1 //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "Hexagon.h"
11 #include "HexagonISelDAGToDAG.h"
12 #include "HexagonISelLowering.h"
13 #include "HexagonTargetMachine.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20
21 #include <deque>
22 #include <map>
23 #include <set>
24 #include <utility>
25 #include <vector>
26
27 #define DEBUG_TYPE "hexagon-isel"
28
29 using namespace llvm;
30
31 namespace {
32
33 // --------------------------------------------------------------------
34 // Implementation of permutation networks.
35
36 // Implementation of the node routing through butterfly networks:
37 // - Forward delta.
38 // - Reverse delta.
39 // - Benes.
40 //
41 //
42 // Forward delta network consists of log(N) steps, where N is the number
43 // of inputs. In each step, an input can stay in place, or it can get
44 // routed to another position[1]. The step after that consists of two
45 // networks, each half in size in terms of the number of nodes. In those
46 // terms, in the given step, an input can go to either the upper or the
47 // lower network in the next step.
48 //
49 // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both
50 // positions as long as there is no conflict.
51
52 // Here's a delta network for 8 inputs, only the switching routes are
53 // shown:
54 //
55 // Steps:
56 // |- 1 ---------------|- 2 -----|- 3 -|
57 //
58 // Inp[0] *** *** *** *** Out[0]
59 // \ / \ / \ /
60 // \ / \ / X
61 // \ / \ / / \
62 // Inp[1] *** \ / *** X *** *** Out[1]
63 // \ \ / / \ / \ /
64 // \ \ / / X X
65 // \ \ / / / \ / \
66 // Inp[2] *** \ \ / / *** X *** *** Out[2]
67 // \ \ X / / / \ \ /
68 // \ \ / \ / / / \ X
69 // \ X X / / \ / \
70 // Inp[3] *** \ / \ / \ / *** *** *** Out[3]
71 // \ X X X /
72 // \ / \ / \ / \ /
73 // X X X X
74 // / \ / \ / \ / \
75 // / X X X \
76 // Inp[4] *** / \ / \ / \ *** *** *** Out[4]
77 // / X X \ \ / \ /
78 // / / \ / \ \ \ / X
79 // / / X \ \ \ / / \
80 // Inp[5] *** / / \ \ *** X *** *** Out[5]
81 // / / \ \ \ / \ /
82 // / / \ \ X X
83 // / / \ \ / \ / \
84 // Inp[6] *** / \ *** X *** *** Out[6]
85 // / \ / \ \ /
86 // / \ / \ X
87 // / \ / \ / \
88 // Inp[7] *** *** *** *** Out[7]
89 //
90 //
91 // Reverse delta network is same as delta network, with the steps in
92 // the opposite order.
93 //
94 //
95 // Benes network is a forward delta network immediately followed by
96 // a reverse delta network.
97
98 enum class ColorKind { None, Red, Black };
99
100 // Graph coloring utility used to partition nodes into two groups:
101 // they will correspond to nodes routed to the upper and lower networks.
102 struct Coloring {
103 using Node = int;
104 using MapType = std::map<Node, ColorKind>;
105 static constexpr Node Ignore = Node(-1);
106
Coloring__anona79fa76a0111::Coloring107 Coloring(ArrayRef<Node> Ord) : Order(Ord) {
108 build();
109 if (!color())
110 Colors.clear();
111 }
112
colors__anona79fa76a0111::Coloring113 const MapType &colors() const {
114 return Colors;
115 }
116
other__anona79fa76a0111::Coloring117 ColorKind other(ColorKind Color) {
118 if (Color == ColorKind::None)
119 return ColorKind::Red;
120 return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red;
121 }
122
123 void dump() const;
124
125 private:
126 ArrayRef<Node> Order;
127 MapType Colors;
128 std::set<Node> Needed;
129
130 using NodeSet = std::set<Node>;
131 std::map<Node,NodeSet> Edges;
132
conj__anona79fa76a0111::Coloring133 Node conj(Node Pos) {
134 Node Num = Order.size();
135 return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2;
136 }
137
getColor__anona79fa76a0111::Coloring138 ColorKind getColor(Node N) {
139 auto F = Colors.find(N);
140 return F != Colors.end() ? F->second : ColorKind::None;
141 }
142
143 std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes);
144
145 void build();
146 bool color();
147 };
148 } // namespace
149
getUniqueColor(const NodeSet & Nodes)150 std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) {
151 auto Color = ColorKind::None;
152 for (Node N : Nodes) {
153 ColorKind ColorN = getColor(N);
154 if (ColorN == ColorKind::None)
155 continue;
156 if (Color == ColorKind::None)
157 Color = ColorN;
158 else if (Color != ColorKind::None && Color != ColorN)
159 return { false, ColorKind::None };
160 }
161 return { true, Color };
162 }
163
build()164 void Coloring::build() {
165 // Add Order[P] and Order[conj(P)] to Edges.
166 for (unsigned P = 0; P != Order.size(); ++P) {
167 Node I = Order[P];
168 if (I != Ignore) {
169 Needed.insert(I);
170 Node PC = Order[conj(P)];
171 if (PC != Ignore && PC != I)
172 Edges[I].insert(PC);
173 }
174 }
175 // Add I and conj(I) to Edges.
176 for (unsigned I = 0; I != Order.size(); ++I) {
177 if (!Needed.count(I))
178 continue;
179 Node C = conj(I);
180 // This will create an entry in the edge table, even if I is not
181 // connected to any other node. This is necessary, because it still
182 // needs to be colored.
183 NodeSet &Is = Edges[I];
184 if (Needed.count(C))
185 Is.insert(C);
186 }
187 }
188
color()189 bool Coloring::color() {
190 SetVector<Node> FirstQ;
191 auto Enqueue = [this,&FirstQ] (Node N) {
192 SetVector<Node> Q;
193 Q.insert(N);
194 for (unsigned I = 0; I != Q.size(); ++I) {
195 NodeSet &Ns = Edges[Q[I]];
196 Q.insert(Ns.begin(), Ns.end());
197 }
198 FirstQ.insert(Q.begin(), Q.end());
199 };
200 for (Node N : Needed)
201 Enqueue(N);
202
203 for (Node N : FirstQ) {
204 if (Colors.count(N))
205 continue;
206 NodeSet &Ns = Edges[N];
207 auto P = getUniqueColor(Ns);
208 if (!P.first)
209 return false;
210 Colors[N] = other(P.second);
211 }
212
213 // First, color nodes that don't have any dups.
214 for (auto E : Edges) {
215 Node N = E.first;
216 if (!Needed.count(conj(N)) || Colors.count(N))
217 continue;
218 auto P = getUniqueColor(E.second);
219 if (!P.first)
220 return false;
221 Colors[N] = other(P.second);
222 }
223
224 // Now, nodes that are still uncolored. Since the graph can be modified
225 // in this step, create a work queue.
226 std::vector<Node> WorkQ;
227 for (auto E : Edges) {
228 Node N = E.first;
229 if (!Colors.count(N))
230 WorkQ.push_back(N);
231 }
232
233 for (unsigned I = 0; I < WorkQ.size(); ++I) {
234 Node N = WorkQ[I];
235 NodeSet &Ns = Edges[N];
236 auto P = getUniqueColor(Ns);
237 if (P.first) {
238 Colors[N] = other(P.second);
239 continue;
240 }
241
242 // Coloring failed. Split this node.
243 Node C = conj(N);
244 ColorKind ColorN = other(ColorKind::None);
245 ColorKind ColorC = other(ColorN);
246 NodeSet &Cs = Edges[C];
247 NodeSet CopyNs = Ns;
248 for (Node M : CopyNs) {
249 ColorKind ColorM = getColor(M);
250 if (ColorM == ColorC) {
251 // Connect M with C, disconnect M from N.
252 Cs.insert(M);
253 Edges[M].insert(C);
254 Ns.erase(M);
255 Edges[M].erase(N);
256 }
257 }
258 Colors[N] = ColorN;
259 Colors[C] = ColorC;
260 }
261
262 // Explicitly assign "None" to all uncolored nodes.
263 for (unsigned I = 0; I != Order.size(); ++I)
264 if (Colors.count(I) == 0)
265 Colors[I] = ColorKind::None;
266
267 return true;
268 }
269
270 LLVM_DUMP_METHOD
dump() const271 void Coloring::dump() const {
272 dbgs() << "{ Order: {";
273 for (unsigned I = 0; I != Order.size(); ++I) {
274 Node P = Order[I];
275 if (P != Ignore)
276 dbgs() << ' ' << P;
277 else
278 dbgs() << " -";
279 }
280 dbgs() << " }\n";
281 dbgs() << " Needed: {";
282 for (Node N : Needed)
283 dbgs() << ' ' << N;
284 dbgs() << " }\n";
285
286 dbgs() << " Edges: {\n";
287 for (auto E : Edges) {
288 dbgs() << " " << E.first << " -> {";
289 for (auto N : E.second)
290 dbgs() << ' ' << N;
291 dbgs() << " }\n";
292 }
293 dbgs() << " }\n";
294
295 auto ColorKindToName = [](ColorKind C) {
296 switch (C) {
297 case ColorKind::None:
298 return "None";
299 case ColorKind::Red:
300 return "Red";
301 case ColorKind::Black:
302 return "Black";
303 }
304 llvm_unreachable("all ColorKinds should be handled by the switch above");
305 };
306
307 dbgs() << " Colors: {\n";
308 for (auto C : Colors)
309 dbgs() << " " << C.first << " -> " << ColorKindToName(C.second) << "\n";
310 dbgs() << " }\n}\n";
311 }
312
313 namespace {
314 // Base class of for reordering networks. They don't strictly need to be
315 // permutations, as outputs with repeated occurrences of an input element
316 // are allowed.
