• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /* TO DO:
18  *   1.  Perhaps keep several copies of the encrypted key, in case something
19  *       goes horribly wrong?
20  *
21  */
22 
23 #define LOG_TAG "Cryptfs"
24 
25 #include "cryptfs.h"
26 
27 #include "Checkpoint.h"
28 #include "EncryptInplace.h"
29 #include "FsCrypt.h"
30 #include "Keymaster.h"
31 #include "Process.h"
32 #include "ScryptParameters.h"
33 #include "Utils.h"
34 #include "VoldUtil.h"
35 #include "VolumeManager.h"
36 
37 #include <android-base/parseint.h>
38 #include <android-base/properties.h>
39 #include <android-base/stringprintf.h>
40 #include <bootloader_message/bootloader_message.h>
41 #include <cutils/android_reboot.h>
42 #include <cutils/properties.h>
43 #include <ext4_utils/ext4_utils.h>
44 #include <f2fs_sparseblock.h>
45 #include <fs_mgr.h>
46 #include <fscrypt/fscrypt.h>
47 #include <hardware_legacy/power.h>
48 #include <log/log.h>
49 #include <logwrap/logwrap.h>
50 #include <openssl/evp.h>
51 #include <openssl/sha.h>
52 #include <selinux/selinux.h>
53 
54 #include <ctype.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <inttypes.h>
58 #include <libgen.h>
59 #include <linux/dm-ioctl.h>
60 #include <linux/kdev_t.h>
61 #include <math.h>
62 #include <stdio.h>
63 #include <stdlib.h>
64 #include <string.h>
65 #include <sys/ioctl.h>
66 #include <sys/mount.h>
67 #include <sys/param.h>
68 #include <sys/stat.h>
69 #include <sys/types.h>
70 #include <sys/wait.h>
71 #include <time.h>
72 #include <unistd.h>
73 
74 extern "C" {
75 #include <crypto_scrypt.h>
76 }
77 
78 using android::base::ParseUint;
79 using android::base::StringPrintf;
80 using android::fs_mgr::GetEntryForMountPoint;
81 using namespace std::chrono_literals;
82 
83 #define UNUSED __attribute__((unused))
84 
85 #define DM_CRYPT_BUF_SIZE 4096
86 
87 #define HASH_COUNT 2000
88 
89 constexpr size_t INTERMEDIATE_KEY_LEN_BYTES = 16;
90 constexpr size_t INTERMEDIATE_IV_LEN_BYTES = 16;
91 constexpr size_t INTERMEDIATE_BUF_SIZE = (INTERMEDIATE_KEY_LEN_BYTES + INTERMEDIATE_IV_LEN_BYTES);
92 
93 // SCRYPT_LEN is used by struct crypt_mnt_ftr for its intermediate key.
94 static_assert(INTERMEDIATE_BUF_SIZE == SCRYPT_LEN, "Mismatch of intermediate key sizes");
95 
96 #define KEY_IN_FOOTER "footer"
97 
98 #define DEFAULT_PASSWORD "default_password"
99 
100 #define CRYPTO_BLOCK_DEVICE "userdata"
101 
102 #define BREADCRUMB_FILE "/data/misc/vold/convert_fde"
103 
104 #define EXT4_FS 1
105 #define F2FS_FS 2
106 
107 #define TABLE_LOAD_RETRIES 10
108 
109 #define RSA_KEY_SIZE 2048
110 #define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE / 8)
111 #define RSA_EXPONENT 0x10001
112 #define KEYMASTER_CRYPTFS_RATE_LIMIT 1  // Maximum one try per second
113 
114 #define RETRY_MOUNT_ATTEMPTS 10
115 #define RETRY_MOUNT_DELAY_SECONDS 1
116 
117 #define CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE (1)
118 
119 static int put_crypt_ftr_and_key(struct crypt_mnt_ftr* crypt_ftr);
120 
121 static unsigned char saved_master_key[MAX_KEY_LEN];
122 static char* saved_mount_point;
123 static int master_key_saved = 0;
124 static struct crypt_persist_data* persist_data = NULL;
125 
126 /* Should we use keymaster? */
keymaster_check_compatibility()127 static int keymaster_check_compatibility() {
128     return keymaster_compatibility_cryptfs_scrypt();
129 }
130 
131 /* Create a new keymaster key and store it in this footer */
keymaster_create_key(struct crypt_mnt_ftr * ftr)132 static int keymaster_create_key(struct crypt_mnt_ftr* ftr) {
133     if (ftr->keymaster_blob_size) {
134         SLOGI("Already have key");
135         return 0;
136     }
137 
138     int rc = keymaster_create_key_for_cryptfs_scrypt(
139         RSA_KEY_SIZE, RSA_EXPONENT, KEYMASTER_CRYPTFS_RATE_LIMIT, ftr->keymaster_blob,
140         KEYMASTER_BLOB_SIZE, &ftr->keymaster_blob_size);
141     if (rc) {
142         if (ftr->keymaster_blob_size > KEYMASTER_BLOB_SIZE) {
143             SLOGE("Keymaster key blob too large");
144             ftr->keymaster_blob_size = 0;
145         }
146         SLOGE("Failed to generate keypair");
147         return -1;
148     }
149     return 0;
150 }
151 
152 /* This signs the given object using the keymaster key. */
keymaster_sign_object(struct crypt_mnt_ftr * ftr,const unsigned char * object,const size_t object_size,unsigned char ** signature,size_t * signature_size)153 static int keymaster_sign_object(struct crypt_mnt_ftr* ftr, const unsigned char* object,
154                                  const size_t object_size, unsigned char** signature,
155                                  size_t* signature_size) {
156     unsigned char to_sign[RSA_KEY_SIZE_BYTES];
157     size_t to_sign_size = sizeof(to_sign);
158     memset(to_sign, 0, RSA_KEY_SIZE_BYTES);
159 
160     // To sign a message with RSA, the message must satisfy two
161     // constraints:
162     //
163     // 1. The message, when interpreted as a big-endian numeric value, must
164     //    be strictly less than the public modulus of the RSA key.  Note
165     //    that because the most significant bit of the public modulus is
166     //    guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit
167     //    key), an n-bit message with most significant bit 0 always
168     //    satisfies this requirement.
