1 // SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines SValBuilder, the base class for all (complete) SValBuilder
11 // implementations.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
22
23 using namespace clang;
24 using namespace ento;
25
26 //===----------------------------------------------------------------------===//
27 // Basic SVal creation.
28 //===----------------------------------------------------------------------===//
29
anchor()30 void SValBuilder::anchor() { }
31
makeZeroVal(QualType type)32 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
33 if (Loc::isLocType(type))
34 return makeNull();
35
36 if (type->isIntegralOrEnumerationType())
37 return makeIntVal(0, type);
38
39 // FIXME: Handle floats.
40 // FIXME: Handle structs.
41 return UnknownVal();
42 }
43
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const llvm::APSInt & rhs,QualType type)44 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
45 const llvm::APSInt& rhs, QualType type) {
46 // The Environment ensures we always get a persistent APSInt in
47 // BasicValueFactory, so we don't need to get the APSInt from
48 // BasicValueFactory again.
49 assert(lhs);
50 assert(!Loc::isLocType(type));
51 return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
52 }
53
makeNonLoc(const llvm::APSInt & lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)54 NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
55 BinaryOperator::Opcode op, const SymExpr *rhs,
56 QualType type) {
57 assert(rhs);
58 assert(!Loc::isLocType(type));
59 return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
60 }
61
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)62 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
63 const SymExpr *rhs, QualType type) {
64 assert(lhs && rhs);
65 assert(!Loc::isLocType(type));
66 return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
67 }
68
makeNonLoc(const SymExpr * operand,QualType fromTy,QualType toTy)69 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
70 QualType fromTy, QualType toTy) {
71 assert(operand);
72 assert(!Loc::isLocType(toTy));
73 return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
74 }
75
convertToArrayIndex(SVal val)76 SVal SValBuilder::convertToArrayIndex(SVal val) {
77 if (val.isUnknownOrUndef())
78 return val;
79
80 // Common case: we have an appropriately sized integer.
81 if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
82 const llvm::APSInt& I = CI->getValue();
83 if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
84 return val;
85 }
86
87 return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
88 }
89
makeBoolVal(const CXXBoolLiteralExpr * boolean)90 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
91 return makeTruthVal(boolean->getValue());
92 }
93
94 DefinedOrUnknownSVal
getRegionValueSymbolVal(const TypedValueRegion * region)95 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
96 QualType T = region->getValueType();
97
98 if (T->isNullPtrType())
99 return makeZeroVal(T);
100
101 if (!SymbolManager::canSymbolicate(T))
102 return UnknownVal();
103
104 SymbolRef sym = SymMgr.getRegionValueSymbol(region);
105
106 if (Loc::isLocType(T))
107 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
108
109 return nonloc::SymbolVal(sym);
110 }
111
conjureSymbolVal(const void * SymbolTag,const Expr * Ex,const LocationContext * LCtx,unsigned Count)112 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
113 const Expr *Ex,
114 const LocationContext *LCtx,
115 unsigned Count) {
116 QualType T = Ex->getType();
117
118 if (T->isNullPtrType())
119 return makeZeroVal(T);
120
121 // Compute the type of the result. If the expression is not an R-value, the
122 // result should be a location.