317 struct PermNetwork {
318 using Controls = std::vector<uint8_t>;
319 using ElemType = int;
320 static constexpr ElemType Ignore = ElemType(-1);
321
322 enum : uint8_t {
323 None,
324 Pass,
325 Switch
326 };
327 enum : uint8_t {
328 Forward,
329 Reverse
330 };
331
PermNetwork__anona79fa76a0411::PermNetwork332 PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) {
333 Order.assign(Ord.data(), Ord.data()+Ord.size());
334 Log = 0;
335
336 unsigned S = Order.size();
337 while (S >>= 1)
338 ++Log;
339
340 Table.resize(Order.size());
341 for (RowType &Row : Table)
342 Row.resize(Mult*Log, None);
343 }
344
getControls__anona79fa76a0411::PermNetwork345 void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const {
346 unsigned Size = Order.size();
347 V.resize(Size);
348 for (unsigned I = 0; I != Size; ++I) {
349 unsigned W = 0;
350 for (unsigned L = 0; L != Log; ++L) {
351 unsigned C = ctl(I, StartAt+L) == Switch;
352 if (Dir == Forward)
353 W |= C << (Log-1-L);
354 else
355 W |= C << L;
356 }
357 assert(isUInt<8>(W));
358 V[I] = uint8_t(W);
359 }
360 }
361
ctl__anona79fa76a0411::PermNetwork362 uint8_t ctl(ElemType Pos, unsigned Step) const {
363 return Table[Pos][Step];
364 }
size__anona79fa76a0411::PermNetwork365 unsigned size() const {
366 return Order.size();
367 }
steps__anona79fa76a0411::PermNetwork368 unsigned steps() const {
369 return Log;
370 }
371
372 protected:
373 unsigned Log;
374 std::vector<ElemType> Order;
375 using RowType = std::vector<uint8_t>;
376 std::vector<RowType> Table;
377 };
378
379 struct ForwardDeltaNetwork : public PermNetwork {
ForwardDeltaNetwork__anona79fa76a0411::ForwardDeltaNetwork380 ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
381
run__anona79fa76a0411::ForwardDeltaNetwork382 bool run(Controls &V) {
383 if (!route(Order.data(), Table.data(), size(), 0))
384 return false;
385 getControls(V, 0, Forward);
386 return true;
387 }
388
389 private:
390 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
391 };
392
393 struct ReverseDeltaNetwork : public PermNetwork {
ReverseDeltaNetwork__anona79fa76a0411::ReverseDeltaNetwork394 ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
395
run__anona79fa76a0411::ReverseDeltaNetwork396 bool run(Controls &V) {
397 if (!route(Order.data(), Table.data(), size(), 0))
398 return false;
399 getControls(V, 0, Reverse);
400 return true;
401 }
402
403 private:
404 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
405 };
406
407 struct BenesNetwork : public PermNetwork {
BenesNetwork__anona79fa76a0411::BenesNetwork408 BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {}
409
run__anona79fa76a0411::BenesNetwork410 bool run(Controls &F, Controls &R) {
411 if (!route(Order.data(), Table.data(), size(), 0))
412 return false;
413
414 getControls(F, 0, Forward);
415 getControls(R, Log, Reverse);
416 return true;
417 }
418
419 private:
420 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
421 };
422 } // namespace
423
route(ElemType * P,RowType * T,unsigned Size,unsigned Step)424 bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
425 unsigned Step) {
426 bool UseUp = false, UseDown = false;
427 ElemType Num = Size;
428
429 // Cannot use coloring here, because coloring is used to determine
430 // the "big" switch, i.e. the one that changes halves, and in a forward
431 // network, a color can be simultaneously routed to both halves in the
432 // step we're working on.
433 for (ElemType J = 0; J != Num; ++J) {
434 ElemType I = P[J];
435 // I is the position in the input,
436 // J is the position in the output.
437 if (I == Ignore)
438 continue;
439 uint8_t S;
440 if (I < Num/2)
441 S = (J < Num/2) ? Pass : Switch;
442 else
443 S = (J < Num/2) ? Switch : Pass;
444
445 // U is the element in the table that needs to be updated.
446 ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2);
447 if (U < Num/2)
448 UseUp = true;
449 else
450 UseDown = true;
451 if (T[U][Step] != S && T[U][Step] != None)
452 return false;
453 T[U][Step] = S;
454 }
455
456 for (ElemType J = 0; J != Num; ++J)
457 if (P[J] != Ignore && P[J] >= Num/2)
458 P[J] -= Num/2;
459
460 if (Step+1 < Log) {
461 if (UseUp && !route(P, T, Size/2, Step+1))
462 return false;
463 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
464 return false;
465 }
466 return true;
467 }
468
route(ElemType * P,RowType * T,unsigned Size,unsigned Step)469 bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
470 unsigned Step) {
471 unsigned Pets = Log-1 - Step;
472 bool UseUp = false, UseDown = false;
473 ElemType Num = Size;
474
475 // In this step half-switching occurs, so coloring can be used.
476 Coloring G({P,Size});
477 const Coloring::MapType &M = G.colors();
478 if (M.empty())
479 return false;
480
481 ColorKind ColorUp = ColorKind::None;
482 for (ElemType J = 0; J != Num; ++J) {
483 ElemType I = P[J];
484 // I is the position in the input,
485 // J is the position in the output.
486 if (I == Ignore)
487 continue;
488 ColorKind C = M.at(I);
489 if (C == ColorKind::None)
490 continue;
491 // During "Step", inputs cannot switch halves, so if the "up" color
492 // is still unknown, make sure that it is selected in such a way that
493 // "I" will stay in the same half.
494 bool InpUp = I < Num/2;
495 if (ColorUp == ColorKind::None)
496 ColorUp = InpUp ? C : G.other(C);
497 if ((C == ColorUp) != InpUp) {
498 // If I should go to a different half than where is it now, give up.
499 return false;
500 }
501
502 uint8_t S;
503 if (InpUp) {
504 S = (J < Num/2) ? Pass : Switch;
505 UseUp = true;
506 } else {
507 S = (J < Num/2) ? Switch : Pass;
508 UseDown = true;
509 }
510 T[J][Pets] = S;
511 }
512
513 // Reorder the working permutation according to the computed switch table
514 // for the last step (i.e. Pets).
515 for (ElemType J = 0, E = Size / 2; J != E; ++J) {
516 ElemType PJ = P[J]; // Current values of P[J]
517 ElemType PC = P[J+Size/2]; // and P[conj(J)]
518 ElemType QJ = PJ; // New values of P[J]
519 ElemType QC = PC; // and P[conj(J)]
520 if (T[J][Pets] == Switch)
521 QC = PJ;
522 if (T[J+Size/2][Pets] == Switch)
523 QJ = PC;
524 P[J] = QJ;
525 P[J+Size/2] = QC;
526 }
527
528 for (ElemType J = 0; J != Num; ++J)
529 if (P[J] != Ignore && P[J] >= Num/2)
530 P[J] -= Num/2;
531
532 if (Step+1 < Log) {
533 if (UseUp && !route(P, T, Size/2, Step+1))
534 return false;
535 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
536 return false;
537 }
538 return true;
539 }
540
route(ElemType * P,RowType * T,unsigned Size,unsigned Step)541 bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size,
542 unsigned Step) {
543 Coloring G({P,Size});
544 const Coloring::MapType &M = G.colors();
545 if (M.empty())
546 return false;
547 ElemType Num = Size;
548
549 unsigned Pets = 2*Log-1 - Step;
550 bool UseUp = false, UseDown = false;
551
552 // Both assignments, i.e. Red->Up and Red->Down are valid, but they will
553 // result in different controls. Let's pick the one where the first
554 // control will be "Pass".
555 ColorKind ColorUp = ColorKind::None;
556 for (ElemType J = 0; J != Num; ++J) {
557 ElemType I = P[J];
558 if (I == Ignore)
559 continue;
560 ColorKind C = M.at(I);
561 if (C == ColorKind::None)
562 continue;
563 if (ColorUp == ColorKind::None) {
564 ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black;
565 }
566 unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2;
567 if (C == ColorUp) {
568 if (I < Num/2)
569 T[I][Step] = Pass;
570 else
571 T[CI][Step] = Switch;
572 T[J][Pets] = (J < Num/2) ? Pass : Switch;
573 UseUp = true;
574 } else { // Down
575 if (I < Num/2)
576 T[CI][Step] = Switch;
577 else
578 T[I][Step] = Pass;
579 T[J][Pets] = (J < Num/2) ? Switch : Pass;
580 UseDown = true;
581 }
582 }
583
584 // Reorder the working permutation according to the computed switch table
585 // for the last step (i.e. Pets).
586 for (ElemType J = 0; J != Num/2; ++J) {
587 ElemType PJ = P[J]; // Current values of P[J]
588 ElemType PC = P[J+Num/2]; // and P[conj(J)]
589 ElemType QJ = PJ; // New values of P[J]
590 ElemType QC = PC; // and P[conj(J)]
591 if (T[J][Pets] == Switch)
592 QC = PJ;
593 if (T[J+Num/2][Pets] == Switch)
594 QJ = PC;
595 P[J] = QJ;
596 P[J+Num/2] = QC;
597 }
598
599 for (ElemType J = 0; J != Num; ++J)
600 if (P[J] != Ignore && P[J] >= Num/2)
601 P[J] -= Num/2;
602
603 if (Step+1 < Log) {
604 if (UseUp && !route(P, T, Size/2, Step+1))
605 return false;
606 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
607 return false;
608 }
609 return true;
610 }
611
612 // --------------------------------------------------------------------
613 // Support for building selection results (output instructions that are
614 // parts of the final selection).
615
616 namespace {
617 struct OpRef {
OpRef__anona79fa76a0711::OpRef618 OpRef(SDValue V) : OpV(V) {}
isValue__anona79fa76a0711::OpRef619 bool isValue() const { return OpV.getNode() != nullptr; }
isValid__anona79fa76a0711::OpRef620 bool isValid() const { return isValue() || !(OpN & Invalid); }
res__anona79fa76a0711::OpRef621 static OpRef res(int N) { return OpRef(Whole | (N & Index)); }
fail__anona79fa76a0711::OpRef622 static OpRef fail() { return OpRef(Invalid); }
623
lo__anona79fa76a0711::OpRef624 static OpRef lo(const OpRef &R) {
625 assert(!R.isValue());
626 return OpRef(R.OpN & (Undef | Index | LoHalf));
627 }
hi__anona79fa76a0711::OpRef628 static OpRef hi(const OpRef &R) {
629 assert(!R.isValue());
630 return OpRef(R.OpN & (Undef | Index | HiHalf));
631 }
undef__anona79fa76a0711::OpRef632 static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); }
633
634 // Direct value.