169     //
170     // 2. The message must have the same length in bits as the public
171     //    modulus of the RSA key.  This requirement isn't mathematically
172     //    necessary, but is necessary to ensure consistency in
173     //    implementations.
174     switch (ftr->kdf_type) {
175         case KDF_SCRYPT_KEYMASTER:
176             // This ensures the most significant byte of the signed message
177             // is zero.  We could have zero-padded to the left instead, but
178             // this approach is slightly more robust against changes in
179             // object size.  However, it's still broken (but not unusably
180             // so) because we really should be using a proper deterministic
181             // RSA padding function, such as PKCS1.
182             memcpy(to_sign + 1, object, std::min((size_t)RSA_KEY_SIZE_BYTES - 1, object_size));
183             SLOGI("Signing safely-padded object");
184             break;
185         default:
186             SLOGE("Unknown KDF type %d", ftr->kdf_type);
187             return -1;
188     }
189     for (;;) {
190         auto result = keymaster_sign_object_for_cryptfs_scrypt(
191             ftr->keymaster_blob, ftr->keymaster_blob_size, KEYMASTER_CRYPTFS_RATE_LIMIT, to_sign,
192             to_sign_size, signature, signature_size);
193         switch (result) {
194             case KeymasterSignResult::ok:
195                 return 0;
196             case KeymasterSignResult::upgrade:
197                 break;
198             default:
199                 return -1;
200         }
201         SLOGD("Upgrading key");
202         if (keymaster_upgrade_key_for_cryptfs_scrypt(
203                 RSA_KEY_SIZE, RSA_EXPONENT, KEYMASTER_CRYPTFS_RATE_LIMIT, ftr->keymaster_blob,
204                 ftr->keymaster_blob_size, ftr->keymaster_blob, KEYMASTER_BLOB_SIZE,
205                 &ftr->keymaster_blob_size) != 0) {
206             SLOGE("Failed to upgrade key");
207             return -1;
208         }
209         if (put_crypt_ftr_and_key(ftr) != 0) {
210             SLOGE("Failed to write upgraded key to disk");
211         }
212         SLOGD("Key upgraded successfully");
213     }
214 }
215 
216 /* Store password when userdata is successfully decrypted and mounted.
217  * Cleared by cryptfs_clear_password
218  *
219  * To avoid a double prompt at boot, we need to store the CryptKeeper
220  * password and pass it to KeyGuard, which uses it to unlock KeyStore.
221  * Since the entire framework is torn down and rebuilt after encryption,
222  * we have to use a daemon or similar to store the password. Since vold
223  * is secured against IPC except from system processes, it seems a reasonable
224  * place to store this.
225  *
226  * password should be cleared once it has been used.
227  *
228  * password is aged out after password_max_age_seconds seconds.
229  */
230 static char* password = 0;
231 static int password_expiry_time = 0;
232 static const int password_max_age_seconds = 60;
233 
234 enum class RebootType { reboot, recovery, shutdown };
cryptfs_reboot(RebootType rt)235 static void cryptfs_reboot(RebootType rt) {
236     switch (rt) {
237         case RebootType::reboot:
238             property_set(ANDROID_RB_PROPERTY, "reboot");
239             break;
240 
241         case RebootType::recovery:
242             property_set(ANDROID_RB_PROPERTY, "reboot,recovery");
243             break;
244 
245         case RebootType::shutdown:
246             property_set(ANDROID_RB_PROPERTY, "shutdown");
247             break;
248     }
249 
250     sleep(20);
251 
252     /* Shouldn't get here, reboot should happen before sleep times out */
253     return;
254 }
255 
ioctl_init(struct dm_ioctl * io,size_t dataSize,const char * name,unsigned flags)256 static void ioctl_init(struct dm_ioctl* io, size_t dataSize, const char* name, unsigned flags) {
257     memset(io, 0, dataSize);
258     io->data_size = dataSize;
259     io->data_start = sizeof(struct dm_ioctl);
260     io->version[0] = 4;
261     io->version[1] = 0;
262     io->version[2] = 0;
263     io->flags = flags;
264     if (name) {
265         strlcpy(io->name, name, sizeof(io->name));
266     }
267 }
268 
269 namespace {
270 
271 struct CryptoType;
272 
273 // Use to get the CryptoType in use on this device.
