1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Bitcode/BitCodes.h"
29 #include "llvm/Bitcode/BitstreamWriter.h"
30 #include "llvm/Bitcode/LLVMBitCodes.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/TargetRegistry.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <string>
80 #include <utility>
81 #include <vector>
82
83 using namespace llvm;
84
85 static cl::opt<unsigned>
86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
87 cl::desc("Number of metadatas above which we emit an index "
88 "to enable lazy-loading"));
89
90 cl::opt<bool> WriteRelBFToSummary(
91 "write-relbf-to-summary", cl::Hidden, cl::init(false),
92 cl::desc("Write relative block frequency to function summary "));
93
94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
95
96 namespace {
97
98 /// These are manifest constants used by the bitcode writer. They do not need to
99 /// be kept in sync with the reader, but need to be consistent within this file.
100 enum {
101 // VALUE_SYMTAB_BLOCK abbrev id's.
102 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
103 VST_ENTRY_7_ABBREV,
104 VST_ENTRY_6_ABBREV,
105 VST_BBENTRY_6_ABBREV,
106
107 // CONSTANTS_BLOCK abbrev id's.
108 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
109 CONSTANTS_INTEGER_ABBREV,
110 CONSTANTS_CE_CAST_Abbrev,
111 CONSTANTS_NULL_Abbrev,
112
113 // FUNCTION_BLOCK abbrev id's.
114 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
115 FUNCTION_INST_BINOP_ABBREV,
116 FUNCTION_INST_BINOP_FLAGS_ABBREV,
117 FUNCTION_INST_CAST_ABBREV,
118 FUNCTION_INST_RET_VOID_ABBREV,
119 FUNCTION_INST_RET_VAL_ABBREV,
120 FUNCTION_INST_UNREACHABLE_ABBREV,
121 FUNCTION_INST_GEP_ABBREV,
122 };
123
124 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
125 /// file type.
126 class BitcodeWriterBase {
127 protected:
128 /// The stream created and owned by the client.
129 BitstreamWriter &Stream;
130
131 StringTableBuilder &StrtabBuilder;
132
133 public:
134 /// Constructs a BitcodeWriterBase object that writes to the provided
135 /// \p Stream.
BitcodeWriterBase(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder)136 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
137 : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
138
139 protected:
140 void writeBitcodeHeader();
141 void writeModuleVersion();
142 };
143
writeModuleVersion()144 void BitcodeWriterBase::writeModuleVersion() {
145 // VERSION: [version#]
146 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
147 }
148
149 /// Base class to manage the module bitcode writing, currently subclassed for
150 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
151 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
152 protected:
153 /// The Module to write to bitcode.
154 const Module &M;
155
156 /// Enumerates ids for all values in the module.
157 ValueEnumerator VE;
158
159 /// Optional per-module index to write for ThinLTO.
160 const ModuleSummaryIndex *Index;
161
162 /// Map that holds the correspondence between GUIDs in the summary index,
163 /// that came from indirect call profiles, and a value id generated by this
164 /// class to use in the VST and summary block records.
165 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
166
167 /// Tracks the last value id recorded in the GUIDToValueMap.
168 unsigned GlobalValueId;
169
170 /// Saves the offset of the VSTOffset record that must eventually be
171 /// backpatched with the offset of the actual VST.
172 uint64_t VSTOffsetPlaceholder = 0;
173
174 public:
175 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
176 /// writing to the provided \p Buffer.
ModuleBitcodeWriterBase(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index)177 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
178 BitstreamWriter &Stream,
179 bool ShouldPreserveUseListOrder,
180 const ModuleSummaryIndex *Index)
181 : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
182 VE(M, ShouldPreserveUseListOrder), Index(Index) {
183 // Assign ValueIds to any callee values in the index that came from
184 // indirect call profiles and were recorded as a GUID not a Value*
185 // (which would have been assigned an ID by the ValueEnumerator).
186 // The starting ValueId is just after the number of values in the
187 // ValueEnumerator, so that they can be emitted in the VST.
188 GlobalValueId = VE.getValues().size();
189 if (!Index)
190 return;
191 for (const auto &GUIDSummaryLists : *Index)
192 // Examine all summaries for this GUID.
193 for (auto &Summary : GUIDSummaryLists.second.SummaryList)
194 if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
195 // For each call in the function summary, see if the call
196 // is to a GUID (which means it is for an indirect call,
197 // otherwise we would have a Value for it). If so, synthesize
198 // a value id.
199 for (auto &CallEdge : FS->calls())
200 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
201 assignValueId(CallEdge.first.getGUID());
202 }
203
204 protected:
205 void writePerModuleGlobalValueSummary();
206
207 private:
208 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
209 GlobalValueSummary *Summary,
210 unsigned ValueID,
211 unsigned FSCallsAbbrev,
212 unsigned FSCallsProfileAbbrev,
213 const Function &F);
214 void writeModuleLevelReferences(const GlobalVariable &V,
215 SmallVector<uint64_t, 64> &NameVals,
216 unsigned FSModRefsAbbrev);
217
assignValueId(GlobalValue::GUID ValGUID)218 void assignValueId(GlobalValue::GUID ValGUID) {
219 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
220 }
221
getValueId(GlobalValue::GUID ValGUID)222 unsigned getValueId(GlobalValue::GUID ValGUID) {
223 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
224 // Expect that any GUID value had a value Id assigned by an
225 // earlier call to assignValueId.
226 assert(VMI != GUIDToValueIdMap.end() &&
227 "GUID does not have assigned value Id");
228 return VMI->second;
229 }
230
231 // Helper to get the valueId for the type of value recorded in VI.
getValueId(ValueInfo VI)232 unsigned getValueId(ValueInfo VI) {
233 if (!VI.haveGVs() || !VI.getValue())
234 return getValueId(VI.getGUID());
235 return VE.getValueID(VI.getValue());
236 }
237
valueIds()238 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
239 };
240
241 /// Class to manage the bitcode writing for a module.
242 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
243 /// Pointer to the buffer allocated by caller for bitcode writing.
244 const SmallVectorImpl<char> &Buffer;
245
246 /// True if a module hash record should be written.
247 bool GenerateHash;
248
249 /// If non-null, when GenerateHash is true, the resulting hash is written
250 /// into ModHash.
251 ModuleHash *ModHash;
252
253 SHA1 Hasher;
254
255 /// The start bit of the identification block.
256 uint64_t BitcodeStartBit;
257
258 public:
259 /// Constructs a ModuleBitcodeWriter object for the given Module,
260 /// writing to the provided \p Buffer.
ModuleBitcodeWriter(const Module & M,SmallVectorImpl<char> & Buffer,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash=nullptr)261 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
262 StringTableBuilder &StrtabBuilder,
263 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
264 const ModuleSummaryIndex *Index, bool GenerateHash,
265 ModuleHash *ModHash = nullptr)
266 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
267 ShouldPreserveUseListOrder, Index),
268 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
269 BitcodeStartBit(Stream.GetCurrentBitNo()) {}
270
271 /// Emit the current module to the bitstream.
272 void write();
273
274 private:
bitcodeStartBit()275 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
276
277 size_t addToStrtab(StringRef Str);
278
279 void writeAttributeGroupTable();
280 void writeAttributeTable();
281 void writeTypeTable();
282 void writeComdats();
283 void writeValueSymbolTableForwardDecl();
284 void writeModuleInfo();
285 void writeValueAsMetadata(const ValueAsMetadata *MD,
286 SmallVectorImpl<uint64_t> &Record);
287 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
288 unsigned Abbrev);
289 unsigned createDILocationAbbrev();
290 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
291 unsigned &Abbrev);
292 unsigned createGenericDINodeAbbrev();
293 void writeGenericDINode(const GenericDINode *N,
294 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
295 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
296 unsigned Abbrev);
297 void writeDIEnumerator(const DIEnumerator *N,
298 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
299 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
300 unsigned Abbrev);
301 void writeDIDerivedType(const DIDerivedType *N,
302 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
303 void writeDICompositeType(const DICompositeType *N,
304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305 void writeDISubroutineType(const DISubroutineType *N,
306 SmallVectorImpl<uint64_t> &Record,
307 unsigned Abbrev);
308 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
309 unsigned Abbrev);
310 void writeDICompileUnit(const DICompileUnit *N,
311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
312 void writeDISubprogram(const DISubprogram *N,
313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314 void writeDILexicalBlock(const DILexicalBlock *N,
315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
317 SmallVectorImpl<uint64_t> &Record,
318 unsigned Abbrev);
319 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
320 unsigned Abbrev);
321 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
322 unsigned Abbrev);
323 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
324 unsigned Abbrev);
325 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
326 unsigned Abbrev);
327 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
328 SmallVectorImpl<uint64_t> &Record,
329 unsigned Abbrev);
330 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
331 SmallVectorImpl<uint64_t> &Record,
332 unsigned Abbrev);
333 void writeDIGlobalVariable(const DIGlobalVariable *N,
334 SmallVectorImpl<uint64_t> &Record,
335 unsigned Abbrev);
336 void writeDILocalVariable(const DILocalVariable *N,
337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
338 void writeDILabel(const DILabel *N,
339 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
340 void writeDIExpression(const DIExpression *N,
341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
342 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
343 SmallVectorImpl<uint64_t> &Record,
344 unsigned Abbrev);
345 void writeDIObjCProperty(const DIObjCProperty *N,
346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
347 void writeDIImportedEntity(const DIImportedEntity *N,
348 SmallVectorImpl<uint64_t> &Record,
349 unsigned Abbrev);
350 unsigned createNamedMetadataAbbrev();
351 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
352 unsigned createMetadataStringsAbbrev();
353 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
354 SmallVectorImpl<uint64_t> &Record);
355 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
356 SmallVectorImpl<uint64_t> &Record,
357 std::vector<unsigned> *MDAbbrevs = nullptr,
358 std::vector<uint64_t> *IndexPos = nullptr);
359 void writeModuleMetadata();
360 void writeFunctionMetadata(const Function &F);
361 void writeFunctionMetadataAttachment(const Function &F);
362 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
363 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
364 const GlobalObject &GO);
365 void writeModuleMetadataKinds();
366 void writeOperandBundleTags();
367 void writeSyncScopeNames();
368 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
369 void writeModuleConstants();
370 bool pushValueAndType(const Value *V, unsigned InstID,
371 SmallVectorImpl<unsigned> &Vals);
372 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
373 void pushValue(const Value *V, unsigned InstID,
374 SmallVectorImpl<unsigned> &Vals);
375 void pushValueSigned(const Value *V, unsigned InstID,
376 SmallVectorImpl<uint64_t> &Vals);
377 void writeInstruction(const Instruction &I, unsigned InstID,
378 SmallVectorImpl<unsigned> &Vals);
379 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
380 void writeGlobalValueSymbolTable(
381 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
382 void writeUseList(UseListOrder &&Order);
383 void writeUseListBlock(const Function *F);
384 void
385 writeFunction(const Function &F,
386 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
387 void writeBlockInfo();
388 void writeModuleHash(size_t BlockStartPos);
389
getEncodedSyncScopeID(SyncScope::ID SSID)390 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
391 return unsigned(SSID);
392 }
393 };
394
395 /// Class to manage the bitcode writing for a combined index.
396 class IndexBitcodeWriter : public BitcodeWriterBase {
397 /// The combined index to write to bitcode.
398 const ModuleSummaryIndex &Index;
399
400 /// When writing a subset of the index for distributed backends, client
401 /// provides a map of modules to the corresponding GUIDs/summaries to write.
402 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
403
404 /// Map that holds the correspondence between the GUID used in the combined
405 /// index and a value id generated by this class to use in references.
406 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
407
408 /// Tracks the last value id recorded in the GUIDToValueMap.
409 unsigned GlobalValueId = 0;
410
411 public:
412 /// Constructs a IndexBitcodeWriter object for the given combined index,
413 /// writing to the provided \p Buffer. When writing a subset of the index
414 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
IndexBitcodeWriter(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder,const ModuleSummaryIndex & Index,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex=nullptr)415 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
416 const ModuleSummaryIndex &Index,
417 const std::map<std::string, GVSummaryMapTy>
418 *ModuleToSummariesForIndex = nullptr)
419 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
420 ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
421 // Assign unique value ids to all summaries to be written, for use
422 // in writing out the call graph edges. Save the mapping from GUID
423 // to the new global value id to use when writing those edges, which
424 // are currently saved in the index in terms of GUID.
425 forEachSummary([&](GVInfo I, bool) {
426 GUIDToValueIdMap[I.first] = ++GlobalValueId;
427 });
428 }
429
430 /// The below iterator returns the GUID and associated summary.
431 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
432
433 /// Calls the callback for each value GUID and summary to be written to
434 /// bitcode. This hides the details of whether they are being pulled from the
435 /// entire index or just those in a provided ModuleToSummariesForIndex map.
436 template<typename Functor>
forEachSummary(Functor Callback)437 void forEachSummary(Functor Callback) {
438 if (ModuleToSummariesForIndex) {
439 for (auto &M : *ModuleToSummariesForIndex)
440 for (auto &Summary : M.second) {
441 Callback(Summary, false);
442 // Ensure aliasee is handled, e.g. for assigning a valueId,
443 // even if we are not importing the aliasee directly (the
444 // imported alias will contain a copy of aliasee).
445 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
446 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
447 }
448 } else {
449 for (auto &Summaries : Index)
450 for (auto &Summary : Summaries.second.SummaryList)
451 Callback({Summaries.first, Summary.get()}, false);
452 }
453 }
454
455 /// Calls the callback for each entry in the modulePaths StringMap that
456 /// should be written to the module path string table. This hides the details
457 /// of whether they are being pulled from the entire index or just those in a
458 /// provided ModuleToSummariesForIndex map.
forEachModule(Functor Callback)459 template <typename Functor> void forEachModule(Functor Callback) {
460 if (ModuleToSummariesForIndex) {
461 for (const auto &M : *ModuleToSummariesForIndex) {
462 const auto &MPI = Index.modulePaths().find(M.first);
463 if (MPI == Index.modulePaths().end()) {
464 // This should only happen if the bitcode file was empty, in which
465 // case we shouldn't be importing (the ModuleToSummariesForIndex
466 // would only include the module we are writing and index for).
467 assert(ModuleToSummariesForIndex->size() == 1);
468 continue;
469 }
470 Callback(*MPI);
471 }
472 } else {
473 for (const auto &MPSE : Index.modulePaths())
474 Callback(MPSE);
475 }
476 }
477
478 /// Main entry point for writing a combined index to bitcode.
479 void write();
480
481 private:
482 void writeModStrings();
483 void writeCombinedGlobalValueSummary();
484
getValueId(GlobalValue::GUID ValGUID)485 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
486 auto VMI = GUIDToValueIdMap.find(ValGUID);
487 if (VMI == GUIDToValueIdMap.end())
488 return None;
489 return VMI->second;
490 }
491
valueIds()492 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
493 };
494
495 } // end anonymous namespace
496
getEncodedCastOpcode(unsigned Opcode)497 static unsigned getEncodedCastOpcode(unsigned Opcode) {
498 switch (Opcode) {
499 default: llvm_unreachable("Unknown cast instruction!");
500 case Instruction::Trunc : return bitc::CAST_TRUNC;
501 case Instruction::ZExt : return bitc::CAST_ZEXT;
502 case Instruction::SExt : return bitc::CAST_SEXT;
503 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
504 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
505 case Instruction::UIToFP : return bitc::CAST_UITOFP;
506 case Instruction::SIToFP : return bitc::CAST_SITOFP;
507 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
508 case Instruction::FPExt : return bitc::CAST_FPEXT;
509 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
510 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
511 case Instruction::BitCast : return bitc::CAST_BITCAST;
512 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
513 }
514 }
515
getEncodedBinaryOpcode(unsigned Opcode)516 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
517 switch (Opcode) {
518 default: llvm_unreachable("Unknown binary instruction!");
519 case Instruction::Add:
520 case Instruction::FAdd: return bitc::BINOP_ADD;
521 case Instruction::Sub:
522 case Instruction::FSub: return bitc::BINOP_SUB;
523 case Instruction::Mul:
524 case Instruction::FMul: return bitc::BINOP_MUL;
525 case Instruction::UDiv: return bitc::BINOP_UDIV;
526 case Instruction::FDiv:
527 case Instruction::SDiv: return bitc::BINOP_SDIV;
528 case Instruction::URem: return bitc::BINOP_UREM;
529 case Instruction::FRem:
530 case Instruction::SRem: return bitc::BINOP_SREM;
531 case Instruction::Shl: return bitc::BINOP_SHL;
532 case Instruction::LShr: return bitc::BINOP_LSHR;
533 case Instruction::AShr: return bitc::BINOP_ASHR;
534 case Instruction::And: return bitc::BINOP_AND;
535 case Instruction::Or: return bitc::BINOP_OR;
536 case Instruction::Xor: return bitc::BINOP_XOR;
537 }
538 }
539
getEncodedRMWOperation(AtomicRMWInst::BinOp Op)540 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
541 switch (Op) {
542 default: llvm_unreachable("Unknown RMW operation!");
543 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
544 case AtomicRMWInst::Add: return bitc::RMW_ADD;
545 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
546 case AtomicRMWInst::And: return bitc::RMW_AND;
547 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
548 case AtomicRMWInst::Or: return bitc::RMW_OR;
549 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
550 case AtomicRMWInst::Max: return bitc::RMW_MAX;
551 case AtomicRMWInst::Min: return bitc::RMW_MIN;
552 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
553 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
554 }
555 }
556
getEncodedOrdering(AtomicOrdering Ordering)557 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
558 switch (Ordering) {
559 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
560 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
561 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
562 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
563 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
564 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
565 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
566 }
567 llvm_unreachable("Invalid ordering");
568 }
569
writeStringRecord(BitstreamWriter & Stream,unsigned Code,StringRef Str,unsigned AbbrevToUse)570 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
571 StringRef Str, unsigned AbbrevToUse) {
572 SmallVector<unsigned, 64> Vals;
573
574 // Code: [strchar x N]
575 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
576 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
577 AbbrevToUse = 0;
578 Vals.push_back(Str[i]);
579 }
580
581 // Emit the finished record.