635 SDValue OpV = SDValue();
636
637 // Reference to the operand of the input node:
638 // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the
639 // operand index:
640 // If bit 30 is set, it's the high half of the operand.
641 // If bit 29 is set, it's the low half of the operand.
642 unsigned OpN = 0;
643
644 enum : unsigned {
645 Invalid = 0x10000000,
646 LoHalf = 0x20000000,
647 HiHalf = 0x40000000,
648 Whole = LoHalf | HiHalf,
649 Undef = 0x80000000,
650 Index = 0x0FFFFFFF, // Mask of the index value.
651 IndexBits = 28,
652 };
653
654 void print(raw_ostream &OS, const SelectionDAG &G) const;
655
656 private:
OpRef__anona79fa76a0711::OpRef657 OpRef(unsigned N) : OpN(N) {}
658 };
659
660 struct NodeTemplate {
661 NodeTemplate() = default;
662 unsigned Opc = 0;
663 MVT Ty = MVT::Other;
664 std::vector<OpRef> Ops;
665
666 void print(raw_ostream &OS, const SelectionDAG &G) const;
667 };
668
669 struct ResultStack {
ResultStack__anona79fa76a0711::ResultStack670 ResultStack(SDNode *Inp)
671 : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {}
672 SDNode *InpNode;
673 MVT InpTy;
push__anona79fa76a0711::ResultStack674 unsigned push(const NodeTemplate &Res) {
675 List.push_back(Res);
676 return List.size()-1;
677 }
push__anona79fa76a0711::ResultStack678 unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) {
679 NodeTemplate Res;
680 Res.Opc = Opc;
681 Res.Ty = Ty;
682 Res.Ops = Ops;
683 return push(Res);
684 }
empty__anona79fa76a0711::ResultStack685 bool empty() const { return List.empty(); }
size__anona79fa76a0711::ResultStack686 unsigned size() const { return List.size(); }
top__anona79fa76a0711::ResultStack687 unsigned top() const { return size()-1; }
operator []__anona79fa76a0711::ResultStack688 const NodeTemplate &operator[](unsigned I) const { return List[I]; }
reset__anona79fa76a0711::ResultStack689 unsigned reset(unsigned NewTop) {
690 List.resize(NewTop+1);
691 return NewTop;
692 }
693
694 using BaseType = std::vector<NodeTemplate>;
begin__anona79fa76a0711::ResultStack695 BaseType::iterator begin() { return List.begin(); }
end__anona79fa76a0711::ResultStack696 BaseType::iterator end() { return List.end(); }
begin__anona79fa76a0711::ResultStack697 BaseType::const_iterator begin() const { return List.begin(); }
end__anona79fa76a0711::ResultStack698 BaseType::const_iterator end() const { return List.end(); }
699
700 BaseType List;
701
702 void print(raw_ostream &OS, const SelectionDAG &G) const;
703 };
704 } // namespace
705
print(raw_ostream & OS,const SelectionDAG & G) const706 void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const {
707 if (isValue()) {
708 OpV.getNode()->print(OS, &G);
709 return;
710 }
711 if (OpN & Invalid) {
712 OS << "invalid";
713 return;
714 }
715 if (OpN & Undef) {
716 OS << "undef";
717 return;
718 }
719 if ((OpN & Whole) != Whole) {
720 assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf);
721 if (OpN & LoHalf)
722 OS << "lo ";
723 else
724 OS << "hi ";
725 }
726 OS << '#' << SignExtend32(OpN & Index, IndexBits);
727 }
728
print(raw_ostream & OS,const SelectionDAG & G) const729 void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const {
730 const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo();
731 OS << format("%8s", EVT(Ty).getEVTString().c_str()) << " "
732 << TII.getName(Opc);
733 bool Comma = false;
734 for (const auto &R : Ops) {
735 if (Comma)
736 OS << ',';
737 Comma = true;
738 OS << ' ';
739 R.print(OS, G);
740 }
741 }
742
print(raw_ostream & OS,const SelectionDAG & G) const743 void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const {
744 OS << "Input node:\n";
745 #ifndef NDEBUG
746 InpNode->dumpr(&G);
747 #endif
748 OS << "Result templates:\n";
749 for (unsigned I = 0, E = List.size(); I != E; ++I) {
750 OS << '[' << I << "] ";
751 List[I].print(OS, G);
752 OS << '\n';
753 }
754 }
755
756 namespace {
757 struct ShuffleMask {
ShuffleMask__anona79fa76a0911::ShuffleMask758 ShuffleMask(ArrayRef<int> M) : Mask(M) {
759 for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
760 int M = Mask[I];
761 if (M == -1)
762 continue;
763 MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M);
764 MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M);
765 }
766 }
767
768 ArrayRef<int> Mask;
769 int MinSrc = -1, MaxSrc = -1;
770
lo__anona79fa76a0911::ShuffleMask771 ShuffleMask lo() const {
772 size_t H = Mask.size()/2;
773 return ShuffleMask(Mask.take_front(H));
774 }
hi__anona79fa76a0911::ShuffleMask775 ShuffleMask hi() const {
776 size_t H = Mask.size()/2;
777 return ShuffleMask(Mask.take_back(H));
778 }
779
print__anona79fa76a0911::ShuffleMask780 void print(raw_ostream &OS) const {
781 OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {";
782 for (int M : Mask)
783 OS << ' ' << M;
784 OS << " }";
785 }
786 };
787 } // namespace
788
789 // --------------------------------------------------------------------
790 // The HvxSelector class.
791
getHexagonLowering(SelectionDAG & G)792 static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) {
793 return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo());
794 }
getHexagonSubtarget(SelectionDAG & G)795 static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) {
796 return static_cast<const HexagonSubtarget&>(G.getSubtarget());
797 }
798
799 namespace llvm {
800 struct HvxSelector {
801 const HexagonTargetLowering &Lower;
802 HexagonDAGToDAGISel &ISel;
803 SelectionDAG &DAG;
804 const HexagonSubtarget &HST;
805 const unsigned HwLen;
806
HvxSelectorllvm::HvxSelector807 HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G)
808 : Lower(getHexagonLowering(G)), ISel(HS), DAG(G),
809 HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {}
810
getSingleVTllvm::HvxSelector811 MVT getSingleVT(MVT ElemTy) const {
812 unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8);
813 return MVT::getVectorVT(ElemTy, NumElems);
814 }
815
getPairVTllvm::HvxSelector816 MVT getPairVT(MVT ElemTy) const {
817 unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8);
818 return MVT::getVectorVT(ElemTy, NumElems);
819 }
820
821 void selectShuffle(SDNode *N);
822 void selectRor(SDNode *N);
823 void selectVAlign(SDNode *N);
824
825 private:
826 void materialize(const ResultStack &Results);
827
828 SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl);
829
830 enum : unsigned {
831 None,
832 PackMux,
833 };
834 OpRef concat(OpRef Va, OpRef Vb, ResultStack &Results);
835 OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
836 MutableArrayRef<int> NewMask, unsigned Options = None);
837 OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
838 MutableArrayRef<int> NewMask);
839 OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
840 ResultStack &Results);
841 OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
842 ResultStack &Results);
843
844 OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results);
845 OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
846 OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results);
847 OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
848
849 OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results);
850 OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
851 OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results);
852 OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results);
853
854 bool selectVectorConstants(SDNode *N);
855 bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy,
856 SDValue Va, SDValue Vb, SDNode *N);
857
858 };
859 }
860
splitMask(ArrayRef<int> Mask,MutableArrayRef<int> MaskL,MutableArrayRef<int> MaskR)861 static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL,
862 MutableArrayRef<int> MaskR) {
863 unsigned VecLen = Mask.size();
864 assert(MaskL.size() == VecLen && MaskR.size() == VecLen);
865 for (unsigned I = 0; I != VecLen; ++I) {
866 int M = Mask[I];
867 if (M < 0) {
868 MaskL[I] = MaskR[I] = -1;
869 } else if (unsigned(M) < VecLen) {
870 MaskL[I] = M;
871 MaskR[I] = -1;
872 } else {
873 MaskL[I] = -1;
874 MaskR[I] = M-VecLen;
875 }
876 }
877 }
878
findStrip(ArrayRef<int> A,int Inc,unsigned MaxLen)879 static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc,
880 unsigned MaxLen) {
881 assert(A.size() > 0 && A.size() >= MaxLen);
882 int F = A[0];
883 int E = F;
884 for (unsigned I = 1; I != MaxLen; ++I) {
885 if (A[I] - E != Inc)
886 return { F, I };
887 E = A[I];
888 }
889 return { F, MaxLen };
890 }
891
isUndef(ArrayRef<int> Mask)892 static bool isUndef(ArrayRef<int> Mask) {
893 for (int Idx : Mask)
894 if (Idx != -1)
895 return false;
896 return true;
897 }
898
isIdentity(ArrayRef<int> Mask)899 static bool isIdentity(ArrayRef<int> Mask) {
900 for (int I = 0, E = Mask.size(); I != E; ++I) {
901 int M = Mask[I];
902 if (M >= 0 && M != I)
903 return false;
904 }
905 return true;
906 }
907
isPermutation(ArrayRef<int> Mask)908 static bool isPermutation(ArrayRef<int> Mask) {
909 // Check by adding all numbers only works if there is no overflow.
910 assert(Mask.size() < 0x00007FFF && "Sanity failure");
911 int Sum = 0;
912 for (int Idx : Mask) {
913 if (Idx == -1)
914 return false;
915 Sum += Idx;
916 }
917 int N = Mask.size();
918 return 2*Sum == N*(N-1);
919 }
920
selectVectorConstants(SDNode * N)921 bool HvxSelector::selectVectorConstants(SDNode *N) {
922 // Constant vectors are generated as loads from constant pools or as
923 // splats of a constant value. Since they are generated during the
924 // selection process, the main selection algorithm is not aware of them.
