1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator.h"
18
19 #ifdef ART_ENABLE_CODEGEN_arm
20 #include "code_generator_arm_vixl.h"
21 #endif
22
23 #ifdef ART_ENABLE_CODEGEN_arm64
24 #include "code_generator_arm64.h"
25 #endif
26
27 #ifdef ART_ENABLE_CODEGEN_x86
28 #include "code_generator_x86.h"
29 #endif
30
31 #ifdef ART_ENABLE_CODEGEN_x86_64
32 #include "code_generator_x86_64.h"
33 #endif
34
35 #ifdef ART_ENABLE_CODEGEN_mips
36 #include "code_generator_mips.h"
37 #endif
38
39 #ifdef ART_ENABLE_CODEGEN_mips64
40 #include "code_generator_mips64.h"
41 #endif
42
43 #include "base/bit_utils.h"
44 #include "base/bit_utils_iterator.h"
45 #include "base/casts.h"
46 #include "base/leb128.h"
47 #include "class_linker.h"
48 #include "compiled_method.h"
49 #include "dex/bytecode_utils.h"
50 #include "dex/code_item_accessors-inl.h"
51 #include "dex/verified_method.h"
52 #include "graph_visualizer.h"
53 #include "image.h"
54 #include "gc/space/image_space.h"
55 #include "intern_table.h"
56 #include "intrinsics.h"
57 #include "mirror/array-inl.h"
58 #include "mirror/object_array-inl.h"
59 #include "mirror/object_reference.h"
60 #include "mirror/reference.h"
61 #include "mirror/string.h"
62 #include "parallel_move_resolver.h"
63 #include "scoped_thread_state_change-inl.h"
64 #include "ssa_liveness_analysis.h"
65 #include "stack_map.h"
66 #include "stack_map_stream.h"
67 #include "thread-current-inl.h"
68 #include "utils/assembler.h"
69
70 namespace art {
71
72 // Return whether a location is consistent with a type.
CheckType(DataType::Type type,Location location)73 static bool CheckType(DataType::Type type, Location location) {
74 if (location.IsFpuRegister()
75 || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
76 return (type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64);
77 } else if (location.IsRegister() ||
78 (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
79 return DataType::IsIntegralType(type) || (type == DataType::Type::kReference);
80 } else if (location.IsRegisterPair()) {
81 return type == DataType::Type::kInt64;
82 } else if (location.IsFpuRegisterPair()) {
83 return type == DataType::Type::kFloat64;
84 } else if (location.IsStackSlot()) {
85 return (DataType::IsIntegralType(type) && type != DataType::Type::kInt64)
86 || (type == DataType::Type::kFloat32)
87 || (type == DataType::Type::kReference);
88 } else if (location.IsDoubleStackSlot()) {
89 return (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
90 } else if (location.IsConstant()) {
91 if (location.GetConstant()->IsIntConstant()) {
92 return DataType::IsIntegralType(type) && (type != DataType::Type::kInt64);
93 } else if (location.GetConstant()->IsNullConstant()) {
94 return type == DataType::Type::kReference;
95 } else if (location.GetConstant()->IsLongConstant()) {
96 return type == DataType::Type::kInt64;
97 } else if (location.GetConstant()->IsFloatConstant()) {
98 return type == DataType::Type::kFloat32;
99 } else {
100 return location.GetConstant()->IsDoubleConstant()
101 && (type == DataType::Type::kFloat64);
102 }
103 } else {
104 return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
105 }
106 }
107
108 // Check that a location summary is consistent with an instruction.
CheckTypeConsistency(HInstruction * instruction)109 static bool CheckTypeConsistency(HInstruction* instruction) {
110 LocationSummary* locations = instruction->GetLocations();
111 if (locations == nullptr) {
112 return true;
113 }
114
115 if (locations->Out().IsUnallocated()
116 && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
117 DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
118 << instruction->GetType()
119 << " " << locations->InAt(0);
120 } else {
121 DCHECK(CheckType(instruction->GetType(), locations->Out()))
122 << instruction->GetType()
123 << " " << locations->Out();
124 }
125
126 HConstInputsRef inputs = instruction->GetInputs();
127 for (size_t i = 0; i < inputs.size(); ++i) {
128 DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
129 << inputs[i]->GetType() << " " << locations->InAt(i);
130 }
131
132 HEnvironment* environment = instruction->GetEnvironment();
133 for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
134 if (environment->GetInstructionAt(i) != nullptr) {
135 DataType::Type type = environment->GetInstructionAt(i)->GetType();
136 DCHECK(CheckType(type, environment->GetLocationAt(i)))
137 << type << " " << environment->GetLocationAt(i);
138 } else {
139 DCHECK(environment->GetLocationAt(i).IsInvalid())
140 << environment->GetLocationAt(i);
141 }
142 }
143 return true;
144 }
145
146 class CodeGenerator::CodeGenerationData : public DeletableArenaObject<kArenaAllocCodeGenerator> {
147 public:
Create(ArenaStack * arena_stack,InstructionSet instruction_set)148 static std::unique_ptr<CodeGenerationData> Create(ArenaStack* arena_stack,
149 InstructionSet instruction_set) {
150 ScopedArenaAllocator allocator(arena_stack);
151 void* memory = allocator.Alloc<CodeGenerationData>(kArenaAllocCodeGenerator);
152 return std::unique_ptr<CodeGenerationData>(
153 ::new (memory) CodeGenerationData(std::move(allocator), instruction_set));
154 }
155
GetScopedAllocator()156 ScopedArenaAllocator* GetScopedAllocator() {
157 return &allocator_;
158 }
159
AddSlowPath(SlowPathCode * slow_path)160 void AddSlowPath(SlowPathCode* slow_path) {
161 slow_paths_.emplace_back(std::unique_ptr<SlowPathCode>(slow_path));
162 }
163
GetSlowPaths() const164 ArrayRef<const std::unique_ptr<SlowPathCode>> GetSlowPaths() const {
165 return ArrayRef<const std::unique_ptr<SlowPathCode>>(slow_paths_);
166 }
167
GetStackMapStream()168 StackMapStream* GetStackMapStream() { return &stack_map_stream_; }
169
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)170 void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string) {
171 jit_string_roots_.Overwrite(string_reference,
172 reinterpret_cast64<uint64_t>(string.GetReference()));
173 }
174
GetJitStringRootIndex(StringReference string_reference) const175 uint64_t GetJitStringRootIndex(StringReference string_reference) const {
176 return jit_string_roots_.Get(string_reference);
177 }
178
GetNumberOfJitStringRoots() const179 size_t GetNumberOfJitStringRoots() const {
180 return jit_string_roots_.size();
181 }
182
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)183 void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
184 jit_class_roots_.Overwrite(type_reference, reinterpret_cast64<uint64_t>(klass.GetReference()));
185 }
186
GetJitClassRootIndex(TypeReference type_reference) const187 uint64_t GetJitClassRootIndex(TypeReference type_reference) const {
188 return jit_class_roots_.Get(type_reference);
189 }
190
GetNumberOfJitClassRoots() const191 size_t GetNumberOfJitClassRoots() const {
192 return jit_class_roots_.size();
193 }
194
GetNumberOfJitRoots() const195 size_t GetNumberOfJitRoots() const {
196 return GetNumberOfJitStringRoots() + GetNumberOfJitClassRoots();
197 }
198
199 void EmitJitRoots(/*out*/std::vector<Handle<mirror::Object>>* roots)
200 REQUIRES_SHARED(Locks::mutator_lock_);
201
202 private:
CodeGenerationData(ScopedArenaAllocator && allocator,InstructionSet instruction_set)203 CodeGenerationData(ScopedArenaAllocator&& allocator, InstructionSet instruction_set)
204 : allocator_(std::move(allocator)),
205 stack_map_stream_(&allocator_, instruction_set),
206 slow_paths_(allocator_.Adapter(kArenaAllocCodeGenerator)),
207 jit_string_roots_(StringReferenceValueComparator(),
208 allocator_.Adapter(kArenaAllocCodeGenerator)),
209 jit_class_roots_(TypeReferenceValueComparator(),
210 allocator_.Adapter(kArenaAllocCodeGenerator)) {
211 slow_paths_.reserve(kDefaultSlowPathsCapacity);
212 }
213
214 static constexpr size_t kDefaultSlowPathsCapacity = 8;
215
216 ScopedArenaAllocator allocator_;
217 StackMapStream stack_map_stream_;
218 ScopedArenaVector<std::unique_ptr<SlowPathCode>> slow_paths_;
219
220 // Maps a StringReference (dex_file, string_index) to the index in the literal table.