274 const CryptoType& get_crypto_type();
275 
276 struct CryptoType {
277     // We should only be constructing CryptoTypes as part of
278     // supported_crypto_types[].  We do it via this pseudo-builder pattern,
279     // which isn't pure or fully protected as a concession to being able to
280     // do it all at compile time.  Add new CryptoTypes in
281     // supported_crypto_types[] below.
CryptoType__anonc99cc05c0111::CryptoType282     constexpr CryptoType() : CryptoType(nullptr, nullptr, 0xFFFFFFFF) {}
set_keysize__anonc99cc05c0111::CryptoType283     constexpr CryptoType set_keysize(uint32_t size) const {
284         return CryptoType(this->property_name, this->crypto_name, size);
285     }
set_property_name__anonc99cc05c0111::CryptoType286     constexpr CryptoType set_property_name(const char* property) const {
287         return CryptoType(property, this->crypto_name, this->keysize);
288     }
set_crypto_name__anonc99cc05c0111::CryptoType289     constexpr CryptoType set_crypto_name(const char* crypto) const {
290         return CryptoType(this->property_name, crypto, this->keysize);
291     }
292 
get_property_name__anonc99cc05c0111::CryptoType293     constexpr const char* get_property_name() const { return property_name; }
get_crypto_name__anonc99cc05c0111::CryptoType294     constexpr const char* get_crypto_name() const { return crypto_name; }
get_keysize__anonc99cc05c0111::CryptoType295     constexpr uint32_t get_keysize() const { return keysize; }
296 
297   private:
298     const char* property_name;
299     const char* crypto_name;
300     uint32_t keysize;
301 
CryptoType__anonc99cc05c0111::CryptoType302     constexpr CryptoType(const char* property, const char* crypto, uint32_t ksize)
303         : property_name(property), crypto_name(crypto), keysize(ksize) {}
304     friend const CryptoType& get_crypto_type();
305     static const CryptoType& get_device_crypto_algorithm();
306 };
307 
308 // We only want to parse this read-only property once.  But we need to wait
309 // until the system is initialized before we can read it.  So we use a static
310 // scoped within this function to get it only once.
get_crypto_type()311 const CryptoType& get_crypto_type() {
312     static CryptoType crypto_type = CryptoType::get_device_crypto_algorithm();
313     return crypto_type;
314 }
315 
316 constexpr CryptoType default_crypto_type = CryptoType()
317                                                .set_property_name("AES-128-CBC")
318                                                .set_crypto_name("aes-cbc-essiv:sha256")
319                                                .set_keysize(16);
320 
321 constexpr CryptoType supported_crypto_types[] = {
322     default_crypto_type,
323     CryptoType()
324         .set_property_name("adiantum")
325         .set_crypto_name("xchacha12,aes-adiantum-plain64")
326         .set_keysize(32),
327     // Add new CryptoTypes here.  Order is not important.
328 };
329 
330 // ---------- START COMPILE-TIME SANITY CHECK BLOCK -------------------------
331 // We confirm all supported_crypto_types have a small enough keysize and
332 // had both set_property_name() and set_crypto_name() called.
333 
334 template <typename T, size_t N>
array_length(T (&)[N])335 constexpr size_t array_length(T (&)[N]) {
336     return N;
337 }
338 
indexOutOfBoundsForCryptoTypes(size_t index)339 constexpr bool indexOutOfBoundsForCryptoTypes(size_t index) {
340     return (index >= array_length(supported_crypto_types));
341 }
342 
isValidCryptoType(const CryptoType & crypto_type)343 constexpr bool isValidCryptoType(const CryptoType& crypto_type) {
344     return ((crypto_type.get_property_name() != nullptr) &&
345             (crypto_type.get_crypto_name() != nullptr) &&
346             (crypto_type.get_keysize() <= MAX_KEY_LEN));
347 }
348 
349 // Note in C++11 that constexpr functions can only have a single line.
350 // So our code is a bit convoluted (using recursion instead of a loop),
351 // but it's asserting at compile time that all of our key lengths are valid.
validateSupportedCryptoTypes(size_t index)352 constexpr bool validateSupportedCryptoTypes(size_t index) {
353     return indexOutOfBoundsForCryptoTypes(index) ||
354            (isValidCryptoType(supported_crypto_types[index]) &&
355             validateSupportedCryptoTypes(index + 1));
356 }
357 
358 static_assert(validateSupportedCryptoTypes(0),
359               "We have a CryptoType with keysize > MAX_KEY_LEN or which was "
360               "incompletely constructed.");
361 //  ---------- END COMPILE-TIME SANITY CHECK BLOCK -------------------------
362 
363 // Don't call this directly, use get_crypto_type(), which caches this result.
get_device_crypto_algorithm()364 const CryptoType& CryptoType::get_device_crypto_algorithm() {
365     constexpr char CRYPT_ALGO_PROP[] = "ro.crypto.fde_algorithm";
366     char paramstr[PROPERTY_VALUE_MAX];
367 
368     property_get(CRYPT_ALGO_PROP, paramstr, default_crypto_type.get_property_name());
369     for (auto const& ctype : supported_crypto_types) {
370         if (strcmp(paramstr, ctype.get_property_name()) == 0) {
371             return ctype;
372         }
373     }
374     ALOGE("Invalid name (%s) for %s.  Defaulting to %s\n", paramstr, CRYPT_ALGO_PROP,
375           default_crypto_type.get_property_name());
376     return default_crypto_type;
377 }
378 
379 }  // namespace
380 
381 /**
382  * Gets the default device scrypt parameters for key derivation time tuning.