925 // Select them directly here.
926 SmallVector<SDNode*,4> Nodes;
927 SetVector<SDNode*> WorkQ;
928
929 // The one-use test for VSPLATW's operand may fail due to dead nodes
930 // left over in the DAG.
931 DAG.RemoveDeadNodes();
932
933 // The DAG can change (due to CSE) during selection, so cache all the
934 // unselected nodes first to avoid traversing a mutating DAG.
935
936 auto IsNodeToSelect = [] (SDNode *N) {
937 if (N->isMachineOpcode())
938 return false;
939 switch (N->getOpcode()) {
940 case HexagonISD::VZERO:
941 case HexagonISD::VSPLATW:
942 return true;
943 case ISD::LOAD: {
944 SDValue Addr = cast<LoadSDNode>(N)->getBasePtr();
945 unsigned AddrOpc = Addr.getOpcode();
946 if (AddrOpc == HexagonISD::AT_PCREL || AddrOpc == HexagonISD::CP)
947 if (Addr.getOperand(0).getOpcode() == ISD::TargetConstantPool)
948 return true;
949 }
950 break;
951 }
952 // Make sure to select the operand of VSPLATW.
953 bool IsSplatOp = N->hasOneUse() &&
954 N->use_begin()->getOpcode() == HexagonISD::VSPLATW;
955 return IsSplatOp;
956 };
957
958 WorkQ.insert(N);
959 for (unsigned i = 0; i != WorkQ.size(); ++i) {
960 SDNode *W = WorkQ[i];
961 if (IsNodeToSelect(W))
962 Nodes.push_back(W);
963 for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j)
964 WorkQ.insert(W->getOperand(j).getNode());
965 }
966
967 for (SDNode *L : Nodes)
968 ISel.Select(L);
969
970 return !Nodes.empty();
971 }
972
materialize(const ResultStack & Results)973 void HvxSelector::materialize(const ResultStack &Results) {
974 DEBUG_WITH_TYPE("isel", {
975 dbgs() << "Materializing\n";
976 Results.print(dbgs(), DAG);
977 });
978 if (Results.empty())
979 return;
980 const SDLoc &dl(Results.InpNode);
981 std::vector<SDValue> Output;
982
983 for (unsigned I = 0, E = Results.size(); I != E; ++I) {
984 const NodeTemplate &Node = Results[I];
985 std::vector<SDValue> Ops;
986 for (const OpRef &R : Node.Ops) {
987 assert(R.isValid());
988 if (R.isValue()) {
989 Ops.push_back(R.OpV);
990 continue;
991 }
992 if (R.OpN & OpRef::Undef) {
993 MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index);
994 Ops.push_back(ISel.selectUndef(dl, MVT(SVT)));
995 continue;
996 }
997 // R is an index of a result.
998 unsigned Part = R.OpN & OpRef::Whole;
999 int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits);
1000 if (Idx < 0)
1001 Idx += I;
1002 assert(Idx >= 0 && unsigned(Idx) < Output.size());
1003 SDValue Op = Output[Idx];
1004 MVT OpTy = Op.getValueType().getSimpleVT();
1005 if (Part != OpRef::Whole) {
1006 assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf);
1007 MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(),
1008 OpTy.getVectorNumElements()/2);
1009 unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo
1010 : Hexagon::vsub_hi;
1011 Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op);
1012 }
1013 Ops.push_back(Op);
1014 } // for (Node : Results)
1015
1016 assert(Node.Ty != MVT::Other);
1017 SDNode *ResN = (Node.Opc == TargetOpcode::COPY)
1018 ? Ops.front().getNode()
1019 : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops);
1020 Output.push_back(SDValue(ResN, 0));
1021 }
1022
1023 SDNode *OutN = Output.back().getNode();
1024 SDNode *InpN = Results.InpNode;
1025 DEBUG_WITH_TYPE("isel", {
1026 dbgs() << "Generated node:\n";
1027 OutN->dumpr(&DAG);
1028 });
1029
1030 ISel.ReplaceNode(InpN, OutN);
1031 selectVectorConstants(OutN);
1032 DAG.RemoveDeadNodes();
1033 }
1034
concat(OpRef Lo,OpRef Hi,ResultStack & Results)1035 OpRef HvxSelector::concat(OpRef Lo, OpRef Hi, ResultStack &Results) {
1036 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1037 const SDLoc &dl(Results.InpNode);
1038 Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), {
1039 DAG.getTargetConstant(Hexagon::HvxWRRegClassID, dl, MVT::i32),
1040 Lo, DAG.getTargetConstant(Hexagon::vsub_lo, dl, MVT::i32),
1041 Hi, DAG.getTargetConstant(Hexagon::vsub_hi, dl, MVT::i32),
1042 });
1043 return OpRef::res(Results.top());
1044 }
1045
1046 // Va, Vb are single vectors, SM can be arbitrarily long.
packs(ShuffleMask SM,OpRef Va,OpRef Vb,ResultStack & Results,MutableArrayRef<int> NewMask,unsigned Options)1047 OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb,
1048 ResultStack &Results, MutableArrayRef<int> NewMask,
1049 unsigned Options) {
1050 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1051 if (!Va.isValid() || !Vb.isValid())
1052 return OpRef::fail();
1053
1054 int VecLen = SM.Mask.size();
1055 MVT Ty = getSingleVT(MVT::i8);
1056
1057 auto IsExtSubvector = [] (ShuffleMask M) {
1058 assert(M.MinSrc >= 0 && M.MaxSrc >= 0);
1059 for (int I = 0, E = M.Mask.size(); I != E; ++I) {
1060 if (M.Mask[I] >= 0 && M.Mask[I]-I != M.MinSrc)
1061 return false;
1062 }
1063 return true;
1064 };
1065
1066 if (SM.MaxSrc - SM.MinSrc < int(HwLen)) {
1067 if (SM.MinSrc == 0 || SM.MinSrc == int(HwLen) || !IsExtSubvector(SM)) {
1068 // If the mask picks elements from only one of the operands, return
1069 // that operand, and update the mask to use index 0 to refer to the
1070 // first element of that operand.
1071 // If the mask extracts a subvector, it will be handled below, so
1072 // skip it here.
1073 if (SM.MaxSrc < int(HwLen)) {
1074 memcpy(NewMask.data(), SM.Mask.data(), sizeof(int)*VecLen);
1075 return Va;
1076 }
1077 if (SM.MinSrc >= int(HwLen)) {
1078 for (int I = 0; I != VecLen; ++I) {
1079 int M = SM.Mask[I];
1080 if (M != -1)
1081 M -= HwLen;
1082 NewMask[I] = M;
1083 }
1084 return Vb;
1085 }
1086 }
1087 int MinSrc = SM.MinSrc;
1088 if (SM.MaxSrc < int(HwLen)) {
1089 Vb = Va;
1090 } else if (SM.MinSrc > int(HwLen)) {
1091 Va = Vb;
1092 MinSrc = SM.MinSrc - HwLen;
1093 }
1094 const SDLoc &dl(Results.InpNode);
1095 if (isUInt<3>(MinSrc) || isUInt<3>(HwLen-MinSrc)) {
1096 bool IsRight = isUInt<3>(MinSrc); // Right align.
1097 SDValue S = DAG.getTargetConstant(IsRight ? MinSrc : HwLen-MinSrc,
1098 dl, MVT::i32);
1099 unsigned Opc = IsRight ? Hexagon::V6_valignbi
1100 : Hexagon::V6_vlalignbi;
1101 Results.push(Opc, Ty, {Vb, Va, S});
1102 } else {
1103 SDValue S = DAG.getTargetConstant(MinSrc, dl, MVT::i32);
1104 Results.push(Hexagon::A2_tfrsi, MVT::i32, {S});
1105 unsigned Top = Results.top();
1106 Results.push(Hexagon::V6_valignb, Ty, {Vb, Va, OpRef::res(Top)});
1107 }
1108 for (int I = 0; I != VecLen; ++I) {
1109 int M = SM.Mask[I];
1110 if (M != -1)
1111 M -= SM.MinSrc;
1112 NewMask[I] = M;
1113 }
1114 return OpRef::res(Results.top());
1115 }
1116
1117 if (Options & PackMux) {
1118 // If elements picked from Va and Vb have all different (source) indexes
1119 // (relative to the start of the argument), do a mux, and update the mask.
1120 BitVector Picked(HwLen);
1121 SmallVector<uint8_t,128> MuxBytes(HwLen);
1122 bool CanMux = true;
1123 for (int I = 0; I != VecLen; ++I) {
1124 int M = SM.Mask[I];
1125 if (M == -1)
1126 continue;
1127 if (M >= int(HwLen))
1128 M -= HwLen;
1129 else
1130 MuxBytes[M] = 0xFF;
1131 if (Picked[M]) {
1132 CanMux = false;
1133 break;
1134 }
1135 NewMask[I] = M;
1136 }
1137 if (CanMux)
1138 return vmuxs(MuxBytes, Va, Vb, Results);
1139 }
1140
1141 return OpRef::fail();
1142 }
1143
packp(ShuffleMask SM,OpRef Va,OpRef Vb,ResultStack & Results,MutableArrayRef<int> NewMask)1144 OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb,
1145 ResultStack &Results, MutableArrayRef<int> NewMask) {
1146 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1147 unsigned HalfMask = 0;
1148 unsigned LogHw = Log2_32(HwLen);
1149 for (int M : SM.Mask) {
1150 if (M == -1)
1151 continue;
1152 HalfMask |= (1u << (M >> LogHw));
1153 }
1154
1155 if (HalfMask == 0)
1156 return OpRef::undef(getPairVT(MVT::i8));
1157
1158 // If more than two halves are used, bail.
1159 // TODO: be more aggressive here?
