• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Permission is hereby granted, free of charge, to any person obtaining a
3  * copy of this software and associated documentation files (the "Software"),
4  * to deal in the Software without restriction, including without limitation
5  * on the rights to use, copy, modify, merge, publish, distribute, sub
6  * license, and/or sell copies of the Software, and to permit persons to whom
7  * the Software is furnished to do so, subject to the following conditions:
8  *
9  * The above copyright notice and this permission notice (including the next
10  * paragraph) shall be included in all copies or substantial portions of the
11  * Software.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * Authors:
22  *      Adam Rak <adam.rak@streamnovation.com>
23  */
24 
25 #include "pipe/p_defines.h"
26 #include "pipe/p_state.h"
27 #include "pipe/p_context.h"
28 #include "util/u_blitter.h"
29 #include "util/list.h"
30 #include "util/u_transfer.h"
31 #include "util/u_surface.h"
32 #include "util/u_pack_color.h"
33 #include "util/u_math.h"
34 #include "util/u_memory.h"
35 #include "util/u_inlines.h"
36 #include "util/u_framebuffer.h"
37 #include "r600_shader.h"
38 #include "r600_pipe.h"
39 #include "r600_formats.h"
40 #include "compute_memory_pool.h"
41 #include "evergreen_compute.h"
42 #include "evergreen_compute_internal.h"
43 #include <inttypes.h>
44 
45 #define ITEM_ALIGNMENT 1024
46 /**
47  * Creates a new pool.
48  */
compute_memory_pool_new(struct r600_screen * rscreen)49 struct compute_memory_pool* compute_memory_pool_new(
50 	struct r600_screen * rscreen)
51 {
52 	struct compute_memory_pool* pool = (struct compute_memory_pool*)
53 				CALLOC(sizeof(struct compute_memory_pool), 1);
54 	if (!pool)
55 		return NULL;
56 
57 	COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n");
58 
59 	pool->screen = rscreen;
60 	pool->item_list = (struct list_head *)
61 				CALLOC(sizeof(struct list_head), 1);
62 	pool->unallocated_list = (struct list_head *)
63 				CALLOC(sizeof(struct list_head), 1);
64 	list_inithead(pool->item_list);
65 	list_inithead(pool->unallocated_list);
66 	return pool;
67 }
68 
69 /**
70  * Initializes the pool with a size of \a initial_size_in_dw.
71  * \param pool			The pool to be initialized.
72  * \param initial_size_in_dw	The initial size.
73  * \see compute_memory_grow_defrag_pool
74  */
compute_memory_pool_init(struct compute_memory_pool * pool,unsigned initial_size_in_dw)75 static void compute_memory_pool_init(struct compute_memory_pool * pool,
76 	unsigned initial_size_in_dw)
77 {
78 
79 	COMPUTE_DBG(pool->screen, "* compute_memory_pool_init() initial_size_in_dw = %u\n",
80 		initial_size_in_dw);
81 
82 	pool->size_in_dw = initial_size_in_dw;
83 	pool->bo = r600_compute_buffer_alloc_vram(pool->screen,
84 						  pool->size_in_dw * 4);
85 }
86 
87 /**
88  * Frees all stuff in the pool and the pool struct itself too.
89  */
compute_memory_pool_delete(struct compute_memory_pool * pool)90 void compute_memory_pool_delete(struct compute_memory_pool* pool)
91 {
92 	COMPUTE_DBG(pool->screen, "* compute_memory_pool_delete()\n");
93 	free(pool->shadow);
94 	if (pool->bo) {
95 		pool->screen->b.b.resource_destroy((struct pipe_screen *)
96 			pool->screen, (struct pipe_resource *)pool->bo);
97 	}
98 	/* In theory, all of the items were freed in compute_memory_free.
99 	 * Just delete the list heads
100 	 */
101 	free(pool->item_list);
102 	free(pool->unallocated_list);
103 	/* And then the pool itself */
104 	free(pool);
105 }
106 
107 /**
108  * Searches for an empty space in the pool, return with the pointer to the
109  * allocatable space in the pool.