383  * The parameters should lead to about one second derivation time for the
384  * given device.
385  */
get_device_scrypt_params(struct crypt_mnt_ftr * ftr)386 static void get_device_scrypt_params(struct crypt_mnt_ftr* ftr) {
387     char paramstr[PROPERTY_VALUE_MAX];
388     int Nf, rf, pf;
389 
390     property_get(SCRYPT_PROP, paramstr, SCRYPT_DEFAULTS);
391     if (!parse_scrypt_parameters(paramstr, &Nf, &rf, &pf)) {
392         SLOGW("bad scrypt parameters '%s' should be like '12:8:1'; using defaults", paramstr);
393         parse_scrypt_parameters(SCRYPT_DEFAULTS, &Nf, &rf, &pf);
394     }
395     ftr->N_factor = Nf;
396     ftr->r_factor = rf;
397     ftr->p_factor = pf;
398 }
399 
cryptfs_get_keysize()400 uint32_t cryptfs_get_keysize() {
401     return get_crypto_type().get_keysize();
402 }
403 
cryptfs_get_crypto_name()404 const char* cryptfs_get_crypto_name() {
405     return get_crypto_type().get_crypto_name();
406 }
407 
get_fs_size(const char * dev)408 static uint64_t get_fs_size(const char* dev) {
409     int fd, block_size;
410     struct ext4_super_block sb;
411     uint64_t len;
412 
413     if ((fd = open(dev, O_RDONLY | O_CLOEXEC)) < 0) {
414         SLOGE("Cannot open device to get filesystem size ");
415         return 0;
416     }
417 
418     if (lseek64(fd, 1024, SEEK_SET) < 0) {
419         SLOGE("Cannot seek to superblock");
420         return 0;
421     }
422 
423     if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
424         SLOGE("Cannot read superblock");
425         return 0;
426     }
427 
428     close(fd);
429 
430     if (le32_to_cpu(sb.s_magic) != EXT4_SUPER_MAGIC) {
431         SLOGE("Not a valid ext4 superblock");
432         return 0;
433     }
434     block_size = 1024 << sb.s_log_block_size;
435     /* compute length in bytes */
436     len = (((uint64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;
437 
438     /* return length in sectors */
439     return len / 512;
440 }
441 
get_crypt_info(std::string * key_loc,std::string * real_blk_device)442 static void get_crypt_info(std::string* key_loc, std::string* real_blk_device) {
443     for (const auto& entry : fstab_default) {
444         if (!entry.fs_mgr_flags.vold_managed &&
445             (entry.fs_mgr_flags.crypt || entry.fs_mgr_flags.force_crypt ||
446              entry.fs_mgr_flags.force_fde_or_fbe || entry.fs_mgr_flags.file_encryption)) {
447             if (key_loc != nullptr) {
448                 *key_loc = entry.key_loc;
449             }
450             if (real_blk_device != nullptr) {
451                 *real_blk_device = entry.blk_device;
452             }
453             return;
454         }
455     }
456 }
457 
get_crypt_ftr_info(char ** metadata_fname,off64_t * off)458 static int get_crypt_ftr_info(char** metadata_fname, off64_t* off) {
459     static int cached_data = 0;
460     static uint64_t cached_off = 0;
461     static char cached_metadata_fname[PROPERTY_VALUE_MAX] = "";
462     char key_loc[PROPERTY_VALUE_MAX];
463     char real_blkdev[PROPERTY_VALUE_MAX];
464     int rc = -1;
465 
466     if (!cached_data) {
467         std::string key_loc;
468         std::string real_blkdev;
469         get_crypt_info(&key_loc, &real_blkdev);
470 
471         if (key_loc == KEY_IN_FOOTER) {
472             if (android::vold::GetBlockDevSize(real_blkdev, &cached_off) == android::OK) {
473                 /* If it's an encrypted Android partition, the last 16 Kbytes contain the
474                  * encryption info footer and key, and plenty of bytes to spare for future
475                  * growth.
476                  */
477                 strlcpy(cached_metadata_fname, real_blkdev.c_str(), sizeof(cached_metadata_fname));
478                 cached_off -= CRYPT_FOOTER_OFFSET;
479                 cached_data = 1;
480             } else {
481                 SLOGE("Cannot get size of block device %s\n", real_blkdev.c_str());
482             }
483         } else {
484             strlcpy(cached_metadata_fname, key_loc.c_str(), sizeof(cached_metadata_fname));
485             cached_off = 0;
486             cached_data = 1;
487         }
488     }
489 
490     if (cached_data) {
491         if (metadata_fname) {
492             *metadata_fname = cached_metadata_fname;
493         }
494         if (off) {
495             *off = cached_off;
496         }
497         rc = 0;
498     }
499 
500     return rc;
501 }
502 
503 /* Set sha256 checksum in structure */
set_ftr_sha(struct crypt_mnt_ftr * crypt_ftr)504 static void set_ftr_sha(struct crypt_mnt_ftr* crypt_ftr) {
505     SHA256_CTX c;
506     SHA256_Init(&c);
507     memset(crypt_ftr->sha256, 0, sizeof(crypt_ftr->sha256));
508     SHA256_Update(&c, crypt_ftr, sizeof(*crypt_ftr));
509     SHA256_Final(crypt_ftr->sha256, &c);
510 }
511 
512 /* key or salt can be NULL, in which case just skip writing that value.  Useful to
513  * update the failed mount count but not change the key.