123 QualType ExType = Ex->getType();
124 if (Ex->isGLValue())
125 T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
126
127 return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
128 }
129
conjureSymbolVal(const void * symbolTag,const Expr * expr,const LocationContext * LCtx,QualType type,unsigned count)130 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
131 const Expr *expr,
132 const LocationContext *LCtx,
133 QualType type,
134 unsigned count) {
135 if (type->isNullPtrType())
136 return makeZeroVal(type);
137
138 if (!SymbolManager::canSymbolicate(type))
139 return UnknownVal();
140
141 SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
142
143 if (Loc::isLocType(type))
144 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
145
146 return nonloc::SymbolVal(sym);
147 }
148
149
conjureSymbolVal(const Stmt * stmt,const LocationContext * LCtx,QualType type,unsigned visitCount)150 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
151 const LocationContext *LCtx,
152 QualType type,
153 unsigned visitCount) {
154 if (type->isNullPtrType())
155 return makeZeroVal(type);
156
157 if (!SymbolManager::canSymbolicate(type))
158 return UnknownVal();
159
160 SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
161
162 if (Loc::isLocType(type))
163 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
164
165 return nonloc::SymbolVal(sym);
166 }
167
168 DefinedOrUnknownSVal
getConjuredHeapSymbolVal(const Expr * E,const LocationContext * LCtx,unsigned VisitCount)169 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
170 const LocationContext *LCtx,
171 unsigned VisitCount) {
172 QualType T = E->getType();
173 assert(Loc::isLocType(T));
174 assert(SymbolManager::canSymbolicate(T));
175 if (T->isNullPtrType())
176 return makeZeroVal(T);
177
178 SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
179 return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
180 }
181
getMetadataSymbolVal(const void * symbolTag,const MemRegion * region,const Expr * expr,QualType type,unsigned count)182 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
183 const MemRegion *region,
184 const Expr *expr, QualType type,
185 unsigned count) {
186 assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
187
188 SymbolRef sym =
189 SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
190
191 if (Loc::isLocType(type))
192 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
193
194 return nonloc::SymbolVal(sym);
195 }
196
197 DefinedOrUnknownSVal
getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,const TypedValueRegion * region)198 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
199 const TypedValueRegion *region) {
200 QualType T = region->getValueType();
201
202 if (T->isNullPtrType())
203 return makeZeroVal(T);
204
205 if (!SymbolManager::canSymbolicate(T))
206 return UnknownVal();
207
208 SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
209
210 if (Loc::isLocType(T))
211 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
212
213 return nonloc::SymbolVal(sym);
214 }
215
getFunctionPointer(const FunctionDecl * func)216 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
217 return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func));
218 }
219
getBlockPointer(const BlockDecl * block,CanQualType locTy,const LocationContext * locContext,unsigned blockCount)220 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
221 CanQualType locTy,
222 const LocationContext *locContext,
223 unsigned blockCount) {
224 const BlockCodeRegion *BC =
225 MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext());
226 const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
227 blockCount);
228 return loc::MemRegionVal(BD);
229 }
230
231 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXMethodDecl * D,const StackFrameContext * SFC)232 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
233 const StackFrameContext *SFC) {
234 return loc::MemRegionVal(getRegionManager().
235 getCXXThisRegion(D->getThisType(getContext()), SFC));
236 }
237
238 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXRecordDecl * D,const StackFrameContext * SFC)239 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
240 const StackFrameContext *SFC) {
241 const Type *T = D->getTypeForDecl();
242 QualType PT = getContext().getPointerType(QualType(T, 0));
243 return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
244 }
245
getConstantVal(const Expr * E)246 Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
247 E = E->IgnoreParens();
248
249 switch (E->getStmtClass()) {
250 // Handle expressions that we treat differently from the AST's constant
251 // evaluator.