110  * \param size_in_dw	The size of the space we are looking for.
111  * \return -1 on failure
112  */
compute_memory_prealloc_chunk(struct compute_memory_pool * pool,int64_t size_in_dw)113 int64_t compute_memory_prealloc_chunk(
114 	struct compute_memory_pool* pool,
115 	int64_t size_in_dw)
116 {
117 	struct compute_memory_item *item;
118 
119 	int last_end = 0;
120 
121 	assert(size_in_dw <= pool->size_in_dw);
122 
123 	COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %"PRIi64"\n",
124 		size_in_dw);
125 
126 	LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
127 		if (last_end + size_in_dw <= item->start_in_dw) {
128 			return last_end;
129 		}
130 
131 		last_end = item->start_in_dw + align(item->size_in_dw, ITEM_ALIGNMENT);
132 	}
133 
134 	if (pool->size_in_dw - last_end < size_in_dw) {
135 		return -1;
136 	}
137 
138 	return last_end;
139 }
140 
141 /**
142  *  Search for the chunk where we can link our new chunk after it.
143  *  \param start_in_dw	The position of the item we want to add to the pool.
144  *  \return The item that is just before the passed position
145  */
compute_memory_postalloc_chunk(struct compute_memory_pool * pool,int64_t start_in_dw)146 struct list_head *compute_memory_postalloc_chunk(
147 	struct compute_memory_pool* pool,
148 	int64_t start_in_dw)
149 {
150 	struct compute_memory_item *item;
151 	struct compute_memory_item *next;
152 	struct list_head *next_link;
153 
154 	COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %"PRIi64"\n",
155 		start_in_dw);
156 
157 	/* Check if we can insert it in the front of the list */
158 	item = LIST_ENTRY(struct compute_memory_item, pool->item_list->next, link);
159 	if (LIST_IS_EMPTY(pool->item_list) || item->start_in_dw > start_in_dw) {
160 		return pool->item_list;
161 	}
162 
163 	LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
164 		next_link = item->link.next;
165 
166 		if (next_link != pool->item_list) {
167 			next = container_of(next_link, item, link);
168 			if (item->start_in_dw < start_in_dw
169 				&& next->start_in_dw > start_in_dw) {
170 				return &item->link;
171 			}
172 		}
173 		else {
174 			/* end of chain */
175 			assert(item->start_in_dw < start_in_dw);
176 			return &item->link;
177 		}
178 	}
179 
180 	assert(0 && "unreachable");
181 	return NULL;
182 }
183 
184 /**
185  * Reallocates and defragments the pool, conserves data.
186  * \returns -1 if it fails, 0 otherwise
187  * \see compute_memory_finalize_pending
188  */
compute_memory_grow_defrag_pool(struct compute_memory_pool * pool,struct pipe_context * pipe,int new_size_in_dw)189 int compute_memory_grow_defrag_pool(struct compute_memory_pool *pool,
190 	struct pipe_context *pipe, int new_size_in_dw)
191 {
192 	new_size_in_dw = align(new_size_in_dw, ITEM_ALIGNMENT);
193 
194 	COMPUTE_DBG(pool->screen, "* compute_memory_grow_defrag_pool() "
195 		"new_size_in_dw = %d (%d bytes)\n",
196 		new_size_in_dw, new_size_in_dw * 4);
197 
198 	assert(new_size_in_dw >= pool->size_in_dw);
199 
200 	if (!pool->bo) {
201 		compute_memory_pool_init(pool, MAX2(new_size_in_dw, 1024 * 16));
202 	} else {
203 		struct r600_resource *temp = NULL;
204 
205 		temp = r600_compute_buffer_alloc_vram(pool->screen, new_size_in_dw * 4);
206 
207 		if (temp != NULL) {
208 			struct pipe_resource *src = (struct pipe_resource *)pool->bo;
209 			struct pipe_resource *dst = (struct pipe_resource *)temp;
210 
211 			COMPUTE_DBG(pool->screen, "  Growing and defragmenting the pool "
212 					"using a temporary resource\n");
213 
214 			compute_memory_defrag(pool, src, dst, pipe);
215 
216 			pool->screen->b.b.resource_destroy(
217 					(struct pipe_screen *)pool->screen,
218 					src);
219 
220 			pool->bo = temp;
221 			pool->size_in_dw = new_size_in_dw;
222 		}
223 		else {
224 			COMPUTE_DBG(pool->screen, "  The creation of the temporary resource failed\n"
225 				"  Falling back to using 'shadow'\n");
226 
227 			compute_memory_shadow(pool, pipe, 1);
