• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  * Copyright (c) 2016 Imagination Technologies Ltd.
7  *
8  * Licensed under the Apache License, Version 2.0 (the "License");
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *	  http://www.apache.org/licenses/LICENSE-2.0
13  *
14  * Unless required by applicable law or agreed to in writing, software
15  * distributed under the License is distributed on an "AS IS" BASIS,
16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  * See the License for the specific language governing permissions and
18  * limitations under the License.
19  *
20  *//*!
21  * \file
22  * \brief Robustness Utilities
23  *//*--------------------------------------------------------------------*/
24 
25 #include "vktRobustnessUtil.hpp"
26 #include "vkDefs.hpp"
27 #include "vkImageUtil.hpp"
28 #include "vkPrograms.hpp"
29 #include "vkQueryUtil.hpp"
30 #include "vkRefUtil.hpp"
31 #include "vkTypeUtil.hpp"
32 #include "vkCmdUtil.hpp"
33 #include "vkObjUtil.hpp"
34 #include "deMath.h"
35 #include <iomanip>
36 #include <limits>
37 #include <sstream>
38 
39 namespace vkt
40 {
41 namespace robustness
42 {
43 
44 using namespace vk;
45 
createRobustBufferAccessDevice(Context & context)46 Move<VkDevice> createRobustBufferAccessDevice (Context& context)
47 {
48 	const float queuePriority = 1.0f;
49 
50 	// Create a universal queue that supports graphics and compute
51 	const VkDeviceQueueCreateInfo queueParams =
52 	{
53 		VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,	// VkStructureType				sType;
54 		DE_NULL,									// const void*					pNext;
55 		0u,											// VkDeviceQueueCreateFlags		flags;
56 		context.getUniversalQueueFamilyIndex(),		// deUint32						queueFamilyIndex;
57 		1u,											// deUint32						queueCount;
58 		&queuePriority								// const float*					pQueuePriorities;
59 	};
60 
61 	VkPhysicalDeviceFeatures enabledFeatures = context.getDeviceFeatures();
62 	enabledFeatures.robustBufferAccess = true;
63 
64 	const VkDeviceCreateInfo deviceParams =
65 	{
66 		VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,	// VkStructureType					sType;
67 		DE_NULL,								// const void*						pNext;
68 		0u,										// VkDeviceCreateFlags				flags;
69 		1u,										// deUint32							queueCreateInfoCount;
70 		&queueParams,							// const VkDeviceQueueCreateInfo*	pQueueCreateInfos;
71 		0u,										// deUint32							enabledLayerCount;
72 		DE_NULL,								// const char* const*				ppEnabledLayerNames;
73 		0u,										// deUint32							enabledExtensionCount;
74 		DE_NULL,								// const char* const*				ppEnabledExtensionNames;
75 		&enabledFeatures						// const VkPhysicalDeviceFeatures*	pEnabledFeatures;
76 	};
77 
78 	return createDevice(context.getPlatformInterface(), context.getInstance(),
79 						context.getInstanceInterface(), context.getPhysicalDevice(), &deviceParams);
80 }
81 
areEqual(float a,float b)82 bool areEqual (float a, float b)
83 {
84 	return deFloatAbs(a - b) <= 0.001f;
85 }
86 
isValueZero(const void * valuePtr,size_t valueSizeInBytes)87 bool isValueZero (const void* valuePtr, size_t valueSizeInBytes)
88 {
89 	const deUint8* bytePtr = reinterpret_cast<const deUint8*>(valuePtr);
90 
91 	for (size_t i = 0; i < valueSizeInBytes; i++)
92 	{
93 		if (bytePtr[i] != 0)
94 			return false;
95 	}
96 
97 	return true;
98 }
99 
isValueWithinBuffer(const void * buffer,VkDeviceSize bufferSize,const void * valuePtr,size_t valueSizeInBytes)100 bool isValueWithinBuffer (const void* buffer, VkDeviceSize bufferSize, const void* valuePtr, size_t valueSizeInBytes)
101 {
102 	const deUint8* byteBuffer = reinterpret_cast<const deUint8*>(buffer);
103 
104 	if (bufferSize < ((VkDeviceSize)valueSizeInBytes))
105 		return false;
106 
107 	for (VkDeviceSize i = 0; i <= (bufferSize - valueSizeInBytes); i++)
108 	{
