1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
14 //
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #define DEBUG_TYPE "post-RA-sched"
22 #include "AntiDepBreaker.h"
23 #include "AggressiveAntiDepBreaker.h"
24 #include "CriticalAntiDepBreaker.h"
25 #include "RegisterClassInfo.h"
26 #include "ScheduleDAGInstrs.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/LatencyPriorityQueue.h"
29 #include "llvm/CodeGen/SchedulerRegistry.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Target/TargetLowering.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetSubtargetInfo.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/ADT/BitVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include <set>
49 using namespace llvm;
50
51 STATISTIC(NumNoops, "Number of noops inserted");
52 STATISTIC(NumStalls, "Number of pipeline stalls");
53 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
54
55 // Post-RA scheduling is enabled with
56 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
57 // override the target.
58 static cl::opt<bool>
59 EnablePostRAScheduler("post-RA-scheduler",
60 cl::desc("Enable scheduling after register allocation"),
61 cl::init(false), cl::Hidden);
62 static cl::opt<std::string>
63 EnableAntiDepBreaking("break-anti-dependencies",
64 cl::desc("Break post-RA scheduling anti-dependencies: "
65 "\"critical\", \"all\", or \"none\""),
66 cl::init("none"), cl::Hidden);
67
68 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
69 static cl::opt<int>
70 DebugDiv("postra-sched-debugdiv",
71 cl::desc("Debug control MBBs that are scheduled"),
72 cl::init(0), cl::Hidden);
73 static cl::opt<int>
74 DebugMod("postra-sched-debugmod",
75 cl::desc("Debug control MBBs that are scheduled"),
76 cl::init(0), cl::Hidden);
77
~AntiDepBreaker()78 AntiDepBreaker::~AntiDepBreaker() { }
79
80 namespace {
81 class PostRAScheduler : public MachineFunctionPass {
82 AliasAnalysis *AA;
83 const TargetInstrInfo *TII;
84 RegisterClassInfo RegClassInfo;
85 CodeGenOpt::Level OptLevel;
86
87 public:
88 static char ID;
PostRAScheduler(CodeGenOpt::Level ol)89 PostRAScheduler(CodeGenOpt::Level ol) :
90 MachineFunctionPass(ID), OptLevel(ol) {}
91
getAnalysisUsage(AnalysisUsage & AU) const92 void getAnalysisUsage(AnalysisUsage &AU) const {
93 AU.setPreservesCFG();
94 AU.addRequired<AliasAnalysis>();
95 AU.addRequired<MachineDominatorTree>();
96 AU.addPreserved<MachineDominatorTree>();
97 AU.addRequired<MachineLoopInfo>();
98 AU.addPreserved<MachineLoopInfo>();
99 MachineFunctionPass::getAnalysisUsage(AU);
100 }
101
getPassName() const102 const char *getPassName() const {
103 return "Post RA top-down list latency scheduler";
104 }
105
106 bool runOnMachineFunction(MachineFunction &Fn);
107 };
108 char PostRAScheduler::ID = 0;
109
110 class SchedulePostRATDList : public ScheduleDAGInstrs {
111 /// AvailableQueue - The priority queue to use for the available SUnits.
112 ///
113 LatencyPriorityQueue AvailableQueue;
114
115 /// PendingQueue - This contains all of the instructions whose operands have
116 /// been issued, but their results are not ready yet (due to the latency of
117 /// the operation). Once the operands becomes available, the instruction is
118 /// added to the AvailableQueue.
119 std::vector<SUnit*> PendingQueue;
120
121 /// Topo - A topological ordering for SUnits.
122 ScheduleDAGTopologicalSort Topo;
123
124 /// HazardRec - The hazard recognizer to use.
125 ScheduleHazardRecognizer *HazardRec;
126
127 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
128 AntiDepBreaker *AntiDepBreak;
129
130 /// AA - AliasAnalysis for making memory reference queries.