514  */
put_crypt_ftr_and_key(struct crypt_mnt_ftr * crypt_ftr)515 static int put_crypt_ftr_and_key(struct crypt_mnt_ftr* crypt_ftr) {
516     int fd;
517     unsigned int cnt;
518     /* starting_off is set to the SEEK_SET offset
519      * where the crypto structure starts
520      */
521     off64_t starting_off;
522     int rc = -1;
523     char* fname = NULL;
524     struct stat statbuf;
525 
526     set_ftr_sha(crypt_ftr);
527 
528     if (get_crypt_ftr_info(&fname, &starting_off)) {
529         SLOGE("Unable to get crypt_ftr_info\n");
530         return -1;
531     }
532     if (fname[0] != '/') {
533         SLOGE("Unexpected value for crypto key location\n");
534         return -1;
535     }
536     if ((fd = open(fname, O_RDWR | O_CREAT | O_CLOEXEC, 0600)) < 0) {
537         SLOGE("Cannot open footer file %s for put\n", fname);
538         return -1;
539     }
540 
541     /* Seek to the start of the crypt footer */
542     if (lseek64(fd, starting_off, SEEK_SET) == -1) {
543         SLOGE("Cannot seek to real block device footer\n");
544         goto errout;
545     }
546 
547     if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
548         SLOGE("Cannot write real block device footer\n");
549         goto errout;
550     }
551 
552     fstat(fd, &statbuf);
553     /* If the keys are kept on a raw block device, do not try to truncate it. */
554     if (S_ISREG(statbuf.st_mode)) {
555         if (ftruncate(fd, 0x4000)) {
556             SLOGE("Cannot set footer file size\n");
557             goto errout;
558         }
559     }
560 
561     /* Success! */
562     rc = 0;
563 
564 errout:
565     close(fd);
566     return rc;
567 }
568 
check_ftr_sha(const struct crypt_mnt_ftr * crypt_ftr)569 static bool check_ftr_sha(const struct crypt_mnt_ftr* crypt_ftr) {
570     struct crypt_mnt_ftr copy;
571     memcpy(&copy, crypt_ftr, sizeof(copy));
572     set_ftr_sha(&copy);
573     return memcmp(copy.sha256, crypt_ftr->sha256, sizeof(copy.sha256)) == 0;
574 }
575 
unix_read(int fd,void * buff,int len)576 static inline int unix_read(int fd, void* buff, int len) {
577     return TEMP_FAILURE_RETRY(read(fd, buff, len));
578 }
579 
unix_write(int fd,const void * buff,int len)580 static inline int unix_write(int fd, const void* buff, int len) {
581     return TEMP_FAILURE_RETRY(write(fd, buff, len));
582 }
583 
init_empty_persist_data(struct crypt_persist_data * pdata,int len)584 static void init_empty_persist_data(struct crypt_persist_data* pdata, int len) {
585     memset(pdata, 0, len);
586     pdata->persist_magic = PERSIST_DATA_MAGIC;
587     pdata->persist_valid_entries = 0;
588 }
589 
590 /* A routine to update the passed in crypt_ftr to the lastest version.
591  * fd is open read/write on the device that holds the crypto footer and persistent
592  * data, crypt_ftr is a pointer to the struct to be updated, and offset is the
593  * absolute offset to the start of the crypt_mnt_ftr on the passed in fd.
594  */
upgrade_crypt_ftr(int fd,struct crypt_mnt_ftr * crypt_ftr,off64_t offset)595 static void upgrade_crypt_ftr(int fd, struct crypt_mnt_ftr* crypt_ftr, off64_t offset) {
596     int orig_major = crypt_ftr->major_version;
597     int orig_minor = crypt_ftr->minor_version;
598 
599     if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 0)) {
600         struct crypt_persist_data* pdata;
601         off64_t pdata_offset = offset + CRYPT_FOOTER_TO_PERSIST_OFFSET;
602 
603         SLOGW("upgrading crypto footer to 1.1");
604 
605         pdata = (crypt_persist_data*)malloc(CRYPT_PERSIST_DATA_SIZE);
606         if (pdata == NULL) {
607             SLOGE("Cannot allocate persisent data\n");
608             return;
609         }
610         memset(pdata, 0, CRYPT_PERSIST_DATA_SIZE);
611 
612         /* Need to initialize the persistent data area */
613         if (lseek64(fd, pdata_offset, SEEK_SET) == -1) {
614             SLOGE("Cannot seek to persisent data offset\n");
615             free(pdata);
616             return;
617         }
618         /* Write all zeros to the first copy, making it invalid */
619         unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);
620 
621         /* Write a valid but empty structure to the second copy */
622         init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
623         unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);
624 
625         /* Update the footer */
626         crypt_ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
627         crypt_ftr->persist_data_offset[0] = pdata_offset;
628         crypt_ftr->persist_data_offset[1] = pdata_offset + CRYPT_PERSIST_DATA_SIZE;
629         crypt_ftr->minor_version = 1;
630         free(pdata);
631     }
632 
633     if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 1)) {
634         SLOGW("upgrading crypto footer to 1.2");
635         /* But keep the old kdf_type.
