int tras_ps = 0;
226 #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
227 	unsigned int taamin_ps = 0;
228 #endif
229 #ifdef CONFIG_SYS_FSL_DDR4
230 	unsigned int twr_ps = 15000;
231 	unsigned int trfc1_ps = 0;
232 	unsigned int trfc2_ps = 0;
233 	unsigned int trfc4_ps = 0;
234 	unsigned int trrds_ps = 0;
235 	unsigned int trrdl_ps = 0;
236 	unsigned int tccdl_ps = 0;
237 	unsigned int trfc_slr_ps = 0;
238 #else
239 	unsigned int twr_ps = 0;
240 	unsigned int twtr_ps = 0;
241 	unsigned int trfc_ps = 0;
242 	unsigned int trrd_ps = 0;
243 	unsigned int trtp_ps = 0;
244 #endif
245 	unsigned int trc_ps = 0;
246 	unsigned int refresh_rate_ps = 0;
247 	unsigned int extended_op_srt = 1;
248 #if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
249 	unsigned int tis_ps = 0;
250 	unsigned int tih_ps = 0;
251 	unsigned int tds_ps = 0;
252 	unsigned int tdh_ps = 0;
253 	unsigned int tdqsq_max_ps = 0;
254 	unsigned int tqhs_ps = 0;
255 #endif
256 	unsigned int temp1, temp2;
257 	unsigned int additive_latency = 0;
258 
259 	temp1 = 0;
260 	for (i = 0; i < number_of_dimms; i++) {
261 		/*
262 		 * If there are no ranks on this DIMM,
263 		 * it probably doesn't exist, so skip it.
264 		 */
265 		if (dimm_params[i].n_ranks == 0) {
266 			temp1++;
267 			continue;
268 		}
269 		if (dimm_params[i].n_ranks == 4 && i != 0) {
270 			printf("Found Quad-rank DIMM in wrong bank, ignored."
271 				" Software may not run as expected.\n");
272 			temp1++;
273 			continue;
274 		}
275 
276 		/*
277 		 * check if quad-rank DIMM is plugged if
278 		 * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
279 		 * Only the board with proper design is capable
280 		 */
281 #ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
282 		if (dimm_params[i].n_ranks == 4 && \
283 		  CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
284 			printf("Found Quad-rank DIMM, not able to support.");
285 			temp1++;
286 			continue;
287 		}
288 #endif
289 		/*
290 		 * Find minimum tckmax_ps to find fastest slow speed,
291 		 * i.e., this is the slowest the whole system can go.
292 		 */
293 		tckmax_ps = min(tckmax_ps,
294 				(unsigned int)dimm_params[i].tckmax_ps);
295 #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
296 		taamin_ps = max(taamin_ps,
297 				(unsigned int)dimm_params[i].taa_ps);
298 #endif
299 		tckmin_x_ps = max(tckmin_x_ps,
300 				  (unsigned int)dimm_params[i].tckmin_x_ps);
301 		trcd_ps = max(trcd_ps, (unsigned int)dimm_params[i].trcd_ps);
302 		trp_ps = max(trp_ps, (unsigned int)dimm_params[i].trp_ps);
303 		tras_ps = max(tras_ps, (unsigned int)dimm_params[i].tras_ps);
304 #ifdef CONFIG_SYS_FSL_DDR4
305 		trfc1_ps = max(trfc1_ps,
306 			       (unsigned int)dimm_params[i].trfc1_ps);
307 		trfc2_ps = max(trfc2_ps,
308 			       (unsigned int)dimm_params[i].trfc2_ps);
309 		trfc4_ps = max(trfc4_ps,
310 			       (unsigned int)dimm_params[i].trfc4_ps);
311 		trrds_ps = max(trrds_ps,
312 			       (unsigned int)dimm_params[i].trrds_ps);
313 		trrdl_ps = max(trrdl_ps,
314 			       (unsigned int)dimm_params[i].trrdl_ps);
315 		tccdl_ps = max(tccdl_ps,