131 AliasAnalysis *AA;
132
133 /// KillIndices - The index of the most recent kill (proceding bottom-up),
134 /// or ~0u if the register is not live.
135 std::vector<unsigned> KillIndices;
136
137 public:
138 SchedulePostRATDList(
139 MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
140 AliasAnalysis *AA, const RegisterClassInfo&,
141 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
142 SmallVectorImpl<TargetRegisterClass*> &CriticalPathRCs);
143
144 ~SchedulePostRATDList();
145
146 /// StartBlock - Initialize register live-range state for scheduling in
147 /// this block.
148 ///
149 void StartBlock(MachineBasicBlock *BB);
150
151 /// Schedule - Schedule the instruction range using list scheduling.
152 ///
153 void Schedule();
154
155 /// Observe - Update liveness information to account for the current
156 /// instruction, which will not be scheduled.
157 ///
158 void Observe(MachineInstr *MI, unsigned Count);
159
160 /// FinishBlock - Clean up register live-range state.
161 ///
162 void FinishBlock();
163
164 /// FixupKills - Fix register kill flags that have been made
165 /// invalid due to scheduling
166 ///
167 void FixupKills(MachineBasicBlock *MBB);
168
169 private:
170 void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
171 void ReleaseSuccessors(SUnit *SU);
172 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
173 void ListScheduleTopDown();
174 void StartBlockForKills(MachineBasicBlock *BB);
175
176 // ToggleKillFlag - Toggle a register operand kill flag. Other
177 // adjustments may be made to the instruction if necessary. Return
178 // true if the operand has been deleted, false if not.
179 bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
180 };
181 }
182
SchedulePostRATDList(MachineFunction & MF,MachineLoopInfo & MLI,MachineDominatorTree & MDT,AliasAnalysis * AA,const RegisterClassInfo & RCI,TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,SmallVectorImpl<TargetRegisterClass * > & CriticalPathRCs)183 SchedulePostRATDList::SchedulePostRATDList(
184 MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
185 AliasAnalysis *AA, const RegisterClassInfo &RCI,
186 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
187 SmallVectorImpl<TargetRegisterClass*> &CriticalPathRCs)
188 : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits), AA(AA),
189 KillIndices(TRI->getNumRegs())
190 {
191 const TargetMachine &TM = MF.getTarget();
192 const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
193 HazardRec =
194 TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
195 AntiDepBreak =
196 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
197 (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
198 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
199 (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
200 }
201
~SchedulePostRATDList()202 SchedulePostRATDList::~SchedulePostRATDList() {
203 delete HazardRec;
204 delete AntiDepBreak;
205 }
206
runOnMachineFunction(MachineFunction & Fn)207 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
208 TII = Fn.getTarget().getInstrInfo();
209 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
210 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
211 AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
212 RegClassInfo.runOnMachineFunction(Fn);
213
214 // Check for explicit enable/disable of post-ra scheduling.
215 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = TargetSubtargetInfo::ANTIDEP_NONE;
216 SmallVector<TargetRegisterClass*, 4> CriticalPathRCs;
217 if (EnablePostRAScheduler.getPosition() > 0) {
218 if (!EnablePostRAScheduler)
219 return false;
220 } else {
221 // Check that post-RA scheduling is enabled for this target.
222 // This may upgrade the AntiDepMode.
223 const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
224 if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode, CriticalPathRCs))
225 return false;
226 }
227
228 // Check for antidep breaking override...
229 if (EnableAntiDepBreaking.getPosition() > 0) {
230 AntiDepMode = (EnableAntiDepBreaking == "all")
231 ? TargetSubtargetInfo::ANTIDEP_ALL
232 : ((EnableAntiDepBreaking == "critical")
233 ? TargetSubtargetInfo::ANTIDEP_CRITICAL
234 : TargetSubtargetInfo::ANTIDEP_NONE);
235 }
236
237 DEBUG(dbgs() << "PostRAScheduler\n");
238
239 SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
240 CriticalPathRCs);
241
242 // Loop over all of the basic blocks
243 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
244 MBB != MBBe; ++MBB) {
245 #ifndef NDEBUG
246 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
247 if (DebugDiv > 0) {
248 static int bbcnt = 0;
249 if (bbcnt++ % DebugDiv != DebugMod)
250 continue;
251 dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
252 ":BB#" << MBB->getNumber() << " ***\n";
253 }
254 #endif
255
256 // Initialize register live-range state for scheduling in this block.