582 Stream.EmitRecord(Code, Vals, AbbrevToUse);
583 }
584
getAttrKindEncoding(Attribute::AttrKind Kind)585 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
586 switch (Kind) {
587 case Attribute::Alignment:
588 return bitc::ATTR_KIND_ALIGNMENT;
589 case Attribute::AllocSize:
590 return bitc::ATTR_KIND_ALLOC_SIZE;
591 case Attribute::AlwaysInline:
592 return bitc::ATTR_KIND_ALWAYS_INLINE;
593 case Attribute::ArgMemOnly:
594 return bitc::ATTR_KIND_ARGMEMONLY;
595 case Attribute::Builtin:
596 return bitc::ATTR_KIND_BUILTIN;
597 case Attribute::ByVal:
598 return bitc::ATTR_KIND_BY_VAL;
599 case Attribute::Convergent:
600 return bitc::ATTR_KIND_CONVERGENT;
601 case Attribute::InAlloca:
602 return bitc::ATTR_KIND_IN_ALLOCA;
603 case Attribute::Cold:
604 return bitc::ATTR_KIND_COLD;
605 case Attribute::InaccessibleMemOnly:
606 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
607 case Attribute::InaccessibleMemOrArgMemOnly:
608 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
609 case Attribute::InlineHint:
610 return bitc::ATTR_KIND_INLINE_HINT;
611 case Attribute::InReg:
612 return bitc::ATTR_KIND_IN_REG;
613 case Attribute::JumpTable:
614 return bitc::ATTR_KIND_JUMP_TABLE;
615 case Attribute::MinSize:
616 return bitc::ATTR_KIND_MIN_SIZE;
617 case Attribute::Naked:
618 return bitc::ATTR_KIND_NAKED;
619 case Attribute::Nest:
620 return bitc::ATTR_KIND_NEST;
621 case Attribute::NoAlias:
622 return bitc::ATTR_KIND_NO_ALIAS;
623 case Attribute::NoBuiltin:
624 return bitc::ATTR_KIND_NO_BUILTIN;
625 case Attribute::NoCapture:
626 return bitc::ATTR_KIND_NO_CAPTURE;
627 case Attribute::NoDuplicate:
628 return bitc::ATTR_KIND_NO_DUPLICATE;
629 case Attribute::NoImplicitFloat:
630 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
631 case Attribute::NoInline:
632 return bitc::ATTR_KIND_NO_INLINE;
633 case Attribute::NoRecurse:
634 return bitc::ATTR_KIND_NO_RECURSE;
635 case Attribute::NonLazyBind:
636 return bitc::ATTR_KIND_NON_LAZY_BIND;
637 case Attribute::NonNull:
638 return bitc::ATTR_KIND_NON_NULL;
639 case Attribute::Dereferenceable:
640 return bitc::ATTR_KIND_DEREFERENCEABLE;
641 case Attribute::DereferenceableOrNull:
642 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
643 case Attribute::NoRedZone:
644 return bitc::ATTR_KIND_NO_RED_ZONE;
645 case Attribute::NoReturn:
646 return bitc::ATTR_KIND_NO_RETURN;
647 case Attribute::NoCfCheck:
648 return bitc::ATTR_KIND_NOCF_CHECK;
649 case Attribute::NoUnwind:
650 return bitc::ATTR_KIND_NO_UNWIND;
651 case Attribute::OptForFuzzing:
652 return bitc::ATTR_KIND_OPT_FOR_FUZZING;
653 case Attribute::OptimizeForSize:
654 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
655 case Attribute::OptimizeNone:
656 return bitc::ATTR_KIND_OPTIMIZE_NONE;
657 case Attribute::ReadNone:
658 return bitc::ATTR_KIND_READ_NONE;
659 case Attribute::ReadOnly:
660 return bitc::ATTR_KIND_READ_ONLY;
661 case Attribute::Returned:
662 return bitc::ATTR_KIND_RETURNED;
663 case Attribute::ReturnsTwice:
664 return bitc::ATTR_KIND_RETURNS_TWICE;
665 case Attribute::SExt:
666 return bitc::ATTR_KIND_S_EXT;
667 case Attribute::Speculatable:
668 return bitc::ATTR_KIND_SPECULATABLE;
669 case Attribute::StackAlignment:
670 return bitc::ATTR_KIND_STACK_ALIGNMENT;
671 case Attribute::StackProtect:
672 return bitc::ATTR_KIND_STACK_PROTECT;
673 case Attribute::StackProtectReq:
674 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
675 case Attribute::StackProtectStrong:
676 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
677 case Attribute::SafeStack:
678 return bitc::ATTR_KIND_SAFESTACK;
679 case Attribute::ShadowCallStack:
680 return bitc::ATTR_KIND_SHADOWCALLSTACK;
681 case Attribute::StrictFP:
682 return bitc::ATTR_KIND_STRICT_FP;
683 case Attribute::StructRet:
684 return bitc::ATTR_KIND_STRUCT_RET;
685 case Attribute::SanitizeAddress:
686 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
687 case Attribute::SanitizeHWAddress:
688 return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
689 case Attribute::SanitizeThread:
690 return bitc::ATTR_KIND_SANITIZE_THREAD;
691 case Attribute::SanitizeMemory:
692 return bitc::ATTR_KIND_SANITIZE_MEMORY;
693 case Attribute::SwiftError:
694 return bitc::ATTR_KIND_SWIFT_ERROR;
695 case Attribute::SwiftSelf:
696 return bitc::ATTR_KIND_SWIFT_SELF;
697 case Attribute::UWTable:
698 return bitc::ATTR_KIND_UW_TABLE;
699 case Attribute::WriteOnly:
700 return bitc::ATTR_KIND_WRITEONLY;
701 case Attribute::ZExt:
702 return bitc::ATTR_KIND_Z_EXT;
703 case Attribute::EndAttrKinds:
704 llvm_unreachable("Can not encode end-attribute kinds marker.");
705 case Attribute::None:
706 llvm_unreachable("Can not encode none-attribute.");
707 }
708
709 llvm_unreachable("Trying to encode unknown attribute");
710 }
711
writeAttributeGroupTable()712 void ModuleBitcodeWriter::writeAttributeGroupTable() {
713 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
714 VE.getAttributeGroups();
715 if (AttrGrps.empty()) return;
716
717 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
718
719 SmallVector<uint64_t, 64> Record;
720 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
721 unsigned AttrListIndex = Pair.first;
722 AttributeSet AS = Pair.second;
723 Record.push_back(VE.getAttributeGroupID(Pair));
724 Record.push_back(AttrListIndex);
725
726 for (Attribute Attr : AS) {
727 if (Attr.isEnumAttribute()) {
728 Record.push_back(0);
729 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
730 } else if (Attr.isIntAttribute()) {
731 Record.push_back(1);
732 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
733 Record.push_back(Attr.getValueAsInt());
734 } else {
735 StringRef Kind = Attr.getKindAsString();
736 StringRef Val = Attr.getValueAsString();
737
738 Record.push_back(Val.empty() ? 3 : 4);
739 Record.append(Kind.begin(), Kind.end());
740 Record.push_back(0);
741 if (!Val.empty()) {
742 Record.append(Val.begin(), Val.end());
743 Record.push_back(0);
744 }
745 }
746 }
747
748 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
749 Record.clear();
750 }
751
752 Stream.ExitBlock();
753 }
754
writeAttributeTable()755 void ModuleBitcodeWriter::writeAttributeTable() {
756 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
757 if (Attrs.empty()) return;
758
759 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
760
761 SmallVector<uint64_t, 64> Record;
762 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
763 AttributeList AL = Attrs[i];
764 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
765 AttributeSet AS = AL.getAttributes(i);
766 if (AS.hasAttributes())
767 Record.push_back(VE.getAttributeGroupID({i, AS}));
768 }
769
770 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
771 Record.clear();
772 }
773
774 Stream.ExitBlock();
775 }
776
777 /// WriteTypeTable - Write out the type table for a module.
writeTypeTable()778 void ModuleBitcodeWriter::writeTypeTable() {
779 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
780
781 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
782 SmallVector<uint64_t, 64> TypeVals;
783
784 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
785
786 // Abbrev for TYPE_CODE_POINTER.
787 auto Abbv = std::make_shared<BitCodeAbbrev>();
788 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
790 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
791 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
792
793 // Abbrev for TYPE_CODE_FUNCTION.
794 Abbv = std::make_shared<BitCodeAbbrev>();
795 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
799 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
800
801 // Abbrev for TYPE_CODE_STRUCT_ANON.
802 Abbv = std::make_shared<BitCodeAbbrev>();
803 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
807 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
808
809 // Abbrev for TYPE_CODE_STRUCT_NAME.
810 Abbv = std::make_shared<BitCodeAbbrev>();
811 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
814 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
815
816 // Abbrev for TYPE_CODE_STRUCT_NAMED.
817 Abbv = std::make_shared<BitCodeAbbrev>();
818 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
822 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
823
824 // Abbrev for TYPE_CODE_ARRAY.
825 Abbv = std::make_shared<BitCodeAbbrev>();
826 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
829 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
830
831 // Emit an entry count so the reader can reserve space.
832 TypeVals.push_back(TypeList.size());
833 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
834 TypeVals.clear();
835
836 // Loop over all of the types, emitting each in turn.
837 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
838 Type *T = TypeList[i];
839 int AbbrevToUse = 0;
840 unsigned Code = 0;
841
842 switch (T->getTypeID()) {
843 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
844 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
845 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
846 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
847 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
848 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
849 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
850 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
851 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
852 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
853 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
854 case Type::IntegerTyID:
855 // INTEGER: [width]
856 Code = bitc::TYPE_CODE_INTEGER;
857 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
858 break;
859 case Type::PointerTyID: {
860 PointerType *PTy = cast<PointerType>(T);
861 // POINTER: [pointee type, address space]
862 Code = bitc::TYPE_CODE_POINTER;
863 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
864 unsigned AddressSpace = PTy->getAddressSpace();
865 TypeVals.push_back(AddressSpace);
866 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
867 break;
868 }
869 case Type::FunctionTyID: {
870 FunctionType *FT = cast<FunctionType>(T);
871 // FUNCTION: [isvararg, retty, paramty x N]
872 Code = bitc::TYPE_CODE_FUNCTION;
873 TypeVals.push_back(FT->isVarArg());
874 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
875 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
876 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
877 AbbrevToUse = FunctionAbbrev;
878 break;
879 }
880 case Type::StructTyID: {
881 StructType *ST = cast<StructType>(T);
882 // STRUCT: [ispacked, eltty x N]
883 TypeVals.push_back(ST->isPacked());
884 // Output all of the element types.
885 for (StructType::element_iterator I = ST->element_begin(),
886 E = ST->element_end(); I != E; ++I)
887 TypeVals.push_back(VE.getTypeID(*I));
888
889 if (ST->isLiteral()) {
890 Code = bitc::TYPE_CODE_STRUCT_ANON;
891 AbbrevToUse = StructAnonAbbrev;
892 } else {
893 if (ST->isOpaque()) {
894 Code = bitc::TYPE_CODE_OPAQUE;
895 } else {
896 Code = bitc::TYPE_CODE_STRUCT_NAMED;
897 AbbrevToUse = StructNamedAbbrev;
898 }
899
900 // Emit the name if it is present.
901 if (!ST->getName().empty())
902 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
903 StructNameAbbrev);
904 }
905 break;
906 }
907 case Type::ArrayTyID: {
908 ArrayType *AT = cast<ArrayType>(T);
909 // ARRAY: [numelts, eltty]
910 Code = bitc::TYPE_CODE_ARRAY;
911 TypeVals.push_back(AT->getNumElements());
912 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
913 AbbrevToUse = ArrayAbbrev;
914 break;
915 }
916 case Type::VectorTyID: {
917 VectorType *VT = cast<VectorType>(T);
918 // VECTOR [numelts, eltty]
919 Code = bitc::TYPE_CODE_VECTOR;
920 TypeVals.push_back(VT->getNumElements());
921 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
922 break;
923 }
924 }
925
926 // Emit the finished record.
927 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
928 TypeVals.clear();
929 }
930
931 Stream.ExitBlock();
932 }
933
getEncodedLinkage(const GlobalValue::LinkageTypes Linkage)934 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
935 switch (Linkage) {
936 case GlobalValue::ExternalLinkage:
937 return 0;
938 case GlobalValue::WeakAnyLinkage:
939 return 16;
940 case GlobalValue::AppendingLinkage:
941 return 2;
942 case GlobalValue::InternalLinkage:
943 return 3;
944 case GlobalValue::LinkOnceAnyLinkage:
945 return 18;
946 case GlobalValue::ExternalWeakLinkage:
947 return 7;
948 case GlobalValue::CommonLinkage:
949 return 8;
950 case GlobalValue::PrivateLinkage:
951 return 9;
952 case GlobalValue::WeakODRLinkage:
953 return 17;
954 case GlobalValue::LinkOnceODRLinkage:
955 return 19;
956 case GlobalValue::AvailableExternallyLinkage:
957 return 12;
958 }
959 llvm_unreachable("Invalid linkage");
960 }
961
getEncodedLinkage(const GlobalValue & GV)962 static unsigned getEncodedLinkage(const GlobalValue &GV) {
963 return getEncodedLinkage(GV.getLinkage());
964 }
965
getEncodedFFlags(FunctionSummary::FFlags Flags)966 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
967 uint64_t RawFlags = 0;
968 RawFlags |= Flags.ReadNone;
969 RawFlags |= (Flags.ReadOnly << 1);
970 RawFlags |= (Flags.NoRecurse << 2);
971 RawFlags |= (Flags.ReturnDoesNotAlias << 3);
972 return RawFlags;
973 }
974
975 // Decode the flags for GlobalValue in the summary
getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags)976 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
977 uint64_t RawFlags = 0;
978
979 RawFlags |= Flags.NotEligibleToImport; // bool
980 RawFlags |= (Flags.Live << 1);
981 RawFlags |= (Flags.DSOLocal << 2);
982
983 // Linkage don't need to be remapped at that time for the summary. Any future
984 // change to the getEncodedLinkage() function will need to be taken into
985 // account here as well.
986 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
987
988 return RawFlags;
989 }
990
getEncodedVisibility(const GlobalValue & GV)991 static unsigned getEncodedVisibility(const GlobalValue &GV) {
992 switch (GV.getVisibility()) {
993 case GlobalValue::DefaultVisibility: return 0;
994 case GlobalValue::HiddenVisibility: return 1;
995 case GlobalValue::ProtectedVisibility: return 2;
996 }
997 llvm_unreachable("Invalid visibility");
998 }
999
getEncodedDLLStorageClass(const GlobalValue & GV)1000 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1001 switch (GV.getDLLStorageClass()) {
1002 case GlobalValue::DefaultStorageClass: return 0;
1003 case GlobalValue::DLLImportStorageClass: return 1;
1004 case GlobalValue::DLLExportStorageClass: return 2;
1005 }
1006 llvm_unreachable("Invalid DLL storage class");
1007 }
1008
getEncodedThreadLocalMode(const GlobalValue & GV)1009 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1010 switch (GV.getThreadLocalMode()) {
1011 case GlobalVariable::NotThreadLocal: return 0;
1012 case GlobalVariable::GeneralDynamicTLSModel: return 1;
1013 case GlobalVariable::LocalDynamicTLSModel: return 2;
1014 case GlobalVariable::InitialExecTLSModel: return 3;
1015 case GlobalVariable::LocalExecTLSModel: return 4;
1016 }
1017 llvm_unreachable("Invalid TLS model");
1018 }
1019
getEncodedComdatSelectionKind(const Comdat & C)1020 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1021 switch (C.getSelectionKind()) {
1022 case Comdat::Any:
1023 return bitc::COMDAT_SELECTION_KIND_ANY;
1024 case Comdat::ExactMatch:
1025 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1026 case Comdat::Largest:
1027 return bitc::COMDAT_SELECTION_KIND_LARGEST;
1028 case Comdat::NoDuplicates:
1029 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1030 case Comdat::SameSize:
1031 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1032 }
1033 llvm_unreachable("Invalid selection kind");
1034 }
1035
getEncodedUnnamedAddr(const GlobalValue & GV)1036 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1037 switch (GV.getUnnamedAddr()) {
1038 case GlobalValue::UnnamedAddr::None: return 0;
1039 case GlobalValue::UnnamedAddr::Local: return 2;
1040 case GlobalValue::UnnamedAddr::Global: return 1;
1041 }
1042 llvm_unreachable("Invalid unnamed_addr");
1043 }
1044
addToStrtab(StringRef Str)1045 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1046 if (GenerateHash)
1047 Hasher.update(Str);
1048 return StrtabBuilder.add(Str);
1049 }
1050
writeComdats()1051 void ModuleBitcodeWriter::writeComdats() {
1052 SmallVector<unsigned, 64> Vals;
1053 for (const Comdat *C : VE.getComdats()) {
1054 // COMDAT: [strtab offset, strtab size, selection_kind]
1055 Vals.push_back(addToStrtab(C->getName()));
1056 Vals.push_back(C->getName().size());
1057 Vals.push_back(getEncodedComdatSelectionKind(*C));
1058 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1059 Vals.clear();
1060 }
1061 }
1062
1063 /// Write a record that will eventually hold the word offset of the
1064 /// module-level VST. For now the offset is 0, which will be backpatched
1065 /// after the real VST is written. Saves the bit offset to backpatch.
writeValueSymbolTableForwardDecl()1066 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1067 // Write a placeholder value in for the offset of the real VST,
1068 // which is written after the function blocks so that it can include
1069 // the offset of each function. The placeholder offset will be
1070 // updated when the real VST is written.
1071 auto Abbv = std::make_shared<BitCodeAbbrev>();
1072 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1073 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1074 // hold the real VST offset. Must use fixed instead of VBR as we don't
1075 // know how many VBR chunks to reserve ahead of time.