228 			pool->shadow = realloc(pool->shadow, new_size_in_dw * 4);
229 			if (pool->shadow == NULL)
230 				return -1;
231 
232 			pool->size_in_dw = new_size_in_dw;
233 			pool->screen->b.b.resource_destroy(
234 					(struct pipe_screen *)pool->screen,
235 					(struct pipe_resource *)pool->bo);
236 			pool->bo = r600_compute_buffer_alloc_vram(pool->screen, pool->size_in_dw * 4);
237 			compute_memory_shadow(pool, pipe, 0);
238 
239 			if (pool->status & POOL_FRAGMENTED) {
240 				struct pipe_resource *src = (struct pipe_resource *)pool->bo;
241 				compute_memory_defrag(pool, src, src, pipe);
242 			}
243 		}
244 	}
245 
246 	return 0;
247 }
248 
249 /**
250  * Copy pool from device to host, or host to device.
251  * \param device_to_host 1 for device->host, 0 for host->device
252  * \see compute_memory_grow_defrag_pool
253  */
compute_memory_shadow(struct compute_memory_pool * pool,struct pipe_context * pipe,int device_to_host)254 void compute_memory_shadow(struct compute_memory_pool* pool,
255 	struct pipe_context * pipe, int device_to_host)
256 {
257 	struct compute_memory_item chunk;
258 
259 	COMPUTE_DBG(pool->screen, "* compute_memory_shadow() device_to_host = %d\n",
260 		device_to_host);
261 
262 	chunk.id = 0;
263 	chunk.start_in_dw = 0;
264 	chunk.size_in_dw = pool->size_in_dw;
265 	compute_memory_transfer(pool, pipe, device_to_host, &chunk,
266 				pool->shadow, 0, pool->size_in_dw*4);
267 }
268 
269 /**
270  * Moves all the items marked for promotion from the \a unallocated_list
271  * to the \a item_list.
272  * \return -1 if it fails, 0 otherwise
273  * \see evergreen_set_global_binding
274  */
compute_memory_finalize_pending(struct compute_memory_pool * pool,struct pipe_context * pipe)275 int compute_memory_finalize_pending(struct compute_memory_pool* pool,
276 	struct pipe_context * pipe)
277 {
278 	struct compute_memory_item *item, *next;
279 
280 	int64_t allocated = 0;
281 	int64_t unallocated = 0;
282 	int64_t last_pos;
283 
284 	int err = 0;
285 
286 	COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n");
287 
288 	LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
289 		COMPUTE_DBG(pool->screen, "  + list: offset = %"PRIi64" id = %"PRIi64" size = %"PRIi64" "
290 			"(%"PRIi64" bytes)\n", item->start_in_dw, item->id,
291 			item->size_in_dw, item->size_in_dw * 4);
292 	}
293 
294 	/* Calculate the total allocated size */
295 	LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
296 		allocated += align(item->size_in_dw, ITEM_ALIGNMENT);
297 	}
298 
299 	/* Calculate the total unallocated size of the items that
300 	 * will be promoted to the pool */
301 	LIST_FOR_EACH_ENTRY(item, pool->unallocated_list, link) {
302 		if (item->status & ITEM_FOR_PROMOTING)
303 			unallocated += align(item->size_in_dw, ITEM_ALIGNMENT);
304 	}
305 
306 	if (unallocated == 0) {
307 		return 0;
308 	}
309 
310 	if (pool->size_in_dw < allocated + unallocated) {
311 		err = compute_memory_grow_defrag_pool(pool, pipe, allocated + unallocated);
312 		if (err == -1)
313 			return -1;
314 	}
315 	else if (pool->status & POOL_FRAGMENTED) {
316 		struct pipe_resource *src = (struct pipe_resource *)pool->bo;
317 		compute_memory_defrag(pool, src, src, pipe);
318 	}
319 
320 	/* After defragmenting the pool, allocated is equal to the first available
321 	 * position for new items in the pool */
322 	last_pos = allocated;
323 
324 	/* Loop through all the unallocated items, check if they are marked
325 	 * for promoting, allocate space for them and add them to the item_list. */
326 	LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
327 		if (item->status & ITEM_FOR_PROMOTING) {
328 			err = compute_memory_promote_item(pool, item, pipe, last_pos);
329 			item->status &= ~ITEM_FOR_PROMOTING;
330 
331 			last_pos += align(item->size_in_dw, ITEM_ALIGNMENT);
332 
333 			if (err == -1)
334 				return -1;
335 		}
336 	}
337 
338 	return 0;
339 }
340 
341 /**
342  * Defragments the pool, so that there's no gap between items.
