• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_ML_NN_COMMON_CPU_OPERATION_UTILS_H
18 #define ANDROID_ML_NN_COMMON_CPU_OPERATION_UTILS_H
19 
20 #include "OperationsUtils.h"
21 
22 #include <algorithm>
23 #include <cmath>
24 #include <limits>
25 
26 #include "tensorflow/lite/kernels/internal/types.h"
27 
28 namespace android {
29 namespace nn {
30 
31 // The implementations in tflite/kernels/internal/ take a Dims<4> object
32 // even if the original tensors were not 4D.
convertShapeToDims(const Shape & shape)33 inline tflite::Dims<4> convertShapeToDims(const Shape& shape) {
34     nnAssert(shape.dimensions.size() <= 4);
35     tflite::Dims<4> dims;
36 
37     // The dimensions are reversed in Dims<4>.
38     for (int i = 0; i < 4; ++i) {
39         int src = static_cast<int>(shape.dimensions.size()) - i - 1;
40         if (src >= 0) {
41             dims.sizes[i] = static_cast<int>(getSizeOfDimension(shape, src));
42         } else {
43             dims.sizes[i] = 1;
44         }
45     }
46 
47     dims.strides[0] = 1;
48     for (int i = 1; i < 4; i++) {
49         dims.strides[i] = dims.strides[i - 1] * dims.sizes[i - 1];
50     }
51     return dims;
52 }
53 
convertShapeToTflshape(const Shape & shape)54 inline tflite::RuntimeShape convertShapeToTflshape(const Shape& shape) {
55     nnAssert(shape.dimensions.size() <= 4);
56 
57     std::vector<int32_t> tflShapeDim(shape.dimensions.begin(), shape.dimensions.end());
58     return tflite::RuntimeShape(tflShapeDim.size(), tflShapeDim.data());
59 }
60 
convertFloat16ToFloat32(const _Float16 * input,std::vector<float> * output)61 inline void convertFloat16ToFloat32(const _Float16* input, std::vector<float>* output) {
62     CHECK(input != nullptr);
63     CHECK(output != nullptr);
64     for (int i = 0; i < output->size(); ++i) {
65         (*output)[i] = static_cast<float>(input[i]);
66     }
67 }
68 
convertFloat32ToFloat16(const std::vector<float> & input,_Float16 * output)69 inline void convertFloat32ToFloat16(const std::vector<float>& input, _Float16* output) {
70     CHECK(output != nullptr);
71     for (int i = 0; i < input.size(); ++i) {
72         output[i] = input[i];
73     }
74 }
75 
76 template <typename T>
convertQuantToFloat32(const T * input,float scale,int32_t zeroPoint,std::vector<float> * output)77 inline void convertQuantToFloat32(const T* input, float scale, int32_t zeroPoint,
78                                   std::vector<float>* output) {
79     CHECK(input != nullptr);
80     CHECK(output != nullptr);
81     for (int i = 0; i < output->size(); ++i) {
82         (*output)[i] = (static_cast<float>(input[i]) - zeroPoint) * scale;
83     }
84 }
85 
86 template <typename T>
convertFloat32ToQuant(const std::vector<float> & input,float scale,int32_t zeroPoint,T * output)87 inline void convertFloat32ToQuant(const std::vector<float>& input, float scale, int32_t zeroPoint,
88                                   T* output) {
89     CHECK(output != nullptr);
90     for (int i = 0; i < input.size(); ++i) {
91         int32_t intVal = std::round(input[i] / scale + zeroPoint);
92         intVal = std::min<int32_t>(std::max<int32_t>(intVal, std::numeric_limits<T>::min()),
93                                    std::numeric_limits<T>::max());
94         output[i] = static_cast<T>(intVal);
95     }
96 }
97 
98 template <typename T>
convertNchwToNhwc(const T * nchw,const Shape & nchwShape,std::vector<T> * nhwc,Shape * nhwcShape)99 inline bool convertNchwToNhwc(const T* nchw, const Shape& nchwShape, std::vector<T>* nhwc,
100                               Shape* nhwcShape) {
101     NN_RET_CHECK_EQ(getNumberOfDimensions(nchwShape), 4)
102             << "Error converting a non-4-D tensor to NHWC layout";