1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1077 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1078
1079 // Emit the placeholder
1080 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1081 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1082
1083 // Compute and save the bit offset to the placeholder, which will be
1084 // patched when the real VST is written. We can simply subtract the 32-bit
1085 // fixed size from the current bit number to get the location to backpatch.
1086 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1087 }
1088
1089 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1090
1091 /// Determine the encoding to use for the given string name and length.
getStringEncoding(StringRef Str)1092 static StringEncoding getStringEncoding(StringRef Str) {
1093 bool isChar6 = true;
1094 for (char C : Str) {
1095 if (isChar6)
1096 isChar6 = BitCodeAbbrevOp::isChar6(C);
1097 if ((unsigned char)C & 128)
1098 // don't bother scanning the rest.
1099 return SE_Fixed8;
1100 }
1101 if (isChar6)
1102 return SE_Char6;
1103 return SE_Fixed7;
1104 }
1105
1106 /// Emit top-level description of module, including target triple, inline asm,
1107 /// descriptors for global variables, and function prototype info.
1108 /// Returns the bit offset to backpatch with the location of the real VST.
writeModuleInfo()1109 void ModuleBitcodeWriter::writeModuleInfo() {
1110 // Emit various pieces of data attached to a module.
1111 if (!M.getTargetTriple().empty())
1112 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1113 0 /*TODO*/);
1114 const std::string &DL = M.getDataLayoutStr();
1115 if (!DL.empty())
1116 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1117 if (!M.getModuleInlineAsm().empty())
1118 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1119 0 /*TODO*/);
1120
1121 // Emit information about sections and GC, computing how many there are. Also
1122 // compute the maximum alignment value.
1123 std::map<std::string, unsigned> SectionMap;
1124 std::map<std::string, unsigned> GCMap;
1125 unsigned MaxAlignment = 0;
1126 unsigned MaxGlobalType = 0;
1127 for (const GlobalValue &GV : M.globals()) {
1128 MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1129 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1130 if (GV.hasSection()) {
1131 // Give section names unique ID's.
1132 unsigned &Entry = SectionMap[GV.getSection()];
1133 if (!Entry) {
1134 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1135 0 /*TODO*/);
1136 Entry = SectionMap.size();
1137 }
1138 }
1139 }
1140 for (const Function &F : M) {
1141 MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1142 if (F.hasSection()) {
1143 // Give section names unique ID's.
1144 unsigned &Entry = SectionMap[F.getSection()];
1145 if (!Entry) {
1146 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1147 0 /*TODO*/);
1148 Entry = SectionMap.size();
1149 }
1150 }
1151 if (F.hasGC()) {
1152 // Same for GC names.
1153 unsigned &Entry = GCMap[F.getGC()];
1154 if (!Entry) {
1155 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1156 0 /*TODO*/);
1157 Entry = GCMap.size();
1158 }
1159 }
1160 }
1161
1162 // Emit abbrev for globals, now that we know # sections and max alignment.
1163 unsigned SimpleGVarAbbrev = 0;
1164 if (!M.global_empty()) {
1165 // Add an abbrev for common globals with no visibility or thread localness.
1166 auto Abbv = std::make_shared<BitCodeAbbrev>();
1167 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1171 Log2_32_Ceil(MaxGlobalType+1)));
1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1173 //| explicitType << 1
1174 //| constant
1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1177 if (MaxAlignment == 0) // Alignment.
1178 Abbv->Add(BitCodeAbbrevOp(0));
1179 else {
1180 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1182 Log2_32_Ceil(MaxEncAlignment+1)));
1183 }
1184 if (SectionMap.empty()) // Section.
1185 Abbv->Add(BitCodeAbbrevOp(0));
1186 else
1187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1188 Log2_32_Ceil(SectionMap.size()+1)));
1189 // Don't bother emitting vis + thread local.
1190 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1191 }
1192
1193 SmallVector<unsigned, 64> Vals;
1194 // Emit the module's source file name.
1195 {
1196 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1197 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1198 if (Bits == SE_Char6)
1199 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1200 else if (Bits == SE_Fixed7)
1201 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1202
1203 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1204 auto Abbv = std::make_shared<BitCodeAbbrev>();
1205 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1207 Abbv->Add(AbbrevOpToUse);
1208 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1209
1210 for (const auto P : M.getSourceFileName())
1211 Vals.push_back((unsigned char)P);
1212
1213 // Emit the finished record.
1214 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1215 Vals.clear();
1216 }
1217
1218 // Emit the global variable information.
1219 for (const GlobalVariable &GV : M.globals()) {
1220 unsigned AbbrevToUse = 0;
1221
1222 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1223 // linkage, alignment, section, visibility, threadlocal,
1224 // unnamed_addr, externally_initialized, dllstorageclass,
1225 // comdat, attributes, DSO_Local]
1226 Vals.push_back(addToStrtab(GV.getName()));
1227 Vals.push_back(GV.getName().size());
1228 Vals.push_back(VE.getTypeID(GV.getValueType()));
1229 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1230 Vals.push_back(GV.isDeclaration() ? 0 :
1231 (VE.getValueID(GV.getInitializer()) + 1));
1232 Vals.push_back(getEncodedLinkage(GV));
1233 Vals.push_back(Log2_32(GV.getAlignment())+1);
1234 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1235 if (GV.isThreadLocal() ||
1236 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1237 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1238 GV.isExternallyInitialized() ||
1239 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1240 GV.hasComdat() ||
1241 GV.hasAttributes() ||
1242 GV.isDSOLocal()) {
1243 Vals.push_back(getEncodedVisibility(GV));
1244 Vals.push_back(getEncodedThreadLocalMode(GV));
1245 Vals.push_back(getEncodedUnnamedAddr(GV));
1246 Vals.push_back(GV.isExternallyInitialized());
1247 Vals.push_back(getEncodedDLLStorageClass(GV));
1248 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1249
1250 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1251 Vals.push_back(VE.getAttributeListID(AL));
1252
1253 Vals.push_back(GV.isDSOLocal());
1254 } else {
1255 AbbrevToUse = SimpleGVarAbbrev;
1256 }
1257
1258 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1259 Vals.clear();
1260 }
1261
1262 // Emit the function proto information.
1263 for (const Function &F : M) {
1264 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1265 // linkage, paramattrs, alignment, section, visibility, gc,
1266 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1267 // prefixdata, personalityfn, DSO_Local]
1268 Vals.push_back(addToStrtab(F.getName()));
1269 Vals.push_back(F.getName().size());
1270 Vals.push_back(VE.getTypeID(F.getFunctionType()));
1271 Vals.push_back(F.getCallingConv());
1272 Vals.push_back(F.isDeclaration());
1273 Vals.push_back(getEncodedLinkage(F));
1274 Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1275 Vals.push_back(Log2_32(F.getAlignment())+1);
1276 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1277 Vals.push_back(getEncodedVisibility(F));
1278 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1279 Vals.push_back(getEncodedUnnamedAddr(F));
1280 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1281 : 0);
1282 Vals.push_back(getEncodedDLLStorageClass(F));
1283 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1284 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1285 : 0);
1286 Vals.push_back(
1287 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1288
1289 Vals.push_back(F.isDSOLocal());
1290 unsigned AbbrevToUse = 0;
1291 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1292 Vals.clear();
1293 }
1294
1295 // Emit the alias information.
1296 for (const GlobalAlias &A : M.aliases()) {
1297 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1298 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1299 // DSO_Local]
1300 Vals.push_back(addToStrtab(A.getName()));
1301 Vals.push_back(A.getName().size());
1302 Vals.push_back(VE.getTypeID(A.getValueType()));
1303 Vals.push_back(A.getType()->getAddressSpace());
1304 Vals.push_back(VE.getValueID(A.getAliasee()));
1305 Vals.push_back(getEncodedLinkage(A));
1306 Vals.push_back(getEncodedVisibility(A));
1307 Vals.push_back(getEncodedDLLStorageClass(A));
1308 Vals.push_back(getEncodedThreadLocalMode(A));
1309 Vals.push_back(getEncodedUnnamedAddr(A));
1310 Vals.push_back(A.isDSOLocal());
1311
1312 unsigned AbbrevToUse = 0;
1313 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1314 Vals.clear();
1315 }
1316
1317 // Emit the ifunc information.
1318 for (const GlobalIFunc &I : M.ifuncs()) {
1319 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1320 // val#, linkage, visibility, DSO_Local]
1321 Vals.push_back(addToStrtab(I.getName()));
1322 Vals.push_back(I.getName().size());
1323 Vals.push_back(VE.getTypeID(I.getValueType()));
1324 Vals.push_back(I.getType()->getAddressSpace());
1325 Vals.push_back(VE.getValueID(I.getResolver()));
1326 Vals.push_back(getEncodedLinkage(I));
1327 Vals.push_back(getEncodedVisibility(I));
1328 Vals.push_back(I.isDSOLocal());
1329 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1330 Vals.clear();
1331 }
1332
1333 writeValueSymbolTableForwardDecl();
1334 }
1335
getOptimizationFlags(const Value * V)1336 static uint64_t getOptimizationFlags(const Value *V) {
1337 uint64_t Flags = 0;
1338
1339 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1340 if (OBO->hasNoSignedWrap())
1341 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1342 if (OBO->hasNoUnsignedWrap())
1343 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1344 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1345 if (PEO->isExact())
1346 Flags |= 1 << bitc::PEO_EXACT;
1347 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1348 if (FPMO->hasAllowReassoc())
1349 Flags |= bitc::AllowReassoc;
1350 if (FPMO->hasNoNaNs())
1351 Flags |= bitc::NoNaNs;
1352 if (FPMO->hasNoInfs())
1353 Flags |= bitc::NoInfs;
1354 if (FPMO->hasNoSignedZeros())
1355 Flags |= bitc::NoSignedZeros;
1356 if (FPMO->hasAllowReciprocal())
1357 Flags |= bitc::AllowReciprocal;
1358 if (FPMO->hasAllowContract())
1359 Flags |= bitc::AllowContract;
1360 if (FPMO->hasApproxFunc())
1361 Flags |= bitc::ApproxFunc;
1362 }
1363
1364 return Flags;
1365 }
1366
writeValueAsMetadata(const ValueAsMetadata * MD,SmallVectorImpl<uint64_t> & Record)1367 void ModuleBitcodeWriter::writeValueAsMetadata(
1368 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1369 // Mimic an MDNode with a value as one operand.
1370 Value *V = MD->getValue();
1371 Record.push_back(VE.getTypeID(V->getType()));
1372 Record.push_back(VE.getValueID(V));
1373 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1374 Record.clear();
1375 }
1376
writeMDTuple(const MDTuple * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1377 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1378 SmallVectorImpl<uint64_t> &Record,
1379 unsigned Abbrev) {
1380 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1381 Metadata *MD = N->getOperand(i);
1382 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1383 "Unexpected function-local metadata");
1384 Record.push_back(VE.getMetadataOrNullID(MD));
1385 }
1386 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1387 : bitc::METADATA_NODE,
1388 Record, Abbrev);
1389 Record.clear();
1390 }
1391
createDILocationAbbrev()1392 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1393 // Assume the column is usually under 128, and always output the inlined-at
1394 // location (it's never more expensive than building an array size 1).
1395 auto Abbv = std::make_shared<BitCodeAbbrev>();
1396 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1402 return Stream.EmitAbbrev(std::move(Abbv));
1403 }
1404
writeDILocation(const DILocation * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1405 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1406 SmallVectorImpl<uint64_t> &Record,
1407 unsigned &Abbrev) {
1408 if (!Abbrev)
1409 Abbrev = createDILocationAbbrev();
1410
1411 Record.push_back(N->isDistinct());
1412 Record.push_back(N->getLine());
1413 Record.push_back(N->getColumn());
1414 Record.push_back(VE.getMetadataID(N->getScope()));
1415 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1416
1417 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1418 Record.clear();
1419 }
1420
createGenericDINodeAbbrev()1421 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1422 // Assume the column is usually under 128, and always output the inlined-at
1423 // location (it's never more expensive than building an array size 1).
1424 auto Abbv = std::make_shared<BitCodeAbbrev>();
1425 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1432 return Stream.EmitAbbrev(std::move(Abbv));
1433 }
1434
writeGenericDINode(const GenericDINode * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1435 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1436 SmallVectorImpl<uint64_t> &Record,
1437 unsigned &Abbrev) {
1438 if (!Abbrev)
1439 Abbrev = createGenericDINodeAbbrev();
1440
1441 Record.push_back(N->isDistinct());
1442 Record.push_back(N->getTag());
1443 Record.push_back(0); // Per-tag version field; unused for now.
1444
1445 for (auto &I : N->operands())
1446 Record.push_back(VE.getMetadataOrNullID(I));
1447
1448 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1449 Record.clear();
1450 }
1451
rotateSign(int64_t I)1452 static uint64_t rotateSign(int64_t I) {
1453 uint64_t U = I;
1454 return I < 0 ? ~(U << 1) : U << 1;
1455 }
1456
writeDISubrange(const DISubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1457 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1458 SmallVectorImpl<uint64_t> &Record,
1459 unsigned Abbrev) {
1460 const uint64_t Version = 1 << 1;
1461 Record.push_back((uint64_t)N->isDistinct() | Version);
1462 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1463 Record.push_back(rotateSign(N->getLowerBound()));
1464
1465 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1466 Record.clear();
1467 }
1468
writeDIEnumerator(const DIEnumerator * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1469 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1470 SmallVectorImpl<uint64_t> &Record,
1471 unsigned Abbrev) {
1472 Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1473 Record.push_back(rotateSign(N->getValue()));
1474 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1475
1476 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1477 Record.clear();
1478 }
1479
writeDIBasicType(const DIBasicType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1480 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1481 SmallVectorImpl<uint64_t> &Record,
1482 unsigned Abbrev) {
1483 Record.push_back(N->isDistinct());
1484 Record.push_back(N->getTag());
1485 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1486 Record.push_back(N->getSizeInBits());
1487 Record.push_back(N->getAlignInBits());
1488 Record.push_back(N->getEncoding());
1489
1490 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1491 Record.clear();
1492 }
1493
writeDIDerivedType(const DIDerivedType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1494 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1495 SmallVectorImpl<uint64_t> &Record,
1496 unsigned Abbrev) {
1497 Record.push_back(N->isDistinct());
1498 Record.push_back(N->getTag());
1499 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1500 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1501 Record.push_back(N->getLine());
1502 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1503 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1504 Record.push_back(N->getSizeInBits());
1505 Record.push_back(N->getAlignInBits());
1506 Record.push_back(N->getOffsetInBits());
1507 Record.push_back(N->getFlags());
1508 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1509
1510 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1511 // that there is no DWARF address space associated with DIDerivedType.