1160 if (countPopulation(HalfMask) > 2)
1161 return OpRef::fail();
1162
1163 MVT HalfTy = getSingleVT(MVT::i8);
1164
1165 OpRef Inp[2] = { Va, Vb };
1166 OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) };
1167
1168 uint8_t HalfIdx[4] = { 0xFF, 0xFF, 0xFF, 0xFF };
1169 unsigned Idx = 0;
1170 for (unsigned I = 0; I != 4; ++I) {
1171 if ((HalfMask & (1u << I)) == 0)
1172 continue;
1173 assert(Idx < 2);
1174 OpRef Op = Inp[I/2];
1175 Out[Idx] = (I & 1) ? OpRef::hi(Op) : OpRef::lo(Op);
1176 HalfIdx[I] = Idx++;
1177 }
1178
1179 int VecLen = SM.Mask.size();
1180 for (int I = 0; I != VecLen; ++I) {
1181 int M = SM.Mask[I];
1182 if (M >= 0) {
1183 uint8_t Idx = HalfIdx[M >> LogHw];
1184 assert(Idx == 0 || Idx == 1);
1185 M = (M & (HwLen-1)) + HwLen*Idx;
1186 }
1187 NewMask[I] = M;
1188 }
1189
1190 return concat(Out[0], Out[1], Results);
1191 }
1192
vmuxs(ArrayRef<uint8_t> Bytes,OpRef Va,OpRef Vb,ResultStack & Results)1193 OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
1194 ResultStack &Results) {
1195 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1196 MVT ByteTy = getSingleVT(MVT::i8);
1197 MVT BoolTy = MVT::getVectorVT(MVT::i1, 8*HwLen); // XXX
1198 const SDLoc &dl(Results.InpNode);
1199 SDValue B = getVectorConstant(Bytes, dl);
1200 Results.push(Hexagon::V6_vd0, ByteTy, {});
1201 Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)});
1202 Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va});
1203 return OpRef::res(Results.top());
1204 }
1205
vmuxp(ArrayRef<uint8_t> Bytes,OpRef Va,OpRef Vb,ResultStack & Results)1206 OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
1207 ResultStack &Results) {
1208 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1209 size_t S = Bytes.size() / 2;
1210 OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results);
1211 OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results);
1212 return concat(L, H, Results);
1213 }
1214
shuffs1(ShuffleMask SM,OpRef Va,ResultStack & Results)1215 OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1216 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1217 unsigned VecLen = SM.Mask.size();
1218 assert(HwLen == VecLen);
1219 (void)VecLen;
1220 assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); }));
1221
1222 if (isIdentity(SM.Mask))
1223 return Va;
1224 if (isUndef(SM.Mask))
1225 return OpRef::undef(getSingleVT(MVT::i8));
1226
1227 OpRef P = perfect(SM, Va, Results);
1228 if (P.isValid())
1229 return P;
1230 return butterfly(SM, Va, Results);
1231 }
1232
shuffs2(ShuffleMask SM,OpRef Va,OpRef Vb,ResultStack & Results)1233 OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb,
1234 ResultStack &Results) {
1235 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1236 if (isUndef(SM.Mask))
1237 return OpRef::undef(getSingleVT(MVT::i8));
1238
1239 OpRef C = contracting(SM, Va, Vb, Results);
1240 if (C.isValid())
1241 return C;
1242
1243 int VecLen = SM.Mask.size();
1244 SmallVector<int,128> NewMask(VecLen);
1245 OpRef P = packs(SM, Va, Vb, Results, NewMask);
1246 if (P.isValid())
1247 return shuffs1(ShuffleMask(NewMask), P, Results);
1248
1249 SmallVector<int,128> MaskL(VecLen), MaskR(VecLen);
1250 splitMask(SM.Mask, MaskL, MaskR);
1251
1252 OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results);
1253 OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results);
1254 if (!L.isValid() || !R.isValid())
1255 return OpRef::fail();
1256
1257 SmallVector<uint8_t,128> Bytes(VecLen);
1258 for (int I = 0; I != VecLen; ++I) {
1259 if (MaskL[I] != -1)
1260 Bytes[I] = 0xFF;
1261 }
1262 return vmuxs(Bytes, L, R, Results);
1263 }
1264
shuffp1(ShuffleMask SM,OpRef Va,ResultStack & Results)1265 OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1266 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1267 int VecLen = SM.Mask.size();
1268
1269 if (isIdentity(SM.Mask))
1270 return Va;
1271 if (isUndef(SM.Mask))
1272 return OpRef::undef(getPairVT(MVT::i8));
1273
1274 SmallVector<int,128> PackedMask(VecLen);
1275 OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask);
1276 if (P.isValid()) {
1277 ShuffleMask PM(PackedMask);
1278 OpRef E = expanding(PM, P, Results);
1279 if (E.isValid())
1280 return E;
1281
1282 OpRef L = shuffs1(PM.lo(), P, Results);
1283 OpRef H = shuffs1(PM.hi(), P, Results);
1284 if (L.isValid() && H.isValid())
1285 return concat(L, H, Results);
1286 }
1287
1288 OpRef R = perfect(SM, Va, Results);
1289 if (R.isValid())
1290 return R;
1291 // TODO commute the mask and try the opposite order of the halves.
1292
1293 OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results);
1294 OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results);
1295 if (L.isValid() && H.isValid())
1296 return concat(L, H, Results);
1297
1298 return OpRef::fail();
1299 }
1300
shuffp2(ShuffleMask SM,OpRef Va,OpRef Vb,ResultStack & Results)1301 OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb,
1302 ResultStack &Results) {
1303 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1304 if (isUndef(SM.Mask))
1305 return OpRef::undef(getPairVT(MVT::i8));
1306
1307 int VecLen = SM.Mask.size();
1308 SmallVector<int,256> PackedMask(VecLen);
1309 OpRef P = packp(SM, Va, Vb, Results, PackedMask);
1310 if (P.isValid())
1311 return shuffp1(ShuffleMask(PackedMask), P, Results);
1312
1313 SmallVector<int,256> MaskL(VecLen), MaskR(VecLen);
1314 splitMask(SM.Mask, MaskL, MaskR);
1315
1316 OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results);
1317 OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results);
1318 if (!L.isValid() || !R.isValid())
1319 return OpRef::fail();
1320
1321 // Mux the results.
1322 SmallVector<uint8_t,256> Bytes(VecLen);
1323 for (int I = 0; I != VecLen; ++I) {
1324 if (MaskL[I] != -1)
1325 Bytes[I] = 0xFF;
1326 }
1327 return vmuxp(Bytes, L, R, Results);
1328 }
1329
scalarizeShuffle(ArrayRef<int> Mask,const SDLoc & dl,MVT ResTy,SDValue Va,SDValue Vb,SDNode * N)1330 bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl,
1331 MVT ResTy, SDValue Va, SDValue Vb,
1332 SDNode *N) {
1333 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1334 MVT ElemTy = ResTy.getVectorElementType();
1335 assert(ElemTy == MVT::i8);
1336 unsigned VecLen = Mask.size();
1337 bool HavePairs = (2*HwLen == VecLen);
1338 MVT SingleTy = getSingleVT(MVT::i8);
1339
1340 SmallVector<SDValue,128> Ops;
1341 for (int I : Mask) {
1342 if (I < 0) {
1343 Ops.push_back(ISel.selectUndef(dl, ElemTy));
1344 continue;
1345 }
1346 SDValue Vec;
1347 unsigned M = I;
1348 if (M < VecLen) {
1349 Vec = Va;
1350 } else {
1351 Vec = Vb;
1352 M -= VecLen;
1353 }
1354 if (HavePairs) {
1355 if (M < HwLen) {
1356 Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec);
1357 } else {
1358 Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec);
1359 M -= HwLen;
1360 }
1361 }
1362 SDValue Idx = DAG.getConstant(M, dl, MVT::i32);
1363 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ElemTy, {Vec, Idx});
1364 SDValue L = Lower.LowerOperation(Ex, DAG);
1365 assert(L.getNode());
1366 Ops.push_back(L);
1367 }
1368
1369 SDValue LV;
1370 if (2*HwLen == VecLen) {
1371 SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen});
1372 SDValue L0 = Lower.LowerOperation(B0, DAG);
1373 SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen});
1374 SDValue L1 = Lower.LowerOperation(B1, DAG);
1375 // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering)
1376 // functions may expect to be called only for illegal operations, so
1377 // make sure that they are not called for legal ones. Develop a better
1378 // mechanism for dealing with this.
1379 LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1});
1380 } else {
1381 SDValue BV = DAG.getBuildVector(ResTy, dl, Ops);
1382 LV = Lower.LowerOperation(BV, DAG);
1383 }
1384
1385 assert(!N->use_empty());
1386 ISel.ReplaceNode(N, LV.getNode());
1387 DAG.RemoveDeadNodes();
1388
1389 std::deque<SDNode*> SubNodes;
1390 SubNodes.push_back(LV.getNode());
1391 for (unsigned I = 0; I != SubNodes.size(); ++I) {
1392 for (SDValue Op : SubNodes[I]->ops())
1393 SubNodes.push_back(Op.getNode());
1394 }
1395 while (!SubNodes.empty()) {
1396 SDNode *S = SubNodes.front();
1397 SubNodes.pop_front();
1398 if (S->use_empty())
1399 continue;
1400 // This isn't great, but users need to be selected before any nodes that
1401 // they use. (The reason is to match larger patterns, and avoid nodes that
1402 // cannot be matched on their own, e.g. ValueType, TokenFactor, etc.).
1403 bool PendingUser = llvm::any_of(S->uses(), [&SubNodes](const SDNode *U) {
1404 return llvm::any_of(SubNodes, [U](const SDNode *T) {
1405 return T == U;
1406 });
1407 });
1408 if (PendingUser)
1409 SubNodes.push_back(S);
1410 else
1411 ISel.Select(S);
1412 }
1413
1414 DAG.RemoveDeadNodes();
1415 return true;
1416 }
1417
contracting(ShuffleMask SM,OpRef Va,OpRef Vb,ResultStack & Results)1418 OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb,
1419 ResultStack &Results) {
1420 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1421 if (!Va.isValid() || !Vb.isValid())
1422 return OpRef::fail();
1423
1424 // Contracting shuffles, i.e. instructions that always discard some bytes
1425 // from the operand vectors.