636          * It will get updated later to KDF_SCRYPT after the password has been verified.
637          */
638         crypt_ftr->kdf_type = KDF_PBKDF2;
639         get_device_scrypt_params(crypt_ftr);
640         crypt_ftr->minor_version = 2;
641     }
642 
643     if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 2)) {
644         SLOGW("upgrading crypto footer to 1.3");
645         crypt_ftr->crypt_type = CRYPT_TYPE_PASSWORD;
646         crypt_ftr->minor_version = 3;
647     }
648 
649     if ((orig_major != crypt_ftr->major_version) || (orig_minor != crypt_ftr->minor_version)) {
650         if (lseek64(fd, offset, SEEK_SET) == -1) {
651             SLOGE("Cannot seek to crypt footer\n");
652             return;
653         }
654         unix_write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr));
655     }
656 }
657 
get_crypt_ftr_and_key(struct crypt_mnt_ftr * crypt_ftr)658 static int get_crypt_ftr_and_key(struct crypt_mnt_ftr* crypt_ftr) {
659     int fd;
660     unsigned int cnt;
661     off64_t starting_off;
662     int rc = -1;
663     char* fname = NULL;
664     struct stat statbuf;
665 
666     if (get_crypt_ftr_info(&fname, &starting_off)) {
667         SLOGE("Unable to get crypt_ftr_info\n");
668         return -1;
669     }
670     if (fname[0] != '/') {
671         SLOGE("Unexpected value for crypto key location\n");
672         return -1;
673     }
674     if ((fd = open(fname, O_RDWR | O_CLOEXEC)) < 0) {
675         SLOGE("Cannot open footer file %s for get\n", fname);
676         return -1;
677     }
678 
679     /* Make sure it's 16 Kbytes in length */
680     fstat(fd, &statbuf);
681     if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
682         SLOGE("footer file %s is not the expected size!\n", fname);
683         goto errout;
684     }
685 
686     /* Seek to the start of the crypt footer */
687     if (lseek64(fd, starting_off, SEEK_SET) == -1) {
688         SLOGE("Cannot seek to real block device footer\n");
689         goto errout;
690     }
691 
692     if ((cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
693         SLOGE("Cannot read real block device footer\n");
694         goto errout;
695     }
696 
697     if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
698         SLOGE("Bad magic for real block device %s\n", fname);
699         goto errout;
700     }
701 
702     if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) {
703         SLOGE("Cannot understand major version %d real block device footer; expected %d\n",
704               crypt_ftr->major_version, CURRENT_MAJOR_VERSION);
705         goto errout;
706     }
707 
708     // We risk buffer overflows with oversized keys, so we just reject them.
709     // 0-sized keys are problematic (essentially by-passing encryption), and
710     // AES-CBC key wrapping only works for multiples of 16 bytes.
711     if ((crypt_ftr->keysize == 0) || ((crypt_ftr->keysize % 16) != 0) ||
712         (crypt_ftr->keysize > MAX_KEY_LEN)) {
713         SLOGE(
714             "Invalid keysize (%u) for block device %s; Must be non-zero, "
715             "divisible by 16, and <= %d\n",
716             crypt_ftr->keysize, fname, MAX_KEY_LEN);
717         goto errout;
718     }
719 
720     if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) {
721         SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n",
722               crypt_ftr->minor_version, CURRENT_MINOR_VERSION);
723     }
724 
725     /* If this is a verion 1.0 crypt_ftr, make it a 1.1 crypt footer, and update the
726      * copy on disk before returning.