1512 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1513 Record.push_back(*DWARFAddressSpace + 1);
1514 else
1515 Record.push_back(0);
1516
1517 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1518 Record.clear();
1519 }
1520
writeDICompositeType(const DICompositeType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1521 void ModuleBitcodeWriter::writeDICompositeType(
1522 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1523 unsigned Abbrev) {
1524 const unsigned IsNotUsedInOldTypeRef = 0x2;
1525 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1526 Record.push_back(N->getTag());
1527 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1528 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1529 Record.push_back(N->getLine());
1530 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1531 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1532 Record.push_back(N->getSizeInBits());
1533 Record.push_back(N->getAlignInBits());
1534 Record.push_back(N->getOffsetInBits());
1535 Record.push_back(N->getFlags());
1536 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1537 Record.push_back(N->getRuntimeLang());
1538 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1539 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1540 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1541 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1542
1543 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1544 Record.clear();
1545 }
1546
writeDISubroutineType(const DISubroutineType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1547 void ModuleBitcodeWriter::writeDISubroutineType(
1548 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1549 unsigned Abbrev) {
1550 const unsigned HasNoOldTypeRefs = 0x2;
1551 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1552 Record.push_back(N->getFlags());
1553 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1554 Record.push_back(N->getCC());
1555
1556 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1557 Record.clear();
1558 }
1559
writeDIFile(const DIFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1560 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1561 SmallVectorImpl<uint64_t> &Record,
1562 unsigned Abbrev) {
1563 Record.push_back(N->isDistinct());
1564 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1565 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1566 if (N->getRawChecksum()) {
1567 Record.push_back(N->getRawChecksum()->Kind);
1568 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1569 } else {
1570 // Maintain backwards compatibility with the old internal representation of
1571 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1572 Record.push_back(0);
1573 Record.push_back(VE.getMetadataOrNullID(nullptr));
1574 }
1575 auto Source = N->getRawSource();
1576 if (Source)
1577 Record.push_back(VE.getMetadataOrNullID(*Source));
1578
1579 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1580 Record.clear();
1581 }
1582
writeDICompileUnit(const DICompileUnit * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1583 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1584 SmallVectorImpl<uint64_t> &Record,
1585 unsigned Abbrev) {
1586 assert(N->isDistinct() && "Expected distinct compile units");
1587 Record.push_back(/* IsDistinct */ true);
1588 Record.push_back(N->getSourceLanguage());
1589 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1590 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1591 Record.push_back(N->isOptimized());
1592 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1593 Record.push_back(N->getRuntimeVersion());
1594 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1595 Record.push_back(N->getEmissionKind());
1596 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1597 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1598 Record.push_back(/* subprograms */ 0);
1599 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1600 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1601 Record.push_back(N->getDWOId());
1602 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1603 Record.push_back(N->getSplitDebugInlining());
1604 Record.push_back(N->getDebugInfoForProfiling());
1605 Record.push_back(N->getGnuPubnames());
1606
1607 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1608 Record.clear();
1609 }
1610
writeDISubprogram(const DISubprogram * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1611 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1612 SmallVectorImpl<uint64_t> &Record,
1613 unsigned Abbrev) {
1614 uint64_t HasUnitFlag = 1 << 1;
1615 Record.push_back(N->isDistinct() | HasUnitFlag);
1616 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1617 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1618 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1619 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1620 Record.push_back(N->getLine());
1621 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1622 Record.push_back(N->isLocalToUnit());
1623 Record.push_back(N->isDefinition());
1624 Record.push_back(N->getScopeLine());
1625 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1626 Record.push_back(N->getVirtuality());
1627 Record.push_back(N->getVirtualIndex());
1628 Record.push_back(N->getFlags());
1629 Record.push_back(N->isOptimized());
1630 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1631 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1632 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1633 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1634 Record.push_back(N->getThisAdjustment());
1635 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1636
1637 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1638 Record.clear();
1639 }
1640
writeDILexicalBlock(const DILexicalBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1641 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1642 SmallVectorImpl<uint64_t> &Record,
1643 unsigned Abbrev) {
1644 Record.push_back(N->isDistinct());
1645 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1646 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1647 Record.push_back(N->getLine());
1648 Record.push_back(N->getColumn());
1649
1650 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1651 Record.clear();
1652 }
1653
writeDILexicalBlockFile(const DILexicalBlockFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1654 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1655 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1656 unsigned Abbrev) {
1657 Record.push_back(N->isDistinct());
1658 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1659 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1660 Record.push_back(N->getDiscriminator());
1661
1662 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1663 Record.clear();
1664 }
1665
writeDINamespace(const DINamespace * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1666 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1667 SmallVectorImpl<uint64_t> &Record,
1668 unsigned Abbrev) {
1669 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1670 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1671 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1672
1673 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1674 Record.clear();
1675 }
1676
writeDIMacro(const DIMacro * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1677 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1678 SmallVectorImpl<uint64_t> &Record,
1679 unsigned Abbrev) {
1680 Record.push_back(N->isDistinct());
1681 Record.push_back(N->getMacinfoType());
1682 Record.push_back(N->getLine());
1683 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1684 Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1685
1686 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1687 Record.clear();
1688 }
1689
writeDIMacroFile(const DIMacroFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1690 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1691 SmallVectorImpl<uint64_t> &Record,
1692 unsigned Abbrev) {
1693 Record.push_back(N->isDistinct());
1694 Record.push_back(N->getMacinfoType());
1695 Record.push_back(N->getLine());
1696 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1697 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1698
1699 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1700 Record.clear();
1701 }
1702
writeDIModule(const DIModule * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1703 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1704 SmallVectorImpl<uint64_t> &Record,
1705 unsigned Abbrev) {
1706 Record.push_back(N->isDistinct());
1707 for (auto &I : N->operands())
1708 Record.push_back(VE.getMetadataOrNullID(I));
1709
1710 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1711 Record.clear();
1712 }
1713
writeDITemplateTypeParameter(const DITemplateTypeParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1714 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1715 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1716 unsigned Abbrev) {
1717 Record.push_back(N->isDistinct());
1718 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1719 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1720
1721 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1722 Record.clear();
1723 }
1724
writeDITemplateValueParameter(const DITemplateValueParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1725 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1726 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1727 unsigned Abbrev) {
1728 Record.push_back(N->isDistinct());
1729 Record.push_back(N->getTag());
1730 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1731 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1732 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1733
1734 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1735 Record.clear();
1736 }
1737
writeDIGlobalVariable(const DIGlobalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1738 void ModuleBitcodeWriter::writeDIGlobalVariable(
1739 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1740 unsigned Abbrev) {
1741 const uint64_t Version = 1 << 1;
1742 Record.push_back((uint64_t)N->isDistinct() | Version);
1743 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1744 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1745 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1746 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1747 Record.push_back(N->getLine());
1748 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1749 Record.push_back(N->isLocalToUnit());
1750 Record.push_back(N->isDefinition());
1751 Record.push_back(/* expr */ 0);
1752 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1753 Record.push_back(N->getAlignInBits());
1754
1755 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1756 Record.clear();
1757 }
1758
writeDILocalVariable(const DILocalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1759 void ModuleBitcodeWriter::writeDILocalVariable(
1760 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1761 unsigned Abbrev) {
1762 // In order to support all possible bitcode formats in BitcodeReader we need
1763 // to distinguish the following cases:
1764 // 1) Record has no artificial tag (Record[1]),
1765 // has no obsolete inlinedAt field (Record[9]).
1766 // In this case Record size will be 8, HasAlignment flag is false.
1767 // 2) Record has artificial tag (Record[1]),
1768 // has no obsolete inlignedAt field (Record[9]).
1769 // In this case Record size will be 9, HasAlignment flag is false.
1770 // 3) Record has both artificial tag (Record[1]) and
1771 // obsolete inlignedAt field (Record[9]).
1772 // In this case Record size will be 10, HasAlignment flag is false.
1773 // 4) Record has neither artificial tag, nor inlignedAt field, but
1774 // HasAlignment flag is true and Record[8] contains alignment value.
1775 const uint64_t HasAlignmentFlag = 1 << 1;
1776 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1777 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1778 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1779 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1780 Record.push_back(N->getLine());
1781 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1782 Record.push_back(N->getArg());
1783 Record.push_back(N->getFlags());
1784 Record.push_back(N->getAlignInBits());
1785
1786 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1787 Record.clear();
1788 }
1789
writeDILabel(const DILabel * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1790 void ModuleBitcodeWriter::writeDILabel(
1791 const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1792 unsigned Abbrev) {
1793 Record.push_back((uint64_t)N->isDistinct());
1794 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1795 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1796 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1797 Record.push_back(N->getLine());
1798
1799 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1800 Record.clear();
1801 }
1802
writeDIExpression(const DIExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1803 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1804 SmallVectorImpl<uint64_t> &Record,
1805 unsigned Abbrev) {
1806 Record.reserve(N->getElements().size() + 1);
1807 const uint64_t Version = 3 << 1;
1808 Record.push_back((uint64_t)N->isDistinct() | Version);
1809 Record.append(N->elements_begin(), N->elements_end());
1810
1811 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1812 Record.clear();
1813 }
1814
writeDIGlobalVariableExpression(const DIGlobalVariableExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1815 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1816 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1817 unsigned Abbrev) {
1818 Record.push_back(N->isDistinct());
1819 Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1820 Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1821
1822 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1823 Record.clear();
1824 }
1825
writeDIObjCProperty(const DIObjCProperty * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1826 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1827 SmallVectorImpl<uint64_t> &Record,
1828 unsigned Abbrev) {
1829 Record.push_back(N->isDistinct());
1830 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1831 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1832 Record.push_back(N->getLine());
1833 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1834 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1835 Record.push_back(N->getAttributes());
1836 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1837
1838 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1839 Record.clear();
1840 }
1841
writeDIImportedEntity(const DIImportedEntity * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1842 void ModuleBitcodeWriter::writeDIImportedEntity(
1843 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1844 unsigned Abbrev) {
1845 Record.push_back(N->isDistinct());
1846 Record.push_back(N->getTag());
1847 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1848 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1849 Record.push_back(N->getLine());
1850 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1851 Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1852
1853 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1854 Record.clear();
1855 }
1856
createNamedMetadataAbbrev()1857 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1858 auto Abbv = std::make_shared<BitCodeAbbrev>();
1859 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1862 return Stream.EmitAbbrev(std::move(Abbv));
1863 }
1864
writeNamedMetadata(SmallVectorImpl<uint64_t> & Record)1865 void ModuleBitcodeWriter::writeNamedMetadata(
1866 SmallVectorImpl<uint64_t> &Record) {
1867 if (M.named_metadata_empty())
1868 return;
1869
1870 unsigned Abbrev = createNamedMetadataAbbrev();
1871 for (const NamedMDNode &NMD : M.named_metadata()) {
1872 // Write name.
1873 StringRef Str = NMD.getName();
1874 Record.append(Str.bytes_begin(), Str.bytes_end());
1875 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1876 Record.clear();
1877
1878 // Write named metadata operands.
1879 for (const MDNode *N : NMD.operands())
1880 Record.push_back(VE.getMetadataID(N));
1881 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1882 Record.clear();
1883 }
1884 }
1885
createMetadataStringsAbbrev()1886 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1887 auto Abbv = std::make_shared<BitCodeAbbrev>();
1888 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1892 return Stream.EmitAbbrev(std::move(Abbv));
1893 }
1894
1895 /// Write out a record for MDString.
1896 ///
1897 /// All the metadata strings in a metadata block are emitted in a single
1898 /// record. The sizes and strings themselves are shoved into a blob.
writeMetadataStrings(ArrayRef<const Metadata * > Strings,SmallVectorImpl<uint64_t> & Record)1899 void ModuleBitcodeWriter::writeMetadataStrings(
1900 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1901 if (Strings.empty())
1902 return;
1903
1904 // Start the record with the number of strings.
1905 Record.push_back(bitc::METADATA_STRINGS);
1906 Record.push_back(Strings.size());
1907
1908 // Emit the sizes of the strings in the blob.
1909 SmallString<256> Blob;
1910 {
1911 BitstreamWriter W(Blob);
1912 for (const Metadata *MD : Strings)
1913 W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1914 W.FlushToWord();
1915 }
1916
1917 // Add the offset to the strings to the record.
1918 Record.push_back(Blob.size());
1919
1920 // Add the strings to the blob.
1921 for (const Metadata *MD : Strings)
1922 Blob.append(cast<MDString>(MD)->getString());
1923
1924 // Emit the final record.
1925 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1926 Record.clear();
1927 }
1928
1929 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1930 enum MetadataAbbrev : unsigned {
1931 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1932 #include "llvm/IR/Metadata.def"
1933 LastPlusOne
1934 };
1935
writeMetadataRecords(ArrayRef<const Metadata * > MDs,SmallVectorImpl<uint64_t> & Record,std::vector<unsigned> * MDAbbrevs,std::vector<uint64_t> * IndexPos)1936 void ModuleBitcodeWriter::writeMetadataRecords(
1937 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1938 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1939 if (MDs.empty())
1940 return;
1941
1942 // Initialize MDNode abbreviations.
1943 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1944 #include "llvm/IR/Metadata.def"
1945
1946 for (const Metadata *MD : MDs) {
1947 if (IndexPos)
1948 IndexPos->push_back(Stream.GetCurrentBitNo());
1949 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1950 assert(N->isResolved() && "Expected forward references to be resolved");
1951
1952 switch (N->getMetadataID()) {
1953 default:
1954 llvm_unreachable("Invalid MDNode subclass");
1955 #define HANDLE_MDNODE_LEAF(CLASS) \
1956 case Metadata::CLASS##Kind: \
1957 if (MDAbbrevs) \
1958 write##CLASS(cast<CLASS>(N), Record, \
1959 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
1960 else \
1961 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
1962 continue;
1963 #include "llvm/IR/Metadata.def"
1964 }
1965 }
1966 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1967 }
1968 }
1969
writeModuleMetadata()1970 void ModuleBitcodeWriter::writeModuleMetadata() {
1971 if (!VE.hasMDs() && M.named_metadata_empty())
1972 return;
1973
1974 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1975 SmallVector<uint64_t, 64> Record;
1976
1977 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1978 // block and load any metadata.
1979 std::vector<unsigned> MDAbbrevs;
1980
1981 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1982 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1983 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1984 createGenericDINodeAbbrev();
1985
1986 auto Abbv = std::make_shared<BitCodeAbbrev>();
1987 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
1988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1990 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1991
1992 Abbv = std::make_shared<BitCodeAbbrev>();
1993 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
1994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1996 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1997
1998 // Emit MDStrings together upfront.
1999 writeMetadataStrings(VE.getMDStrings(), Record);
2000
2001 // We only emit an index for the metadata record if we have more than a given
2002 // (naive) threshold of metadatas, otherwise it is not worth it.
2003 if (VE.getNonMDStrings().size() > IndexThreshold) {
2004 // Write a placeholder value in for the offset of the metadata index,
2005 // which is written after the records, so that it can include
2006 // the offset of each entry. The placeholder offset will be
2007 // updated after all records are emitted.
2008 uint64_t Vals[] = {0, 0};
2009 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2010 }
2011
2012 // Compute and save the bit offset to the current position, which will be
2013 // patched when we emit the index later. We can simply subtract the 64-bit
2014 // fixed size from the current bit number to get the location to backpatch.
2015 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2016
2017 // This index will contain the bitpos for each individual record.
2018 std::vector<uint64_t> IndexPos;
2019 IndexPos.reserve(VE.getNonMDStrings().size());
2020
2021 // Write all the records
2022 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2023
2024 if (VE.getNonMDStrings().size() > IndexThreshold) {
2025 // Now that we have emitted all the records we will emit the index. But
2026 // first
2027 // backpatch the forward reference so that the reader can skip the records
2028 // efficiently.
2029 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2030 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2031
2032 // Delta encode the index.
2033 uint64_t PreviousValue = IndexOffsetRecordBitPos;
2034 for (auto &Elt : IndexPos) {
2035 auto EltDelta = Elt - PreviousValue;
2036 PreviousValue = Elt;
2037 Elt = EltDelta;
2038 }
2039 // Emit the index record.
2040 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2041 IndexPos.clear();
2042 }
2043
2044 // Write the named metadata now.
2045 writeNamedMetadata(Record);
2046
2047 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2048 SmallVector<uint64_t, 4> Record;
2049 Record.push_back(VE.getValueID(&GO));
2050 pushGlobalMetadataAttachment(Record, GO);
2051 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2052 };
2053 for (const Function &F : M)
2054 if (F.isDeclaration() && F.hasMetadata())
2055 AddDeclAttachedMetadata(F);
2056 // FIXME: Only store metadata for declarations here, and move data for global
2057 // variable definitions to a separate block (PR28134).
2058 for (const GlobalVariable &GV : M.globals())
2059 if (GV.hasMetadata())
2060 AddDeclAttachedMetadata(GV);
2061
2062 Stream.ExitBlock();
2063 }
2064
writeFunctionMetadata(const Function & F)2065 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2066 if (!VE.hasMDs())
2067 return;
2068
2069 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2070 SmallVector<uint64_t, 64> Record;
2071 writeMetadataStrings(VE.getMDStrings(), Record);
2072 writeMetadataRecords(VE.getNonMDStrings(), Record);
2073 Stream.ExitBlock();
2074 }
2075
pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> & Record,const GlobalObject & GO)2076 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2077 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2078 // [n x [id, mdnode]]
2079 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2080 GO.getAllMetadata(MDs);
2081 for (const auto &I : MDs) {
2082 Record.push_back(I.first);
2083 Record.push_back(VE.getMetadataID(I.second));
2084 }
2085 }
2086
writeFunctionMetadataAttachment(const Function & F)2087 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2088 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2089
2090 SmallVector<uint64_t, 64> Record;
2091
2092 if (F.hasMetadata()) {
2093 pushGlobalMetadataAttachment(Record, F);
2094 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2095 Record.clear();
2096 }
2097
2098 // Write metadata attachments
2099 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2100 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2101 for (const BasicBlock &BB : F)
2102 for (const Instruction &I : BB) {
2103 MDs.clear();
2104 I.getAllMetadataOtherThanDebugLoc(MDs);
2105
2106 // If no metadata, ignore instruction.
2107 if (MDs.empty()) continue;
2108
2109 Record.push_back(VE.getInstructionID(&I));
2110
2111 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2112 Record.push_back(MDs[i].first);
2113 Record.push_back(VE.getMetadataID(MDs[i].second));
2114 }
2115 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2116 Record.clear();
2117 }
2118
2119 Stream.ExitBlock();
2120 }
2121
writeModuleMetadataKinds()2122 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2123 SmallVector<uint64_t, 64> Record;
2124
2125 // Write metadata kinds
2126 // METADATA_KIND - [n x [id, name]]
2127 SmallVector<StringRef, 8> Names;
2128 M.getMDKindNames(Names);
2129
2130 if (Names.empty()) return;
2131
2132 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2133
2134 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2135 Record.push_back(MDKindID);
2136 StringRef KName = Names[MDKindID];
2137 Record.append(KName.begin(), KName.end());
2138
2139 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2140 Record.clear();
2141 }
2142
2143 Stream.ExitBlock();
2144 }
2145
writeOperandBundleTags()2146 void ModuleBitcodeWriter::writeOperandBundleTags() {
2147 // Write metadata kinds
2148 //
2149 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2150 //
2151 // OPERAND_BUNDLE_TAG - [strchr x N]
2152
2153 SmallVector<StringRef, 8> Tags;
2154 M.getOperandBundleTags(Tags);
2155
2156 if (Tags.empty())
2157 return;
2158
2159 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2160
2161 SmallVector<uint64_t, 64> Record;
2162
2163 for (auto Tag : Tags) {
2164 Record.append(Tag.begin(), Tag.end());
2165
2166 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2167 Record.clear();
2168 }
2169
2170 Stream.ExitBlock();
2171 }
2172
writeSyncScopeNames()2173 void ModuleBitcodeWriter::writeSyncScopeNames() {
2174 SmallVector<StringRef, 8> SSNs;
2175 M.getContext().getSyncScopeNames(SSNs);
2176 if (SSNs.empty())
2177 return;
2178
2179 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2180
2181 SmallVector<uint64_t, 64> Record;
2182 for (auto SSN : SSNs) {
2183 Record.append(SSN.begin(), SSN.end());
2184 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2185 Record.clear();
2186 }
2187
2188 Stream.ExitBlock();
2189 }
2190
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)2191 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2192 if ((int64_t)V >= 0)
2193 Vals.push_back(V << 1);
2194 else
2195 Vals.push_back((-V << 1) | 1);
2196 }
2197
writeConstants(unsigned FirstVal,unsigned LastVal,bool isGlobal)2198 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2199 bool isGlobal) {
2200 if (FirstVal == LastVal) return;
2201
2202 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2203
2204 unsigned AggregateAbbrev = 0;
2205 unsigned String8Abbrev = 0;
2206 unsigned CString7Abbrev = 0;
2207 unsigned CString6Abbrev = 0;
2208 // If this is a constant pool for the module, emit module-specific abbrevs.