257 Scheduler.StartBlock(MBB);
258
259 // Schedule each sequence of instructions not interrupted by a label
260 // or anything else that effectively needs to shut down scheduling.
261 MachineBasicBlock::iterator Current = MBB->end();
262 unsigned Count = MBB->size(), CurrentCount = Count;
263 for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
264 MachineInstr *MI = llvm::prior(I);
265 if (TII->isSchedulingBoundary(MI, MBB, Fn)) {
266 Scheduler.Run(MBB, I, Current, CurrentCount);
267 Scheduler.EmitSchedule();
268 Current = MI;
269 CurrentCount = Count - 1;
270 Scheduler.Observe(MI, CurrentCount);
271 }
272 I = MI;
273 --Count;
274 }
275 assert(Count == 0 && "Instruction count mismatch!");
276 assert((MBB->begin() == Current || CurrentCount != 0) &&
277 "Instruction count mismatch!");
278 Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
279 Scheduler.EmitSchedule();
280
281 // Clean up register live-range state.
282 Scheduler.FinishBlock();
283
284 // Update register kills
285 Scheduler.FixupKills(MBB);
286 }
287
288 return true;
289 }
290
291 /// StartBlock - Initialize register live-range state for scheduling in
292 /// this block.
293 ///
StartBlock(MachineBasicBlock * BB)294 void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
295 // Call the superclass.
296 ScheduleDAGInstrs::StartBlock(BB);
297
298 // Reset the hazard recognizer and anti-dep breaker.
299 HazardRec->Reset();
300 if (AntiDepBreak != NULL)
301 AntiDepBreak->StartBlock(BB);
302 }
303
304 /// Schedule - Schedule the instruction range using list scheduling.
305 ///
Schedule()306 void SchedulePostRATDList::Schedule() {
307 // Build the scheduling graph.
308 BuildSchedGraph(AA);
309
310 if (AntiDepBreak != NULL) {
311 unsigned Broken =
312 AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
313 InsertPosIndex, DbgValues);
314
315 if (Broken != 0) {
316 // We made changes. Update the dependency graph.
317 // Theoretically we could update the graph in place:
318 // When a live range is changed to use a different register, remove
319 // the def's anti-dependence *and* output-dependence edges due to
320 // that register, and add new anti-dependence and output-dependence
321 // edges based on the next live range of the register.
322 SUnits.clear();
323 Sequence.clear();
324 EntrySU = SUnit();
325 ExitSU = SUnit();
326 BuildSchedGraph(AA);
327
328 NumFixedAnti += Broken;
329 }
330 }
331
332 DEBUG(dbgs() << "********** List Scheduling **********\n");
333 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
334 SUnits[su].dumpAll(this));
335
336 AvailableQueue.initNodes(SUnits);
337 ListScheduleTopDown();
338 AvailableQueue.releaseState();
339 }
340
341 /// Observe - Update liveness information to account for the current
342 /// instruction, which will not be scheduled.
343 ///
Observe(MachineInstr * MI,unsigned Count)344 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
345 if (AntiDepBreak != NULL)
346 AntiDepBreak->Observe(MI, Count, InsertPosIndex);
347 }
348
349 /// FinishBlock - Clean up register live-range state.
350 ///
FinishBlock()351 void SchedulePostRATDList::FinishBlock() {
352 if (AntiDepBreak != NULL)
353 AntiDepBreak->FinishBlock();
354
355 // Call the superclass.