343  * \param pool	The pool to be defragmented
344  * \param src	The origin resource
345  * \param dst	The destination resource
346  * \see compute_memory_grow_defrag_pool and compute_memory_finalize_pending
347  */
compute_memory_defrag(struct compute_memory_pool * pool,struct pipe_resource * src,struct pipe_resource * dst,struct pipe_context * pipe)348 void compute_memory_defrag(struct compute_memory_pool *pool,
349 	struct pipe_resource *src, struct pipe_resource *dst,
350 	struct pipe_context *pipe)
351 {
352 	struct compute_memory_item *item;
353 	int64_t last_pos;
354 
355 	COMPUTE_DBG(pool->screen, "* compute_memory_defrag()\n");
356 
357 	last_pos = 0;
358 	LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
359 		if (src != dst || item->start_in_dw != last_pos) {
360 			assert(last_pos <= item->start_in_dw);
361 
362 			compute_memory_move_item(pool, src, dst,
363 					item, last_pos, pipe);
364 		}
365 
366 		last_pos += align(item->size_in_dw, ITEM_ALIGNMENT);
367 	}
368 
369 	pool->status &= ~POOL_FRAGMENTED;
370 }
371 
372 /**
373  * Moves an item from the \a unallocated_list to the \a item_list.
374  * \param item	The item that will be promoted.
375  * \return -1 if it fails, 0 otherwise
376  * \see compute_memory_finalize_pending
377  */
compute_memory_promote_item(struct compute_memory_pool * pool,struct compute_memory_item * item,struct pipe_context * pipe,int64_t start_in_dw)378 int compute_memory_promote_item(struct compute_memory_pool *pool,
379 		struct compute_memory_item *item, struct pipe_context *pipe,
380 		int64_t start_in_dw)
381 {
382 	struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
383 	struct r600_context *rctx = (struct r600_context *)pipe;
384 	struct pipe_resource *src = (struct pipe_resource *)item->real_buffer;
385 	struct pipe_resource *dst = (struct pipe_resource *)pool->bo;
386 	struct pipe_box box;
387 
388 	COMPUTE_DBG(pool->screen, "* compute_memory_promote_item()\n"
389 			"  + Promoting Item: %"PRIi64" , starting at: %"PRIi64" (%"PRIi64" bytes) "
390 			"size: %"PRIi64" (%"PRIi64" bytes)\n\t\t\tnew start: %"PRIi64" (%"PRIi64" bytes)\n",
391 			item->id, item->start_in_dw, item->start_in_dw * 4,
392 			item->size_in_dw, item->size_in_dw * 4,
393 			start_in_dw, start_in_dw * 4);
394 
395 	/* Remove the item from the unallocated list */
396 	list_del(&item->link);
397 
398 	/* Add it back to the item_list */
399 	list_addtail(&item->link, pool->item_list);
400 	item->start_in_dw = start_in_dw;
401 
402 	if (src) {
403 		u_box_1d(0, item->size_in_dw * 4, &box);
404 
405 		rctx->b.b.resource_copy_region(pipe,
406 				dst, 0, item->start_in_dw * 4, 0 ,0,
407 				src, 0, &box);
408 
409 		/* We check if the item is mapped for reading.