2209 if (isGlobal) {
2210 // Abbrev for CST_CODE_AGGREGATE.
2211 auto Abbv = std::make_shared<BitCodeAbbrev>();
2212 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2215 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2216
2217 // Abbrev for CST_CODE_STRING.
2218 Abbv = std::make_shared<BitCodeAbbrev>();
2219 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2222 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2223 // Abbrev for CST_CODE_CSTRING.
2224 Abbv = std::make_shared<BitCodeAbbrev>();
2225 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2228 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2229 // Abbrev for CST_CODE_CSTRING.
2230 Abbv = std::make_shared<BitCodeAbbrev>();
2231 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2234 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2235 }
2236
2237 SmallVector<uint64_t, 64> Record;
2238
2239 const ValueEnumerator::ValueList &Vals = VE.getValues();
2240 Type *LastTy = nullptr;
2241 for (unsigned i = FirstVal; i != LastVal; ++i) {
2242 const Value *V = Vals[i].first;
2243 // If we need to switch types, do so now.
2244 if (V->getType() != LastTy) {
2245 LastTy = V->getType();
2246 Record.push_back(VE.getTypeID(LastTy));
2247 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2248 CONSTANTS_SETTYPE_ABBREV);
2249 Record.clear();
2250 }
2251
2252 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2253 Record.push_back(unsigned(IA->hasSideEffects()) |
2254 unsigned(IA->isAlignStack()) << 1 |
2255 unsigned(IA->getDialect()&1) << 2);
2256
2257 // Add the asm string.
2258 const std::string &AsmStr = IA->getAsmString();
2259 Record.push_back(AsmStr.size());
2260 Record.append(AsmStr.begin(), AsmStr.end());
2261
2262 // Add the constraint string.
2263 const std::string &ConstraintStr = IA->getConstraintString();
2264 Record.push_back(ConstraintStr.size());
2265 Record.append(ConstraintStr.begin(), ConstraintStr.end());
2266 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2267 Record.clear();
2268 continue;
2269 }
2270 const Constant *C = cast<Constant>(V);
2271 unsigned Code = -1U;
2272 unsigned AbbrevToUse = 0;
2273 if (C->isNullValue()) {
2274 Code = bitc::CST_CODE_NULL;
2275 } else if (isa<UndefValue>(C)) {
2276 Code = bitc::CST_CODE_UNDEF;
2277 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2278 if (IV->getBitWidth() <= 64) {
2279 uint64_t V = IV->getSExtValue();
2280 emitSignedInt64(Record, V);
2281 Code = bitc::CST_CODE_INTEGER;
2282 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2283 } else { // Wide integers, > 64 bits in size.
2284 // We have an arbitrary precision integer value to write whose
2285 // bit width is > 64. However, in canonical unsigned integer
2286 // format it is likely that the high bits are going to be zero.
2287 // So, we only write the number of active words.
2288 unsigned NWords = IV->getValue().getActiveWords();
2289 const uint64_t *RawWords = IV->getValue().getRawData();
2290 for (unsigned i = 0; i != NWords; ++i) {
2291 emitSignedInt64(Record, RawWords[i]);
2292 }
2293 Code = bitc::CST_CODE_WIDE_INTEGER;
2294 }
2295 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2296 Code = bitc::CST_CODE_FLOAT;
2297 Type *Ty = CFP->getType();
2298 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2299 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2300 } else if (Ty->isX86_FP80Ty()) {
2301 // api needed to prevent premature destruction
2302 // bits are not in the same order as a normal i80 APInt, compensate.
2303 APInt api = CFP->getValueAPF().bitcastToAPInt();
2304 const uint64_t *p = api.getRawData();
2305 Record.push_back((p[1] << 48) | (p[0] >> 16));
2306 Record.push_back(p[0] & 0xffffLL);
2307 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2308 APInt api = CFP->getValueAPF().bitcastToAPInt();
2309 const uint64_t *p = api.getRawData();
2310 Record.push_back(p[0]);
2311 Record.push_back(p[1]);
2312 } else {
2313 assert(0 && "Unknown FP type!");
2314 }
2315 } else if (isa<ConstantDataSequential>(C) &&
2316 cast<ConstantDataSequential>(C)->isString()) {
2317 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2318 // Emit constant strings specially.
2319 unsigned NumElts = Str->getNumElements();
2320 // If this is a null-terminated string, use the denser CSTRING encoding.
2321 if (Str->isCString()) {
2322 Code = bitc::CST_CODE_CSTRING;
2323 --NumElts; // Don't encode the null, which isn't allowed by char6.
2324 } else {
2325 Code = bitc::CST_CODE_STRING;
2326 AbbrevToUse = String8Abbrev;
2327 }
2328 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2329 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2330 for (unsigned i = 0; i != NumElts; ++i) {
2331 unsigned char V = Str->getElementAsInteger(i);
2332 Record.push_back(V);
2333 isCStr7 &= (V & 128) == 0;
2334 if (isCStrChar6)
2335 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2336 }
2337
2338 if (isCStrChar6)
2339 AbbrevToUse = CString6Abbrev;
2340 else if (isCStr7)
2341 AbbrevToUse = CString7Abbrev;
2342 } else if (const ConstantDataSequential *CDS =
2343 dyn_cast<ConstantDataSequential>(C)) {
2344 Code = bitc::CST_CODE_DATA;
2345 Type *EltTy = CDS->getType()->getElementType();
2346 if (isa<IntegerType>(EltTy)) {
2347 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2348 Record.push_back(CDS->getElementAsInteger(i));
2349 } else {
2350 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2351 Record.push_back(
2352 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2353 }
2354 } else if (isa<ConstantAggregate>(C)) {
2355 Code = bitc::CST_CODE_AGGREGATE;
2356 for (const Value *Op : C->operands())
2357 Record.push_back(VE.getValueID(Op));
2358 AbbrevToUse = AggregateAbbrev;
2359 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2360 switch (CE->getOpcode()) {
2361 default:
2362 if (Instruction::isCast(CE->getOpcode())) {
2363 Code = bitc::CST_CODE_CE_CAST;
2364 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2365 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2366 Record.push_back(VE.getValueID(C->getOperand(0)));
2367 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2368 } else {
2369 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2370 Code = bitc::CST_CODE_CE_BINOP;
2371 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2372 Record.push_back(VE.getValueID(C->getOperand(0)));
2373 Record.push_back(VE.getValueID(C->getOperand(1)));
2374 uint64_t Flags = getOptimizationFlags(CE);
2375 if (Flags != 0)
2376 Record.push_back(Flags);
2377 }
2378 break;
2379 case Instruction::GetElementPtr: {
2380 Code = bitc::CST_CODE_CE_GEP;
2381 const auto *GO = cast<GEPOperator>(C);
2382 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2383 if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2384 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2385 Record.push_back((*Idx << 1) | GO->isInBounds());
2386 } else if (GO->isInBounds())
2387 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2388 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2389 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2390 Record.push_back(VE.getValueID(C->getOperand(i)));
2391 }
2392 break;
2393 }
2394 case Instruction::Select:
2395 Code = bitc::CST_CODE_CE_SELECT;
2396 Record.push_back(VE.getValueID(C->getOperand(0)));
2397 Record.push_back(VE.getValueID(C->getOperand(1)));
2398 Record.push_back(VE.getValueID(C->getOperand(2)));
2399 break;
2400 case Instruction::ExtractElement:
2401 Code = bitc::CST_CODE_CE_EXTRACTELT;
2402 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2403 Record.push_back(VE.getValueID(C->getOperand(0)));
2404 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2405 Record.push_back(VE.getValueID(C->getOperand(1)));
2406 break;
2407 case Instruction::InsertElement:
2408 Code = bitc::CST_CODE_CE_INSERTELT;
2409 Record.push_back(VE.getValueID(C->getOperand(0)));
2410 Record.push_back(VE.getValueID(C->getOperand(1)));
2411 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2412 Record.push_back(VE.getValueID(C->getOperand(2)));
2413 break;
2414 case Instruction::ShuffleVector:
2415 // If the return type and argument types are the same, this is a
2416 // standard shufflevector instruction. If the types are different,
2417 // then the shuffle is widening or truncating the input vectors, and
2418 // the argument type must also be encoded.
2419 if (C->getType() == C->getOperand(0)->getType()) {
2420 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2421 } else {
2422 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2423 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2424 }
2425 Record.push_back(VE.getValueID(C->getOperand(0)));
2426 Record.push_back(VE.getValueID(C->getOperand(1)));
2427 Record.push_back(VE.getValueID(C->getOperand(2)));
2428 break;
2429 case Instruction::ICmp:
2430 case Instruction::FCmp:
2431 Code = bitc::CST_CODE_CE_CMP;
2432 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2433 Record.push_back(VE.getValueID(C->getOperand(0)));
2434 Record.push_back(VE.getValueID(C->getOperand(1)));
2435 Record.push_back(CE->getPredicate());
2436 break;
2437 }
2438 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2439 Code = bitc::CST_CODE_BLOCKADDRESS;
2440 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2441 Record.push_back(VE.getValueID(BA->getFunction()));
2442 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2443 } else {
2444 #ifndef NDEBUG
2445 C->dump();
2446 #endif
2447 llvm_unreachable("Unknown constant!");
2448 }
2449 Stream.EmitRecord(Code, Record, AbbrevToUse);
2450 Record.clear();
2451 }
2452
2453 Stream.ExitBlock();
2454 }
2455
writeModuleConstants()2456 void ModuleBitcodeWriter::writeModuleConstants() {
2457 const ValueEnumerator::ValueList &Vals = VE.getValues();
2458
2459 // Find the first constant to emit, which is the first non-globalvalue value.
2460 // We know globalvalues have been emitted by WriteModuleInfo.
2461 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2462 if (!isa<GlobalValue>(Vals[i].first)) {
2463 writeConstants(i, Vals.size(), true);
2464 return;
2465 }
2466 }
2467 }
2468
2469 /// pushValueAndType - The file has to encode both the value and type id for
2470 /// many values, because we need to know what type to create for forward
2471 /// references. However, most operands are not forward references, so this type
2472 /// field is not needed.
2473 ///
2474 /// This function adds V's value ID to Vals. If the value ID is higher than the
2475 /// instruction ID, then it is a forward reference, and it also includes the
2476 /// type ID. The value ID that is written is encoded relative to the InstID.
pushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2477 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2478 SmallVectorImpl<unsigned> &Vals) {
2479 unsigned ValID = VE.getValueID(V);
2480 // Make encoding relative to the InstID.
2481 Vals.push_back(InstID - ValID);
2482 if (ValID >= InstID) {
2483 Vals.push_back(VE.getTypeID(V->getType()));
2484 return true;
2485 }
2486 return false;
2487 }
2488
writeOperandBundles(ImmutableCallSite CS,unsigned InstID)2489 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2490 unsigned InstID) {
2491 SmallVector<unsigned, 64> Record;
2492 LLVMContext &C = CS.getInstruction()->getContext();
2493
2494 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2495 const auto &Bundle = CS.getOperandBundleAt(i);
2496 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2497
2498 for (auto &Input : Bundle.Inputs)
2499 pushValueAndType(Input, InstID, Record);
2500
2501 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2502 Record.clear();
2503 }
2504 }
2505
2506 /// pushValue - Like pushValueAndType, but where the type of the value is
2507 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2508 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2509 SmallVectorImpl<unsigned> &Vals) {
2510 unsigned ValID = VE.getValueID(V);
2511 Vals.push_back(InstID - ValID);
2512 }
2513
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals)2514 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2515 SmallVectorImpl<uint64_t> &Vals) {
2516 unsigned ValID = VE.getValueID(V);
2517 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2518 emitSignedInt64(Vals, diff);
2519 }
2520
2521 /// WriteInstruction - Emit an instruction to the specified stream.
writeInstruction(const Instruction & I,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2522 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2523 unsigned InstID,
2524 SmallVectorImpl<unsigned> &Vals) {
2525 unsigned Code = 0;
2526 unsigned AbbrevToUse = 0;
2527 VE.setInstructionID(&I);
2528 switch (I.getOpcode()) {
2529 default:
2530 if (Instruction::isCast(I.getOpcode())) {
2531 Code = bitc::FUNC_CODE_INST_CAST;
2532 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2533 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2534 Vals.push_back(VE.getTypeID(I.getType()));
2535 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2536 } else {
2537 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2538 Code = bitc::FUNC_CODE_INST_BINOP;
2539 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2540 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2541 pushValue(I.getOperand(1), InstID, Vals);
2542 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2543 uint64_t Flags = getOptimizationFlags(&I);
2544 if (Flags != 0) {
2545 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2546 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2547 Vals.push_back(Flags);
2548 }
2549 }
2550 break;
2551
2552 case Instruction::GetElementPtr: {
2553 Code = bitc::FUNC_CODE_INST_GEP;
2554 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2555 auto &GEPInst = cast<GetElementPtrInst>(I);
2556 Vals.push_back(GEPInst.isInBounds());
2557 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2558 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2559 pushValueAndType(I.getOperand(i), InstID, Vals);
2560 break;
2561 }
2562 case Instruction::ExtractValue: {
2563 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2564 pushValueAndType(I.getOperand(0), InstID, Vals);
2565 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2566 Vals.append(EVI->idx_begin(), EVI->idx_end());
2567 break;
2568 }
2569 case Instruction::InsertValue: {
2570 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2571 pushValueAndType(I.getOperand(0), InstID, Vals);
2572 pushValueAndType(I.getOperand(1), InstID, Vals);
2573 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2574 Vals.append(IVI->idx_begin(), IVI->idx_end());
2575 break;
2576 }
2577 case Instruction::Select:
2578 Code = bitc::FUNC_CODE_INST_VSELECT;
2579 pushValueAndType(I.getOperand(1), InstID, Vals);
2580 pushValue(I.getOperand(2), InstID, Vals);
2581 pushValueAndType(I.getOperand(0), InstID, Vals);
2582 break;
2583 case Instruction::ExtractElement:
2584 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2585 pushValueAndType(I.getOperand(0), InstID, Vals);
2586 pushValueAndType(I.getOperand(1), InstID, Vals);
2587 break;
2588 case Instruction::InsertElement:
2589 Code = bitc::FUNC_CODE_INST_INSERTELT;
2590 pushValueAndType(I.getOperand(0), InstID, Vals);
2591 pushValue(I.getOperand(1), InstID, Vals);
2592 pushValueAndType(I.getOperand(2), InstID, Vals);
2593 break;
2594 case Instruction::ShuffleVector:
2595 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2596 pushValueAndType(I.getOperand(0), InstID, Vals);
2597 pushValue(I.getOperand(1), InstID, Vals);
2598 pushValue(I.getOperand(2), InstID, Vals);
2599 break;
2600 case Instruction::ICmp:
2601 case Instruction::FCmp: {
2602 // compare returning Int1Ty or vector of Int1Ty
2603 Code = bitc::FUNC_CODE_INST_CMP2;
2604 pushValueAndType(I.getOperand(0), InstID, Vals);
2605 pushValue(I.getOperand(1), InstID, Vals);
2606 Vals.push_back(cast<CmpInst>(I).getPredicate());
2607 uint64_t Flags = getOptimizationFlags(&I);
2608 if (Flags != 0)
2609 Vals.push_back(Flags);
2610 break;
2611 }
2612
2613 case Instruction::Ret:
2614 {
2615 Code = bitc::FUNC_CODE_INST_RET;
2616 unsigned NumOperands = I.getNumOperands();
2617 if (NumOperands == 0)
2618 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2619 else if (NumOperands == 1) {
2620 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2621 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2622 } else {
2623 for (unsigned i = 0, e = NumOperands; i != e; ++i)
2624 pushValueAndType(I.getOperand(i), InstID, Vals);
2625 }
2626 }
2627 break;
2628 case Instruction::Br:
2629 {
2630 Code = bitc::FUNC_CODE_INST_BR;
2631 const BranchInst &II = cast<BranchInst>(I);
2632 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2633 if (II.isConditional()) {
2634 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2635 pushValue(II.getCondition(), InstID, Vals);
2636 }
2637 }
2638 break;
2639 case Instruction::Switch:
2640 {
2641 Code = bitc::FUNC_CODE_INST_SWITCH;
2642 const SwitchInst &SI = cast<SwitchInst>(I);
2643 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2644 pushValue(SI.getCondition(), InstID, Vals);
2645 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2646 for (auto Case : SI.cases()) {
2647 Vals.push_back(VE.getValueID(Case.getCaseValue()));
2648 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2649 }
2650 }
2651 break;
2652 case Instruction::IndirectBr:
2653 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2654 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2655 // Encode the address operand as relative, but not the basic blocks.
2656 pushValue(I.getOperand(0), InstID, Vals);
2657 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2658 Vals.push_back(VE.getValueID(I.getOperand(i)));
2659 break;
2660
2661 case Instruction::Invoke: {
2662 const InvokeInst *II = cast<InvokeInst>(&I);
2663 const Value *Callee = II->getCalledValue();
2664 FunctionType *FTy = II->getFunctionType();
2665
2666 if (II->hasOperandBundles())
2667 writeOperandBundles(II, InstID);
2668
2669 Code = bitc::FUNC_CODE_INST_INVOKE;
2670
2671 Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2672 Vals.push_back(II->getCallingConv() | 1 << 13);
2673 Vals.push_back(VE.getValueID(II->getNormalDest()));
2674 Vals.push_back(VE.getValueID(II->getUnwindDest()));
2675 Vals.push_back(VE.getTypeID(FTy));
2676 pushValueAndType(Callee, InstID, Vals);
2677
2678 // Emit value #'s for the fixed parameters.
2679 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2680 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2681
2682 // Emit type/value pairs for varargs params.