221 // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
222 // will compute all the indices.
223 ScopedArenaSafeMap<StringReference, uint64_t, StringReferenceValueComparator> jit_string_roots_;
224
225 // Maps a ClassReference (dex_file, type_index) to the index in the literal table.
226 // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
227 // will compute all the indices.
228 ScopedArenaSafeMap<TypeReference, uint64_t, TypeReferenceValueComparator> jit_class_roots_;
229 };
230
EmitJitRoots(std::vector<Handle<mirror::Object>> * roots)231 void CodeGenerator::CodeGenerationData::EmitJitRoots(
232 /*out*/std::vector<Handle<mirror::Object>>* roots) {
233 DCHECK(roots->empty());
234 roots->reserve(GetNumberOfJitRoots());
235 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
236 size_t index = 0;
237 for (auto& entry : jit_string_roots_) {
238 // Update the `roots` with the string, and replace the address temporarily
239 // stored to the index in the table.
240 uint64_t address = entry.second;
241 roots->emplace_back(reinterpret_cast<StackReference<mirror::Object>*>(address));
242 DCHECK(roots->back() != nullptr);
243 DCHECK(roots->back()->IsString());
244 entry.second = index;
245 // Ensure the string is strongly interned. This is a requirement on how the JIT
246 // handles strings. b/32995596
247 class_linker->GetInternTable()->InternStrong(roots->back()->AsString());
248 ++index;
249 }
250 for (auto& entry : jit_class_roots_) {
251 // Update the `roots` with the class, and replace the address temporarily
252 // stored to the index in the table.
253 uint64_t address = entry.second;
254 roots->emplace_back(reinterpret_cast<StackReference<mirror::Object>*>(address));
255 DCHECK(roots->back() != nullptr);
256 DCHECK(roots->back()->IsClass());
257 entry.second = index;
258 ++index;
259 }
260 }
261
GetScopedAllocator()262 ScopedArenaAllocator* CodeGenerator::GetScopedAllocator() {
263 DCHECK(code_generation_data_ != nullptr);
264 return code_generation_data_->GetScopedAllocator();
265 }
266
GetStackMapStream()267 StackMapStream* CodeGenerator::GetStackMapStream() {
268 DCHECK(code_generation_data_ != nullptr);
269 return code_generation_data_->GetStackMapStream();
270 }
271
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)272 void CodeGenerator::ReserveJitStringRoot(StringReference string_reference,
273 Handle<mirror::String> string) {
274 DCHECK(code_generation_data_ != nullptr);
275 code_generation_data_->ReserveJitStringRoot(string_reference, string);
276 }
277
GetJitStringRootIndex(StringReference string_reference)278 uint64_t CodeGenerator::GetJitStringRootIndex(StringReference string_reference) {
279 DCHECK(code_generation_data_ != nullptr);
280 return code_generation_data_->GetJitStringRootIndex(string_reference);
281 }
282
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)283 void CodeGenerator::ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
284 DCHECK(code_generation_data_ != nullptr);
285 code_generation_data_->ReserveJitClassRoot(type_reference, klass);
286 }
287
GetJitClassRootIndex(TypeReference type_reference)288 uint64_t CodeGenerator::GetJitClassRootIndex(TypeReference type_reference) {
289 DCHECK(code_generation_data_ != nullptr);
290 return code_generation_data_->GetJitClassRootIndex(type_reference);
291 }
292
EmitJitRootPatches(uint8_t * code ATTRIBUTE_UNUSED,const uint8_t * roots_data ATTRIBUTE_UNUSED)293 void CodeGenerator::EmitJitRootPatches(uint8_t* code ATTRIBUTE_UNUSED,
294 const uint8_t* roots_data ATTRIBUTE_UNUSED) {
295 DCHECK(code_generation_data_ != nullptr);
296 DCHECK_EQ(code_generation_data_->GetNumberOfJitStringRoots(), 0u);
297 DCHECK_EQ(code_generation_data_->GetNumberOfJitClassRoots(), 0u);
298 }
299
GetArrayLengthOffset(HArrayLength * array_length)300 uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
301 return array_length->IsStringLength()
302 ? mirror::String::CountOffset().Uint32Value()
303 : mirror::Array::LengthOffset().Uint32Value();
304 }
305
GetArrayDataOffset(HArrayGet * array_get)306 uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
307 DCHECK(array_get->GetType() == DataType::Type::kUint16 || !array_get->IsStringCharAt());
308 return array_get->IsStringCharAt()
309 ? mirror::String::ValueOffset().Uint32Value()
310 : mirror::Array::DataOffset(DataType::Size(array_get->GetType())).Uint32Value();
311 }
312
GoesToNextBlock(HBasicBlock * current,HBasicBlock * next) const313 bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
314 DCHECK_EQ((*block_order_)[current_block_index_], current);
315 return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
316 }
317
GetNextBlockToEmit() const318 HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
319 for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
320 HBasicBlock* block = (*block_order_)[i];
321 if (!block->IsSingleJump()) {
322 return block;
323 }
324 }
325 return nullptr;
326 }
327
FirstNonEmptyBlock(HBasicBlock * block) const328 HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
329 while (block->IsSingleJump()) {
330 block = block->GetSuccessors()[0];
331 }
332 return block;
333 }
334
335 class DisassemblyScope {
336 public:
DisassemblyScope(HInstruction * instruction,const CodeGenerator & codegen)337 DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
338 : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
339 if (codegen_.GetDisassemblyInformation() != nullptr) {
340 start_offset_ = codegen_.GetAssembler().CodeSize();
341 }
342 }
343
~DisassemblyScope()344 ~DisassemblyScope() {
345 // We avoid building this data when we know it will not be used.
346 if (codegen_.GetDisassemblyInformation() != nullptr) {
347 codegen_.GetDisassemblyInformation()->AddInstructionInterval(
348 instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
349 }
350 }
351
352 private:
353 const CodeGenerator& codegen_;
354 HInstruction* instruction_;
355 size_t start_offset_;
356 };
357
358
GenerateSlowPaths()359 void CodeGenerator::GenerateSlowPaths() {
360 DCHECK(code_generation_data_ != nullptr);
361 size_t code_start = 0;
362 for (const std::unique_ptr<SlowPathCode>& slow_path_ptr : code_generation_data_->GetSlowPaths()) {
363 SlowPathCode* slow_path = slow_path_ptr.get();
364 current_slow_path_ = slow_path;
365 if (disasm_info_ != nullptr) {
366 code_start = GetAssembler()->CodeSize();
367 }
368 // Record the dex pc at start of slow path (required for java line number mapping).
369 MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
370 slow_path->EmitNativeCode(this);
371 if (disasm_info_ != nullptr) {
372 disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
373 }
374 }
375 current_slow_path_ = nullptr;
376 }
377
InitializeCodeGenerationData()378 void CodeGenerator::InitializeCodeGenerationData() {
379 DCHECK(code_generation_data_ == nullptr);
380 code_generation_data_ = CodeGenerationData::Create(graph_->GetArenaStack(), GetInstructionSet());
381 }
382
Compile(CodeAllocator * allocator)383 void CodeGenerator::Compile(CodeAllocator* allocator) {
384 InitializeCodeGenerationData();
385
386 // The register allocator already called `InitializeCodeGeneration`,
387 // where the frame size has been computed.
388 DCHECK(block_order_ != nullptr);
389 Initialize();
390
391 HGraphVisitor* instruction_visitor = GetInstructionVisitor();
392 DCHECK_EQ(current_block_index_, 0u);
393
394 GetStackMapStream()->BeginMethod(HasEmptyFrame() ? 0 : frame_size_,
395 core_spill_mask_,
396 fpu_spill_mask_,
397 GetGraph()->GetNumberOfVRegs());
398
399 size_t frame_start = GetAssembler()->CodeSize();
400 GenerateFrameEntry();
401 DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
402 if (disasm_info_ != nullptr) {
403 disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
404 }
405
406 for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
407 HBasicBlock* block = (*block_order_)[current_block_index_];
408 // Don't generate code for an empty block. Its predecessors will branch to its successor
409 // directly. Also, the label of that block will not be emitted, so this helps catch
410 // errors where we reference that label.