410 		 * In this case, we need to keep the temporary buffer 'alive'
411 		 * because it is possible to keep a map active for reading
412 		 * while a kernel (that reads from it) executes */
413 		if (!(item->status & ITEM_MAPPED_FOR_READING)) {
414 			pool->screen->b.b.resource_destroy(screen, src);
415 			item->real_buffer = NULL;
416 		}
417 	}
418 
419 	return 0;
420 }
421 
422 /**
423  * Moves an item from the \a item_list to the \a unallocated_list.
424  * \param item	The item that will be demoted
425  * \see r600_compute_global_transfer_map
426  */
compute_memory_demote_item(struct compute_memory_pool * pool,struct compute_memory_item * item,struct pipe_context * pipe)427 void compute_memory_demote_item(struct compute_memory_pool *pool,
428 	struct compute_memory_item *item, struct pipe_context *pipe)
429 {
430 	struct r600_context *rctx = (struct r600_context *)pipe;
431 	struct pipe_resource *src = (struct pipe_resource *)pool->bo;
432 	struct pipe_resource *dst;
433 	struct pipe_box box;
434 
435 	COMPUTE_DBG(pool->screen, "* compute_memory_demote_item()\n"
436 			"  + Demoting Item: %"PRIi64", starting at: %"PRIi64" (%"PRIi64" bytes) "
437 			"size: %"PRIi64" (%"PRIi64" bytes)\n", item->id, item->start_in_dw,
438 			item->start_in_dw * 4, item->size_in_dw, item->size_in_dw * 4);
439 
440 	/* First, we remove the item from the item_list */
441 	list_del(&item->link);
442 
443 	/* Now we add it to the unallocated list */
444 	list_addtail(&item->link, pool->unallocated_list);
445 
446 	/* We check if the intermediate buffer exists, and if it
447 	 * doesn't, we create it again */
448 	if (item->real_buffer == NULL) {
449 		item->real_buffer = r600_compute_buffer_alloc_vram(
450 				pool->screen, item->size_in_dw * 4);
451 	}
452 
453 	dst = (struct pipe_resource *)item->real_buffer;
454 
455 	/* We transfer the memory from the item in the pool to the
456 	 * temporary buffer */
457 	u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box);
458 
459 	rctx->b.b.resource_copy_region(pipe,
460 		dst, 0, 0, 0, 0,
461 		src, 0, &box);
462 
463 	/* Remember to mark the buffer as 'pending' by setting start_in_dw to -1 */
464 	item->start_in_dw = -1;
465 
466 	if (item->link.next != pool->item_list) {
467 		pool->status |= POOL_FRAGMENTED;
468 	}
469 }
470 
471 /**
472  * Moves the item \a item forward from the resource \a src to the
473  * resource \a dst at \a new_start_in_dw
474  *
475  * This function assumes two things:
476  * 1) The item is \b only moved forward, unless src is different from dst
477  * 2) The item \b won't change it's position inside the \a item_list
478  *
479  * \param item			The item that will be moved
480  * \param new_start_in_dw	The new position of the item in \a item_list
481  * \see compute_memory_defrag
482  */
compute_memory_move_item(struct compute_memory_pool * pool,struct pipe_resource * src,struct pipe_resource * dst,struct compute_memory_item * item,uint64_t new_start_in_dw,struct pipe_context * pipe)483 void compute_memory_move_item(struct compute_memory_pool *pool,
484 	struct pipe_resource *src, struct pipe_resource *dst,
485 	struct compute_memory_item *item, uint64_t new_start_in_dw,
486 	struct pipe_context *pipe)
487 {
488 	struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
489 	struct r600_context *rctx = (struct r600_context *)pipe;
490 	struct pipe_box box;
491 
492 	MAYBE_UNUSED struct compute_memory_item *prev;
493 
494 	COMPUTE_DBG(pool->screen, "* compute_memory_move_item()\n"
495 			"  + Moving item %"PRIi64" from %"PRIi64" (%"PRIi64" bytes) to %"PRIu64" (%"PRIu64" bytes)\n",