252 case Stmt::AddrLabelExprClass:
253 return makeLoc(cast<AddrLabelExpr>(E));
254
255 case Stmt::CXXScalarValueInitExprClass:
256 case Stmt::ImplicitValueInitExprClass:
257 return makeZeroVal(E->getType());
258
259 case Stmt::ObjCStringLiteralClass: {
260 const ObjCStringLiteral *SL = cast<ObjCStringLiteral>(E);
261 return makeLoc(getRegionManager().getObjCStringRegion(SL));
262 }
263
264 case Stmt::StringLiteralClass: {
265 const StringLiteral *SL = cast<StringLiteral>(E);
266 return makeLoc(getRegionManager().getStringRegion(SL));
267 }
268
269 // Fast-path some expressions to avoid the overhead of going through the AST's
270 // constant evaluator
271 case Stmt::CharacterLiteralClass: {
272 const CharacterLiteral *C = cast<CharacterLiteral>(E);
273 return makeIntVal(C->getValue(), C->getType());
274 }
275
276 case Stmt::CXXBoolLiteralExprClass:
277 return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
278
279 case Stmt::TypeTraitExprClass: {
280 const TypeTraitExpr *TE = cast<TypeTraitExpr>(E);
281 return makeTruthVal(TE->getValue(), TE->getType());
282 }
283
284 case Stmt::IntegerLiteralClass:
285 return makeIntVal(cast<IntegerLiteral>(E));
286
287 case Stmt::ObjCBoolLiteralExprClass:
288 return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
289
290 case Stmt::CXXNullPtrLiteralExprClass:
291 return makeNull();
292
293 case Stmt::ImplicitCastExprClass: {
294 const CastExpr *CE = cast<CastExpr>(E);
295 switch (CE->getCastKind()) {
296 default:
297 break;
298 case CK_ArrayToPointerDecay:
299 case CK_BitCast: {
300 const Expr *SE = CE->getSubExpr();
301 Optional<SVal> Val = getConstantVal(SE);
302 if (!Val)
303 return None;
304 return evalCast(*Val, CE->getType(), SE->getType());
305 }
306 }
307 // FALLTHROUGH
308 }
309
310 // If we don't have a special case, fall back to the AST's constant evaluator.
311 default: {
312 // Don't try to come up with a value for materialized temporaries.
313 if (E->isGLValue())
314 return None;
315
316 ASTContext &Ctx = getContext();
317 llvm::APSInt Result;
318 if (E->EvaluateAsInt(Result, Ctx))
319 return makeIntVal(Result);
320
321 if (Loc::isLocType(E->getType()))
322 if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
323 return makeNull();
324
325 return None;
326 }
327 }
328 }
329
330 //===----------------------------------------------------------------------===//
331
makeSymExprValNN(ProgramStateRef State,BinaryOperator::Opcode Op,NonLoc LHS,NonLoc RHS,QualType ResultTy)332 SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
333 BinaryOperator::Opcode Op,
334 NonLoc LHS, NonLoc RHS,
335 QualType ResultTy) {
336 if (!State->isTainted(RHS) && !State->isTainted(LHS))
337 return UnknownVal();
338
339 const SymExpr *symLHS = LHS.getAsSymExpr();
340 const SymExpr *symRHS = RHS.getAsSymExpr();
341 // TODO: When the Max Complexity is reached, we should conjure a symbol
342 // instead of generating an Unknown value and propagate the taint info to it.
343 const unsigned MaxComp = 10000; // 100000 28X
344
345 if (symLHS && symRHS &&
346 (symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp)
347 return makeNonLoc(symLHS, Op, symRHS, ResultTy);
348
349 if (symLHS && symLHS->computeComplexity() < MaxComp)
350 if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
351 return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
352
353 if (symRHS && symRHS->computeComplexity() < MaxComp)
354 if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
355 return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
356
357 return UnknownVal();
358 }
359
360
evalBinOp(ProgramStateRef state,BinaryOperator::Opcode op,SVal lhs,SVal rhs,QualType type)361 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
362 SVal lhs, SVal rhs, QualType type) {
363
364 if (lhs.isUndef() || rhs.isUndef())
365 return UndefinedVal();
366
367 if (lhs.isUnknown() || rhs.isUnknown())
368 return UnknownVal();
369
370 if (lhs.getAs<nonloc::LazyCompoundVal>() ||
371 rhs.getAs<nonloc::LazyCompoundVal>()) {
372 return UnknownVal();
373 }
374
375 if (Optional<Loc> LV = lhs.getAs<Loc>()) {
376 if (Optional<Loc> RV = rhs.getAs<Loc>())
377 return evalBinOpLL(state, op, *LV, *RV, type);
378
379 return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
380 }
381
382 if (Optional<Loc> RV = rhs.getAs<Loc>()) {
383 // Support pointer arithmetic where the addend is on the left
384 // and the pointer on the right.