411 if (block->IsSingleJump()) continue;
412 Bind(block);
413 // This ensures that we have correct native line mapping for all native instructions.
414 // It is necessary to make stepping over a statement work. Otherwise, any initial
415 // instructions (e.g. moves) would be assumed to be the start of next statement.
416 MaybeRecordNativeDebugInfo(/* instruction= */ nullptr, block->GetDexPc());
417 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
418 HInstruction* current = it.Current();
419 if (current->HasEnvironment()) {
420 // Create stackmap for HNativeDebugInfo or any instruction which calls native code.
421 // Note that we need correct mapping for the native PC of the call instruction,
422 // so the runtime's stackmap is not sufficient since it is at PC after the call.
423 MaybeRecordNativeDebugInfo(current, block->GetDexPc());
424 }
425 DisassemblyScope disassembly_scope(current, *this);
426 DCHECK(CheckTypeConsistency(current));
427 current->Accept(instruction_visitor);
428 }
429 }
430
431 GenerateSlowPaths();
432
433 // Emit catch stack maps at the end of the stack map stream as expected by the
434 // runtime exception handler.
435 if (graph_->HasTryCatch()) {
436 RecordCatchBlockInfo();
437 }
438
439 // Finalize instructions in assember;
440 Finalize(allocator);
441
442 GetStackMapStream()->EndMethod();
443 }
444
Finalize(CodeAllocator * allocator)445 void CodeGenerator::Finalize(CodeAllocator* allocator) {
446 size_t code_size = GetAssembler()->CodeSize();
447 uint8_t* buffer = allocator->Allocate(code_size);
448
449 MemoryRegion code(buffer, code_size);
450 GetAssembler()->FinalizeInstructions(code);
451 }
452
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches ATTRIBUTE_UNUSED)453 void CodeGenerator::EmitLinkerPatches(
454 ArenaVector<linker::LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) {
455 // No linker patches by default.
456 }
457
NeedsThunkCode(const linker::LinkerPatch & patch ATTRIBUTE_UNUSED) const458 bool CodeGenerator::NeedsThunkCode(const linker::LinkerPatch& patch ATTRIBUTE_UNUSED) const {
459 // Code generators that create patches requiring thunk compilation should override this function.
460 return false;
461 }
462
EmitThunkCode(const linker::LinkerPatch & patch ATTRIBUTE_UNUSED,ArenaVector<uint8_t> * code ATTRIBUTE_UNUSED,std::string * debug_name ATTRIBUTE_UNUSED)463 void CodeGenerator::EmitThunkCode(const linker::LinkerPatch& patch ATTRIBUTE_UNUSED,
464 /*out*/ ArenaVector<uint8_t>* code ATTRIBUTE_UNUSED,
465 /*out*/ std::string* debug_name ATTRIBUTE_UNUSED) {
466 // Code generators that create patches requiring thunk compilation should override this function.
467 LOG(FATAL) << "Unexpected call to EmitThunkCode().";
468 }
469
InitializeCodeGeneration(size_t number_of_spill_slots,size_t maximum_safepoint_spill_size,size_t number_of_out_slots,const ArenaVector<HBasicBlock * > & block_order)470 void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
471 size_t maximum_safepoint_spill_size,
472 size_t number_of_out_slots,
473 const ArenaVector<HBasicBlock*>& block_order) {
474 block_order_ = &block_order;
475 DCHECK(!block_order.empty());
476 DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
477 ComputeSpillMask();
478 first_register_slot_in_slow_path_ = RoundUp(
479 (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());
480
481 if (number_of_spill_slots == 0
482 && !HasAllocatedCalleeSaveRegisters()
483 && IsLeafMethod()
484 && !RequiresCurrentMethod()) {
485 DCHECK_EQ(maximum_safepoint_spill_size, 0u);
486 SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
487 } else {
488 SetFrameSize(RoundUp(
489 first_register_slot_in_slow_path_
490 + maximum_safepoint_spill_size
491 + (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0)
492 + FrameEntrySpillSize(),
493 kStackAlignment));
494 }
495 }
496
CreateCommonInvokeLocationSummary(HInvoke * invoke,InvokeDexCallingConventionVisitor * visitor)497 void CodeGenerator::CreateCommonInvokeLocationSummary(
498 HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
499 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
500 LocationSummary* locations = new (allocator) LocationSummary(invoke,
501 LocationSummary::kCallOnMainOnly);
502
503 for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
504 HInstruction* input = invoke->InputAt(i);
505 locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
506 }
507
508 locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
509
510 if (invoke->IsInvokeStaticOrDirect()) {
511 HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
512 switch (call->GetMethodLoadKind()) {
513 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
514 locations->SetInAt(call->GetSpecialInputIndex(), visitor->GetMethodLocation());
515 break;
516 case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall:
517 locations->AddTemp(visitor->GetMethodLocation());
518 locations->SetInAt(call->GetSpecialInputIndex(), Location::RequiresRegister());
519 break;
520 default:
521 locations->AddTemp(visitor->GetMethodLocation());
522 break;
523 }
524 } else if (!invoke->IsInvokePolymorphic()) {
525 locations->AddTemp(visitor->GetMethodLocation());
526 }
527 }
528
GenerateInvokeStaticOrDirectRuntimeCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)529 void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall(
530 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
531 MoveConstant(temp, invoke->GetDexMethodIndex());
532
533 // The access check is unnecessary but we do not want to introduce
534 // extra entrypoints for the codegens that do not support some
535 // invoke type and fall back to the runtime call.
536
537 // Initialize to anything to silent compiler warnings.
538 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
539 switch (invoke->GetInvokeType()) {
540 case kStatic:
541 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
542 break;
543 case kDirect:
544 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
545 break;
546 case kSuper:
547 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
548 break;
549 case kVirtual:
550 case kInterface:
551 case kPolymorphic:
552 case kCustom:
553 LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
554 UNREACHABLE();
555 }
556
557 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
558 }
GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved * invoke)559 void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
560 MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetDexMethodIndex());
561
562 // Initialize to anything to silent compiler warnings.
563 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
564 switch (invoke->GetInvokeType()) {
565 case kStatic:
566 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
567 break;
568 case kDirect:
569 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
570 break;
571 case kVirtual:
572 entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
573 break;
574 case kSuper:
575 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
576 break;
577 case kInterface:
578 entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
579 break;
580 case kPolymorphic:
581 case kCustom:
582 LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
583 UNREACHABLE();
584 }
585 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
586 }
587
GenerateInvokePolymorphicCall(HInvokePolymorphic * invoke)588 void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke) {
589 // invoke-polymorphic does not use a temporary to convey any additional information (e.g. a
590 // method index) since it requires multiple info from the instruction (registers A, B, H). Not
591 // using the reservation has no effect on the registers used in the runtime call.
592 QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic;
593 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
594 }
595
GenerateInvokeCustomCall(HInvokeCustom * invoke)596 void CodeGenerator::GenerateInvokeCustomCall(HInvokeCustom* invoke) {
597 MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetCallSiteIndex());
598 QuickEntrypointEnum entrypoint = kQuickInvokeCustom;
599 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
600 }
601
CreateUnresolvedFieldLocationSummary(HInstruction * field_access,DataType::Type field_type,const FieldAccessCallingConvention & calling_convention)602 void CodeGenerator::CreateUnresolvedFieldLocationSummary(
603 HInstruction* field_access,
604 DataType::Type field_type,
605 const FieldAccessCallingConvention& calling_convention) {
606 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
607 || field_access->IsUnresolvedInstanceFieldSet();
608 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
609 || field_access->IsUnresolvedStaticFieldGet();
610
611 ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetAllocator();
612 LocationSummary* locations =
613 new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);
614
615 locations->AddTemp(calling_convention.GetFieldIndexLocation());
616
617 if (is_instance) {
618 // Add the `this` object for instance field accesses.
619 locations->SetInAt(0, calling_convention.GetObjectLocation());
620 }
621
622 // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
623 // regardless of the the type. Because of that we forced to special case
624 // the access to floating point values.