1426 //
1427 // V6_vshuff{e,o}b
1428 // V6_vdealb4w
1429 // V6_vpack{e,o}{b,h}
1430
1431 int VecLen = SM.Mask.size();
1432 std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
1433 MVT ResTy = getSingleVT(MVT::i8);
1434
1435 // The following shuffles only work for bytes and halfwords. This requires
1436 // the strip length to be 1 or 2.
1437 if (Strip.second != 1 && Strip.second != 2)
1438 return OpRef::fail();
1439
1440 // The patterns for the shuffles, in terms of the starting offsets of the
1441 // consecutive strips (L = length of the strip, N = VecLen):
1442 //
1443 // vpacke: 0, 2L, 4L ... N+0, N+2L, N+4L ... L = 1 or 2
1444 // vpacko: L, 3L, 5L ... N+L, N+3L, N+5L ... L = 1 or 2
1445 //
1446 // vshuffe: 0, N+0, 2L, N+2L, 4L ... L = 1 or 2
1447 // vshuffo: L, N+L, 3L, N+3L, 5L ... L = 1 or 2
1448 //
1449 // vdealb4w: 0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ...
1450
1451 // The value of the element in the mask following the strip will decide
1452 // what kind of a shuffle this can be.
1453 int NextInMask = SM.Mask[Strip.second];
1454
1455 // Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask
1456 // for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would
1457 // satisfy this.
1458 if (NextInMask < VecLen) {
1459 // vpack{e,o} or vdealb4w
1460 if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) {
1461 int N = VecLen;
1462 // Check if this is vdealb4w (L=1).
1463 for (int I = 0; I != N/4; ++I)
1464 if (SM.Mask[I] != 4*I)
1465 return OpRef::fail();
1466 for (int I = 0; I != N/4; ++I)
1467 if (SM.Mask[I+N/4] != 2 + 4*I)
1468 return OpRef::fail();
1469 for (int I = 0; I != N/4; ++I)
1470 if (SM.Mask[I+N/2] != N + 4*I)
1471 return OpRef::fail();
1472 for (int I = 0; I != N/4; ++I)
1473 if (SM.Mask[I+3*N/4] != N+2 + 4*I)
1474 return OpRef::fail();
1475 // Matched mask for vdealb4w.
1476 Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va});
1477 return OpRef::res(Results.top());
1478 }
1479
1480 // Check if this is vpack{e,o}.
1481 int N = VecLen;
1482 int L = Strip.second;
1483 // Check if the first strip starts at 0 or at L.
1484 if (Strip.first != 0 && Strip.first != L)
1485 return OpRef::fail();
1486 // Examine the rest of the mask.
1487 for (int I = L; I < N; I += L) {
1488 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1489 // Check whether the mask element at the beginning of each strip
1490 // increases by 2L each time.
1491 if (S.first - Strip.first != 2*I)
1492 return OpRef::fail();
1493 // Check whether each strip is of the same length.
1494 if (S.second != unsigned(L))
1495 return OpRef::fail();
1496 }
1497
1498 // Strip.first == 0 => vpacke
1499 // Strip.first == L => vpacko
1500 assert(Strip.first == 0 || Strip.first == L);
1501 using namespace Hexagon;
1502 NodeTemplate Res;
1503 Res.Opc = Strip.second == 1 // Number of bytes.
1504 ? (Strip.first == 0 ? V6_vpackeb : V6_vpackob)
1505 : (Strip.first == 0 ? V6_vpackeh : V6_vpackoh);
1506 Res.Ty = ResTy;
1507 Res.Ops = { Vb, Va };
1508 Results.push(Res);
1509 return OpRef::res(Results.top());
1510 }
1511
1512 // Check if this is vshuff{e,o}.
1513 int N = VecLen;
1514 int L = Strip.second;
1515 std::pair<int,unsigned> PrevS = Strip;
1516 bool Flip = false;
1517 for (int I = L; I < N; I += L) {
1518 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1519 if (S.second != PrevS.second)
1520 return OpRef::fail();
1521 int Diff = Flip ? PrevS.first - S.first + 2*L
1522 : S.first - PrevS.first;
1523 if (Diff != N)
1524 return OpRef::fail();
1525 Flip ^= true;
1526 PrevS = S;
1527 }
1528 // Strip.first == 0 => vshuffe
1529 // Strip.first == L => vshuffo
1530 assert(Strip.first == 0 || Strip.first == L);
1531 using namespace Hexagon;
1532 NodeTemplate Res;
1533 Res.Opc = Strip.second == 1 // Number of bytes.
1534 ? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob)
1535 : (Strip.first == 0 ? V6_vshufeh : V6_vshufoh);
1536 Res.Ty = ResTy;
1537 Res.Ops = { Vb, Va };
1538 Results.push(Res);
1539 return OpRef::res(Results.top());
1540 }
1541
expanding(ShuffleMask SM,OpRef Va,ResultStack & Results)1542 OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1543 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1544 // Expanding shuffles (using all elements and inserting into larger vector):
1545 //
1546 // V6_vunpacku{b,h} [*]
1547 //
1548 // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask.
1549 //
1550 // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so
1551 // they are not shuffles.
1552 //
1553 // The argument is a single vector.
1554
1555 int VecLen = SM.Mask.size();
1556 assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type");
1557
1558 std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
1559
1560 // The patterns for the unpacks, in terms of the starting offsets of the
1561 // consecutive strips (L = length of the strip, N = VecLen):
1562 //
1563 // vunpacku: 0, -1, L, -1, 2L, -1 ...
1564
1565 if (Strip.first != 0)
1566 return OpRef::fail();
1567
1568 // The vunpackus only handle byte and half-word.
1569 if (Strip.second != 1 && Strip.second != 2)
1570 return OpRef::fail();
1571
1572 int N = VecLen;
1573 int L = Strip.second;
1574
1575 // First, check the non-ignored strips.
1576 for (int I = 2*L; I < 2*N; I += 2*L) {
1577 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
1578 if (S.second != unsigned(L))
1579 return OpRef::fail();
1580 if (2*S.first != I)
1581 return OpRef::fail();
1582 }
1583 // Check the -1s.
1584 for (int I = L; I < 2*N; I += 2*L) {
1585 auto S = findStrip(SM.Mask.drop_front(I), 0, N-I);
1586 if (S.first != -1 || S.second != unsigned(L))
1587 return OpRef::fail();
1588 }
1589
1590 unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub
1591 : Hexagon::V6_vunpackuh;
1592 Results.push(Opc, getPairVT(MVT::i8), {Va});
1593 return OpRef::res(Results.top());
1594 }
1595
perfect(ShuffleMask SM,OpRef Va,ResultStack & Results)1596 OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1597 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1598 // V6_vdeal{b,h}
1599 // V6_vshuff{b,h}
1600
1601 // V6_vshufoe{b,h} those are quivalent to vshuffvdd(..,{1,2})
1602 // V6_vshuffvdd (V6_vshuff)
1603 // V6_dealvdd (V6_vdeal)
1604
1605 int VecLen = SM.Mask.size();
1606 assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8);
1607 unsigned LogLen = Log2_32(VecLen);
1608 unsigned HwLog = Log2_32(HwLen);
1609 // The result length must be the same as the length of a single vector,
1610 // or a vector pair.
1611 assert(LogLen == HwLog || LogLen == HwLog+1);
1612 bool Extend = (LogLen == HwLog);
1613
1614 if (!isPermutation(SM.Mask))
1615 return OpRef::fail();
1616
1617 SmallVector<unsigned,8> Perm(LogLen);
1618
1619 // Check if this could be a perfect shuffle, or a combination of perfect
1620 // shuffles.
1621 //
1622 // Consider this permutation (using hex digits to make the ASCII diagrams
1623 // easier to read):
1624 // { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }.
1625 // This is a "deal" operation: divide the input into two halves, and
1626 // create the output by picking elements by alternating between these two
1627 // halves:
1628 // 0 1 2 3 4 5 6 7 --> 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F [*]
1629 // 8 9 A B C D E F
1630 //
1631 // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides
1632 // a somwehat different mechanism that could be used to perform shuffle/
1633 // deal operations: a 2x2 transpose.
1634 // Consider the halves of inputs again, they can be interpreted as a 2x8
1635 // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated
1636 // together. Now, when considering 2 elements at a time, it will be a 2x4
1637 // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices:
1638 // 01 23 45 67
1639 // 89 AB CD EF
1640 // With groups of 4, this will become a single 2x2 matrix, and so on.
1641 //
1642 // The 2x2 transpose instruction works by transposing each of the 2x2
1643 // matrices (or "sub-matrices"), given a specific group size. For example,
1644 // if the group size is 1 (i.e. each element is its own group), there
1645 // will be four transposes of the four 2x2 matrices that form the 2x8.
1646 // For example, with the inputs as above, the result will be:
1647 // 0 8 2 A 4 C 6 E
1648 // 1 9 3 B 5 D 7 F
1649 // Now, this result can be tranposed again, but with the group size of 2:
1650 // 08 19 4C 5D
1651 // 2A 3B 6E 7F
1652 // If we then transpose that result, but with the group size of 4, we get:
1653 // 0819 2A3B
1654 // 4C5D 6E7F
1655 // If we concatenate these two rows, it will be
1656 // 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F
1657 // which is the same as the "deal" [*] above.
1658 //
1659 // In general, a "deal" of individual elements is a series of 2x2 transposes,
1660 // with changing group size. HVX has two instructions:
1661 // Vdd = V6_vdealvdd Vu, Vv, Rt
1662 // Vdd = V6_shufvdd Vu, Vv, Rt
1663 // that perform exactly that. The register Rt controls which transposes are
1664 // going to happen: a bit at position n (counting from 0) indicates that a
1665 // transpose with a group size of 2^n will take place. If multiple bits are
1666 // set, multiple transposes will happen: vdealvdd will perform them starting
1667 // with the largest group size, vshuffvdd will do them in the reverse order.
1668 //
1669 // The main observation is that each 2x2 transpose corresponds to swapping
1670 // columns of bits in the binary representation of the values.