316 			       (unsigned int)dimm_params[i].tccdl_ps);
317 		trfc_slr_ps = max(trfc_slr_ps,
318 				  (unsigned int)dimm_params[i].trfc_slr_ps);
319 #else
320 		twr_ps = max(twr_ps, (unsigned int)dimm_params[i].twr_ps);
321 		twtr_ps = max(twtr_ps, (unsigned int)dimm_params[i].twtr_ps);
322 		trfc_ps = max(trfc_ps, (unsigned int)dimm_params[i].trfc_ps);
323 		trrd_ps = max(trrd_ps, (unsigned int)dimm_params[i].trrd_ps);
324 		trtp_ps = max(trtp_ps, (unsigned int)dimm_params[i].trtp_ps);
325 #endif
326 		trc_ps = max(trc_ps, (unsigned int)dimm_params[i].trc_ps);
327 #if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
328 		tis_ps = max(tis_ps, (unsigned int)dimm_params[i].tis_ps);
329 		tih_ps = max(tih_ps, (unsigned int)dimm_params[i].tih_ps);
330 		tds_ps = max(tds_ps, (unsigned int)dimm_params[i].tds_ps);
331 		tdh_ps = max(tdh_ps, (unsigned int)dimm_params[i].tdh_ps);
332 		tqhs_ps = max(tqhs_ps, (unsigned int)dimm_params[i].tqhs_ps);
333 		/*
334 		 * Find maximum tdqsq_max_ps to find slowest.
335 		 *
336 		 * FIXME: is finding the slowest value the correct
337 		 * strategy for this parameter?
338 		 */
339 		tdqsq_max_ps = max(tdqsq_max_ps,
340 				   (unsigned int)dimm_params[i].tdqsq_max_ps);
341 #endif
342 		refresh_rate_ps = max(refresh_rate_ps,
343 				      (unsigned int)dimm_params[i].refresh_rate_ps);
344 		/* extended_op_srt is either 0 or 1, 0 having priority */
345 		extended_op_srt = min(extended_op_srt,
346 				      (unsigned int)dimm_params[i].extended_op_srt);
347 	}
348 
349 	outpdimm->ndimms_present = number_of_dimms - temp1;
350 
351 	if (temp1 == number_of_dimms) {
352 		debug("no dimms this memory controller\n");
353 		return 0;
354 	}
355 
356 	outpdimm->tckmin_x_ps = tckmin_x_ps;
357 	outpdimm->tckmax_ps = tckmax_ps;
358 #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
359 	outpdimm->taamin_ps = taamin_ps;
360 #endif
361 	outpdimm->trcd_ps = trcd_ps;
362 	outpdimm->trp_ps = trp_ps;
363 	outpdimm->tras_ps = tras_ps;
364 #ifdef CONFIG_SYS_FSL_DDR4
365 	outpdimm->trfc1_ps = trfc1_ps;
366 	outpdimm->trfc2_ps = trfc2_ps;
367 	outpdimm->trfc4_ps = trfc4_ps;
368 	outpdimm->trrds_ps = trrds_ps;
369 	outpdimm->trrdl_ps = trrdl_ps;
370 	outpdimm->tccdl_ps = tccdl_ps;
371 	outpdimm->trfc_slr_ps = trfc_slr_ps;
372 #else
373 	outpdimm->twtr_ps = twtr_ps;
374 	outpdimm->trfc_ps = trfc_ps;
375 	outpdimm->trrd_ps = trrd_ps;
376 	outpdimm->trtp_ps = trtp_ps;
377 #endif
378 	outpdimm->twr_ps = twr_ps;
379 	outpdimm->trc_ps = trc_ps;
380 	outpdimm->refresh_rate_ps = refresh_rate_ps;
381 	outpdimm->extended_op_srt = extended_op_srt;
382 #if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
383 	outpdimm->tis_ps = tis_ps;
384 	outpdimm->tih_ps = tih_ps;
385 	outpdimm->tds_ps = tds_ps;
386 	outpdimm->tdh_ps = tdh_ps;
387 	outpdimm->tdqsq_max_ps = tdqsq_max_ps;
388 	outpdimm->tqhs_ps = tqhs_ps;
389 #endif
390 
391 	/* Determine common burst length for all DIMMs. */
392 	temp1 = 0xff;
393 	for (i = 0; i < number_of_dimms; i++) {
394 		if (dimm_params[i].n_ranks) {
395 			temp1 &= dimm_params[i].burst_lengths_bitmask;
396 		}
397 	}