109 		if (!deMemCmp(&byteBuffer[i], valuePtr, valueSizeInBytes))
110 			return true;
111 	}
112 
113 	return false;
114 }
115 
isValueWithinBufferOrZero(const void * buffer,VkDeviceSize bufferSize,const void * valuePtr,size_t valueSizeInBytes)116 bool isValueWithinBufferOrZero (const void* buffer, VkDeviceSize bufferSize, const void* valuePtr, size_t valueSizeInBytes)
117 {
118 	return isValueWithinBuffer(buffer, bufferSize, valuePtr, valueSizeInBytes) || isValueZero(valuePtr, valueSizeInBytes);
119 }
120 
verifyOutOfBoundsVec4(const void * vecPtr,VkFormat bufferFormat)121 bool verifyOutOfBoundsVec4 (const void* vecPtr, VkFormat bufferFormat)
122 {
123 	if (isUintFormat(bufferFormat))
124 	{
125 		const deUint32* data = (deUint32*)vecPtr;
126 
127 		return data[0] == 0u
128 			&& data[1] == 0u
129 			&& data[2] == 0u
130 			&& (data[3] == 0u || data[3] == 1u || data[3] == std::numeric_limits<deUint32>::max());
131 	}
132 	else if (isIntFormat(bufferFormat))
133 	{
134 		const deInt32* data = (deInt32*)vecPtr;
135 
136 		return data[0] == 0
137 			&& data[1] == 0
138 			&& data[2] == 0
139 			&& (data[3] == 0 || data[3] == 1 || data[3] == std::numeric_limits<deInt32>::max());
140 	}
141 	else if (isFloatFormat(bufferFormat))
142 	{
143 		const float* data = (float*)vecPtr;
144 
145 		return areEqual(data[0], 0.0f)
146 			&& areEqual(data[1], 0.0f)
147 			&& areEqual(data[2], 0.0f)
148 			&& (areEqual(data[3], 0.0f) || areEqual(data[3], 1.0f));
149 	}
150 	else if (bufferFormat == VK_FORMAT_A2B10G10R10_UNORM_PACK32)
151 	{
152 		return *((deUint32*)vecPtr) == 0xc0000000u;
153 	}
154 
155 	DE_ASSERT(false);
156 	return false;
157 }
158 
populateBufferWithTestValues(void * buffer,VkDeviceSize size,VkFormat format)159 void populateBufferWithTestValues (void* buffer, VkDeviceSize size, VkFormat format)
160 {
161 	// Assign a sequence of 32-bit values
162 	for (VkDeviceSize scalarNdx = 0; scalarNdx < size / 4; scalarNdx++)
163 	{
164 		const deUint32 valueIndex = (deUint32)(2 + scalarNdx); // Do not use 0 or 1
165 
166 		if (isUintFormat(format))
167 		{
168 			reinterpret_cast<deUint32*>(buffer)[scalarNdx] = valueIndex;
169 		}
170 		else if (isIntFormat(format))
171 		{
172 			reinterpret_cast<deInt32*>(buffer)[scalarNdx] = -deInt32(valueIndex);
173 		}
174 		else if (isFloatFormat(format))
175 		{
176 			reinterpret_cast<float*>(buffer)[scalarNdx] = float(valueIndex);
177 		}
178 		else if (format == VK_FORMAT_A2B10G10R10_UNORM_PACK32)
179 		{
180 			const deUint32	r	= ((valueIndex + 0) & ((2u << 10) - 1u));
181 			const deUint32	g	= ((valueIndex + 1) & ((2u << 10) - 1u));
182 			const deUint32	b	= ((valueIndex + 2) & ((2u << 10) - 1u));
183 			const deUint32	a	= ((valueIndex + 0) & ((2u << 2) - 1u));
184 
185 			reinterpret_cast<deUint32*>(buffer)[scalarNdx] = (a << 30) | (b << 20) | (g << 10) | r;
186 		}
187 		else
188 		{
189 			DE_ASSERT(false);
190 		}
191 	}
192 }
193 
logValue(std::ostringstream & logMsg,const void * valuePtr,VkFormat valueFormat,size_t valueSize)194 void logValue (std::ostringstream& logMsg, const void* valuePtr, VkFormat valueFormat, size_t valueSize)
195 {
196 	if (isUintFormat(valueFormat))
197 	{
198 		logMsg << *reinterpret_cast<const deUint32*>(valuePtr);
199 	}
200 	else if (isIntFormat(valueFormat))
201 	{
202 		logMsg << *reinterpret_cast<const deInt32*>(valuePtr);
203 	}
204 	else if (isFloatFormat(valueFormat))
205 	{
206 		logMsg << *reinterpret_cast<const float*>(valuePtr);
207 	}
208 	else
209 	{
210 		const deUint8*				bytePtr		= reinterpret_cast<const deUint8*>(valuePtr);
211 		const std::ios::fmtflags	streamFlags	= logMsg.flags();
212 
213 		logMsg << std::hex;
214 		for (size_t i = 0; i < valueSize; i++)
215 		{
216 			logMsg << " " << (deUint32)bytePtr[i];
217 		}
218 		logMsg.flags(streamFlags);
219 	}
220 }
221 