356 ScheduleDAGInstrs::FinishBlock();
357 }
358
359 /// StartBlockForKills - Initialize register live-range state for updating kills
360 ///
StartBlockForKills(MachineBasicBlock * BB)361 void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
362 // Initialize the indices to indicate that no registers are live.
363 for (unsigned i = 0; i < TRI->getNumRegs(); ++i)
364 KillIndices[i] = ~0u;
365
366 // Determine the live-out physregs for this block.
367 if (!BB->empty() && BB->back().getDesc().isReturn()) {
368 // In a return block, examine the function live-out regs.
369 for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
370 E = MRI.liveout_end(); I != E; ++I) {
371 unsigned Reg = *I;
372 KillIndices[Reg] = BB->size();
373 // Repeat, for all subregs.
374 for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
375 *Subreg; ++Subreg) {
376 KillIndices[*Subreg] = BB->size();
377 }
378 }
379 }
380 else {
381 // In a non-return block, examine the live-in regs of all successors.
382 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
383 SE = BB->succ_end(); SI != SE; ++SI) {
384 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
385 E = (*SI)->livein_end(); I != E; ++I) {
386 unsigned Reg = *I;
387 KillIndices[Reg] = BB->size();
388 // Repeat, for all subregs.
389 for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
390 *Subreg; ++Subreg) {
391 KillIndices[*Subreg] = BB->size();
392 }
393 }
394 }
395 }
396 }
397
ToggleKillFlag(MachineInstr * MI,MachineOperand & MO)398 bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
399 MachineOperand &MO) {
400 // Setting kill flag...
401 if (!MO.isKill()) {
402 MO.setIsKill(true);
403 return false;
404 }
405
406 // If MO itself is live, clear the kill flag...
407 if (KillIndices[MO.getReg()] != ~0u) {
408 MO.setIsKill(false);
409 return false;
410 }
411
412 // If any subreg of MO is live, then create an imp-def for that
413 // subreg and keep MO marked as killed.
414 MO.setIsKill(false);
415 bool AllDead = true;
416 const unsigned SuperReg = MO.getReg();
417 for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
418 *Subreg; ++Subreg) {
419 if (KillIndices[*Subreg] != ~0u) {
420 MI->addOperand(MachineOperand::CreateReg(*Subreg,
421 true /*IsDef*/,
422 true /*IsImp*/,
423 false /*IsKill*/,
424 false /*IsDead*/));
425 AllDead = false;
426 }
427 }
428
429 if(AllDead)
430 MO.setIsKill(true);
431 return false;
432 }
433
434 /// FixupKills - Fix the register kill flags, they may have been made
435 /// incorrect by instruction reordering.
436 ///
FixupKills(MachineBasicBlock * MBB)437 void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
438 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
439
440 std::set<unsigned> killedRegs;
441 BitVector ReservedRegs = TRI->getReservedRegs(MF);
442
443 StartBlockForKills(MBB);
444
445 // Examine block from end to start...
446 unsigned Count = MBB->size();
447 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
448 I != E; --Count) {
449 MachineInstr *MI = --I;
450 if (MI->isDebugValue())
451 continue;
452
453 // Update liveness. Registers that are defed but not used in this
454 // instruction are now dead. Mark register and all subregs as they
455 // are completely defined.
456 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
457 MachineOperand &MO = MI->getOperand(i);
458 if (!MO.isReg()) continue;
459 unsigned Reg = MO.getReg();
460 if (Reg == 0) continue;
461 if (!MO.isDef()) continue;
462 // Ignore two-addr defs.
463 if (MI->isRegTiedToUseOperand(i)) continue;
464
465 KillIndices[Reg] = ~0u;
466
467 // Repeat for all subregs.
468 for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
469 *Subreg; ++Subreg) {
470 KillIndices[*Subreg] = ~0u;
471 }
472 }
473
474 // Examine all used registers and set/clear kill flag. When a
475 // register is used multiple times we only set the kill flag on
476 // the first use.