1671 //
1672 // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits
1673 // in a given column. The * denote the columns that will be swapped.
1674 // The transpose with the group size 2^n corresponds to swapping columns
1675 // 3 (the highest log) and log2(n):
1676 //
1677 // 3 2 1 0 0 2 1 3 0 2 3 1
1678 // * * * * * *
1679 // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1680 // 1 0 0 0 1 8 1 0 0 0 8 1 0 0 0 8 1 0 0 0
1681 // 2 0 0 1 0 2 0 0 1 0 1 0 0 0 1 1 0 0 0 1
1682 // 3 0 0 1 1 A 1 0 1 0 9 1 0 0 1 9 1 0 0 1
1683 // 4 0 1 0 0 4 0 1 0 0 4 0 1 0 0 2 0 0 1 0
1684 // 5 0 1 0 1 C 1 1 0 0 C 1 1 0 0 A 1 0 1 0
1685 // 6 0 1 1 0 6 0 1 1 0 5 0 1 0 1 3 0 0 1 1
1686 // 7 0 1 1 1 E 1 1 1 0 D 1 1 0 1 B 1 0 1 1
1687 // 8 1 0 0 0 1 0 0 0 1 2 0 0 1 0 4 0 1 0 0
1688 // 9 1 0 0 1 9 1 0 0 1 A 1 0 1 0 C 1 1 0 0
1689 // A 1 0 1 0 3 0 0 1 1 3 0 0 1 1 5 0 1 0 1
1690 // B 1 0 1 1 B 1 0 1 1 B 1 0 1 1 D 1 1 0 1
1691 // C 1 1 0 0 5 0 1 0 1 6 0 1 1 0 6 0 1 1 0
1692 // D 1 1 0 1 D 1 1 0 1 E 1 1 1 0 E 1 1 1 0
1693 // E 1 1 1 0 7 0 1 1 1 7 0 1 1 1 7 0 1 1 1
1694 // F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 F 1 1 1 1
1695
1696 auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) {
1697 unsigned X = Mask[0] ^ Mask[Num/2];
1698 // Check that the first half has the X's bits clear.
1699 if ((Mask[0] & X) != 0)
1700 return 0u;
1701 for (unsigned I = 1; I != Num/2; ++I) {
1702 if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X)
1703 return 0u;
1704 if ((Mask[I] & X) != 0)
1705 return 0u;
1706 }
1707 return X;
1708 };
1709
1710 // Create a vector of log2's for each column: Perm[i] corresponds to
1711 // the i-th bit (lsb is 0).
1712 assert(VecLen > 2);
1713 for (unsigned I = VecLen; I >= 2; I >>= 1) {
1714 // Examine the initial segment of Mask of size I.
1715 unsigned X = XorPow2(SM.Mask, I);
1716 if (!isPowerOf2_32(X))
1717 return OpRef::fail();
1718 // Check the other segments of Mask.
1719 for (int J = I; J < VecLen; J += I) {
1720 if (XorPow2(SM.Mask.slice(J, I), I) != X)
1721 return OpRef::fail();
1722 }
1723 Perm[Log2_32(X)] = Log2_32(I)-1;
1724 }
1725
1726 // Once we have Perm, represent it as cycles. Denote the maximum log2
1727 // (equal to log2(VecLen)-1) as M. The cycle containing M can then be
1728 // written as (M a1 a2 a3 ... an). That cycle can be broken up into
1729 // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition
1730 // order being from left to right. Any (contiguous) segment where the
1731 // values ai, ai+1...aj are either all increasing or all decreasing,
1732 // can be implemented via a single vshuffvdd/vdealvdd respectively.
1733 //
1734 // If there is a cycle (a1 a2 ... an) that does not involve M, it can
1735 // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can
1736 // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure
1737 // can be used to generate a sequence of vshuffvdd/vdealvdd.
1738 //
1739 // Example:
1740 // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written
1741 // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply
1742 // (4 0 1)(4 0)(4 2 3)(4 2).
1743 // It can then be expanded into swaps as
1744 // (4 0)(4 1)(4 0)(4 2)(4 3)(4 2),
1745 // and broken up into "increasing" segments as
1746 // [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)].
1747 // This is equivalent to
1748 // (4 0 1)(4 0 2 3)(4 2),
1749 // which can be implemented as 3 vshufvdd instructions.
1750
1751 using CycleType = SmallVector<unsigned,8>;
1752 std::set<CycleType> Cycles;
1753 std::set<unsigned> All;
1754
1755 for (unsigned I : Perm)
1756 All.insert(I);
1757
1758 // If the cycle contains LogLen-1, move it to the front of the cycle.
1759 // Otherwise, return the cycle unchanged.
1760 auto canonicalize = [LogLen](const CycleType &C) -> CycleType {
1761 unsigned LogPos, N = C.size();
1762 for (LogPos = 0; LogPos != N; ++LogPos)
1763 if (C[LogPos] == LogLen-1)
1764 break;
1765 if (LogPos == N)
1766 return C;
1767
1768 CycleType NewC(C.begin()+LogPos, C.end());
1769 NewC.append(C.begin(), C.begin()+LogPos);
1770 return NewC;
1771 };
1772
1773 auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) {
1774 // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6),
1775 // for bytes zero is included, for halfwords is not.
1776 if (Cs.size() != 1)
1777 return 0u;
1778 const CycleType &C = *Cs.begin();
1779 if (C[0] != Len-1)
1780 return 0u;
1781 int D = Len - C.size();
1782 if (D != 0 && D != 1)
1783 return 0u;
1784
1785 bool IsDeal = true, IsShuff = true;
1786 for (unsigned I = 1; I != Len-D; ++I) {
1787 if (C[I] != Len-1-I)
1788 IsDeal = false;
1789 if (C[I] != I-(1-D)) // I-1, I
1790 IsShuff = false;
1791 }
1792 // At most one, IsDeal or IsShuff, can be non-zero.
1793 assert(!(IsDeal || IsShuff) || IsDeal != IsShuff);
1794 static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh };
1795 static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh };
1796 return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0);
1797 };
1798
1799 while (!All.empty()) {
1800 unsigned A = *All.begin();
1801 All.erase(A);
1802 CycleType C;
1803 C.push_back(A);
1804 for (unsigned B = Perm[A]; B != A; B = Perm[B]) {
1805 C.push_back(B);
1806 All.erase(B);
1807 }
1808 if (C.size() <= 1)
1809 continue;
1810 Cycles.insert(canonicalize(C));
1811 }
1812
1813 MVT SingleTy = getSingleVT(MVT::i8);
1814 MVT PairTy = getPairVT(MVT::i8);
1815
1816 // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}.
1817 if (unsigned(VecLen) == HwLen) {
1818 if (unsigned SingleOpc = pfs(Cycles, LogLen)) {
1819 Results.push(SingleOpc, SingleTy, {Va});
1820 return OpRef::res(Results.top());
1821 }
1822 }
1823
1824 SmallVector<unsigned,8> SwapElems;
1825 if (HwLen == unsigned(VecLen))
1826 SwapElems.push_back(LogLen-1);
1827
1828 for (const CycleType &C : Cycles) {
1829 unsigned First = (C[0] == LogLen-1) ? 1 : 0;
1830 SwapElems.append(C.begin()+First, C.end());
1831 if (First == 0)
1832 SwapElems.push_back(C[0]);
1833 }
1834
1835 const SDLoc &dl(Results.InpNode);
1836 OpRef Arg = !Extend ? Va
1837 : concat(Va, OpRef::undef(SingleTy), Results);
1838
1839 for (unsigned I = 0, E = SwapElems.size(); I != E; ) {
1840 bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1];
1841 unsigned S = (1u << SwapElems[I]);
1842 if (I < E-1) {
1843 while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1]))
1844 S |= 1u << SwapElems[I];
1845 // The above loop will not add a bit for the final SwapElems[I+1],
1846 // so add it here.
1847 S |= 1u << SwapElems[I];
1848 }
1849 ++I;
1850
1851 NodeTemplate Res;
1852 Results.push(Hexagon::A2_tfrsi, MVT::i32,
1853 { DAG.getTargetConstant(S, dl, MVT::i32) });
1854 Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd;
1855 Res.Ty = PairTy;
1856 Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) };
1857 Results.push(Res);
1858 Arg = OpRef::res(Results.top());
1859 }
1860
1861 return !Extend ? Arg : OpRef::lo(Arg);
1862 }
1863
butterfly(ShuffleMask SM,OpRef Va,ResultStack & Results)1864 OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) {
1865 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
1866 // Butterfly shuffles.
1867 //
1868 // V6_vdelta
1869 // V6_vrdelta
1870 // V6_vror
1871
1872 // The assumption here is that all elements picked by Mask are in the
1873 // first operand to the vector_shuffle. This assumption is enforced
1874 // by the caller.
1875
1876 MVT ResTy = getSingleVT(MVT::i8);
1877 PermNetwork::Controls FC, RC;
1878 const SDLoc &dl(Results.InpNode);
1879 int VecLen = SM.Mask.size();
1880
1881 for (int M : SM.Mask) {
1882 if (M != -1 && M >= VecLen)
1883 return OpRef::fail();
1884 }
1885
1886 // Try the deltas/benes for both single vectors and vector pairs.
1887 ForwardDeltaNetwork FN(SM.Mask);
1888 if (FN.run(FC)) {
1889 SDValue Ctl = getVectorConstant(FC, dl);
1890 Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)});
1891 return OpRef::res(Results.top());
1892 }
1893
1894 // Try reverse delta.
1895 ReverseDeltaNetwork RN(SM.Mask);
1896 if (RN.run(RC)) {
1897 SDValue Ctl = getVectorConstant(RC, dl);
1898 Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)});
1899 return OpRef::res(Results.top());
1900 }
1901
1902 // Do Benes.