727      */
728     if (crypt_ftr->minor_version < CURRENT_MINOR_VERSION) {
729         upgrade_crypt_ftr(fd, crypt_ftr, starting_off);
730     }
731 
732     /* Success! */
733     rc = 0;
734 
735 errout:
736     close(fd);
737     return rc;
738 }
739 
validate_persistent_data_storage(struct crypt_mnt_ftr * crypt_ftr)740 static int validate_persistent_data_storage(struct crypt_mnt_ftr* crypt_ftr) {
741     if (crypt_ftr->persist_data_offset[0] + crypt_ftr->persist_data_size >
742         crypt_ftr->persist_data_offset[1]) {
743         SLOGE("Crypt_ftr persist data regions overlap");
744         return -1;
745     }
746 
747     if (crypt_ftr->persist_data_offset[0] >= crypt_ftr->persist_data_offset[1]) {
748         SLOGE("Crypt_ftr persist data region 0 starts after region 1");
749         return -1;
750     }
751 
752     if (((crypt_ftr->persist_data_offset[1] + crypt_ftr->persist_data_size) -
753          (crypt_ftr->persist_data_offset[0] - CRYPT_FOOTER_TO_PERSIST_OFFSET)) >
754         CRYPT_FOOTER_OFFSET) {
755         SLOGE("Persistent data extends past crypto footer");
756         return -1;
757     }
758 
759     return 0;
760 }
761 
load_persistent_data(void)762 static int load_persistent_data(void) {
763     struct crypt_mnt_ftr crypt_ftr;
764     struct crypt_persist_data* pdata = NULL;
765     char encrypted_state[PROPERTY_VALUE_MAX];
766     char* fname;
767     int found = 0;
768     int fd;
769     int ret;
770     int i;
771 
772     if (persist_data) {
773         /* Nothing to do, we've already loaded or initialized it */
774         return 0;
775     }
776 
777     /* If not encrypted, just allocate an empty table and initialize it */
778     property_get("ro.crypto.state", encrypted_state, "");
779     if (strcmp(encrypted_state, "encrypted")) {
780         pdata = (crypt_persist_data*)malloc(CRYPT_PERSIST_DATA_SIZE);
781         if (pdata) {
782             init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
783             persist_data = pdata;
784             return 0;
785         }
786         return -1;
787     }
788 
789     if (get_crypt_ftr_and_key(&crypt_ftr)) {
790         return -1;
791     }
792 
793     if ((crypt_ftr.major_version < 1) ||
794         (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
795         SLOGE("Crypt_ftr version doesn't support persistent data");
796         return -1;
797     }
798 
799     if (get_crypt_ftr_info(&fname, NULL)) {
800         return -1;
801     }
802 
803     ret = validate_persistent_data_storage(&crypt_ftr);
804     if (ret) {
805         return -1;
806     }
807 
808     fd = open(fname, O_RDONLY | O_CLOEXEC);
809     if (fd < 0) {
810         SLOGE("Cannot open %s metadata file", fname);
811         return -1;
812     }
813 
814     pdata = (crypt_persist_data*)malloc(crypt_ftr.persist_data_size);
815     if (pdata == NULL) {
816         SLOGE("Cannot allocate memory for persistent data");
817         goto err;
818     }
819 
820     for (i = 0; i < 2; i++) {
821         if (lseek64(fd, crypt_ftr.persist_data_offset[i], SEEK_SET) < 0) {
822             SLOGE("Cannot seek to read persistent data on %s", fname);
823             goto err2;
824         }
825         if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) {
826             SLOGE("Error reading persistent data on iteration %d", i);
827             goto err2;
828         }
829         if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
830             found = 1;
831             break;
832         }
833     }
834 
835     if (!found) {
836         SLOGI("Could not find valid persistent data, creating");
837         init_empty_persist_data(pdata, crypt_ftr.persist_data_size);
838     }
839 
840     /* Success */
841     persist_data = pdata;
842     close(fd);
843     return 0;
844 
845 err2:
846     free(pdata);
847 
848 err:
849     close(fd);
850     return -1;
851 }
852 
save_persistent_data(void)853 static int save_persistent_data(void) {
854     struct crypt_mnt_ftr crypt_ftr;
855     struct crypt_persist_data* pdata;
856     char* fname;
857     off64_t write_offset;
858     off64_t erase_offset;
859     int fd;
860     int ret;
861 
862     if (persist_data == NULL) {
863         SLOGE("No persistent data to save");
864         return -1;
865     }
866 
867     if (get_crypt_ftr_and_key(&crypt_ftr)) {
868         return -1;
869     }
870 
871     if ((crypt_ftr.major_version < 1) ||
872         (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
873         SLOGE("Crypt_ftr version doesn't support persistent data");
874         return -1;
875     }
876 
877     ret = validate_persistent_data_storage(&crypt_ftr);
878     if (ret) {
879         return -1;
880     }
881 
882     if (get_crypt_ftr_info(&fname, NULL)) {
883         return -1;
884     }
885 
886     fd = open(fname, O_RDWR | O_CLOEXEC);
887     if (fd < 0) {
888         SLOGE("Cannot open %s metadata file", fname);
889         return -1;
890     }
891 
892     pdata = (crypt_persist_data*)malloc(crypt_ftr.persist_data_size);
893     if (pdata == NULL) {
894         SLOGE("Cannot allocate persistant data");
895         goto err;
896     }
897 
898     if (lseek64(fd, crypt_ftr.persist_data_offset[0], SEEK_SET) < 0) {
899         SLOGE("Cannot seek to read persistent data on %s", fname);
900         goto err2;
901     }
902 
903     if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) {
904         SLOGE("Error reading persistent data before save");
905         goto err2;
906     }
907 
908     if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
909         /* The first copy is the curent valid copy, so write to
910          * the second copy and erase this one */
911         write_offset = crypt_ftr.persist_data_offset[1];
912         erase_offset = crypt_ftr.persist_data_offset[0];
913     } else {
914         /* The second copy must be the valid copy, so write to
915          * the first copy, and erase the second */