222 // TestEnvironment
223 
TestEnvironment(Context & context,VkDevice device,VkDescriptorSetLayout descriptorSetLayout,VkDescriptorSet descriptorSet)224 TestEnvironment::TestEnvironment (Context&				context,
225 								  VkDevice				device,
226 								  VkDescriptorSetLayout	descriptorSetLayout,
227 								  VkDescriptorSet		descriptorSet)
228 	: m_context				(context)
229 	, m_device				(device)
230 	, m_descriptorSetLayout	(descriptorSetLayout)
231 	, m_descriptorSet		(descriptorSet)
232 {
233 	const DeviceInterface& vk = context.getDeviceInterface();
234 
235 	// Create command pool
236 	{
237 		const VkCommandPoolCreateInfo commandPoolParams =
238 		{
239 			VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,		// VkStructureType			sType;
240 			DE_NULL,										// const void*				pNext;
241 			VK_COMMAND_POOL_CREATE_TRANSIENT_BIT,			// VkCommandPoolCreateFlags	flags;
242 			context.getUniversalQueueFamilyIndex()			// deUint32					queueFamilyIndex;
243 		};
244 
245 		m_commandPool = createCommandPool(vk, m_device, &commandPoolParams);
246 	}
247 
248 	// Create command buffer
249 	{
250 		const VkCommandBufferAllocateInfo commandBufferAllocateInfo =
251 		{
252 			VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,	// VkStructureType			sType;
253 			DE_NULL,										// const void*				pNext;
254 			*m_commandPool,										// VkCommandPool			commandPool;
255 			VK_COMMAND_BUFFER_LEVEL_PRIMARY,				// VkCommandBufferLevel		level;
256 			1u,												// deUint32					bufferCount;
257 		};
258 
259 		m_commandBuffer = allocateCommandBuffer(vk, m_device, &commandBufferAllocateInfo);
260 	}
261 }
262 
getCommandBuffer(void)263 VkCommandBuffer TestEnvironment::getCommandBuffer (void)
264 {
265 	return *m_commandBuffer;
266 }
267 
268 // GraphicsEnvironment
269 
GraphicsEnvironment(Context & context,VkDevice device,VkDescriptorSetLayout descriptorSetLayout,VkDescriptorSet descriptorSet,const VertexBindings & vertexBindings,const VertexAttributes & vertexAttributes,const DrawConfig & drawConfig)270 GraphicsEnvironment::GraphicsEnvironment (Context&					context,
271 										  VkDevice					device,
272 										  VkDescriptorSetLayout		descriptorSetLayout,
273 										  VkDescriptorSet			descriptorSet,
274 										  const VertexBindings&		vertexBindings,
275 										  const VertexAttributes&	vertexAttributes,
276 										  const DrawConfig&			drawConfig)
277 
278 	: TestEnvironment		(context, device, descriptorSetLayout, descriptorSet)
279 	, m_renderSize			(16, 16)
280 	, m_colorFormat			(VK_FORMAT_R8G8B8A8_UNORM)
281 {
282 	const DeviceInterface&		vk						= context.getDeviceInterface();
283 	const deUint32				queueFamilyIndex		= context.getUniversalQueueFamilyIndex();
284 	const VkComponentMapping	componentMappingRGBA	= { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
285 	SimpleAllocator				memAlloc				(vk, m_device, getPhysicalDeviceMemoryProperties(m_context.getInstanceInterface(), m_context.getPhysicalDevice()));
286 
287 	// Create color image and view
288 	{
289 		const VkImageCreateInfo colorImageParams =
290 		{
291 			VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,										// VkStructureType			sType;
292 			DE_NULL,																	// const void*				pNext;
293 			0u,																			// VkImageCreateFlags		flags;
294 			VK_IMAGE_TYPE_2D,															// VkImageType				imageType;
295 			m_colorFormat,																// VkFormat					format;
296 			{ (deUint32)m_renderSize.x(), (deUint32)m_renderSize.y(), 1u },				// VkExtent3D				extent;
297 			1u,																			// deUint32					mipLevels;
298 			1u,																			// deUint32					arrayLayers;
299 			VK_SAMPLE_COUNT_1_BIT,														// VkSampleCountFlagBits	samples;
300 			VK_IMAGE_TILING_OPTIMAL,													// VkImageTiling			tiling;