2683 if (FTy->isVarArg()) {
2684 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2685 i != e; ++i)
2686 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2687 }
2688 break;
2689 }
2690 case Instruction::Resume:
2691 Code = bitc::FUNC_CODE_INST_RESUME;
2692 pushValueAndType(I.getOperand(0), InstID, Vals);
2693 break;
2694 case Instruction::CleanupRet: {
2695 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2696 const auto &CRI = cast<CleanupReturnInst>(I);
2697 pushValue(CRI.getCleanupPad(), InstID, Vals);
2698 if (CRI.hasUnwindDest())
2699 Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2700 break;
2701 }
2702 case Instruction::CatchRet: {
2703 Code = bitc::FUNC_CODE_INST_CATCHRET;
2704 const auto &CRI = cast<CatchReturnInst>(I);
2705 pushValue(CRI.getCatchPad(), InstID, Vals);
2706 Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2707 break;
2708 }
2709 case Instruction::CleanupPad:
2710 case Instruction::CatchPad: {
2711 const auto &FuncletPad = cast<FuncletPadInst>(I);
2712 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2713 : bitc::FUNC_CODE_INST_CLEANUPPAD;
2714 pushValue(FuncletPad.getParentPad(), InstID, Vals);
2715
2716 unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2717 Vals.push_back(NumArgOperands);
2718 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2719 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2720 break;
2721 }
2722 case Instruction::CatchSwitch: {
2723 Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2724 const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2725
2726 pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2727
2728 unsigned NumHandlers = CatchSwitch.getNumHandlers();
2729 Vals.push_back(NumHandlers);
2730 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2731 Vals.push_back(VE.getValueID(CatchPadBB));
2732
2733 if (CatchSwitch.hasUnwindDest())
2734 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2735 break;
2736 }
2737 case Instruction::Unreachable:
2738 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2739 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2740 break;
2741
2742 case Instruction::PHI: {
2743 const PHINode &PN = cast<PHINode>(I);
2744 Code = bitc::FUNC_CODE_INST_PHI;
2745 // With the newer instruction encoding, forward references could give
2746 // negative valued IDs. This is most common for PHIs, so we use
2747 // signed VBRs.
2748 SmallVector<uint64_t, 128> Vals64;
2749 Vals64.push_back(VE.getTypeID(PN.getType()));
2750 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2751 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2752 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2753 }
2754 // Emit a Vals64 vector and exit.
2755 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2756 Vals64.clear();
2757 return;
2758 }
2759
2760 case Instruction::LandingPad: {
2761 const LandingPadInst &LP = cast<LandingPadInst>(I);
2762 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2763 Vals.push_back(VE.getTypeID(LP.getType()));
2764 Vals.push_back(LP.isCleanup());
2765 Vals.push_back(LP.getNumClauses());
2766 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2767 if (LP.isCatch(I))
2768 Vals.push_back(LandingPadInst::Catch);
2769 else
2770 Vals.push_back(LandingPadInst::Filter);
2771 pushValueAndType(LP.getClause(I), InstID, Vals);
2772 }
2773 break;
2774 }
2775
2776 case Instruction::Alloca: {
2777 Code = bitc::FUNC_CODE_INST_ALLOCA;
2778 const AllocaInst &AI = cast<AllocaInst>(I);
2779 Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2780 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2781 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2782 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2783 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2784 "not enough bits for maximum alignment");
2785 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2786 AlignRecord |= AI.isUsedWithInAlloca() << 5;
2787 AlignRecord |= 1 << 6;
2788 AlignRecord |= AI.isSwiftError() << 7;
2789 Vals.push_back(AlignRecord);
2790 break;
2791 }
2792
2793 case Instruction::Load:
2794 if (cast<LoadInst>(I).isAtomic()) {
2795 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2796 pushValueAndType(I.getOperand(0), InstID, Vals);
2797 } else {
2798 Code = bitc::FUNC_CODE_INST_LOAD;
2799 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2800 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2801 }
2802 Vals.push_back(VE.getTypeID(I.getType()));
2803 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2804 Vals.push_back(cast<LoadInst>(I).isVolatile());
2805 if (cast<LoadInst>(I).isAtomic()) {
2806 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2807 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2808 }
2809 break;
2810 case Instruction::Store:
2811 if (cast<StoreInst>(I).isAtomic())
2812 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2813 else
2814 Code = bitc::FUNC_CODE_INST_STORE;
2815 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2816 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2817 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2818 Vals.push_back(cast<StoreInst>(I).isVolatile());
2819 if (cast<StoreInst>(I).isAtomic()) {
2820 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2821 Vals.push_back(
2822 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2823 }
2824 break;
2825 case Instruction::AtomicCmpXchg:
2826 Code = bitc::FUNC_CODE_INST_CMPXCHG;
2827 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2828 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2829 pushValue(I.getOperand(2), InstID, Vals); // newval.
2830 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2831 Vals.push_back(
2832 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2833 Vals.push_back(
2834 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2835 Vals.push_back(
2836 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2837 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2838 break;
2839 case Instruction::AtomicRMW:
2840 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2841 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2842 pushValue(I.getOperand(1), InstID, Vals); // val.
2843 Vals.push_back(
2844 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2845 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2846 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2847 Vals.push_back(
2848 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2849 break;
2850 case Instruction::Fence:
2851 Code = bitc::FUNC_CODE_INST_FENCE;
2852 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2853 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2854 break;
2855 case Instruction::Call: {
2856 const CallInst &CI = cast<CallInst>(I);
2857 FunctionType *FTy = CI.getFunctionType();
2858
2859 if (CI.hasOperandBundles())
2860 writeOperandBundles(&CI, InstID);
2861
2862 Code = bitc::FUNC_CODE_INST_CALL;
2863
2864 Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2865
2866 unsigned Flags = getOptimizationFlags(&I);
2867 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2868 unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2869 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2870 1 << bitc::CALL_EXPLICIT_TYPE |
2871 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2872 unsigned(Flags != 0) << bitc::CALL_FMF);
2873 if (Flags != 0)
2874 Vals.push_back(Flags);
2875
2876 Vals.push_back(VE.getTypeID(FTy));
2877 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2878
2879 // Emit value #'s for the fixed parameters.
2880 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2881 // Check for labels (can happen with asm labels).
2882 if (FTy->getParamType(i)->isLabelTy())
2883 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2884 else
2885 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2886 }
2887
2888 // Emit type/value pairs for varargs params.
2889 if (FTy->isVarArg()) {
2890 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2891 i != e; ++i)
2892 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2893 }
2894 break;
2895 }
2896 case Instruction::VAArg:
2897 Code = bitc::FUNC_CODE_INST_VAARG;
2898 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
2899 pushValue(I.getOperand(0), InstID, Vals); // valist.
2900 Vals.push_back(VE.getTypeID(I.getType())); // restype.
2901 break;
2902 }
2903
2904 Stream.EmitRecord(Code, Vals, AbbrevToUse);
2905 Vals.clear();
2906 }
2907
2908 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2909 /// to allow clients to efficiently find the function body.
writeGlobalValueSymbolTable(DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)2910 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2911 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2912 // Get the offset of the VST we are writing, and backpatch it into
2913 // the VST forward declaration record.
2914 uint64_t VSTOffset = Stream.GetCurrentBitNo();
2915 // The BitcodeStartBit was the stream offset of the identification block.
2916 VSTOffset -= bitcodeStartBit();
2917 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2918 // Note that we add 1 here because the offset is relative to one word
2919 // before the start of the identification block, which was historically
2920 // always the start of the regular bitcode header.
2921 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2922
2923 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2924
2925 auto Abbv = std::make_shared<BitCodeAbbrev>();
2926 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2929 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2930
2931 for (const Function &F : M) {
2932 uint64_t Record[2];
2933
2934 if (F.isDeclaration())
2935 continue;
2936
2937 Record[0] = VE.getValueID(&F);
2938
2939 // Save the word offset of the function (from the start of the
2940 // actual bitcode written to the stream).
2941 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
2942 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2943 // Note that we add 1 here because the offset is relative to one word
2944 // before the start of the identification block, which was historically
2945 // always the start of the regular bitcode header.
2946 Record[1] = BitcodeIndex / 32 + 1;
2947
2948 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
2949 }
2950
2951 Stream.ExitBlock();
2952 }
2953
2954 /// Emit names for arguments, instructions and basic blocks in a function.
writeFunctionLevelValueSymbolTable(const ValueSymbolTable & VST)2955 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
2956 const ValueSymbolTable &VST) {
2957 if (VST.empty())
2958 return;
2959
2960 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2961
2962 // FIXME: Set up the abbrev, we know how many values there are!
2963 // FIXME: We know if the type names can use 7-bit ascii.
2964 SmallVector<uint64_t, 64> NameVals;
2965
2966 for (const ValueName &Name : VST) {
2967 // Figure out the encoding to use for the name.
2968 StringEncoding Bits = getStringEncoding(Name.getKey());
2969
2970 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2971 NameVals.push_back(VE.getValueID(Name.getValue()));
2972
2973 // VST_CODE_ENTRY: [valueid, namechar x N]
2974 // VST_CODE_BBENTRY: [bbid, namechar x N]
2975 unsigned Code;
2976 if (isa<BasicBlock>(Name.getValue())) {
2977 Code = bitc::VST_CODE_BBENTRY;
2978 if (Bits == SE_Char6)
2979 AbbrevToUse = VST_BBENTRY_6_ABBREV;
2980 } else {
2981 Code = bitc::VST_CODE_ENTRY;
2982 if (Bits == SE_Char6)
2983 AbbrevToUse = VST_ENTRY_6_ABBREV;
2984 else if (Bits == SE_Fixed7)
2985 AbbrevToUse = VST_ENTRY_7_ABBREV;
2986 }
2987
2988 for (const auto P : Name.getKey())
2989 NameVals.push_back((unsigned char)P);
2990
2991 // Emit the finished record.
2992 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2993 NameVals.clear();
2994 }
2995
2996 Stream.ExitBlock();
2997 }
2998
writeUseList(UseListOrder && Order)2999 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3000 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3001 unsigned Code;
3002 if (isa<BasicBlock>(Order.V))
3003 Code = bitc::USELIST_CODE_BB;
3004 else
3005 Code = bitc::USELIST_CODE_DEFAULT;
3006
3007 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3008 Record.push_back(VE.getValueID(Order.V));
3009 Stream.EmitRecord(Code, Record);
3010 }
3011
writeUseListBlock(const Function * F)3012 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3013 assert(VE.shouldPreserveUseListOrder() &&
3014 "Expected to be preserving use-list order");
3015
3016 auto hasMore = [&]() {
3017 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3018 };
3019 if (!hasMore())
3020 // Nothing to do.
3021 return;
3022
3023 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3024 while (hasMore()) {
3025 writeUseList(std::move(VE.UseListOrders.back()));
3026 VE.UseListOrders.pop_back();
3027 }
3028 Stream.ExitBlock();
3029 }
3030
3031 /// Emit a function body to the module stream.
writeFunction(const Function & F,DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)3032 void ModuleBitcodeWriter::writeFunction(
3033 const Function &F,
3034 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3035 // Save the bitcode index of the start of this function block for recording
3036 // in the VST.
3037 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3038
3039 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3040 VE.incorporateFunction(F);
3041
3042 SmallVector<unsigned, 64> Vals;
3043
3044 // Emit the number of basic blocks, so the reader can create them ahead of
3045 // time.
3046 Vals.push_back(VE.getBasicBlocks().size());
3047 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3048 Vals.clear();
3049
3050 // If there are function-local constants, emit them now.
3051 unsigned CstStart, CstEnd;
3052 VE.getFunctionConstantRange(CstStart, CstEnd);
3053 writeConstants(CstStart, CstEnd, false);
3054
3055 // If there is function-local metadata, emit it now.
3056 writeFunctionMetadata(F);
3057
3058 // Keep a running idea of what the instruction ID is.
3059 unsigned InstID = CstEnd;
3060
3061 bool NeedsMetadataAttachment = F.hasMetadata();
3062
3063 DILocation *LastDL = nullptr;
3064 // Finally, emit all the instructions, in order.
3065 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3066 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3067 I != E; ++I) {
3068 writeInstruction(*I, InstID, Vals);
3069
3070 if (!I->getType()->isVoidTy())
3071 ++InstID;
3072
3073 // If the instruction has metadata, write a metadata attachment later.
3074 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3075
3076 // If the instruction has a debug location, emit it.
3077 DILocation *DL = I->getDebugLoc();
3078 if (!DL)
3079 continue;
3080
3081 if (DL == LastDL) {
3082 // Just repeat the same debug loc as last time.
3083 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3084 continue;
3085 }
3086
3087 Vals.push_back(DL->getLine());
3088 Vals.push_back(DL->getColumn());
3089 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3090 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3091 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3092 Vals.clear();
3093
3094 LastDL = DL;
3095 }
3096
3097 // Emit names for all the instructions etc.
3098 if (auto *Symtab = F.getValueSymbolTable())
3099 writeFunctionLevelValueSymbolTable(*Symtab);
3100
3101 if (NeedsMetadataAttachment)
3102 writeFunctionMetadataAttachment(F);
3103 if (VE.shouldPreserveUseListOrder())
3104 writeUseListBlock(&F);
3105 VE.purgeFunction();
3106 Stream.ExitBlock();
3107 }
3108
3109 // Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo()3110 void ModuleBitcodeWriter::writeBlockInfo() {
3111 // We only want to emit block info records for blocks that have multiple
3112 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3113 // Other blocks can define their abbrevs inline.
3114 Stream.EnterBlockInfoBlock();
3115
3116 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3117 auto Abbv = std::make_shared<BitCodeAbbrev>();
3118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3122 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3123 VST_ENTRY_8_ABBREV)
3124 llvm_unreachable("Unexpected abbrev ordering!");
3125 }
3126
3127 { // 7-bit fixed width VST_CODE_ENTRY strings.
3128 auto Abbv = std::make_shared<BitCodeAbbrev>();
3129 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3133 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3134 VST_ENTRY_7_ABBREV)
3135 llvm_unreachable("Unexpected abbrev ordering!");
3136 }
3137 { // 6-bit char6 VST_CODE_ENTRY strings.
3138 auto Abbv = std::make_shared<BitCodeAbbrev>();
3139 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3143 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3144 VST_ENTRY_6_ABBREV)
3145 llvm_unreachable("Unexpected abbrev ordering!");
3146 }
3147 { // 6-bit char6 VST_CODE_BBENTRY strings.
3148 auto Abbv = std::make_shared<BitCodeAbbrev>();
3149 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3153 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3154 VST_BBENTRY_6_ABBREV)
3155 llvm_unreachable("Unexpected abbrev ordering!");
3156 }
3157
3158 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3159 auto Abbv = std::make_shared<BitCodeAbbrev>();
3160 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3162 VE.computeBitsRequiredForTypeIndicies()));
3163 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3164 CONSTANTS_SETTYPE_ABBREV)
3165 llvm_unreachable("Unexpected abbrev ordering!");
3166 }
3167
3168 { // INTEGER abbrev for CONSTANTS_BLOCK.
3169 auto Abbv = std::make_shared<BitCodeAbbrev>();
3170 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3172 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3173 CONSTANTS_INTEGER_ABBREV)
3174 llvm_unreachable("Unexpected abbrev ordering!");
3175 }
3176
3177 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3178 auto Abbv = std::make_shared<BitCodeAbbrev>();
3179 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3182 VE.computeBitsRequiredForTypeIndicies()));
3183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3184
3185 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3186 CONSTANTS_CE_CAST_Abbrev)
3187 llvm_unreachable("Unexpected abbrev ordering!");
3188 }
3189 { // NULL abbrev for CONSTANTS_BLOCK.
3190 auto Abbv = std::make_shared<BitCodeAbbrev>();
3191 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3192 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3193 CONSTANTS_NULL_Abbrev)
3194 llvm_unreachable("Unexpected abbrev ordering!");
3195 }
3196
3197 // FIXME: This should only use space for first class types!
3198
3199 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3200 auto Abbv = std::make_shared<BitCodeAbbrev>();
3201 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3204 VE.computeBitsRequiredForTypeIndicies()));
3205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3207 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3208 FUNCTION_INST_LOAD_ABBREV)
3209 llvm_unreachable("Unexpected abbrev ordering!");
3210 }
3211 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3212 auto Abbv = std::make_shared<BitCodeAbbrev>();
3213 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3217 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3218 FUNCTION_INST_BINOP_ABBREV)
3219 llvm_unreachable("Unexpected abbrev ordering!");
3220 }
3221 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3222 auto Abbv = std::make_shared<BitCodeAbbrev>();
3223 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3228 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3229 FUNCTION_INST_BINOP_FLAGS_ABBREV)
3230 llvm_unreachable("Unexpected abbrev ordering!");
3231 }
3232 { // INST_CAST abbrev for FUNCTION_BLOCK.
3233 auto Abbv = std::make_shared<BitCodeAbbrev>();
3234 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3237 VE.computeBitsRequiredForTypeIndicies()));
3238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3239 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3240 FUNCTION_INST_CAST_ABBREV)
3241 llvm_unreachable("Unexpected abbrev ordering!");
3242 }
3243
3244 { // INST_RET abbrev for FUNCTION_BLOCK.
3245 auto Abbv = std::make_shared<BitCodeAbbrev>();
3246 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3247 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3248 FUNCTION_INST_RET_VOID_ABBREV)
3249 llvm_unreachable("Unexpected abbrev ordering!");
3250 }
3251 { // INST_RET abbrev for FUNCTION_BLOCK.
3252 auto Abbv = std::make_shared<BitCodeAbbrev>();
3253 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3255 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3256 FUNCTION_INST_RET_VAL_ABBREV)
3257 llvm_unreachable("Unexpected abbrev ordering!");
3258 }
3259 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3260 auto Abbv = std::make_shared<BitCodeAbbrev>();
3261 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3262 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3263 FUNCTION_INST_UNREACHABLE_ABBREV)
3264 llvm_unreachable("Unexpected abbrev ordering!");
3265 }
3266 {
3267 auto Abbv = std::make_shared<BitCodeAbbrev>();
3268 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3271 Log2_32_Ceil(VE.getTypes().size() + 1)));
3272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3274 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3275 FUNCTION_INST_GEP_ABBREV)
3276 llvm_unreachable("Unexpected abbrev ordering!");
3277 }
3278
3279 Stream.ExitBlock();
3280 }
3281
3282 /// Write the module path strings, currently only used when generating
3283 /// a combined index file.
writeModStrings()3284 void IndexBitcodeWriter::writeModStrings() {
3285 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3286
3287 // TODO: See which abbrev sizes we actually need to emit
3288
3289 // 8-bit fixed-width MST_ENTRY strings.