625 if (is_get) {
626 if (DataType::IsFloatingPointType(field_type)) {
627 // The return value will be stored in regular registers while register
628 // allocator expects it in a floating point register.
629 // Note We don't need to request additional temps because the return
630 // register(s) are already blocked due the call and they may overlap with
631 // the input or field index.
632 // The transfer between the two will be done at codegen level.
633 locations->SetOut(calling_convention.GetFpuLocation(field_type));
634 } else {
635 locations->SetOut(calling_convention.GetReturnLocation(field_type));
636 }
637 } else {
638 size_t set_index = is_instance ? 1 : 0;
639 if (DataType::IsFloatingPointType(field_type)) {
640 // The set value comes from a float location while the calling convention
641 // expects it in a regular register location. Allocate a temp for it and
642 // make the transfer at codegen.
643 AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
644 locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
645 } else {
646 locations->SetInAt(set_index,
647 calling_convention.GetSetValueLocation(field_type, is_instance));
648 }
649 }
650 }
651
GenerateUnresolvedFieldAccess(HInstruction * field_access,DataType::Type field_type,uint32_t field_index,uint32_t dex_pc,const FieldAccessCallingConvention & calling_convention)652 void CodeGenerator::GenerateUnresolvedFieldAccess(
653 HInstruction* field_access,
654 DataType::Type field_type,
655 uint32_t field_index,
656 uint32_t dex_pc,
657 const FieldAccessCallingConvention& calling_convention) {
658 LocationSummary* locations = field_access->GetLocations();
659
660 MoveConstant(locations->GetTemp(0), field_index);
661
662 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
663 || field_access->IsUnresolvedInstanceFieldSet();
664 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
665 || field_access->IsUnresolvedStaticFieldGet();
666
667 if (!is_get && DataType::IsFloatingPointType(field_type)) {
668 // Copy the float value to be set into the calling convention register.
669 // Note that using directly the temp location is problematic as we don't
670 // support temp register pairs. To avoid boilerplate conversion code, use
671 // the location from the calling convention.
672 MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
673 locations->InAt(is_instance ? 1 : 0),
674 (DataType::Is64BitType(field_type) ? DataType::Type::kInt64
675 : DataType::Type::kInt32));
676 }
677
678 QuickEntrypointEnum entrypoint = kQuickSet8Static; // Initialize to anything to avoid warnings.
679 switch (field_type) {
680 case DataType::Type::kBool:
681 entrypoint = is_instance
682 ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
683 : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
684 break;
685 case DataType::Type::kInt8:
686 entrypoint = is_instance
687 ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
688 : (is_get ? kQuickGetByteStatic : kQuickSet8Static);
689 break;
690 case DataType::Type::kInt16:
691 entrypoint = is_instance
692 ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
693 : (is_get ? kQuickGetShortStatic : kQuickSet16Static);
694 break;
695 case DataType::Type::kUint16:
696 entrypoint = is_instance
697 ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
698 : (is_get ? kQuickGetCharStatic : kQuickSet16Static);
699 break;
700 case DataType::Type::kInt32:
701 case DataType::Type::kFloat32:
702 entrypoint = is_instance
703 ? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
704 : (is_get ? kQuickGet32Static : kQuickSet32Static);
705 break;
706 case DataType::Type::kReference:
707 entrypoint = is_instance
708 ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
709 : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
710 break;
711 case DataType::Type::kInt64:
712 case DataType::Type::kFloat64:
713 entrypoint = is_instance
714 ? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
715 : (is_get ? kQuickGet64Static : kQuickSet64Static);
716 break;
717 default:
718 LOG(FATAL) << "Invalid type " << field_type;
719 }
720 InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);
721
722 if (is_get && DataType::IsFloatingPointType(field_type)) {
723 MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
724 }
725 }
726
CreateLoadClassRuntimeCallLocationSummary(HLoadClass * cls,Location runtime_type_index_location,Location runtime_return_location)727 void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
728 Location runtime_type_index_location,
729 Location runtime_return_location) {
730 DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
731 DCHECK_EQ(cls->InputCount(), 1u);
732 LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
733 cls, LocationSummary::kCallOnMainOnly);
734 locations->SetInAt(0, Location::NoLocation());
735 locations->AddTemp(runtime_type_index_location);
736 locations->SetOut(runtime_return_location);
737 }
738
GenerateLoadClassRuntimeCall(HLoadClass * cls)739 void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) {
740 DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
741 DCHECK(!cls->MustGenerateClinitCheck());
742 LocationSummary* locations = cls->GetLocations();
743 MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
744 if (cls->NeedsAccessCheck()) {
745 CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
746 InvokeRuntime(kQuickResolveTypeAndVerifyAccess, cls, cls->GetDexPc());
747 } else {
748 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
749 InvokeRuntime(kQuickResolveType, cls, cls->GetDexPc());
750 }
751 }
752
CreateLoadMethodHandleRuntimeCallLocationSummary(HLoadMethodHandle * method_handle,Location runtime_proto_index_location,Location runtime_return_location)753 void CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(
754 HLoadMethodHandle* method_handle,
755 Location runtime_proto_index_location,
756 Location runtime_return_location) {
757 DCHECK_EQ(method_handle->InputCount(), 1u);
758 LocationSummary* locations =
759 new (method_handle->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
760 method_handle, LocationSummary::kCallOnMainOnly);
761 locations->SetInAt(0, Location::NoLocation());
762 locations->AddTemp(runtime_proto_index_location);
763 locations->SetOut(runtime_return_location);
764 }
765
GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle * method_handle)766 void CodeGenerator::GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle) {
767 LocationSummary* locations = method_handle->GetLocations();
768 MoveConstant(locations->GetTemp(0), method_handle->GetMethodHandleIndex());
769 CheckEntrypointTypes<kQuickResolveMethodHandle, void*, uint32_t>();
770 InvokeRuntime(kQuickResolveMethodHandle, method_handle, method_handle->GetDexPc());
771 }
772
CreateLoadMethodTypeRuntimeCallLocationSummary(HLoadMethodType * method_type,Location runtime_proto_index_location,Location runtime_return_location)773 void CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(
774 HLoadMethodType* method_type,
775 Location runtime_proto_index_location,
776 Location runtime_return_location) {
777 DCHECK_EQ(method_type->InputCount(), 1u);
778 LocationSummary* locations =
779 new (method_type->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
780 method_type, LocationSummary::kCallOnMainOnly);
781 locations->SetInAt(0, Location::NoLocation());
782 locations->AddTemp(runtime_proto_index_location);
783 locations->SetOut(runtime_return_location);
784 }
785
GenerateLoadMethodTypeRuntimeCall(HLoadMethodType * method_type)786 void CodeGenerator::GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type) {
787 LocationSummary* locations = method_type->GetLocations();
788 MoveConstant(locations->GetTemp(0), method_type->GetProtoIndex().index_);
789 CheckEntrypointTypes<kQuickResolveMethodType, void*, uint32_t>();
790 InvokeRuntime(kQuickResolveMethodType, method_type, method_type->GetDexPc());
791 }
792
GetBootImageOffsetImpl(const void * object,ImageHeader::ImageSections section)793 static uint32_t GetBootImageOffsetImpl(const void* object, ImageHeader::ImageSections section) {
794 Runtime* runtime = Runtime::Current();
795 DCHECK(runtime->IsAotCompiler());
796 const std::vector<gc::space::ImageSpace*>& boot_image_spaces =
797 runtime->GetHeap()->GetBootImageSpaces();
798 // Check that the `object` is in the expected section of one of the boot image files.
799 DCHECK(std::any_of(boot_image_spaces.begin(),
800 boot_image_spaces.end(),
801 [object, section](gc::space::ImageSpace* space) {
802 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
803 uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
804 return space->GetImageHeader().GetImageSection(section).Contains(offset);
805 }));
806 uintptr_t begin = reinterpret_cast<uintptr_t>(boot_image_spaces.front()->Begin());
807 uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
808 return dchecked_integral_cast<uint32_t>(offset);
809 }
810
811 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
GetBootImageOffset(HLoadClass * load_class)812 uint32_t CodeGenerator::GetBootImageOffset(HLoadClass* load_class) NO_THREAD_SAFETY_ANALYSIS {
813 DCHECK_EQ(load_class->GetLoadKind(), HLoadClass::LoadKind::kBootImageRelRo);
814 ObjPtr<mirror::Class> klass = load_class->GetClass().Get();
815 DCHECK(klass != nullptr);
816 return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
817 }
818
819 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image strings are non-moveable.