385 assert(op == BO_Add);
386
387 // Commute the operands.
388 return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
389 }
390
391 return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
392 type);
393 }
394
evalEQ(ProgramStateRef state,DefinedOrUnknownSVal lhs,DefinedOrUnknownSVal rhs)395 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
396 DefinedOrUnknownSVal lhs,
397 DefinedOrUnknownSVal rhs) {
398 return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType())
399 .castAs<DefinedOrUnknownSVal>();
400 }
401
402 /// Recursively check if the pointer types are equal modulo const, volatile,
403 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
404 /// Assumes the input types are canonical.
shouldBeModeledWithNoOp(ASTContext & Context,QualType ToTy,QualType FromTy)405 static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
406 QualType FromTy) {
407 while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
408 Qualifiers Quals1, Quals2;
409 ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
410 FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
411
412 // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
413 // spaces) are identical.
414 Quals1.removeCVRQualifiers();
415 Quals2.removeCVRQualifiers();
416 if (Quals1 != Quals2)
417 return false;
418 }
419
420 // If we are casting to void, the 'From' value can be used to represent the
421 // 'To' value.
422 if (ToTy->isVoidType())
423 return true;
424
425 if (ToTy != FromTy)
426 return false;
427
428 return true;
429 }
430
431 // Handles casts of type CK_IntegralCast.
432 // At the moment, this function will redirect to evalCast, except when the range
433 // of the original value is known to be greater than the max of the target type.
evalIntegralCast(ProgramStateRef state,SVal val,QualType castTy,QualType originalTy)434 SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val,
435 QualType castTy, QualType originalTy) {
436
437 // No truncations if target type is big enough.
438 if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy))
439 return evalCast(val, castTy, originalTy);
440
441 const SymExpr *se = val.getAsSymbolicExpression();
442 if (!se) // Let evalCast handle non symbolic expressions.
443 return evalCast(val, castTy, originalTy);
444
445 // Find the maximum value of the target type.
446 APSIntType ToType(getContext().getTypeSize(castTy),
447 castTy->isUnsignedIntegerType());
448 llvm::APSInt ToTypeMax = ToType.getMaxValue();
449 NonLoc ToTypeMaxVal =
450 makeIntVal(ToTypeMax.isUnsigned() ? ToTypeMax.getZExtValue()
451 : ToTypeMax.getSExtValue(),
452 castTy)
453 .castAs<NonLoc>();
454 // Check the range of the symbol being casted against the maximum value of the
455 // target type.
456 NonLoc FromVal = val.castAs<NonLoc>();
457 QualType CmpTy = getConditionType();
458 NonLoc CompVal =
459 evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>();
460 ProgramStateRef IsNotTruncated, IsTruncated;
461 std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal);
462 if (!IsNotTruncated && IsTruncated) {
463 // Symbol is truncated so we evaluate it as a cast.
464 NonLoc CastVal = makeNonLoc(se, originalTy, castTy);
465 return CastVal;
466 }
467 return evalCast(val, castTy, originalTy);
468 }
469
470 // FIXME: should rewrite according to the cast kind.
evalCast(SVal val,QualType castTy,QualType originalTy)471 SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
472 castTy = Context.getCanonicalType(castTy);
473 originalTy = Context.getCanonicalType(originalTy);
474 if (val.isUnknownOrUndef() || castTy == originalTy)
475 return val;
476
477 if (castTy->isBooleanType()) {
478 if (val.isUnknownOrUndef())
479 return val;
480 if (val.isConstant())
481 return makeTruthVal(!val.isZeroConstant(), castTy);
482 if (!Loc::isLocType(originalTy) &&
483 !originalTy->isIntegralOrEnumerationType() &&
484 !originalTy->isMemberPointerType())
485 return UnknownVal();
486 if (SymbolRef Sym = val.getAsSymbol(true)) {
487 BasicValueFactory &BVF = getBasicValueFactory();
488 // FIXME: If we had a state here, we could see if the symbol is known to
489 // be zero, but we don't.