3290 auto Abbv = std::make_shared<BitCodeAbbrev>();
3291 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3295 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3296
3297 // 7-bit fixed width MST_ENTRY strings.
3298 Abbv = std::make_shared<BitCodeAbbrev>();
3299 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3303 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3304
3305 // 6-bit char6 MST_ENTRY strings.
3306 Abbv = std::make_shared<BitCodeAbbrev>();
3307 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3311 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3312
3313 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3314 Abbv = std::make_shared<BitCodeAbbrev>();
3315 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3321 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3322
3323 SmallVector<unsigned, 64> Vals;
3324 forEachModule(
3325 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3326 StringRef Key = MPSE.getKey();
3327 const auto &Value = MPSE.getValue();
3328 StringEncoding Bits = getStringEncoding(Key);
3329 unsigned AbbrevToUse = Abbrev8Bit;
3330 if (Bits == SE_Char6)
3331 AbbrevToUse = Abbrev6Bit;
3332 else if (Bits == SE_Fixed7)
3333 AbbrevToUse = Abbrev7Bit;
3334
3335 Vals.push_back(Value.first);
3336 Vals.append(Key.begin(), Key.end());
3337
3338 // Emit the finished record.
3339 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3340
3341 // Emit an optional hash for the module now
3342 const auto &Hash = Value.second;
3343 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3344 Vals.assign(Hash.begin(), Hash.end());
3345 // Emit the hash record.
3346 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3347 }
3348
3349 Vals.clear();
3350 });
3351 Stream.ExitBlock();
3352 }
3353
3354 /// Write the function type metadata related records that need to appear before
3355 /// a function summary entry (whether per-module or combined).
writeFunctionTypeMetadataRecords(BitstreamWriter & Stream,FunctionSummary * FS,std::set<GlobalValue::GUID> & ReferencedTypeIds)3356 static void writeFunctionTypeMetadataRecords(
3357 BitstreamWriter &Stream, FunctionSummary *FS,
3358 std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3359 if (!FS->type_tests().empty()) {
3360 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3361 for (auto &TT : FS->type_tests())
3362 ReferencedTypeIds.insert(TT);
3363 }
3364
3365 SmallVector<uint64_t, 64> Record;
3366
3367 auto WriteVFuncIdVec = [&](uint64_t Ty,
3368 ArrayRef<FunctionSummary::VFuncId> VFs) {
3369 if (VFs.empty())
3370 return;
3371 Record.clear();
3372 for (auto &VF : VFs) {
3373 Record.push_back(VF.GUID);
3374 Record.push_back(VF.Offset);
3375 ReferencedTypeIds.insert(VF.GUID);
3376 }
3377 Stream.EmitRecord(Ty, Record);
3378 };
3379
3380 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3381 FS->type_test_assume_vcalls());
3382 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3383 FS->type_checked_load_vcalls());
3384
3385 auto WriteConstVCallVec = [&](uint64_t Ty,
3386 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3387 for (auto &VC : VCs) {
3388 Record.clear();
3389 Record.push_back(VC.VFunc.GUID);
3390 ReferencedTypeIds.insert(VC.VFunc.GUID);
3391 Record.push_back(VC.VFunc.Offset);
3392 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3393 Stream.EmitRecord(Ty, Record);
3394 }
3395 };
3396
3397 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3398 FS->type_test_assume_const_vcalls());
3399 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3400 FS->type_checked_load_const_vcalls());
3401 }
3402
writeWholeProgramDevirtResolutionByArg(SmallVector<uint64_t,64> & NameVals,const std::vector<uint64_t> & args,const WholeProgramDevirtResolution::ByArg & ByArg)3403 static void writeWholeProgramDevirtResolutionByArg(
3404 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3405 const WholeProgramDevirtResolution::ByArg &ByArg) {
3406 NameVals.push_back(args.size());
3407 NameVals.insert(NameVals.end(), args.begin(), args.end());
3408
3409 NameVals.push_back(ByArg.TheKind);
3410 NameVals.push_back(ByArg.Info);
3411 NameVals.push_back(ByArg.Byte);
3412 NameVals.push_back(ByArg.Bit);
3413 }
3414
writeWholeProgramDevirtResolution(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,uint64_t Id,const WholeProgramDevirtResolution & Wpd)3415 static void writeWholeProgramDevirtResolution(
3416 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3417 uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3418 NameVals.push_back(Id);
3419
3420 NameVals.push_back(Wpd.TheKind);
3421 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3422 NameVals.push_back(Wpd.SingleImplName.size());
3423
3424 NameVals.push_back(Wpd.ResByArg.size());
3425 for (auto &A : Wpd.ResByArg)
3426 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3427 }
3428
writeTypeIdSummaryRecord(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,const std::string & Id,const TypeIdSummary & Summary)3429 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3430 StringTableBuilder &StrtabBuilder,
3431 const std::string &Id,
3432 const TypeIdSummary &Summary) {
3433 NameVals.push_back(StrtabBuilder.add(Id));
3434 NameVals.push_back(Id.size());
3435
3436 NameVals.push_back(Summary.TTRes.TheKind);
3437 NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3438 NameVals.push_back(Summary.TTRes.AlignLog2);
3439 NameVals.push_back(Summary.TTRes.SizeM1);
3440 NameVals.push_back(Summary.TTRes.BitMask);
3441 NameVals.push_back(Summary.TTRes.InlineBits);
3442
3443 for (auto &W : Summary.WPDRes)
3444 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3445 W.second);
3446 }
3447
3448 // Helper to emit a single function summary record.
writePerModuleFunctionSummaryRecord(SmallVector<uint64_t,64> & NameVals,GlobalValueSummary * Summary,unsigned ValueID,unsigned FSCallsAbbrev,unsigned FSCallsProfileAbbrev,const Function & F)3449 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3450 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3451 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3452 const Function &F) {
3453 NameVals.push_back(ValueID);
3454
3455 FunctionSummary *FS = cast<FunctionSummary>(Summary);
3456 std::set<GlobalValue::GUID> ReferencedTypeIds;
3457 writeFunctionTypeMetadataRecords(Stream, FS, ReferencedTypeIds);
3458
3459 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3460 NameVals.push_back(FS->instCount());
3461 NameVals.push_back(getEncodedFFlags(FS->fflags()));
3462 NameVals.push_back(FS->refs().size());
3463
3464 for (auto &RI : FS->refs())
3465 NameVals.push_back(VE.getValueID(RI.getValue()));
3466
3467 bool HasProfileData =
3468 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3469 for (auto &ECI : FS->calls()) {
3470 NameVals.push_back(getValueId(ECI.first));
3471 if (HasProfileData)
3472 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3473 else if (WriteRelBFToSummary)
3474 NameVals.push_back(ECI.second.RelBlockFreq);
3475 }
3476
3477 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3478 unsigned Code =
3479 (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3480 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3481 : bitc::FS_PERMODULE));
3482
3483 // Emit the finished record.
3484 Stream.EmitRecord(Code, NameVals, FSAbbrev);
3485 NameVals.clear();
3486 }
3487
3488 // Collect the global value references in the given variable's initializer,
3489 // and emit them in a summary record.
writeModuleLevelReferences(const GlobalVariable & V,SmallVector<uint64_t,64> & NameVals,unsigned FSModRefsAbbrev)3490 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3491 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3492 unsigned FSModRefsAbbrev) {
3493 auto VI = Index->getValueInfo(V.getGUID());
3494 if (!VI || VI.getSummaryList().empty()) {
3495 // Only declarations should not have a summary (a declaration might however
3496 // have a summary if the def was in module level asm).
3497 assert(V.isDeclaration());
3498 return;
3499 }
3500 auto *Summary = VI.getSummaryList()[0].get();
3501 NameVals.push_back(VE.getValueID(&V));
3502 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3503 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3504
3505 unsigned SizeBeforeRefs = NameVals.size();
3506 for (auto &RI : VS->refs())
3507 NameVals.push_back(VE.getValueID(RI.getValue()));
3508 // Sort the refs for determinism output, the vector returned by FS->refs() has
3509 // been initialized from a DenseSet.
3510 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3511
3512 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3513 FSModRefsAbbrev);
3514 NameVals.clear();
3515 }
3516
3517 // Current version for the summary.
3518 // This is bumped whenever we introduce changes in the way some record are
3519 // interpreted, like flags for instance.
3520 static const uint64_t INDEX_VERSION = 4;
3521
3522 /// Emit the per-module summary section alongside the rest of
3523 /// the module's bitcode.
writePerModuleGlobalValueSummary()3524 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3525 // By default we compile with ThinLTO if the module has a summary, but the
3526 // client can request full LTO with a module flag.
3527 bool IsThinLTO = true;
3528 if (auto *MD =
3529 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3530 IsThinLTO = MD->getZExtValue();
3531 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3532 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3533 4);
3534
3535 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3536
3537 if (Index->begin() == Index->end()) {
3538 Stream.ExitBlock();
3539 return;
3540 }
3541
3542 for (const auto &GVI : valueIds()) {
3543 Stream.EmitRecord(bitc::FS_VALUE_GUID,
3544 ArrayRef<uint64_t>{GVI.second, GVI.first});
3545 }
3546
3547 // Abbrev for FS_PERMODULE_PROFILE.
3548 auto Abbv = std::make_shared<BitCodeAbbrev>();
3549 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3555 // numrefs x valueid, n x (valueid, hotness)
3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3558 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3559
3560 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3561 Abbv = std::make_shared<BitCodeAbbrev>();
3562 if (WriteRelBFToSummary)
3563 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3564 else
3565 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3571 // numrefs x valueid, n x (valueid [, rel_block_freq])
3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3574 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3575
3576 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3577 Abbv = std::make_shared<BitCodeAbbrev>();
3578 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3583 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3584
3585 // Abbrev for FS_ALIAS.
3586 Abbv = std::make_shared<BitCodeAbbrev>();
3587 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3591 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3592
3593 SmallVector<uint64_t, 64> NameVals;
3594 // Iterate over the list of functions instead of the Index to
3595 // ensure the ordering is stable.
3596 for (const Function &F : M) {
3597 // Summary emission does not support anonymous functions, they have to
3598 // renamed using the anonymous function renaming pass.
3599 if (!F.hasName())
3600 report_fatal_error("Unexpected anonymous function when writing summary");
3601
3602 ValueInfo VI = Index->getValueInfo(F.getGUID());
3603 if (!VI || VI.getSummaryList().empty()) {
3604 // Only declarations should not have a summary (a declaration might
3605 // however have a summary if the def was in module level asm).
3606 assert(F.isDeclaration());
3607 continue;
3608 }
3609 auto *Summary = VI.getSummaryList()[0].get();
3610 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3611 FSCallsAbbrev, FSCallsProfileAbbrev, F);
3612 }
3613
3614 // Capture references from GlobalVariable initializers, which are outside
3615 // of a function scope.
3616 for (const GlobalVariable &G : M.globals())
3617 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3618
3619 for (const GlobalAlias &A : M.aliases()) {
3620 auto *Aliasee = A.getBaseObject();
3621 if (!Aliasee->hasName())
3622 // Nameless function don't have an entry in the summary, skip it.
3623 continue;
3624 auto AliasId = VE.getValueID(&A);
3625 auto AliaseeId = VE.getValueID(Aliasee);
3626 NameVals.push_back(AliasId);
3627 auto *Summary = Index->getGlobalValueSummary(A);
3628 AliasSummary *AS = cast<AliasSummary>(Summary);
3629 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3630 NameVals.push_back(AliaseeId);
3631 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3632 NameVals.clear();
3633 }
3634
3635 Stream.ExitBlock();
3636 }
3637
3638 /// Emit the combined summary section into the combined index file.
writeCombinedGlobalValueSummary()3639 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3640 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3641 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3642
3643 // Write the index flags.
3644 uint64_t Flags = 0;
3645 if (Index.withGlobalValueDeadStripping())
3646 Flags |= 0x1;
3647 if (Index.skipModuleByDistributedBackend())
3648 Flags |= 0x2;
3649 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3650
3651 for (const auto &GVI : valueIds()) {
3652 Stream.EmitRecord(bitc::FS_VALUE_GUID,
3653 ArrayRef<uint64_t>{GVI.second, GVI.first});
3654 }
3655
3656 // Abbrev for FS_COMBINED.
3657 auto Abbv = std::make_shared<BitCodeAbbrev>();
3658 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3665 // numrefs x valueid, n x (valueid)
3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3668 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3669
3670 // Abbrev for FS_COMBINED_PROFILE.
3671 Abbv = std::make_shared<BitCodeAbbrev>();
3672 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3679 // numrefs x valueid, n x (valueid, hotness)
3680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3682 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3683
3684 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3685 Abbv = std::make_shared<BitCodeAbbrev>();
3686 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3692 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3693
3694 // Abbrev for FS_COMBINED_ALIAS.
3695 Abbv = std::make_shared<BitCodeAbbrev>();
3696 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3701 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3702
3703 // The aliases are emitted as a post-pass, and will point to the value
3704 // id of the aliasee. Save them in a vector for post-processing.
3705 SmallVector<AliasSummary *, 64> Aliases;
3706
3707 // Save the value id for each summary for alias emission.
3708 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3709
3710 SmallVector<uint64_t, 64> NameVals;
3711
3712 // Set that will be populated during call to writeFunctionTypeMetadataRecords
3713 // with the type ids referenced by this index file.
3714 std::set<GlobalValue::GUID> ReferencedTypeIds;
3715
3716 // For local linkage, we also emit the original name separately
3717 // immediately after the record.
3718 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3719 if (!GlobalValue::isLocalLinkage(S.linkage()))
3720 return;
3721 NameVals.push_back(S.getOriginalName());
3722 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3723 NameVals.clear();
3724 };
3725
3726 forEachSummary([&](GVInfo I, bool IsAliasee) {
3727 GlobalValueSummary *S = I.second;
3728 assert(S);
3729
3730 auto ValueId = getValueId(I.first);
3731 assert(ValueId);
3732 SummaryToValueIdMap[S] = *ValueId;
3733
3734 // If this is invoked for an aliasee, we want to record the above
3735 // mapping, but then not emit a summary entry (if the aliasee is
3736 // to be imported, we will invoke this separately with IsAliasee=false).
3737 if (IsAliasee)
3738 return;
3739
3740 if (auto *AS = dyn_cast<AliasSummary>(S)) {
3741 // Will process aliases as a post-pass because the reader wants all
3742 // global to be loaded first.
3743 Aliases.push_back(AS);
3744 return;
3745 }
3746
3747 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3748 NameVals.push_back(*ValueId);
3749 NameVals.push_back(Index.getModuleId(VS->modulePath()));
3750 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3751 for (auto &RI : VS->refs()) {
3752 auto RefValueId = getValueId(RI.getGUID());
3753 if (!RefValueId)
3754 continue;
3755 NameVals.push_back(*RefValueId);
3756 }
3757
3758 // Emit the finished record.
3759 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3760 FSModRefsAbbrev);
3761 NameVals.clear();
3762 MaybeEmitOriginalName(*S);
3763 return;
3764 }
3765
3766 auto *FS = cast<FunctionSummary>(S);
3767 writeFunctionTypeMetadataRecords(Stream, FS, ReferencedTypeIds);
3768
3769 NameVals.push_back(*ValueId);
3770 NameVals.push_back(Index.getModuleId(FS->modulePath()));
3771 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3772 NameVals.push_back(FS->instCount());
3773 NameVals.push_back(getEncodedFFlags(FS->fflags()));
3774 // Fill in below
3775 NameVals.push_back(0);
3776
3777 unsigned Count = 0;
3778 for (auto &RI : FS->refs()) {
3779 auto RefValueId = getValueId(RI.getGUID());
3780 if (!RefValueId)
3781 continue;
3782 NameVals.push_back(*RefValueId);
3783 Count++;
3784 }
3785 NameVals[5] = Count;
3786
3787 bool HasProfileData = false;
3788 for (auto &EI : FS->calls()) {
3789 HasProfileData |=
3790 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
3791 if (HasProfileData)
3792 break;
3793 }
3794
3795 for (auto &EI : FS->calls()) {
3796 // If this GUID doesn't have a value id, it doesn't have a function
3797 // summary and we don't need to record any calls to it.
3798 GlobalValue::GUID GUID = EI.first.getGUID();
3799 auto CallValueId = getValueId(GUID);
3800 if (!CallValueId) {
3801 // For SamplePGO, the indirect call targets for local functions will
3802 // have its original name annotated in profile. We try to find the
3803 // corresponding PGOFuncName as the GUID.
3804 GUID = Index.getGUIDFromOriginalID(GUID);
3805 if (GUID == 0)
3806 continue;
3807 CallValueId = getValueId(GUID);
3808 if (!CallValueId)
3809 continue;
3810 // The mapping from OriginalId to GUID may return a GUID
3811 // that corresponds to a static variable. Filter it out here.
3812 // This can happen when
3813 // 1) There is a call to a library function which does not have
3814 // a CallValidId;
3815 // 2) There is a static variable with the OriginalGUID identical
3816 // to the GUID of the library function in 1);
3817 // When this happens, the logic for SamplePGO kicks in and
3818 // the static variable in 2) will be found, which needs to be
3819 // filtered out.
3820 auto *GVSum = Index.getGlobalValueSummary(GUID, false);
3821 if (GVSum &&
3822 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
3823 continue;
3824 }
3825 NameVals.push_back(*CallValueId);
3826 if (HasProfileData)
3827 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3828 }
3829
3830 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3831 unsigned Code =
3832 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3833
3834 // Emit the finished record.