496 			item->id, item->start_in_dw, item->start_in_dw * 4,
497 			new_start_in_dw, new_start_in_dw * 4);
498 
499 	if (pool->item_list != item->link.prev) {
500 		prev = container_of(item->link.prev, item, link);
501 		assert(prev->start_in_dw + prev->size_in_dw <= new_start_in_dw);
502 	}
503 
504 	u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box);
505 
506 	/* If the ranges don't overlap, or we are copying from one resource
507 	 * to another, we can just copy the item directly */
508 	if (src != dst || new_start_in_dw + item->size_in_dw <= item->start_in_dw) {
509 
510 		rctx->b.b.resource_copy_region(pipe,
511 			dst, 0, new_start_in_dw * 4, 0, 0,
512 			src, 0, &box);
513 	} else {
514 		/* The ranges overlap, we will try first to use an intermediate
515 		 * resource to move the item */
516 		struct pipe_resource *tmp = (struct pipe_resource *)
517 			r600_compute_buffer_alloc_vram(pool->screen, item->size_in_dw * 4);
518 
519 		if (tmp != NULL) {
520 			rctx->b.b.resource_copy_region(pipe,
521 				tmp, 0, 0, 0, 0,
522 				src, 0, &box);
523 
524 			box.x = 0;
525 
526 			rctx->b.b.resource_copy_region(pipe,
527 				dst, 0, new_start_in_dw * 4, 0, 0,
528 				tmp, 0, &box);
529 
530 			pool->screen->b.b.resource_destroy(screen, tmp);
531 
532 		} else {
533 			/* The allocation of the temporary resource failed,
534 			 * falling back to use mappings */
535 			uint32_t *map;
536 			int64_t offset;
537 			struct pipe_transfer *trans;
538 
539 			offset = item->start_in_dw - new_start_in_dw;
540 
541 			u_box_1d(new_start_in_dw * 4, (offset + item->size_in_dw) * 4, &box);
542 
543 			map = pipe->transfer_map(pipe, src, 0, PIPE_TRANSFER_READ_WRITE,
544 				&box, &trans);
545 
546 			assert(map);
547 			assert(trans);
548 
549 			memmove(map, map + offset, item->size_in_dw * 4);
550 
551 			pipe->transfer_unmap(pipe, trans);
552 		}
553 	}
554 
555 	item->start_in_dw = new_start_in_dw;
556 }
557 
558 /**
559  * Frees the memory asociated to the item with id \a id from the pool.
560  * \param id	The id of the item to be freed.
561  */
compute_memory_free(struct compute_memory_pool * pool,int64_t id)562 void compute_memory_free(struct compute_memory_pool* pool, int64_t id)
563 {
564 	struct compute_memory_item *item, *next;
565 	struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
566 	struct pipe_resource *res;
567 
568 	COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %"PRIi64" \n", id);
569 
570 	LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->item_list, link) {
571 
572 		if (item->id == id) {
573 
574 			if (item->link.next != pool->item_list) {
575 				pool->status |= POOL_FRAGMENTED;
576 			}
577 
578 			list_del(&item->link);
579 
580 			if (item->real_buffer) {
581 				res = (struct pipe_resource *)item->real_buffer;
582 				pool->screen->b.b.resource_destroy(
583 						screen, res);
584 			}
585 
586 			free(item);
587 
588 			return;
589 		}
590 	}
591 
592 	LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
593 
594 		if (item->id == id) {
595 			list_del(&item->link);
596 
597 			if (item->real_buffer) {
598 				res = (struct pipe_resource *)item->real_buffer;
599 				pool->screen->b.b.resource_destroy(
600 						screen, res);
601 			}
602 
603 			free(item);
604 
605 			return;
606 		}
607 	}
608 
609 	fprintf(stderr, "Internal error, invalid id %"PRIi64" "
610 		"for compute_memory_free\n", id);
611 
612 	assert(0 && "error");
613 }
614 
615 /**
616  * Creates pending allocations for new items, these items are
617  * placed in the unallocated_list.