398 	outpdimm->all_dimms_burst_lengths_bitmask = temp1;
399 
400 	/* Determine if all DIMMs registered buffered. */
401 	temp1 = temp2 = 0;
402 	for (i = 0; i < number_of_dimms; i++) {
403 		if (dimm_params[i].n_ranks) {
404 			if (dimm_params[i].registered_dimm) {
405 				temp1 = 1;
406 #ifndef CONFIG_SPL_BUILD
407 				printf("Detected RDIMM %s\n",
408 					dimm_params[i].mpart);
409 #endif
410 			} else {
411 				temp2 = 1;
412 #ifndef CONFIG_SPL_BUILD
413 				printf("Detected UDIMM %s\n",
414 					dimm_params[i].mpart);
415 #endif
416 			}
417 		}
418 	}
419 
420 	outpdimm->all_dimms_registered = 0;
421 	outpdimm->all_dimms_unbuffered = 0;
422 	if (temp1 && !temp2) {
423 		outpdimm->all_dimms_registered = 1;
424 	} else if (!temp1 && temp2) {
425 		outpdimm->all_dimms_unbuffered = 1;
426 	} else {
427 		printf("ERROR:  Mix of registered buffered and unbuffered "
428 				"DIMMs detected!\n");
429 	}
430 
431 	temp1 = 0;
432 	if (outpdimm->all_dimms_registered)
433 		for (j = 0; j < 16; j++) {
434 			outpdimm->rcw[j] = dimm_params[0].rcw[j];
435 			for (i = 1; i < number_of_dimms; i++) {
436 				if (!dimm_params[i].n_ranks)
437 					continue;
438 				if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
439 					temp1 = 1;
440 					break;
441 				}
442 			}
443 		}
444 
445 	if (temp1 != 0)
446 		printf("ERROR: Mix different RDIMM detected!\n");
447 
448 	/* calculate cas latency for all DDR types */
449 	if (compute_cas_latency(ctrl_num, dimm_params,
450 				outpdimm, number_of_dimms))
451 		return 1;
452 
453 	/* Determine if all DIMMs ECC capable. */
454 	temp1 = 1;
455 	for (i = 0; i < number_of_dimms; i++) {
456 		if (dimm_params[i].n_ranks &&
457 			!(dimm_params[i].edc_config & EDC_ECC)) {
458 			temp1 = 0;
459 			break;
460 		}
461 	}
462 	if (temp1) {
463 		debug("all DIMMs ECC capable\n");
464 	} else {
465 		debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
466 	}
467 	outpdimm->all_dimms_ecc_capable = temp1;
468 
469 	/*
470 	 * Compute additive latency.
471 	 *
472 	 * For DDR1, additive latency should be 0.
473 	 *
474 	 * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
475 	 *	which comes from Trcd, and also note that:
476 	 *	    add_lat + caslat must be >= 4
477 	 *
478 	 * For DDR3, we use the AL=0
479 	 *
480 	 * When to use additive latency for DDR2:
481 	 *
482 	 * I. Because you are using CL=3 and need to do ODT on writes and
483 	 *    want functionality.
484 	 *    1. Are you going to use ODT? (Does your board not have
485 	 *      additional termination circuitry for DQ, DQS, DQS_,
486 	 *      DM, RDQS, RDQS_ for x4/x8 configs?)
487 	 *    2. If so, is your lowest supported CL going to be 3?
488 	 *    3. If so, then you must set AL=1 because
489 	 *
490 	 *       WL >= 3 for ODT on writes
491 	 *       RL = AL + CL
492 	 *       WL = RL - 1
493 	 *       ->
494 	 *       WL = AL + CL - 1
495 	 *       AL + CL - 1 >= 3
496 	 *       AL + CL >= 4
497 	 *  QED
498 	 *
499 	 *  RL >= 3 for ODT on reads
500 	 *  RL = AL + CL
501 	 *
502 	 *  Since CL aren't usually less than 2, AL=0 is a minimum,
503 	 *  so the WL-derived AL should be the  -- FIXME?