3835 Stream.EmitRecord(Code, NameVals, FSAbbrev);
3836 NameVals.clear();
3837 MaybeEmitOriginalName(*S);
3838 });
3839
3840 for (auto *AS : Aliases) {
3841 auto AliasValueId = SummaryToValueIdMap[AS];
3842 assert(AliasValueId);
3843 NameVals.push_back(AliasValueId);
3844 NameVals.push_back(Index.getModuleId(AS->modulePath()));
3845 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3846 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3847 assert(AliaseeValueId);
3848 NameVals.push_back(AliaseeValueId);
3849
3850 // Emit the finished record.
3851 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3852 NameVals.clear();
3853 MaybeEmitOriginalName(*AS);
3854 }
3855
3856 if (!Index.cfiFunctionDefs().empty()) {
3857 for (auto &S : Index.cfiFunctionDefs()) {
3858 NameVals.push_back(StrtabBuilder.add(S));
3859 NameVals.push_back(S.size());
3860 }
3861 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
3862 NameVals.clear();
3863 }
3864
3865 if (!Index.cfiFunctionDecls().empty()) {
3866 for (auto &S : Index.cfiFunctionDecls()) {
3867 NameVals.push_back(StrtabBuilder.add(S));
3868 NameVals.push_back(S.size());
3869 }
3870 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
3871 NameVals.clear();
3872 }
3873
3874 if (!Index.typeIds().empty()) {
3875 for (auto &S : Index.typeIds()) {
3876 // Skip if not referenced in any GV summary within this index file.
3877 if (!ReferencedTypeIds.count(GlobalValue::getGUID(S.first)))
3878 continue;
3879 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, S.first, S.second);
3880 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
3881 NameVals.clear();
3882 }
3883 }
3884
3885 Stream.ExitBlock();
3886 }
3887
3888 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3889 /// current llvm version, and a record for the epoch number.
writeIdentificationBlock(BitstreamWriter & Stream)3890 static void writeIdentificationBlock(BitstreamWriter &Stream) {
3891 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3892
3893 // Write the "user readable" string identifying the bitcode producer
3894 auto Abbv = std::make_shared<BitCodeAbbrev>();
3895 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3898 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3899 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
3900 "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3901
3902 // Write the epoch version
3903 Abbv = std::make_shared<BitCodeAbbrev>();
3904 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3906 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3907 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3908 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3909 Stream.ExitBlock();
3910 }
3911
writeModuleHash(size_t BlockStartPos)3912 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3913 // Emit the module's hash.
3914 // MODULE_CODE_HASH: [5*i32]
3915 if (GenerateHash) {
3916 uint32_t Vals[5];
3917 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3918 Buffer.size() - BlockStartPos));
3919 StringRef Hash = Hasher.result();
3920 for (int Pos = 0; Pos < 20; Pos += 4) {
3921 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
3922 }
3923
3924 // Emit the finished record.
3925 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3926
3927 if (ModHash)
3928 // Save the written hash value.
3929 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash));
3930 }
3931 }
3932
write()3933 void ModuleBitcodeWriter::write() {
3934 writeIdentificationBlock(Stream);
3935
3936 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3937 size_t BlockStartPos = Buffer.size();
3938
3939 writeModuleVersion();
3940
3941 // Emit blockinfo, which defines the standard abbreviations etc.
3942 writeBlockInfo();
3943
3944 // Emit information about attribute groups.
3945 writeAttributeGroupTable();
3946
3947 // Emit information about parameter attributes.
3948 writeAttributeTable();
3949
3950 // Emit information describing all of the types in the module.
3951 writeTypeTable();
3952
3953 writeComdats();
3954
3955 // Emit top-level description of module, including target triple, inline asm,
3956 // descriptors for global variables, and function prototype info.
3957 writeModuleInfo();
3958
3959 // Emit constants.
3960 writeModuleConstants();
3961
3962 // Emit metadata kind names.
3963 writeModuleMetadataKinds();
3964
3965 // Emit metadata.
3966 writeModuleMetadata();
3967
3968 // Emit module-level use-lists.
3969 if (VE.shouldPreserveUseListOrder())
3970 writeUseListBlock(nullptr);
3971
3972 writeOperandBundleTags();
3973 writeSyncScopeNames();
3974
3975 // Emit function bodies.
3976 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3977 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3978 if (!F->isDeclaration())
3979 writeFunction(*F, FunctionToBitcodeIndex);
3980
3981 // Need to write after the above call to WriteFunction which populates
3982 // the summary information in the index.
3983 if (Index)
3984 writePerModuleGlobalValueSummary();
3985
3986 writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
3987
3988 writeModuleHash(BlockStartPos);
3989
3990 Stream.ExitBlock();
3991 }
3992
writeInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)3993 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3994 uint32_t &Position) {
3995 support::endian::write32le(&Buffer[Position], Value);
3996 Position += 4;
3997 }
3998
3999 /// If generating a bc file on darwin, we have to emit a
4000 /// header and trailer to make it compatible with the system archiver. To do
4001 /// this we emit the following header, and then emit a trailer that pads the
4002 /// file out to be a multiple of 16 bytes.
4003 ///
4004 /// struct bc_header {
4005 /// uint32_t Magic; // 0x0B17C0DE
4006 /// uint32_t Version; // Version, currently always 0.
4007 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4008 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
4009 /// uint32_t CPUType; // CPU specifier.
4010 /// ... potentially more later ...
4011 /// };
emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)4012 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4013 const Triple &TT) {
4014 unsigned CPUType = ~0U;
4015
4016 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4017 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4018 // number from /usr/include/mach/machine.h. It is ok to reproduce the
4019 // specific constants here because they are implicitly part of the Darwin ABI.
4020 enum {
4021 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
4022 DARWIN_CPU_TYPE_X86 = 7,
4023 DARWIN_CPU_TYPE_ARM = 12,
4024 DARWIN_CPU_TYPE_POWERPC = 18
4025 };
4026
4027 Triple::ArchType Arch = TT.getArch();
4028 if (Arch == Triple::x86_64)
4029 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4030 else if (Arch == Triple::x86)
4031 CPUType = DARWIN_CPU_TYPE_X86;
4032 else if (Arch == Triple::ppc)
4033 CPUType = DARWIN_CPU_TYPE_POWERPC;
4034 else if (Arch == Triple::ppc64)
4035 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4036 else if (Arch == Triple::arm || Arch == Triple::thumb)
4037 CPUType = DARWIN_CPU_TYPE_ARM;
4038
4039 // Traditional Bitcode starts after header.
4040 assert(Buffer.size() >= BWH_HeaderSize &&
4041 "Expected header size to be reserved");
4042 unsigned BCOffset = BWH_HeaderSize;
4043 unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4044
4045 // Write the magic and version.
4046 unsigned Position = 0;
4047 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4048 writeInt32ToBuffer(0, Buffer, Position); // Version.
4049 writeInt32ToBuffer(BCOffset, Buffer, Position);
4050 writeInt32ToBuffer(BCSize, Buffer, Position);
4051 writeInt32ToBuffer(CPUType, Buffer, Position);
4052
4053 // If the file is not a multiple of 16 bytes, insert dummy padding.
4054 while (Buffer.size() & 15)
4055 Buffer.push_back(0);
4056 }
4057
4058 /// Helper to write the header common to all bitcode files.
writeBitcodeHeader(BitstreamWriter & Stream)4059 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4060 // Emit the file header.
4061 Stream.Emit((unsigned)'B', 8);
4062 Stream.Emit((unsigned)'C', 8);
4063 Stream.Emit(0x0, 4);
4064 Stream.Emit(0xC, 4);
4065 Stream.Emit(0xE, 4);
4066 Stream.Emit(0xD, 4);
4067 }
4068
BitcodeWriter(SmallVectorImpl<char> & Buffer)4069 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4070 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4071 writeBitcodeHeader(*Stream);
4072 }
4073
~BitcodeWriter()4074 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4075
writeBlob(unsigned Block,unsigned Record,StringRef Blob)4076 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4077 Stream->EnterSubblock(Block, 3);
4078
4079 auto Abbv = std::make_shared<BitCodeAbbrev>();
4080 Abbv->Add(BitCodeAbbrevOp(Record));
4081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4082 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4083
4084 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4085
4086 Stream->ExitBlock();
4087 }
4088
writeSymtab()4089 void BitcodeWriter::writeSymtab() {
4090 assert(!WroteStrtab && !WroteSymtab);
4091
4092 // If any module has module-level inline asm, we will require a registered asm
4093 // parser for the target so that we can create an accurate symbol table for
4094 // the module.
4095 for (Module *M : Mods) {
4096 if (M->getModuleInlineAsm().empty())
4097 continue;
4098
4099 std::string Err;
4100 const Triple TT(M->getTargetTriple());
4101 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4102 if (!T || !T->hasMCAsmParser())
4103 return;
4104 }
4105
4106 WroteSymtab = true;
4107 SmallVector<char, 0> Symtab;
4108 // The irsymtab::build function may be unable to create a symbol table if the
4109 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4110 // table is not required for correctness, but we still want to be able to
4111 // write malformed modules to bitcode files, so swallow the error.
4112 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4113 consumeError(std::move(E));
4114 return;
4115 }
4116
4117 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4118 {Symtab.data(), Symtab.size()});
4119 }
4120
writeStrtab()4121 void BitcodeWriter::writeStrtab() {
4122 assert(!WroteStrtab);
4123
4124 std::vector<char> Strtab;
4125 StrtabBuilder.finalizeInOrder();
4126 Strtab.resize(StrtabBuilder.getSize());
4127 StrtabBuilder.write((uint8_t *)Strtab.data());
4128
4129 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4130 {Strtab.data(), Strtab.size()});
4131
4132 WroteStrtab = true;
4133 }
4134
copyStrtab(StringRef Strtab)4135 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4136 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4137 WroteStrtab = true;
4138 }
4139
writeModule(const Module & M,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)4140 void BitcodeWriter::writeModule(const Module &M,
4141 bool ShouldPreserveUseListOrder,
4142 const ModuleSummaryIndex *Index,
4143 bool GenerateHash, ModuleHash *ModHash) {
4144 assert(!WroteStrtab);
4145
4146 // The Mods vector is used by irsymtab::build, which requires non-const
4147 // Modules in case it needs to materialize metadata. But the bitcode writer
4148 // requires that the module is materialized, so we can cast to non-const here,
4149 // after checking that it is in fact materialized.
4150 assert(M.isMaterialized());
4151 Mods.push_back(const_cast<Module *>(&M));
4152
4153 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4154 ShouldPreserveUseListOrder, Index,
4155 GenerateHash, ModHash);
4156 ModuleWriter.write();
4157 }
4158
writeIndex(const ModuleSummaryIndex * Index,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex)4159 void BitcodeWriter::writeIndex(
4160 const ModuleSummaryIndex *Index,
4161 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4162 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4163 ModuleToSummariesForIndex);
4164 IndexWriter.write();
4165 }
4166
4167 /// Write the specified module to the specified output stream.
WriteBitcodeToFile(const Module & M,raw_ostream & Out,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)4168 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4169 bool ShouldPreserveUseListOrder,
4170 const ModuleSummaryIndex *Index,
4171 bool GenerateHash, ModuleHash *ModHash) {
4172 SmallVector<char, 0> Buffer;
4173 Buffer.reserve(256*1024);
4174
4175 // If this is darwin or another generic macho target, reserve space for the
4176 // header.
4177 Triple TT(M.getTargetTriple());
4178 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4179 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4180
4181 BitcodeWriter Writer(Buffer);
4182 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4183 ModHash);
4184 Writer.writeSymtab();
4185 Writer.writeStrtab();
4186
4187 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4188 emitDarwinBCHeaderAndTrailer(Buffer, TT);
4189
4190 // Write the generated bitstream to "Out".
4191 Out.write((char*)&Buffer.front(), Buffer.size());
4192 }
4193
write()4194 void IndexBitcodeWriter::write() {
4195 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4196
4197 writeModuleVersion();
4198
4199 // Write the module paths in the combined index.
4200 writeModStrings();
4201
4202 // Write the summary combined index records.
4203 writeCombinedGlobalValueSummary();
4204
4205 Stream.ExitBlock();
4206 }
4207
4208 // Write the specified module summary index to the given raw output stream,
4209 // where it will be written in a new bitcode block. This is used when
4210 // writing the combined index file for ThinLTO. When writing a subset of the
4211 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
WriteIndexToFile(const ModuleSummaryIndex & Index,raw_ostream & Out,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex)4212 void llvm::WriteIndexToFile(
4213 const ModuleSummaryIndex &Index, raw_ostream &Out,
4214 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4215 SmallVector<char, 0> Buffer;
4216 Buffer.reserve(256 * 1024);
4217
4218 BitcodeWriter Writer(Buffer);
4219 Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4220 Writer.writeStrtab();
4221
4222 Out.write((char *)&Buffer.front(), Buffer.size());
4223 }
4224
4225 namespace {
4226
4227 /// Class to manage the bitcode writing for a thin link bitcode file.
4228 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4229 /// ModHash is for use in ThinLTO incremental build, generated while writing
4230 /// the module bitcode file.
4231 const ModuleHash *ModHash;
4232
4233 public:
ThinLinkBitcodeWriter(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4234 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4235 BitstreamWriter &Stream,
4236 const ModuleSummaryIndex &Index,
4237 const ModuleHash &ModHash)
4238 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4239 /*ShouldPreserveUseListOrder=*/false, &Index),
4240 ModHash(&ModHash) {}
4241
4242 void write();
4243
4244 private:
4245 void writeSimplifiedModuleInfo();
4246 };
4247
4248 } // end anonymous namespace
4249
4250 // This function writes a simpilified module info for thin link bitcode file.
4251 // It only contains the source file name along with the name(the offset and
4252 // size in strtab) and linkage for global values. For the global value info
4253 // entry, in order to keep linkage at offset 5, there are three zeros used
4254 // as padding.
writeSimplifiedModuleInfo()4255 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4256 SmallVector<unsigned, 64> Vals;
4257 // Emit the module's source file name.
4258 {
4259 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4260 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4261 if (Bits == SE_Char6)
4262 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4263 else if (Bits == SE_Fixed7)
4264 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4265
4266 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4267 auto Abbv = std::make_shared<BitCodeAbbrev>();
4268 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4270 Abbv->Add(AbbrevOpToUse);
4271 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4272
4273 for (const auto P : M.getSourceFileName())
4274 Vals.push_back((unsigned char)P);
4275
4276 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4277 Vals.clear();
4278 }
4279
4280 // Emit the global variable information.
4281 for (const GlobalVariable &GV : M.globals()) {
4282 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4283 Vals.push_back(StrtabBuilder.add(GV.getName()));
4284 Vals.push_back(GV.getName().size());
4285 Vals.push_back(0);
4286 Vals.push_back(0);
4287 Vals.push_back(0);
4288 Vals.push_back(getEncodedLinkage(GV));
4289
4290 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4291 Vals.clear();
4292 }
4293
4294 // Emit the function proto information.
4295 for (const Function &F : M) {
4296 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
4297 Vals.push_back(StrtabBuilder.add(F.getName()));
4298 Vals.push_back(F.getName().size());
4299 Vals.push_back(0);
4300 Vals.push_back(0);
4301 Vals.push_back(0);
4302 Vals.push_back(getEncodedLinkage(F));
4303
4304 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4305 Vals.clear();
4306 }
4307
4308 // Emit the alias information.
4309 for (const GlobalAlias &A : M.aliases()) {
4310 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4311 Vals.push_back(StrtabBuilder.add(A.getName()));
4312 Vals.push_back(A.getName().size());
4313 Vals.push_back(0);
4314 Vals.push_back(0);
4315 Vals.push_back(0);
4316 Vals.push_back(getEncodedLinkage(A));
4317
4318 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4319 Vals.clear();
4320 }
4321
4322 // Emit the ifunc information.
4323 for (const GlobalIFunc &I : M.ifuncs()) {
4324 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4325 Vals.push_back(StrtabBuilder.add(I.getName()));
4326 Vals.push_back(I.getName().size());
4327 Vals.push_back(0);
4328 Vals.push_back(0);
4329 Vals.push_back(0);
4330 Vals.push_back(getEncodedLinkage(I));
4331
4332 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4333 Vals.clear();
4334 }
4335 }
4336
write()4337 void ThinLinkBitcodeWriter::write() {
4338 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4339
4340 writeModuleVersion();
4341
4342 writeSimplifiedModuleInfo();
4343
4344 writePerModuleGlobalValueSummary();
4345
4346 // Write module hash.
4347 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4348
4349 Stream.ExitBlock();
4350 }
4351
writeThinLinkBitcode(const Module & M,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4352 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4353 const ModuleSummaryIndex &Index,
4354 const ModuleHash &ModHash) {
4355 assert(!WroteStrtab);
4356
4357 // The Mods vector is used by irsymtab::build, which requires non-const
4358 // Modules in case it needs to materialize metadata. But the bitcode writer
4359 // requires that the module is materialized, so we can cast to non-const here,
4360 // after checking that it is in fact materialized.
4361 assert(M.isMaterialized());
4362 Mods.push_back(const_cast<Module *>(&M));
4363
4364 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4365 ModHash);
4366 ThinLinkWriter.write();
4367 }
4368
4369 // Write the specified thin link bitcode file to the given raw output stream,
4370 // where it will be written in a new bitcode block. This is used when
4371 // writing the per-module index file for ThinLTO.
WriteThinLinkBitcodeToFile(const Module & M,raw_ostream & Out,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4372 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4373 const ModuleSummaryIndex &Index,
4374 const ModuleHash &ModHash) {
4375 SmallVector<char, 0> Buffer;
4376 Buffer.reserve(256 * 1024);
4377
4378 BitcodeWriter Writer(Buffer);
4379 Writer.writeThinLinkBitcode(M, Index, ModHash);
4380 Writer.writeSymtab();
4381 Writer.writeStrtab();
4382
4383 Out.write((char *)&Buffer.front(), Buffer.size());
4384 }
4385