GetBootImageOffset(HLoadString * load_string)820 uint32_t CodeGenerator::GetBootImageOffset(HLoadString* load_string) NO_THREAD_SAFETY_ANALYSIS {
821 DCHECK_EQ(load_string->GetLoadKind(), HLoadString::LoadKind::kBootImageRelRo);
822 ObjPtr<mirror::String> string = load_string->GetString().Get();
823 DCHECK(string != nullptr);
824 return GetBootImageOffsetImpl(string.Ptr(), ImageHeader::kSectionObjects);
825 }
826
GetBootImageOffset(HInvokeStaticOrDirect * invoke)827 uint32_t CodeGenerator::GetBootImageOffset(HInvokeStaticOrDirect* invoke) {
828 DCHECK_EQ(invoke->GetMethodLoadKind(), HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo);
829 ArtMethod* method = invoke->GetResolvedMethod();
830 DCHECK(method != nullptr);
831 return GetBootImageOffsetImpl(method, ImageHeader::kSectionArtMethods);
832 }
833
BlockIfInRegister(Location location,bool is_out) const834 void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
835 // The DCHECKS below check that a register is not specified twice in
836 // the summary. The out location can overlap with an input, so we need
837 // to special case it.
838 if (location.IsRegister()) {
839 DCHECK(is_out || !blocked_core_registers_[location.reg()]);
840 blocked_core_registers_[location.reg()] = true;
841 } else if (location.IsFpuRegister()) {
842 DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
843 blocked_fpu_registers_[location.reg()] = true;
844 } else if (location.IsFpuRegisterPair()) {
845 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
846 blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
847 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
848 blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
849 } else if (location.IsRegisterPair()) {
850 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
851 blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
852 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
853 blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
854 }
855 }
856
AllocateLocations(HInstruction * instruction)857 void CodeGenerator::AllocateLocations(HInstruction* instruction) {
858 for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) {
859 env->AllocateLocations();
860 }
861 instruction->Accept(GetLocationBuilder());
862 DCHECK(CheckTypeConsistency(instruction));
863 LocationSummary* locations = instruction->GetLocations();
864 if (!instruction->IsSuspendCheckEntry()) {
865 if (locations != nullptr) {
866 if (locations->CanCall()) {
867 MarkNotLeaf();
868 } else if (locations->Intrinsified() &&
869 instruction->IsInvokeStaticOrDirect() &&
870 !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
871 // A static method call that has been fully intrinsified, and cannot call on the slow
872 // path or refer to the current method directly, no longer needs current method.
873 return;
874 }
875 }
876 if (instruction->NeedsCurrentMethod()) {
877 SetRequiresCurrentMethod();
878 }
879 }
880 }
881
Create(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)882 std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
883 const CompilerOptions& compiler_options,
884 OptimizingCompilerStats* stats) {
885 ArenaAllocator* allocator = graph->GetAllocator();
886 switch (compiler_options.GetInstructionSet()) {
887 #ifdef ART_ENABLE_CODEGEN_arm
888 case InstructionSet::kArm:
889 case InstructionSet::kThumb2: {
890 return std::unique_ptr<CodeGenerator>(
891 new (allocator) arm::CodeGeneratorARMVIXL(graph, compiler_options, stats));
892 }
893 #endif
894 #ifdef ART_ENABLE_CODEGEN_arm64
895 case InstructionSet::kArm64: {
896 return std::unique_ptr<CodeGenerator>(
897 new (allocator) arm64::CodeGeneratorARM64(graph, compiler_options, stats));
898 }
899 #endif
900 #ifdef ART_ENABLE_CODEGEN_mips
901 case InstructionSet::kMips: {
902 return std::unique_ptr<CodeGenerator>(
903 new (allocator) mips::CodeGeneratorMIPS(graph, compiler_options, stats));
904 }
905 #endif
906 #ifdef ART_ENABLE_CODEGEN_mips64
907 case InstructionSet::kMips64: {
908 return std::unique_ptr<CodeGenerator>(
909 new (allocator) mips64::CodeGeneratorMIPS64(graph, compiler_options, stats));
910 }
911 #endif
912 #ifdef ART_ENABLE_CODEGEN_x86
913 case InstructionSet::kX86: {
914 return std::unique_ptr<CodeGenerator>(
915 new (allocator) x86::CodeGeneratorX86(graph, compiler_options, stats));
916 }
917 #endif
918 #ifdef ART_ENABLE_CODEGEN_x86_64
919 case InstructionSet::kX86_64: {
920 return std::unique_ptr<CodeGenerator>(
921 new (allocator) x86_64::CodeGeneratorX86_64(graph, compiler_options, stats));
922 }
923 #endif
924 default:
925 return nullptr;
926 }
927 }
928
CodeGenerator(HGraph * graph,size_t number_of_core_registers,size_t number_of_fpu_registers,size_t number_of_register_pairs,uint32_t core_callee_save_mask,uint32_t fpu_callee_save_mask,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)929 CodeGenerator::CodeGenerator(HGraph* graph,
930 size_t number_of_core_registers,
931 size_t number_of_fpu_registers,
932 size_t number_of_register_pairs,
933 uint32_t core_callee_save_mask,
934 uint32_t fpu_callee_save_mask,
935 const CompilerOptions& compiler_options,
936 OptimizingCompilerStats* stats)
937 : frame_size_(0),
938 core_spill_mask_(0),
939 fpu_spill_mask_(0),
940 first_register_slot_in_slow_path_(0),
941 allocated_registers_(RegisterSet::Empty()),
942 blocked_core_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_core_registers,
943 kArenaAllocCodeGenerator)),
944 blocked_fpu_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_fpu_registers,
945 kArenaAllocCodeGenerator)),
946 number_of_core_registers_(number_of_core_registers),
947 number_of_fpu_registers_(number_of_fpu_registers),
948 number_of_register_pairs_(number_of_register_pairs),
949 core_callee_save_mask_(core_callee_save_mask),
950 fpu_callee_save_mask_(fpu_callee_save_mask),
951 block_order_(nullptr),
952 disasm_info_(nullptr),
953 stats_(stats),
954 graph_(graph),
955 compiler_options_(compiler_options),
956 current_slow_path_(nullptr),
957 current_block_index_(0),
958 is_leaf_(true),
959 requires_current_method_(false),
960 code_generation_data_() {
961 }
962
~CodeGenerator()963 CodeGenerator::~CodeGenerator() {}
964
GetNumberOfJitRoots() const965 size_t CodeGenerator::GetNumberOfJitRoots() const {
966 DCHECK(code_generation_data_ != nullptr);
967 return code_generation_data_->GetNumberOfJitRoots();
968 }
969
CheckCovers(uint32_t dex_pc,const HGraph & graph,const CodeInfo & code_info,const ArenaVector<HSuspendCheck * > & loop_headers,ArenaVector<size_t> * covered)970 static void CheckCovers(uint32_t dex_pc,
971 const HGraph& graph,
972 const CodeInfo& code_info,
973 const ArenaVector<HSuspendCheck*>& loop_headers,
974 ArenaVector<size_t>* covered) {
975 for (size_t i = 0; i < loop_headers.size(); ++i) {
976 if (loop_headers[i]->GetDexPc() == dex_pc) {
977 if (graph.IsCompilingOsr()) {
978 DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc).IsValid());
979 }
980 ++(*covered)[i];
981 }
982 }
983 }
984
985 // Debug helper to ensure loop entries in compiled code are matched by
986 // dex branch instructions.
CheckLoopEntriesCanBeUsedForOsr(const HGraph & graph,const CodeInfo & code_info,const dex::CodeItem & code_item)987 static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
988 const CodeInfo& code_info,
989 const dex::CodeItem& code_item) {
990 if (graph.HasTryCatch()) {
991 // One can write loops through try/catch, which we do not support for OSR anyway.