1903 BenesNetwork BN(SM.Mask);
1904 if (BN.run(FC, RC)) {
1905 SDValue CtlF = getVectorConstant(FC, dl);
1906 SDValue CtlR = getVectorConstant(RC, dl);
1907 Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)});
1908 Results.push(Hexagon::V6_vrdelta, ResTy,
1909 {OpRef::res(-1), OpRef(CtlR)});
1910 return OpRef::res(Results.top());
1911 }
1912
1913 return OpRef::fail();
1914 }
1915
getVectorConstant(ArrayRef<uint8_t> Data,const SDLoc & dl)1916 SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data,
1917 const SDLoc &dl) {
1918 SmallVector<SDValue, 128> Elems;
1919 for (uint8_t C : Data)
1920 Elems.push_back(DAG.getConstant(C, dl, MVT::i8));
1921 MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size());
1922 SDValue BV = DAG.getBuildVector(VecTy, dl, Elems);
1923 SDValue LV = Lower.LowerOperation(BV, DAG);
1924 DAG.RemoveDeadNode(BV.getNode());
1925 return LV;
1926 }
1927
selectShuffle(SDNode * N)1928 void HvxSelector::selectShuffle(SDNode *N) {
1929 DEBUG_WITH_TYPE("isel", {
1930 dbgs() << "Starting " << __func__ << " on node:\n";
1931 N->dump(&DAG);
1932 });
1933 MVT ResTy = N->getValueType(0).getSimpleVT();
1934 // Assume that vector shuffles operate on vectors of bytes.
1935 assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8);
1936
1937 auto *SN = cast<ShuffleVectorSDNode>(N);
1938 std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end());
1939 // This shouldn't really be necessary. Is it?
1940 for (int &Idx : Mask)
1941 if (Idx != -1 && Idx < 0)
1942 Idx = -1;
1943
1944 unsigned VecLen = Mask.size();
1945 bool HavePairs = (2*HwLen == VecLen);
1946 assert(ResTy.getSizeInBits() / 8 == VecLen);
1947
1948 // Vd = vector_shuffle Va, Vb, Mask
1949 //
1950
1951 bool UseLeft = false, UseRight = false;
1952 for (unsigned I = 0; I != VecLen; ++I) {
1953 if (Mask[I] == -1)
1954 continue;
1955 unsigned Idx = Mask[I];
1956 assert(Idx < 2*VecLen);
1957 if (Idx < VecLen)
1958 UseLeft = true;
1959 else
1960 UseRight = true;
1961 }
1962
1963 DEBUG_WITH_TYPE("isel", {
1964 dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft="
1965 << UseLeft << " UseRight=" << UseRight << " HavePairs="
1966 << HavePairs << '\n';
1967 });
1968 // If the mask is all -1's, generate "undef".
1969 if (!UseLeft && !UseRight) {
1970 ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode());
1971 return;
1972 }
1973
1974 SDValue Vec0 = N->getOperand(0);
1975 SDValue Vec1 = N->getOperand(1);
1976 ResultStack Results(SN);
1977 Results.push(TargetOpcode::COPY, ResTy, {Vec0});
1978 Results.push(TargetOpcode::COPY, ResTy, {Vec1});
1979 OpRef Va = OpRef::res(Results.top()-1);
1980 OpRef Vb = OpRef::res(Results.top());
1981
1982 OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results)
1983 : shuffp2(ShuffleMask(Mask), Va, Vb, Results);
1984
1985 bool Done = Res.isValid();
1986 if (Done) {
1987 // Make sure that Res is on the stack before materializing.
1988 Results.push(TargetOpcode::COPY, ResTy, {Res});
1989 materialize(Results);
1990 } else {
1991 Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N);
1992 }
1993
1994 if (!Done) {
1995 #ifndef NDEBUG
1996 dbgs() << "Unhandled shuffle:\n";
1997 SN->dumpr(&DAG);
1998 #endif
1999 llvm_unreachable("Failed to select vector shuffle");
2000 }
2001 }
2002
selectRor(SDNode * N)2003 void HvxSelector::selectRor(SDNode *N) {
2004 // If this is a rotation by less than 8, use V6_valignbi.
2005 MVT Ty = N->getValueType(0).getSimpleVT();
2006 const SDLoc &dl(N);
2007 SDValue VecV = N->getOperand(0);
2008 SDValue RotV = N->getOperand(1);
2009 SDNode *NewN = nullptr;
2010
2011 if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) {
2012 unsigned S = CN->getZExtValue() % HST.getVectorLength();
2013 if (S == 0) {
2014 NewN = VecV.getNode();
2015 } else if (isUInt<3>(S)) {
2016 SDValue C = DAG.getTargetConstant(S, dl, MVT::i32);
2017 NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty,
2018 {VecV, VecV, C});
2019 }
2020 }
2021
2022 if (!NewN)
2023 NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV});
2024
2025 ISel.ReplaceNode(N, NewN);
2026 }
2027
selectVAlign(SDNode * N)2028 void HvxSelector::selectVAlign(SDNode *N) {
2029 SDValue Vv = N->getOperand(0);
2030 SDValue Vu = N->getOperand(1);
2031 SDValue Rt = N->getOperand(2);
2032 SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N),
2033 N->getValueType(0), {Vv, Vu, Rt});
2034 ISel.ReplaceNode(N, NewN);
2035 DAG.RemoveDeadNode(N);
2036 }
2037
SelectHvxShuffle(SDNode * N)2038 void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) {
2039 HvxSelector(*this, *CurDAG).selectShuffle(N);
2040 }
2041
SelectHvxRor(SDNode * N)2042 void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) {
2043 HvxSelector(*this, *CurDAG).selectRor(N);
2044 }
2045
SelectHvxVAlign(SDNode * N)2046 void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) {
2047 HvxSelector(*this, *CurDAG).selectVAlign(N);
2048 }
2049
SelectV65GatherPred(SDNode * N)2050 void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) {
2051 if (!HST->usePackets()) {
2052 report_fatal_error("Support for gather requires packets, "
2053 "which are disabled");
2054 }
2055 const SDLoc &dl(N);
2056 SDValue Chain = N->getOperand(0);
2057 SDValue Address = N->getOperand(2);
2058 SDValue Predicate = N->getOperand(3);
2059 SDValue Base = N->getOperand(4);
2060 SDValue Modifier = N->getOperand(5);
2061 SDValue Offset = N->getOperand(6);
2062
2063 unsigned Opcode;
2064 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2065 switch (IntNo) {
2066 default:
2067 llvm_unreachable("Unexpected HVX gather intrinsic.");
2068 case Intrinsic::hexagon_V6_vgathermhq:
2069 case Intrinsic::hexagon_V6_vgathermhq_128B:
2070 Opcode = Hexagon::V6_vgathermhq_pseudo;
2071 break;
2072 case Intrinsic::hexagon_V6_vgathermwq:
2073 case Intrinsic::hexagon_V6_vgathermwq_128B:
2074 Opcode = Hexagon::V6_vgathermwq_pseudo;
2075 break;
2076 case Intrinsic::hexagon_V6_vgathermhwq:
2077 case Intrinsic::hexagon_V6_vgathermhwq_128B:
2078 Opcode = Hexagon::V6_vgathermhwq_pseudo;
2079 break;
2080 }
2081
2082 SDVTList VTs = CurDAG->getVTList(MVT::Other);
2083 SDValue Ops[] = { Address, Predicate, Base, Modifier, Offset, Chain };
2084 SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
2085
2086 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2087 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2088 cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
2089
2090 ReplaceNode(N, Result);
2091 }
2092
SelectV65Gather(SDNode * N)2093 void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) {
2094 if (!HST->usePackets()) {
2095 report_fatal_error("Support for gather requires packets, "
2096 "which are disabled");
2097 }
2098 const SDLoc &dl(N);
2099 SDValue Chain = N->getOperand(0);
2100 SDValue Address = N->getOperand(2);
2101 SDValue Base = N->getOperand(3);
2102 SDValue Modifier = N->getOperand(4);
2103 SDValue Offset = N->getOperand(5);
2104
2105 unsigned Opcode;
2106 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2107 switch (IntNo) {
2108 default:
2109 llvm_unreachable("Unexpected HVX gather intrinsic.");
2110 case Intrinsic::hexagon_V6_vgathermh:
2111 case Intrinsic::hexagon_V6_vgathermh_128B:
2112 Opcode = Hexagon::V6_vgathermh_pseudo;
2113 break;
2114 case Intrinsic::hexagon_V6_vgathermw:
2115 case Intrinsic::hexagon_V6_vgathermw_128B:
2116 Opcode = Hexagon::V6_vgathermw_pseudo;
2117 break;
2118 case Intrinsic::hexagon_V6_vgathermhw:
2119 case Intrinsic::hexagon_V6_vgathermhw_128B:
2120 Opcode = Hexagon::V6_vgathermhw_pseudo;
2121 break;
2122 }
2123
2124 SDVTList VTs = CurDAG->getVTList(MVT::Other);
2125 SDValue Ops[] = { Address, Base, Modifier, Offset, Chain };
2126 SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
2127
2128 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2129 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2130 cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
2131
2132 ReplaceNode(N, Result);
2133 }
2134
SelectHVXDualOutput(SDNode * N)2135 void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) {
2136 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2137 SDNode *Result;
2138 switch (IID) {
2139 case Intrinsic::hexagon_V6_vaddcarry: {
2140 SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
2141 N->getOperand(3) };
2142 SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1);
2143 Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
2144 break;
2145 }
2146 case Intrinsic::hexagon_V6_vaddcarry_128B: {
2147 SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
2148 N->getOperand(3) };
2149 SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1);
2150 Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
2151 break;
2152 }
2153 case Intrinsic::hexagon_V6_vsubcarry: {
2154 SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
2155 N->getOperand(3) };
2156 SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1);
2157 Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
2158 break;
2159 }
2160 case Intrinsic::hexagon_V6_vsubcarry_128B: {
2161 SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
2162 N->getOperand(3) };
2163 SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1);
2164 Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
2165 break;
2166 }
2167 default:
2168 llvm_unreachable("Unexpected HVX dual output intrinsic.");
2169 }
2170 ReplaceUses(N, Result);
2171 ReplaceUses(SDValue(N, 0), SDValue(Result, 0));
2172 ReplaceUses(SDValue(N, 1), SDValue(Result, 1));
2173 CurDAG->RemoveDeadNode(N);
2174 }
2175