504 	 *
505 	 * II. Because you are using auto-precharge globally and want to
506 	 *     use additive latency (posted CAS) to get more bandwidth.
507 	 *     1. Are you going to use auto-precharge mode globally?
508 	 *
509 	 *        Use addtivie latency and compute AL to be 1 cycle less than
510 	 *        tRCD, i.e. the READ or WRITE command is in the cycle
511 	 *        immediately following the ACTIVATE command..
512 	 *
513 	 * III. Because you feel like it or want to do some sort of
514 	 *      degraded-performance experiment.
515 	 *     1.  Do you just want to use additive latency because you feel
516 	 *         like it?
517 	 *
518 	 * Validation:  AL is less than tRCD, and within the other
519 	 * read-to-precharge constraints.
520 	 */
521 
522 	additive_latency = 0;
523 
524 #if defined(CONFIG_SYS_FSL_DDR2)
525 	if ((outpdimm->lowest_common_spd_caslat < 4) &&
526 	    (picos_to_mclk(ctrl_num, trcd_ps) >
527 	     outpdimm->lowest_common_spd_caslat)) {
528 		additive_latency = picos_to_mclk(ctrl_num, trcd_ps) -
529 				   outpdimm->lowest_common_spd_caslat;
530 		if (mclk_to_picos(ctrl_num, additive_latency) > trcd_ps) {
531 			additive_latency = picos_to_mclk(ctrl_num, trcd_ps);
532 			debug("setting additive_latency to %u because it was "
533 				" greater than tRCD_ps\n", additive_latency);
534 		}
535 	}
536 #endif
537 
538 	/*
539 	 * Validate additive latency
540 	 *
541 	 * AL <= tRCD(min)
542 	 */
543 	if (mclk_to_picos(ctrl_num, additive_latency) > trcd_ps) {
544 		printf("Error: invalid additive latency exceeds tRCD(min).\n");
545 		return 1;
546 	}
547 
548 	/*
549 	 * RL = CL + AL;  RL >= 3 for ODT_RD_CFG to be enabled
550 	 * WL = RL - 1;  WL >= 3 for ODT_WL_CFG to be enabled
551 	 * ADD_LAT (the register) must be set to a value less
552 	 * than ACTTORW if WL = 1, then AL must be set to 1
553 	 * RD_TO_PRE (the register) must be set to a minimum
554 	 * tRTP + AL if AL is nonzero
555 	 */
556 
557 	/*
558 	 * Additive latency will be applied only if the memctl option to
559 	 * use it.
560 	 */
561 	outpdimm->additive_latency = additive_latency;
562 
563 	debug("tCKmin_ps = %u\n", outpdimm->tckmin_x_ps);
564 	debug("trcd_ps   = %u\n", outpdimm->trcd_ps);
565 	debug("trp_ps    = %u\n", outpdimm->trp_ps);
566 	debug("tras_ps   = %u\n", outpdimm->tras_ps);
567 #ifdef CONFIG_SYS_FSL_DDR4
568 	debug("trfc1_ps = %u\n", trfc1_ps);
569 	debug("trfc2_ps = %u\n", trfc2_ps);
570 	debug("trfc4_ps = %u\n", trfc4_ps);
571 	debug("trrds_ps = %u\n", trrds_ps);
572 	debug("trrdl_ps = %u\n", trrdl_ps);
573 	debug("tccdl_ps = %u\n", tccdl_ps);
574 	debug("trfc_slr_ps = %u\n", trfc_slr_ps);
575 #else
576 	debug("twtr_ps   = %u\n", outpdimm->twtr_ps);
577 	debug("trfc_ps   = %u\n", outpdimm->trfc_ps);
578 	debug("trrd_ps   = %u\n", outpdimm->trrd_ps);
579 #endif
580 	debug("twr_ps    = %u\n", outpdimm->twr_ps);
581 	debug("trc_ps    = %u\n", outpdimm->trc_ps);
582 
583 	return 0;
584 }
585