103     *nhwcShape = nchwShape;
104     const auto& fromDim = nchwShape.dimensions;
105     nhwcShape->dimensions = {fromDim[0], fromDim[2], fromDim[3], fromDim[1]};
106     nhwc->resize(getNumberOfElements(nchwShape));
107     auto to = nhwc->data();
108     uint32_t spatialSize = fromDim[2] * fromDim[3];
109     for (uint32_t n = 0; n < fromDim[0]; n++) {
110         for (uint32_t hw = 0; hw < spatialSize; hw++) {
111             for (uint32_t c = 0; c < fromDim[1]; c++) {
112                 uint32_t fromIndex = n * fromDim[1] * spatialSize + c * spatialSize + hw;
113                 *to++ = nchw[fromIndex];
114             }
115         }
116     }
117     return true;
118 }
119 
120 template <typename T>
convertNhwcToNchw(const std::vector<T> & nhwc,const Shape & nhwcShape,T * nchw)121 inline bool convertNhwcToNchw(const std::vector<T>& nhwc, const Shape& nhwcShape, T* nchw) {
122     NN_RET_CHECK_EQ(getNumberOfDimensions(nhwcShape), 4)
123             << "Error converting a non-4-D tensor to NCHW layout";
124     const auto& fromDim = nhwcShape.dimensions;
125     const auto from = nhwc.data();
126     uint32_t spatialSize = fromDim[1] * fromDim[2];
127     for (uint32_t n = 0; n < fromDim[0]; n++) {
128         for (uint32_t c = 0; c < fromDim[3]; c++) {
129             for (uint32_t hw = 0; hw < spatialSize; hw++) {
130                 uint32_t fromIndex = n * spatialSize * fromDim[3] + hw * fromDim[3] + c;
131                 *nchw++ = from[fromIndex];
132             }
133         }
134     }
135     return true;
136 }
137 
138 template <typename T>
139 class InputWithLayout {
140    public:
InputWithLayout(bool useNchw)141     InputWithLayout(bool useNchw) : mDataOriginal(nullptr), mUseNchw(useNchw) {}
142 
initialize(const T * data,const Shape & shape)143     bool initialize(const T* data, const Shape& shape) {
144         mDataOriginal = data;
145         mShape = shape;
146         if (mUseNchw) {
147             return convertNchwToNhwc(mDataOriginal, shape, &mDataNhwc, &mShape);
148         }
149         return true;
150     }
151 
getNhwcBuffer()152     const T* getNhwcBuffer() { return mUseNchw ? mDataNhwc.data() : mDataOriginal; }
getNhwcShape()153     const Shape& getNhwcShape() { return mShape; }
154 
155    private:
156     const T* mDataOriginal;
157     std::vector<T> mDataNhwc;
158     Shape mShape;
159     bool mUseNchw;
160 };
161 
162 template <typename T>
163 class OutputWithLayout {
164    public:
OutputWithLayout(bool useNchw)165     OutputWithLayout(bool useNchw) : mDataOriginal(nullptr), mUseNchw(useNchw) {}
166 
initialize(T * data,const Shape & shape)167     bool initialize(T* data, const Shape& shape) {
168         NN_RET_CHECK_EQ(getNumberOfDimensions(shape), 4);
169         mDataOriginal = data;
170         mShape = shape;
171         if (mUseNchw) {
172             const auto& dim = shape.dimensions;
173             mShape.dimensions = {dim[0], dim[2], dim[3], dim[1]};
174             mDataNhwc.resize(getNumberOfElements(shape));
175         }
176         return true;
177     }
178 
getNhwcBuffer()179     T* getNhwcBuffer() { return mUseNchw ? mDataNhwc.data() : mDataOriginal; }
getNhwcShape()180     const Shape& getNhwcShape() { return mShape; }
commit()181     bool commit() {
182         if (mUseNchw) {
183             return convertNhwcToNchw(mDataNhwc, mShape, mDataOriginal);
184         }
185         return true;
186     }
187 
188    private:
189     T* mDataOriginal;
190     std::vector<T> mDataNhwc;
191     Shape mShape;
192     bool mUseNchw;
193 };
194 
195 }  // namespace nn
196 }  // namespace android
197 
198 #endif  // ANDROID_ML_NN_COMMON_CPU_OPERATION_UTILS_H
199