301 			VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT,		// VkImageUsageFlags		usage;
302 			VK_SHARING_MODE_EXCLUSIVE,													// VkSharingMode			sharingMode;
303 			1u,																			// deUint32					queueFamilyIndexCount;
304 			&queueFamilyIndex,															// const deUint32*			pQueueFamilyIndices;
305 			VK_IMAGE_LAYOUT_UNDEFINED													// VkImageLayout			initialLayout;
306 		};
307 
308 		m_colorImage			= createImage(vk, m_device, &colorImageParams);
309 		m_colorImageAlloc		= memAlloc.allocate(getImageMemoryRequirements(vk, m_device, *m_colorImage), MemoryRequirement::Any);
310 		VK_CHECK(vk.bindImageMemory(m_device, *m_colorImage, m_colorImageAlloc->getMemory(), m_colorImageAlloc->getOffset()));
311 
312 		const VkImageViewCreateInfo colorAttachmentViewParams =
313 		{
314 			VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,			// VkStructureType			sType;
315 			DE_NULL,											// const void*				pNext;
316 			0u,													// VkImageViewCreateFlags	flags;
317 			*m_colorImage,										// VkImage					image;
318 			VK_IMAGE_VIEW_TYPE_2D,								// VkImageViewType			viewType;
319 			m_colorFormat,										// VkFormat					format;
320 			componentMappingRGBA,								// VkComponentMapping		components;
321 			{ VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u }		// VkImageSubresourceRange	subresourceRange;
322 		};
323 
324 		m_colorAttachmentView = createImageView(vk, m_device, &colorAttachmentViewParams);
325 	}
326 
327 	// Create render pass
328 	m_renderPass = makeRenderPass(vk, m_device, m_colorFormat);
329 
330 	// Create framebuffer
331 	{
332 		const VkFramebufferCreateInfo framebufferParams =
333 		{
334 			VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,			// VkStructureType			sType;
335 			DE_NULL,											// const void*				pNext;
336 			0u,													// VkFramebufferCreateFlags	flags;
337 			*m_renderPass,										// VkRenderPass				renderPass;
338 			1u,													// deUint32					attachmentCount;
339 			&m_colorAttachmentView.get(),						// const VkImageView*		pAttachments;
340 			(deUint32)m_renderSize.x(),							// deUint32					width;
341 			(deUint32)m_renderSize.y(),							// deUint32					height;
342 			1u													// deUint32					layers;
343 		};
344 
345 		m_framebuffer = createFramebuffer(vk, m_device, &framebufferParams);
346 	}
347 
348 	// Create pipeline layout
349 	{
350 		const VkPipelineLayoutCreateInfo pipelineLayoutParams =
351 		{
352 			VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,		// VkStructureType				sType;
353 			DE_NULL,											// const void*					pNext;
354 			0u,													// VkPipelineLayoutCreateFlags	flags;
355 			1u,													// deUint32						setLayoutCount;
356 			&m_descriptorSetLayout,								// const VkDescriptorSetLayout*	pSetLayouts;
357 			0u,													// deUint32						pushConstantRangeCount;
358 			DE_NULL												// const VkPushConstantRange*	pPushConstantRanges;
359 		};
360 
361 		m_pipelineLayout = createPipelineLayout(vk, m_device, &pipelineLayoutParams);
362 	}
363 
364 	m_vertexShaderModule	= createShaderModule(vk, m_device, m_context.getBinaryCollection().get("vertex"), 0);
365 	m_fragmentShaderModule	= createShaderModule(vk, m_device, m_context.getBinaryCollection().get("fragment"), 0);
366 
367 	// Create pipeline
368 	{
369 		const VkPipelineVertexInputStateCreateInfo vertexInputStateParams =
370 		{
371 			VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,		// VkStructureType							sType;
372 			DE_NULL,														// const void*								pNext;
373 			0u,																// VkPipelineVertexInputStateCreateFlags	flags;
374 			(deUint32)vertexBindings.size(),								// deUint32									vertexBindingDescriptionCount;
375 			vertexBindings.data(),											// const VkVertexInputBindingDescription*	pVertexBindingDescriptions;