477 killedRegs.clear();
478 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
479 MachineOperand &MO = MI->getOperand(i);
480 if (!MO.isReg() || !MO.isUse()) continue;
481 unsigned Reg = MO.getReg();
482 if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
483
484 bool kill = false;
485 if (killedRegs.find(Reg) == killedRegs.end()) {
486 kill = true;
487 // A register is not killed if any subregs are live...
488 for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
489 *Subreg; ++Subreg) {
490 if (KillIndices[*Subreg] != ~0u) {
491 kill = false;
492 break;
493 }
494 }
495
496 // If subreg is not live, then register is killed if it became
497 // live in this instruction
498 if (kill)
499 kill = (KillIndices[Reg] == ~0u);
500 }
501
502 if (MO.isKill() != kill) {
503 DEBUG(dbgs() << "Fixing " << MO << " in ");
504 // Warning: ToggleKillFlag may invalidate MO.
505 ToggleKillFlag(MI, MO);
506 DEBUG(MI->dump());
507 }
508
509 killedRegs.insert(Reg);
510 }
511
512 // Mark any used register (that is not using undef) and subregs as
513 // now live...
514 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
515 MachineOperand &MO = MI->getOperand(i);
516 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
517 unsigned Reg = MO.getReg();
518 if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
519
520 KillIndices[Reg] = Count;
521
522 for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
523 *Subreg; ++Subreg) {
524 KillIndices[*Subreg] = Count;
525 }
526 }
527 }
528 }
529
530 //===----------------------------------------------------------------------===//
531 // Top-Down Scheduling
532 //===----------------------------------------------------------------------===//
533
534 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
535 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
ReleaseSucc(SUnit * SU,SDep * SuccEdge)536 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
537 SUnit *SuccSU = SuccEdge->getSUnit();
538
539 #ifndef NDEBUG
540 if (SuccSU->NumPredsLeft == 0) {
541 dbgs() << "*** Scheduling failed! ***\n";
542 SuccSU->dump(this);
543 dbgs() << " has been released too many times!\n";
544 llvm_unreachable(0);
545 }
546 #endif
547 --SuccSU->NumPredsLeft;
548
549 // Standard scheduler algorithms will recompute the depth of the successor
550 // here as such:
551 // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
552 //
553 // However, we lazily compute node depth instead. Note that
554 // ScheduleNodeTopDown has already updated the depth of this node which causes
555 // all descendents to be marked dirty. Setting the successor depth explicitly
556 // here would cause depth to be recomputed for all its ancestors. If the
557 // successor is not yet ready (because of a transitively redundant edge) then
558 // this causes depth computation to be quadratic in the size of the DAG.
559
560 // If all the node's predecessors are scheduled, this node is ready
561 // to be scheduled. Ignore the special ExitSU node.
562 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
563 PendingQueue.push_back(SuccSU);
564 }
565
566 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
ReleaseSuccessors(SUnit * SU)567 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
568 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
569 I != E; ++I) {
570 ReleaseSucc(SU, &*I);
571 }
572 }
573
574 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
575 /// count of its successors. If a successor pending count is zero, add it to
576 /// the Available queue.
ScheduleNodeTopDown(SUnit * SU,unsigned CurCycle)577 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
578 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
579 DEBUG(SU->dump(this));
580
581 Sequence.push_back(SU);
582 assert(CurCycle >= SU->getDepth() &&
583 "Node scheduled above its depth!");
584 SU->setDepthToAtLeast(CurCycle);
585
586 ReleaseSuccessors(SU);
587 SU->isScheduled = true;
588 AvailableQueue.ScheduledNode(SU);
589 }
590
591 /// ListScheduleTopDown - The main loop of list scheduling for top-down
592 /// schedulers.
ListScheduleTopDown()593 void SchedulePostRATDList::ListScheduleTopDown() {
594 unsigned CurCycle = 0;
595
596 // We're scheduling top-down but we're visiting the regions in
597 // bottom-up order, so we don't know the hazards at the start of a
598 // region. So assume no hazards (this should usually be ok as most
599 // blocks are a single region).