490 return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
491 }
492 // Loc values are not always true, they could be weakly linked functions.
493 if (Optional<Loc> L = val.getAs<Loc>())
494 return evalCastFromLoc(*L, castTy);
495
496 Loc L = val.castAs<nonloc::LocAsInteger>().getLoc();
497 return evalCastFromLoc(L, castTy);
498 }
499
500 // For const casts, casts to void, just propagate the value.
501 if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
502 if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
503 Context.getPointerType(originalTy)))
504 return val;
505
506 // Check for casts from pointers to integers.
507 if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
508 return evalCastFromLoc(val.castAs<Loc>(), castTy);
509
510 // Check for casts from integers to pointers.
511 if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
512 if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
513 if (const MemRegion *R = LV->getLoc().getAsRegion()) {
514 StoreManager &storeMgr = StateMgr.getStoreManager();
515 R = storeMgr.castRegion(R, castTy);
516 return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
517 }
518 return LV->getLoc();
519 }
520 return dispatchCast(val, castTy);
521 }
522
523 // Just pass through function and block pointers.
524 if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
525 assert(Loc::isLocType(castTy));
526 return val;
527 }
528
529 // Check for casts from array type to another type.
530 if (const ArrayType *arrayT =
531 dyn_cast<ArrayType>(originalTy.getCanonicalType())) {
532 // We will always decay to a pointer.
533 QualType elemTy = arrayT->getElementType();
534 val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy);
535
536 // Are we casting from an array to a pointer? If so just pass on
537 // the decayed value.
538 if (castTy->isPointerType() || castTy->isReferenceType())
539 return val;
540
541 // Are we casting from an array to an integer? If so, cast the decayed
542 // pointer value to an integer.
543 assert(castTy->isIntegralOrEnumerationType());
544
545 // FIXME: Keep these here for now in case we decide soon that we
546 // need the original decayed type.
547 // QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
548 // QualType pointerTy = C.getPointerType(elemTy);
549 return evalCastFromLoc(val.castAs<Loc>(), castTy);
550 }
551
552 // Check for casts from a region to a specific type.
553 if (const MemRegion *R = val.getAsRegion()) {
554 // Handle other casts of locations to integers.
555 if (castTy->isIntegralOrEnumerationType())
556 return evalCastFromLoc(loc::MemRegionVal(R), castTy);
557
558 // FIXME: We should handle the case where we strip off view layers to get
559 // to a desugared type.
560 if (!Loc::isLocType(castTy)) {
561 // FIXME: There can be gross cases where one casts the result of a function
562 // (that returns a pointer) to some other value that happens to fit
563 // within that pointer value. We currently have no good way to
564 // model such operations. When this happens, the underlying operation
565 // is that the caller is reasoning about bits. Conceptually we are
566 // layering a "view" of a location on top of those bits. Perhaps
567 // we need to be more lazy about mutual possible views, even on an
568 // SVal? This may be necessary for bit-level reasoning as well.
569 return UnknownVal();
570 }
571
572 // We get a symbolic function pointer for a dereference of a function
573 // pointer, but it is of function type. Example:
574
575 // struct FPRec {
576 // void (*my_func)(int * x);
577 // };
578 //
579 // int bar(int x);
580 //
581 // int f1_a(struct FPRec* foo) {
582 // int x;
583 // (*foo->my_func)(&x);
584 // return bar(x)+1; // no-warning
585 // }
586
587 assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
588 originalTy->isBlockPointerType() || castTy->isReferenceType());
589
590 StoreManager &storeMgr = StateMgr.getStoreManager();
591
592 // Delegate to store manager to get the result of casting a region to a
593 // different type. If the MemRegion* returned is NULL, this expression
594 // Evaluates to UnknownVal.
595 R = storeMgr.castRegion(R, castTy);
596 return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
597 }
598
599 return dispatchCast(val, castTy);
600 }
601