992 return;
993 }
994 ArenaVector<HSuspendCheck*> loop_headers(graph.GetAllocator()->Adapter(kArenaAllocMisc));
995 for (HBasicBlock* block : graph.GetReversePostOrder()) {
996 if (block->IsLoopHeader()) {
997 HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck();
998 if (!suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
999 loop_headers.push_back(suspend_check);
1000 }
1001 }
1002 }
1003 ArenaVector<size_t> covered(
1004 loop_headers.size(), 0, graph.GetAllocator()->Adapter(kArenaAllocMisc));
1005 for (const DexInstructionPcPair& pair : CodeItemInstructionAccessor(graph.GetDexFile(),
1006 &code_item)) {
1007 const uint32_t dex_pc = pair.DexPc();
1008 const Instruction& instruction = pair.Inst();
1009 if (instruction.IsBranch()) {
1010 uint32_t target = dex_pc + instruction.GetTargetOffset();
1011 CheckCovers(target, graph, code_info, loop_headers, &covered);
1012 } else if (instruction.IsSwitch()) {
1013 DexSwitchTable table(instruction, dex_pc);
1014 uint16_t num_entries = table.GetNumEntries();
1015 size_t offset = table.GetFirstValueIndex();
1016
1017 // Use a larger loop counter type to avoid overflow issues.
1018 for (size_t i = 0; i < num_entries; ++i) {
1019 // The target of the case.
1020 uint32_t target = dex_pc + table.GetEntryAt(i + offset);
1021 CheckCovers(target, graph, code_info, loop_headers, &covered);
1022 }
1023 }
1024 }
1025
1026 for (size_t i = 0; i < covered.size(); ++i) {
1027 DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
1028 }
1029 }
1030
BuildStackMaps(const dex::CodeItem * code_item)1031 ScopedArenaVector<uint8_t> CodeGenerator::BuildStackMaps(const dex::CodeItem* code_item) {
1032 ScopedArenaVector<uint8_t> stack_map = GetStackMapStream()->Encode();
1033 if (kIsDebugBuild && code_item != nullptr) {
1034 CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map.data()), *code_item);
1035 }
1036 return stack_map;
1037 }
1038
RecordPcInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path,bool native_debug_info)1039 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
1040 uint32_t dex_pc,
1041 SlowPathCode* slow_path,
1042 bool native_debug_info) {
1043 if (instruction != nullptr) {
1044 // The code generated for some type conversions
1045 // may call the runtime, thus normally requiring a subsequent
1046 // call to this method. However, the method verifier does not
1047 // produce PC information for certain instructions, which are
1048 // considered "atomic" (they cannot join a GC).
1049 // Therefore we do not currently record PC information for such
1050 // instructions. As this may change later, we added this special
1051 // case so that code generators may nevertheless call
1052 // CodeGenerator::RecordPcInfo without triggering an error in
1053 // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
1054 // thereafter.
1055 if (instruction->IsTypeConversion()) {
1056 return;
1057 }
1058 if (instruction->IsRem()) {
1059 DataType::Type type = instruction->AsRem()->GetResultType();
1060 if ((type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64)) {
1061 return;
1062 }
1063 }
1064 }
1065
1066 // Collect PC infos for the mapping table.
1067 uint32_t native_pc = GetAssembler()->CodePosition();
1068
1069 StackMapStream* stack_map_stream = GetStackMapStream();
1070 if (instruction == nullptr) {
1071 // For stack overflow checks and native-debug-info entries without dex register
1072 // mapping (i.e. start of basic block or start of slow path).
1073 stack_map_stream->BeginStackMapEntry(dex_pc, native_pc);
1074 stack_map_stream->EndStackMapEntry();
1075 return;
1076 }
1077
1078 LocationSummary* locations = instruction->GetLocations();
1079 uint32_t register_mask = locations->GetRegisterMask();
1080 DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
1081 if (locations->OnlyCallsOnSlowPath()) {
1082 // In case of slow path, we currently set the location of caller-save registers
1083 // to register (instead of their stack location when pushed before the slow-path
1084 // call). Therefore register_mask contains both callee-save and caller-save
1085 // registers that hold objects. We must remove the spilled caller-save from the
1086 // mask, since they will be overwritten by the callee.
1087 uint32_t spills = GetSlowPathSpills(locations, /* core_registers= */ true);
1088 register_mask &= ~spills;
1089 } else {
1090 // The register mask must be a subset of callee-save registers.
1091 DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
1092 }
1093
1094 uint32_t outer_dex_pc = dex_pc;
1095 uint32_t outer_environment_size = 0u;
1096 uint32_t inlining_depth = 0;
1097 HEnvironment* const environment = instruction->GetEnvironment();
1098 if (environment != nullptr) {
1099 HEnvironment* outer_environment = environment;
1100 while (outer_environment->GetParent() != nullptr) {
1101 outer_environment = outer_environment->GetParent();
1102 ++inlining_depth;
1103 }
1104 outer_dex_pc = outer_environment->GetDexPc();
1105 outer_environment_size = outer_environment->Size();
1106 }
1107
1108 HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
1109 bool osr =
1110 instruction->IsSuspendCheck() &&
1111 (info != nullptr) &&
1112 graph_->IsCompilingOsr() &&
1113 (inlining_depth == 0);
1114 StackMap::Kind kind = native_debug_info
1115 ? StackMap::Kind::Debug
1116 : (osr ? StackMap::Kind::OSR : StackMap::Kind::Default);
1117 stack_map_stream->BeginStackMapEntry(outer_dex_pc,
1118 native_pc,
1119 register_mask,
1120 locations->GetStackMask(),
1121 kind);
1122 EmitEnvironment(environment, slow_path);
1123 stack_map_stream->EndStackMapEntry();
1124
1125 if (osr) {
1126 DCHECK_EQ(info->GetSuspendCheck(), instruction);
1127 DCHECK(info->IsIrreducible());
1128 DCHECK(environment != nullptr);
1129 if (kIsDebugBuild) {
1130 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1131 HInstruction* in_environment = environment->GetInstructionAt(i);
1132 if (in_environment != nullptr) {
1133 DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
1134 Location location = environment->GetLocationAt(i);
1135 DCHECK(location.IsStackSlot() ||
1136 location.IsDoubleStackSlot() ||
1137 location.IsConstant() ||
1138 location.IsInvalid());
1139 if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
1140 DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
1141 }
1142 }
1143 }
1144 }
1145 }
1146 }
1147
HasStackMapAtCurrentPc()1148 bool CodeGenerator::HasStackMapAtCurrentPc() {
1149 uint32_t pc = GetAssembler()->CodeSize();
1150 StackMapStream* stack_map_stream = GetStackMapStream();
1151 size_t count = stack_map_stream->GetNumberOfStackMaps();
1152 if (count == 0) {
1153 return false;
1154 }
1155 return stack_map_stream->GetStackMapNativePcOffset(count - 1) == pc;
1156 }
1157
MaybeRecordNativeDebugInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1158 void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
1159 uint32_t dex_pc,
1160 SlowPathCode* slow_path) {
1161 if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
1162 if (HasStackMapAtCurrentPc()) {
1163 // Ensure that we do not collide with the stack map of the previous instruction.
1164 GenerateNop();
1165 }
1166 RecordPcInfo(instruction, dex_pc, slow_path, /* native_debug_info= */ true);
1167 }
1168 }
1169
RecordCatchBlockInfo()1170 void CodeGenerator::RecordCatchBlockInfo() {
1171 StackMapStream* stack_map_stream = GetStackMapStream();
1172
1173 for (HBasicBlock* block : *block_order_) {
1174 if (!block->IsCatchBlock()) {
1175 continue;
1176 }
1177
1178 uint32_t dex_pc = block->GetDexPc();
1179 uint32_t num_vregs = graph_->GetNumberOfVRegs();
1180 uint32_t native_pc = GetAddressOf(block);
1181
1182 stack_map_stream->BeginStackMapEntry(dex_pc,
1183 native_pc,
1184 /* register_mask= */ 0,
1185 /* sp_mask= */ nullptr,
1186 StackMap::Kind::Catch);
1187
1188 HInstruction* current_phi = block->GetFirstPhi();
1189 for (size_t vreg = 0; vreg < num_vregs; ++vreg) {
1190 while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
1191 HInstruction* next_phi = current_phi->GetNext();
1192 DCHECK(next_phi == nullptr ||
1193 current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
1194 << "Phis need to be sorted by vreg number to keep this a linear-time loop.";
1195 current_phi = next_phi;
1196 }
1197
1198 if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
1199 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1200 } else {
1201 Location location = current_phi->GetLocations()->Out();
1202 switch (location.GetKind()) {
1203 case Location::kStackSlot: {
1204 stack_map_stream->AddDexRegisterEntry(
1205 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1206 break;
1207 }
1208 case Location::kDoubleStackSlot: {
1209 stack_map_stream->AddDexRegisterEntry(
1210 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1211 stack_map_stream->AddDexRegisterEntry(
1212 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1213 ++vreg;
1214 DCHECK_LT(vreg, num_vregs);
1215 break;
1216 }
1217 default: {
1218 // All catch phis must be allocated to a stack slot.