376 			(deUint32)vertexAttributes.size(),								// deUint32									vertexAttributeDescriptionCount;
377 			vertexAttributes.data()											// const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
378 		};
379 
380 		const std::vector<VkViewport>	viewports	(1, makeViewport(m_renderSize));
381 		const std::vector<VkRect2D>		scissors	(1, makeRect2D(m_renderSize));
382 
383 		m_graphicsPipeline = makeGraphicsPipeline(vk,									// const DeviceInterface&                        vk
384 												  m_device,								// const VkDevice                                device
385 												  *m_pipelineLayout,					// const VkPipelineLayout                        pipelineLayout
386 												  *m_vertexShaderModule,				// const VkShaderModule                          vertexShaderModule
387 												  DE_NULL,								// const VkShaderModule                          tessellationControlShaderModule
388 												  DE_NULL,								// const VkShaderModule                          tessellationEvalShaderModule
389 												  DE_NULL,								// const VkShaderModule                          geometryShaderModule
390 												  *m_fragmentShaderModule,				// const VkShaderModule                          fragmentShaderModule
391 												  *m_renderPass,						// const VkRenderPass                            renderPass
392 												  viewports,							// const std::vector<VkViewport>&                viewports
393 												  scissors,								// const std::vector<VkRect2D>&                  scissors
394 												  VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,	// const VkPrimitiveTopology                     topology
395 												  0u,									// const deUint32                                subpass
396 												  0u,									// const deUint32                                patchControlPoints
397 												  &vertexInputStateParams);				// const VkPipelineVertexInputStateCreateInfo*   vertexInputStateCreateInfo
398 	}
399 
400 	// Record commands
401 	{
402 		const VkImageMemoryBarrier imageLayoutBarrier =
403 		{
404 			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,					// VkStructureType			sType;
405 			DE_NULL,												// const void*				pNext;
406 			(VkAccessFlags)0,										// VkAccessFlags			srcAccessMask;
407 			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,					// VkAccessFlags			dstAccessMask;
408 			VK_IMAGE_LAYOUT_UNDEFINED,								// VkImageLayout			oldLayout;
409 			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,				// VkImageLayout			newLayout;
410 			VK_QUEUE_FAMILY_IGNORED,								// uint32_t					srcQueueFamilyIndex;
411 			VK_QUEUE_FAMILY_IGNORED,								// uint32_t					dstQueueFamilyIndex;
412 			*m_colorImage,											// VkImage					image;
413 			{ VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u }			// VkImageSubresourceRange	subresourceRange;
414 		};
415 
416 		beginCommandBuffer(vk, *m_commandBuffer, 0u);
417 		{
418 			vk.cmdPipelineBarrier(*m_commandBuffer,
419 								  VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
420 								  VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
421 								  (VkDependencyFlags)0,
422 								  0u, DE_NULL,
423 								  0u, DE_NULL,
424 								  1u, &imageLayoutBarrier);
425 
426 			beginRenderPass(vk, *m_commandBuffer, *m_renderPass, *m_framebuffer, makeRect2D(0, 0, m_renderSize.x(), m_renderSize.y()), tcu::Vec4(0.0f));
427 			{
428 				const std::vector<VkDeviceSize> vertexBufferOffsets(drawConfig.vertexBuffers.size(), 0ull);
429 
430 				vk.cmdBindPipeline(*m_commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *m_graphicsPipeline);
431 				vk.cmdBindDescriptorSets(*m_commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *m_pipelineLayout, 0, 1, &m_descriptorSet, 0, DE_NULL);