600 HazardRec->Reset();
601
602 // Release any successors of the special Entry node.
603 ReleaseSuccessors(&EntrySU);
604
605 // Add all leaves to Available queue.
606 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
607 // It is available if it has no predecessors.
608 bool available = SUnits[i].Preds.empty();
609 if (available) {
610 AvailableQueue.push(&SUnits[i]);
611 SUnits[i].isAvailable = true;
612 }
613 }
614
615 // In any cycle where we can't schedule any instructions, we must
616 // stall or emit a noop, depending on the target.
617 bool CycleHasInsts = false;
618
619 // While Available queue is not empty, grab the node with the highest
620 // priority. If it is not ready put it back. Schedule the node.
621 std::vector<SUnit*> NotReady;
622 Sequence.reserve(SUnits.size());
623 while (!AvailableQueue.empty() || !PendingQueue.empty()) {
624 // Check to see if any of the pending instructions are ready to issue. If
625 // so, add them to the available queue.
626 unsigned MinDepth = ~0u;
627 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
628 if (PendingQueue[i]->getDepth() <= CurCycle) {
629 AvailableQueue.push(PendingQueue[i]);
630 PendingQueue[i]->isAvailable = true;
631 PendingQueue[i] = PendingQueue.back();
632 PendingQueue.pop_back();
633 --i; --e;
634 } else if (PendingQueue[i]->getDepth() < MinDepth)
635 MinDepth = PendingQueue[i]->getDepth();
636 }
637
638 DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
639
640 SUnit *FoundSUnit = 0;
641 bool HasNoopHazards = false;
642 while (!AvailableQueue.empty()) {
643 SUnit *CurSUnit = AvailableQueue.pop();
644
645 ScheduleHazardRecognizer::HazardType HT =
646 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
647 if (HT == ScheduleHazardRecognizer::NoHazard) {
648 FoundSUnit = CurSUnit;
649 break;
650 }
651
652 // Remember if this is a noop hazard.
653 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
654
655 NotReady.push_back(CurSUnit);
656 }
657
658 // Add the nodes that aren't ready back onto the available list.
659 if (!NotReady.empty()) {
660 AvailableQueue.push_all(NotReady);
661 NotReady.clear();
662 }
663
664 // If we found a node to schedule...
665 if (FoundSUnit) {
666 // ... schedule the node...
667 ScheduleNodeTopDown(FoundSUnit, CurCycle);
668 HazardRec->EmitInstruction(FoundSUnit);
669 CycleHasInsts = true;
670 if (HazardRec->atIssueLimit()) {
671 DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
672 HazardRec->AdvanceCycle();
673 ++CurCycle;
674 CycleHasInsts = false;
675 }
676 } else {
677 if (CycleHasInsts) {
678 DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
679 HazardRec->AdvanceCycle();
680 } else if (!HasNoopHazards) {
681 // Otherwise, we have a pipeline stall, but no other problem,
682 // just advance the current cycle and try again.
683 DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
684 HazardRec->AdvanceCycle();
685 ++NumStalls;
686 } else {
687 // Otherwise, we have no instructions to issue and we have instructions
688 // that will fault if we don't do this right. This is the case for
689 // processors without pipeline interlocks and other cases.
690 DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
691 HazardRec->EmitNoop();
692 Sequence.push_back(0); // NULL here means noop
693 ++NumNoops;
694 }
695
696 ++CurCycle;
697 CycleHasInsts = false;
698 }
699 }
700
701 #ifndef NDEBUG
702 VerifySchedule(/*isBottomUp=*/false);
703 #endif
704 }
705
706 //===----------------------------------------------------------------------===//
707 // Public Constructor Functions
708 //===----------------------------------------------------------------------===//
709
createPostRAScheduler(CodeGenOpt::Level OptLevel)710 FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) {
711 return new PostRAScheduler(OptLevel);
712 }
713