1219 LOG(FATAL) << "Unexpected kind " << location.GetKind();
1220 UNREACHABLE();
1221 }
1222 }
1223 }
1224 }
1225
1226 stack_map_stream->EndStackMapEntry();
1227 }
1228 }
1229
AddSlowPath(SlowPathCode * slow_path)1230 void CodeGenerator::AddSlowPath(SlowPathCode* slow_path) {
1231 DCHECK(code_generation_data_ != nullptr);
1232 code_generation_data_->AddSlowPath(slow_path);
1233 }
1234
EmitEnvironment(HEnvironment * environment,SlowPathCode * slow_path)1235 void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) {
1236 if (environment == nullptr) return;
1237
1238 StackMapStream* stack_map_stream = GetStackMapStream();
1239 if (environment->GetParent() != nullptr) {
1240 // We emit the parent environment first.
1241 EmitEnvironment(environment->GetParent(), slow_path);
1242 stack_map_stream->BeginInlineInfoEntry(environment->GetMethod(),
1243 environment->GetDexPc(),
1244 environment->Size(),
1245 &graph_->GetDexFile());
1246 }
1247
1248 // Walk over the environment, and record the location of dex registers.
1249 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1250 HInstruction* current = environment->GetInstructionAt(i);
1251 if (current == nullptr) {
1252 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1253 continue;
1254 }
1255
1256 using Kind = DexRegisterLocation::Kind;
1257 Location location = environment->GetLocationAt(i);
1258 switch (location.GetKind()) {
1259 case Location::kConstant: {
1260 DCHECK_EQ(current, location.GetConstant());
1261 if (current->IsLongConstant()) {
1262 int64_t value = current->AsLongConstant()->GetValue();
1263 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
1264 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
1265 ++i;
1266 DCHECK_LT(i, environment_size);
1267 } else if (current->IsDoubleConstant()) {
1268 int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
1269 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
1270 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
1271 ++i;
1272 DCHECK_LT(i, environment_size);
1273 } else if (current->IsIntConstant()) {
1274 int32_t value = current->AsIntConstant()->GetValue();
1275 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
1276 } else if (current->IsNullConstant()) {
1277 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, 0);
1278 } else {
1279 DCHECK(current->IsFloatConstant()) << current->DebugName();
1280 int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
1281 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
1282 }
1283 break;
1284 }
1285
1286 case Location::kStackSlot: {
1287 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
1288 break;
1289 }
1290
1291 case Location::kDoubleStackSlot: {
1292 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
1293 stack_map_stream->AddDexRegisterEntry(
1294 Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1295 ++i;
1296 DCHECK_LT(i, environment_size);
1297 break;
1298 }
1299
1300 case Location::kRegister : {
1301 int id = location.reg();
1302 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
1303 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
1304 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1305 if (current->GetType() == DataType::Type::kInt64) {
1306 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
1307 ++i;
1308 DCHECK_LT(i, environment_size);
1309 }
1310 } else {
1311 stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, id);
1312 if (current->GetType() == DataType::Type::kInt64) {
1313 stack_map_stream->AddDexRegisterEntry(Kind::kInRegisterHigh, id);
1314 ++i;
1315 DCHECK_LT(i, environment_size);
1316 }
1317 }
1318 break;
1319 }
1320
1321 case Location::kFpuRegister : {
1322 int id = location.reg();
1323 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
1324 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
1325 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1326 if (current->GetType() == DataType::Type::kFloat64) {
1327 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
1328 ++i;
1329 DCHECK_LT(i, environment_size);
1330 }
1331 } else {
1332 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, id);
1333 if (current->GetType() == DataType::Type::kFloat64) {
1334 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegisterHigh, id);
1335 ++i;
1336 DCHECK_LT(i, environment_size);
1337 }
1338 }
1339 break;
1340 }
1341
1342 case Location::kFpuRegisterPair : {
1343 int low = location.low();
1344 int high = location.high();
1345 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
1346 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
1347 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1348 } else {
1349 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, low);
1350 }
1351 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
1352 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
1353 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1354 ++i;
1355 } else {
1356 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, high);
1357 ++i;
1358 }
1359 DCHECK_LT(i, environment_size);
1360 break;
1361 }
1362
1363 case Location::kRegisterPair : {
1364 int low = location.low();
1365 int high = location.high();
1366 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
1367 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
1368 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1369 } else {
1370 stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, low);
1371 }
1372 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
1373 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
1374 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1375 } else {
1376 stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, high);
1377 }
1378 ++i;
1379 DCHECK_LT(i, environment_size);
1380 break;
1381 }
1382
1383 case Location::kInvalid: {
1384 stack_map_stream->AddDexRegisterEntry(Kind::kNone, 0);
1385 break;
1386 }
1387
1388 default:
1389 LOG(FATAL) << "Unexpected kind " << location.GetKind();
1390 }
1391 }
1392
1393 if (environment->GetParent() != nullptr) {
1394 stack_map_stream->EndInlineInfoEntry();
1395 }
1396 }
1397
CanMoveNullCheckToUser(HNullCheck * null_check)1398 bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
1399 return null_check->IsEmittedAtUseSite();
1400 }
1401
MaybeRecordImplicitNullCheck(HInstruction * instr)1402 void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
1403 HNullCheck* null_check = instr->GetImplicitNullCheck();
1404 if (null_check != nullptr) {
1405 RecordPcInfo(null_check, null_check->GetDexPc());
1406 }
1407 }
1408
CreateThrowingSlowPathLocations(HInstruction * instruction,RegisterSet caller_saves)1409 LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction,
1410 RegisterSet caller_saves) {
1411 // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
1412 // HSuspendCheck from entry block). However, it will still get a valid stack frame
1413 // because the HNullCheck needs an environment.
1414 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
1415 // When throwing from a try block, we may need to retrieve dalvik registers from
1416 // physical registers and we also need to set up stack mask for GC. This is
1417 // implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
1418 bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock();
1419 if (can_throw_into_catch_block) {
1420 call_kind = LocationSummary::kCallOnSlowPath;
1421 }
1422 LocationSummary* locations =
1423 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
1424 if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
1425 locations->SetCustomSlowPathCallerSaves(caller_saves); // Default: no caller-save registers.
1426 }
1427 DCHECK(!instruction->HasUses());
1428 return locations;
1429 }
1430
GenerateNullCheck(HNullCheck * instruction)1431 void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
1432 if (compiler_options_.GetImplicitNullChecks()) {
1433 MaybeRecordStat(stats_, MethodCompilationStat::kImplicitNullCheckGenerated);
1434 GenerateImplicitNullCheck(instruction);
1435 } else {
1436 MaybeRecordStat(stats_, MethodCompilationStat::kExplicitNullCheckGenerated);
1437 GenerateExplicitNullCheck(instruction);
1438 }
1439 }
1440
ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck * suspend_check,HParallelMove * spills) const1441 void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
1442 HParallelMove* spills) const {
1443 LocationSummary* locations = suspend_check->GetLocations();
1444 HBasicBlock* block = suspend_check->GetBlock();
1445 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
1446 DCHECK(block->IsLoopHeader());
1447 DCHECK(block->GetFirstInstruction() == spills);
1448
1449 for (size_t i = 0, num_moves = spills->NumMoves(); i != num_moves; ++i) {
1450 Location dest = spills->MoveOperandsAt(i)->GetDestination();
1451 // All parallel moves in loop headers are spills.