432 				vk.cmdBindVertexBuffers(*m_commandBuffer, 0, (deUint32)drawConfig.vertexBuffers.size(), drawConfig.vertexBuffers.data(), vertexBufferOffsets.data());
433 
434 				if (drawConfig.indexBuffer == DE_NULL || drawConfig.indexCount == 0)
435 				{
436 					vk.cmdDraw(*m_commandBuffer, drawConfig.vertexCount, drawConfig.instanceCount, 0, 0);
437 				}
438 				else
439 				{
440 					vk.cmdBindIndexBuffer(*m_commandBuffer, drawConfig.indexBuffer, 0, VK_INDEX_TYPE_UINT32);
441 					vk.cmdDrawIndexed(*m_commandBuffer, drawConfig.indexCount, drawConfig.instanceCount, 0, 0, 0);
442 				}
443 			}
444 			endRenderPass(vk, *m_commandBuffer);
445 		}
446 		endCommandBuffer(vk, *m_commandBuffer);
447 	}
448 }
449 
450 // ComputeEnvironment
451 
ComputeEnvironment(Context & context,VkDevice device,VkDescriptorSetLayout descriptorSetLayout,VkDescriptorSet descriptorSet)452 ComputeEnvironment::ComputeEnvironment (Context&				context,
453 										VkDevice				device,
454 										VkDescriptorSetLayout	descriptorSetLayout,
455 										VkDescriptorSet			descriptorSet)
456 
457 	: TestEnvironment	(context, device, descriptorSetLayout, descriptorSet)
458 {
459 	const DeviceInterface& vk = context.getDeviceInterface();
460 
461 	// Create pipeline layout
462 	{
463 		const VkPipelineLayoutCreateInfo pipelineLayoutParams =
464 		{
465 			VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,			// VkStructureType					sType;
466 			DE_NULL,												// const void*						pNext;
467 			0u,														// VkPipelineLayoutCreateFlags		flags;
468 			1u,														// deUint32							setLayoutCount;
469 			&m_descriptorSetLayout,									// const VkDescriptorSetLayout*		pSetLayouts;
470 			0u,														// deUint32							pushConstantRangeCount;
471 			DE_NULL													// const VkPushConstantRange*		pPushConstantRanges;
472 		};
473 
474 		m_pipelineLayout = createPipelineLayout(vk, m_device, &pipelineLayoutParams);
475 	}
476 
477 	// Create compute pipeline
478 	{
479 		m_computeShaderModule = createShaderModule(vk, m_device, m_context.getBinaryCollection().get("compute"), 0);
480 
481 		const VkPipelineShaderStageCreateInfo computeStageParams =
482 		{
483 			VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,	// VkStructureType						sType;
484 			DE_NULL,												// const void*							pNext;
485 			0u,														// VkPipelineShaderStageCreateFlags		flags;
486 			VK_SHADER_STAGE_COMPUTE_BIT,							// VkShaderStageFlagBits				stage;
487 			*m_computeShaderModule,									// VkShaderModule						module;
488 			"main",													// const char*							pName;
489 			DE_NULL,												// const VkSpecializationInfo*			pSpecializationInfo;
490 		};
491 
492 		const VkComputePipelineCreateInfo computePipelineParams =
493 		{
494 			VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,			// VkStructureType						sType;
495 			DE_NULL,												// const void*							pNext;
496 			0u,														// VkPipelineCreateFlags				flags;
497 			computeStageParams,										// VkPipelineShaderStageCreateInfo		stage;
498 			*m_pipelineLayout,										// VkPipelineLayout						layout;
499 			DE_NULL,												// VkPipeline							basePipelineHandle;
500 			0u														// deInt32								basePipelineIndex;
501 		};
502 
503 		m_computePipeline = createComputePipeline(vk, m_device, DE_NULL, &computePipelineParams);
504 	}
505 
506 	// Record commands
507 	{
508 		beginCommandBuffer(vk, *m_commandBuffer, 0u);
509 		vk.cmdBindPipeline(*m_commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *m_computePipeline);
510 		vk.cmdBindDescriptorSets(*m_commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *m_pipelineLayout, 0, 1, &m_descriptorSet, 0, DE_NULL);
511 		vk.cmdDispatch(*m_commandBuffer, 32, 32, 1);
512 		endCommandBuffer(vk, *m_commandBuffer);
513 	}
514 }
515 
516 } // robustness
517 } // vkt
518