618  * \param size_in_dw	The size, in double words, of the new item.
619  * \return The new item
620  * \see r600_compute_global_buffer_create
621  */
compute_memory_alloc(struct compute_memory_pool * pool,int64_t size_in_dw)622 struct compute_memory_item* compute_memory_alloc(
623 	struct compute_memory_pool* pool,
624 	int64_t size_in_dw)
625 {
626 	struct compute_memory_item *new_item = NULL;
627 
628 	COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %"PRIi64" (%"PRIi64" bytes)\n",
629 			size_in_dw, 4 * size_in_dw);
630 
631 	new_item = (struct compute_memory_item *)
632 				CALLOC(sizeof(struct compute_memory_item), 1);
633 	if (!new_item)
634 		return NULL;
635 
636 	new_item->size_in_dw = size_in_dw;
637 	new_item->start_in_dw = -1; /* mark pending */
638 	new_item->id = pool->next_id++;
639 	new_item->pool = pool;
640 	new_item->real_buffer = NULL;
641 
642 	list_addtail(&new_item->link, pool->unallocated_list);
643 
644 	COMPUTE_DBG(pool->screen, "  + Adding item %p id = %"PRIi64" size = %"PRIi64" (%"PRIi64" bytes)\n",
645 			new_item, new_item->id, new_item->size_in_dw,
646 			new_item->size_in_dw * 4);
647 	return new_item;
648 }
649 
650 /**
651  * Transfer data host<->device, offset and size is in bytes.
652  * \param device_to_host 1 for device->host, 0 for host->device.
653  * \see compute_memory_shadow
654  */
compute_memory_transfer(struct compute_memory_pool * pool,struct pipe_context * pipe,int device_to_host,struct compute_memory_item * chunk,void * data,int offset_in_chunk,int size)655 void compute_memory_transfer(
656 	struct compute_memory_pool* pool,
657 	struct pipe_context * pipe,
658 	int device_to_host,
659 	struct compute_memory_item* chunk,
660 	void* data,
661 	int offset_in_chunk,
662 	int size)
663 {
664 	int64_t aligned_size = pool->size_in_dw;
665 	struct pipe_resource* gart = (struct pipe_resource*)pool->bo;
666 	int64_t internal_offset = chunk->start_in_dw*4 + offset_in_chunk;
667 
668 	struct pipe_transfer *xfer;
669 	uint32_t *map;
670 
671 	assert(gart);
672 
673 	COMPUTE_DBG(pool->screen, "* compute_memory_transfer() device_to_host = %d, "
674 		"offset_in_chunk = %d, size = %d\n", device_to_host,
675 		offset_in_chunk, size);
676 
677 	if (device_to_host) {
678 		map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_READ,
679 			&(struct pipe_box) { .width = aligned_size * 4,
680 			.height = 1, .depth = 1 }, &xfer);
681 		assert(xfer);
682 		assert(map);
683 		memcpy(data, map + internal_offset, size);
684 		pipe->transfer_unmap(pipe, xfer);
685 	} else {
686 		map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_WRITE,
687 			&(struct pipe_box) { .width = aligned_size * 4,
688 			.height = 1, .depth = 1 }, &xfer);
689 		assert(xfer);
690 		assert(map);
691 		memcpy(map + internal_offset, data, size);
692 		pipe->transfer_unmap(pipe, xfer);
693 	}
694 }
695 
696 /**
697  * Transfer data between chunk<->data, it is for VRAM<->GART transfers
698  */
compute_memory_transfer_direct(struct compute_memory_pool * pool,int chunk_to_data,struct compute_memory_item * chunk,struct r600_resource * data,int offset_in_chunk,int offset_in_data,int size)699 void compute_memory_transfer_direct(
700 	struct compute_memory_pool* pool,
701 	int chunk_to_data,
702 	struct compute_memory_item* chunk,
703 	struct r600_resource* data,
704 	int offset_in_chunk,
705 	int offset_in_data,
706 	int size)
707 {
708 	///TODO: DMA
709 }
710