1452 DCHECK(dest.IsStackSlot() || dest.IsDoubleStackSlot() || dest.IsSIMDStackSlot()) << dest;
1453 // Clear the stack bit marking a reference. Do not bother to check if the spill is
1454 // actually a reference spill, clearing bits that are already zero is harmless.
1455 locations->ClearStackBit(dest.GetStackIndex() / kVRegSize);
1456 }
1457 }
1458
EmitParallelMoves(Location from1,Location to1,DataType::Type type1,Location from2,Location to2,DataType::Type type2)1459 void CodeGenerator::EmitParallelMoves(Location from1,
1460 Location to1,
1461 DataType::Type type1,
1462 Location from2,
1463 Location to2,
1464 DataType::Type type2) {
1465 HParallelMove parallel_move(GetGraph()->GetAllocator());
1466 parallel_move.AddMove(from1, to1, type1, nullptr);
1467 parallel_move.AddMove(from2, to2, type2, nullptr);
1468 GetMoveResolver()->EmitNativeCode(¶llel_move);
1469 }
1470
ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,SlowPathCode * slow_path)1471 void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
1472 HInstruction* instruction,
1473 SlowPathCode* slow_path) {
1474 // Ensure that the call kind indication given to the register allocator is
1475 // coherent with the runtime call generated.
1476 if (slow_path == nullptr) {
1477 DCHECK(instruction->GetLocations()->WillCall())
1478 << "instruction->DebugName()=" << instruction->DebugName();
1479 } else {
1480 DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
1481 << "instruction->DebugName()=" << instruction->DebugName()
1482 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1483 }
1484
1485 // Check that the GC side effect is set when required.
1486 // TODO: Reverse EntrypointCanTriggerGC
1487 if (EntrypointCanTriggerGC(entrypoint)) {
1488 if (slow_path == nullptr) {
1489 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
1490 << "instruction->DebugName()=" << instruction->DebugName()
1491 << " instruction->GetSideEffects().ToString()="
1492 << instruction->GetSideEffects().ToString();
1493 } else {
1494 // 'CanTriggerGC' side effect is used to restrict optimization of instructions which depend
1495 // on GC (e.g. IntermediateAddress) - to ensure they are not alive across GC points. However
1496 // if execution never returns to the compiled code from a GC point this restriction is
1497 // unnecessary - in particular for fatal slow paths which might trigger GC.
1498 DCHECK((slow_path->IsFatal() && !instruction->GetLocations()->WillCall()) ||
1499 instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
1500 // When (non-Baker) read barriers are enabled, some instructions
1501 // use a slow path to emit a read barrier, which does not trigger
1502 // GC.
1503 (kEmitCompilerReadBarrier &&
1504 !kUseBakerReadBarrier &&
1505 (instruction->IsInstanceFieldGet() ||
1506 instruction->IsStaticFieldGet() ||
1507 instruction->IsArrayGet() ||
1508 instruction->IsLoadClass() ||
1509 instruction->IsLoadString() ||
1510 instruction->IsInstanceOf() ||
1511 instruction->IsCheckCast() ||
1512 (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
1513 << "instruction->DebugName()=" << instruction->DebugName()
1514 << " instruction->GetSideEffects().ToString()="
1515 << instruction->GetSideEffects().ToString()
1516 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1517 }
1518 } else {
1519 // The GC side effect is not required for the instruction. But the instruction might still have
1520 // it, for example if it calls other entrypoints requiring it.
1521 }
1522
1523 // Check the coherency of leaf information.
1524 DCHECK(instruction->IsSuspendCheck()
1525 || ((slow_path != nullptr) && slow_path->IsFatal())
1526 || instruction->GetLocations()->CanCall()
1527 || !IsLeafMethod())
1528 << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
1529 }
1530
ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction * instruction,SlowPathCode * slow_path)1531 void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
1532 SlowPathCode* slow_path) {
1533 DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
1534 << "instruction->DebugName()=" << instruction->DebugName()
1535 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1536 // Only the Baker read barrier marking slow path used by certains
1537 // instructions is expected to invoke the runtime without recording
1538 // PC-related information.
1539 DCHECK(kUseBakerReadBarrier);
1540 DCHECK(instruction->IsInstanceFieldGet() ||
1541 instruction->IsStaticFieldGet() ||
1542 instruction->IsArrayGet() ||
1543 instruction->IsArraySet() ||
1544 instruction->IsLoadClass() ||
1545 instruction->IsLoadString() ||
1546 instruction->IsInstanceOf() ||
1547 instruction->IsCheckCast() ||
1548 (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()) ||
1549 (instruction->IsInvokeStaticOrDirect() && instruction->GetLocations()->Intrinsified()))
1550 << "instruction->DebugName()=" << instruction->DebugName()
1551 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1552 }
1553
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1554 void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1555 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1556
1557 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
1558 for (uint32_t i : LowToHighBits(core_spills)) {
1559 // If the register holds an object, update the stack mask.
1560 if (locations->RegisterContainsObject(i)) {
1561 locations->SetStackBit(stack_offset / kVRegSize);
1562 }
1563 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1564 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1565 saved_core_stack_offsets_[i] = stack_offset;
1566 stack_offset += codegen->SaveCoreRegister(stack_offset, i);
1567 }
1568
1569 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
1570 for (uint32_t i : LowToHighBits(fp_spills)) {
1571 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1572 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1573 saved_fpu_stack_offsets_[i] = stack_offset;
1574 stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
1575 }
1576 }
1577
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1578 void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1579 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1580
1581 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
1582 for (uint32_t i : LowToHighBits(core_spills)) {
1583 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1584 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1585 stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
1586 }
1587
1588 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
1589 for (uint32_t i : LowToHighBits(fp_spills)) {
1590 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1591 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1592 stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
1593 }
1594 }
1595
CreateSystemArrayCopyLocationSummary(HInvoke * invoke)1596 void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) {
1597 // Check to see if we have known failures that will cause us to have to bail out
1598 // to the runtime, and just generate the runtime call directly.
1599 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
1600 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
1601
1602 // The positions must be non-negative.
1603 if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
1604 (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
1605 // We will have to fail anyways.
1606 return;
1607 }
1608
1609 // The length must be >= 0.
1610 HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
1611 if (length != nullptr) {
1612 int32_t len = length->GetValue();
1613 if (len < 0) {
1614 // Just call as normal.
1615 return;
1616 }
1617 }
1618
1619 SystemArrayCopyOptimizations optimizations(invoke);
1620
1621 if (optimizations.GetDestinationIsSource()) {
1622 if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
1623 // We only support backward copying if source and destination are the same.
1624 return;
1625 }
1626 }
1627
1628 if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
1629 // We currently don't intrinsify primitive copying.
1630 return;
1631 }
1632
1633 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
1634 LocationSummary* locations = new (allocator) LocationSummary(invoke,
1635 LocationSummary::kCallOnSlowPath,
1636 kIntrinsified);
1637 // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
1638 locations->SetInAt(0, Location::RequiresRegister());
1639 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1640 locations->SetInAt(2, Location::RequiresRegister());
1641 locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
1642 locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
1643
1644 locations->AddTemp(Location::RequiresRegister());
1645 locations->AddTemp(Location::RequiresRegister());
1646 locations->AddTemp(Location::RequiresRegister());
1647 }
1648
EmitJitRoots(uint8_t * code,const uint8_t * roots_data,std::vector<Handle<mirror::Object>> * roots)1649 void CodeGenerator::EmitJitRoots(uint8_t* code,
1650 const uint8_t* roots_data,
1651 /*out*/std::vector<Handle<mirror::Object>>* roots) {
1652 code_generation_data_->EmitJitRoots(roots);
1653 EmitJitRootPatches(code, roots_data);
1654 }
1655
GetArrayAllocationEntrypoint(HNewArray * new_array)1656 QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(HNewArray* new_array) {
1657 switch (new_array->GetComponentSizeShift()) {
1658 case 0: return kQuickAllocArrayResolved8;
1659 case 1: return kQuickAllocArrayResolved16;
1660 case 2: return kQuickAllocArrayResolved32;
1661 case 3: return kQuickAllocArrayResolved64;
1662 }
1663 LOG(FATAL) << "Unreachable";
1664 UNREACHABLE();
1665 }
1666
1667 } // namespace art
1668