916         write_offset = crypt_ftr.persist_data_offset[0];
917         erase_offset = crypt_ftr.persist_data_offset[1];
918     }
919 
920     /* Write the new copy first, if successful, then erase the old copy */
921     if (lseek64(fd, write_offset, SEEK_SET) < 0) {
922         SLOGE("Cannot seek to write persistent data");
923         goto err2;
924     }
925     if (unix_write(fd, persist_data, crypt_ftr.persist_data_size) ==
926         (int)crypt_ftr.persist_data_size) {
927         if (lseek64(fd, erase_offset, SEEK_SET) < 0) {
928             SLOGE("Cannot seek to erase previous persistent data");
929             goto err2;
930         }
931         fsync(fd);
932         memset(pdata, 0, crypt_ftr.persist_data_size);
933         if (unix_write(fd, pdata, crypt_ftr.persist_data_size) != (int)crypt_ftr.persist_data_size) {
934             SLOGE("Cannot write to erase previous persistent data");
935             goto err2;
936         }
937         fsync(fd);
938     } else {
939         SLOGE("Cannot write to save persistent data");
940         goto err2;
941     }
942 
943     /* Success */
944     free(pdata);
945     close(fd);
946     return 0;
947 
948 err2:
949     free(pdata);
950 err:
951     close(fd);
952     return -1;
953 }
954 
955 /* Convert a binary key of specified length into an ascii hex string equivalent,
956  * without the leading 0x and with null termination
957  */
convert_key_to_hex_ascii(const unsigned char * master_key,unsigned int keysize,char * master_key_ascii)958 static void convert_key_to_hex_ascii(const unsigned char* master_key, unsigned int keysize,
959                                      char* master_key_ascii) {
960     unsigned int i, a;
961     unsigned char nibble;
962 
963     for (i = 0, a = 0; i < keysize; i++, a += 2) {
964         /* For each byte, write out two ascii hex digits */
965         nibble = (master_key[i] >> 4) & 0xf;
966         master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
967 
968         nibble = master_key[i] & 0xf;
969         master_key_ascii[a + 1] = nibble + (nibble > 9 ? 0x37 : 0x30);
970     }
971 
972     /* Add the null termination */
973     master_key_ascii[a] = '\0';
974 }
975 
load_crypto_mapping_table(struct crypt_mnt_ftr * crypt_ftr,const unsigned char * master_key,const char * real_blk_name,const char * name,int fd,const char * extra_params)976 static int load_crypto_mapping_table(struct crypt_mnt_ftr* crypt_ftr,
977                                      const unsigned char* master_key, const char* real_blk_name,
978                                      const char* name, int fd, const char* extra_params) {
979     alignas(struct dm_ioctl) char buffer[DM_CRYPT_BUF_SIZE];
980     struct dm_ioctl* io;
981     struct dm_target_spec* tgt;
982     char* crypt_params;
983     // We need two ASCII characters to represent each byte, and need space for
984     // the '\0' terminator.
985     char master_key_ascii[MAX_KEY_LEN * 2 + 1];
986     size_t buff_offset;
987     int i;
988 
989     io = (struct dm_ioctl*)buffer;
990 
991     /* Load the mapping table for this device */
992     tgt = (struct dm_target_spec*)&buffer[sizeof(struct dm_ioctl)];
993 
994     ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
995     io->target_count = 1;
996     tgt->status = 0;
997     tgt->sector_start = 0;
998     tgt->length = crypt_ftr->fs_size;
999     strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME);
1000 
1001     crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
1002     convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
1003 
1004     buff_offset = crypt_params - buffer;
1005     SLOGI(
1006         "Creating crypto dev \"%s\"; cipher=%s, keysize=%u, real_dev=%s, len=%llu, params=\"%s\"\n",
1007         name, crypt_ftr->crypto_type_name, crypt_ftr->keysize, real_blk_name, tgt->length * 512,
1008         extra_params);
1009     snprintf(crypt_params, sizeof(buffer) - buff_offset, "%s %s 0 %s 0 %s",
1010              crypt_ftr->crypto_type_name, master_key_ascii, real_blk_name, extra_params);
1011     crypt_params += strlen(crypt_params) + 1;
1012     crypt_params =
1013         (char*)(((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
1014     tgt->next = crypt_params - buffer;
1015 
1016     for (i = 0; i < TABLE_LOAD_RETRIES; i++) {
1017         if (!ioctl(fd, DM_TABLE_LOAD, io)) {
1018             break;
1019         }
1020         usleep(500000);
1021     }
1022 
1023     if (i == TABLE_LOAD_RETRIES) {
1024         /* We failed to load the table, return an error */
1025         return -1;
1026     } else {
1027         return i + 1;
1028     }
1029 }
1030 
get_dm_crypt_version(int fd,const char * name,int * version)1031 static int get_dm_crypt_version(int fd, const char* name, int* version) {
1032     char buffer[DM_CRYPT_BUF_SIZE];
1033     struct dm_ioctl* io;
1034     struct dm_target_versions* v;
1035 
1036     io = (struct dm_ioctl*)buffer;
1037 
1038     ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
1039 
1040     if (ioctl(fd, DM_LIST_VERSIONS, io)) {
1041         return -1;
1042     }
1043 
1044     /* Iterate over the returned versions, looking for name of "crypt".
1045      * When found, get and return the version.
1046      */
1047     v = (struct dm_target_versions*)&buffer[sizeof(struct dm_ioctl)];
1048     while (v->next) {
1049         if (!strcmp(v->name, "crypt")) {
1050             /* We found the crypt driver, return the version, and get out */
1051             version[0] = v->version[0];
1052             version[1] = v->version[1];
1053             version[2] = v->version[2];
1054             return 0;
1055         }
1056         v = (struct dm_target_versions*)(((char*)v) + v->next);
1057     }
1058 
1059     return -1;
1060 }
1061 
extra_params_as_string(const std::vector<std::string> & extra_params_vec)1062 static std::string extra_params_as_string(const std::vector<std::string>& extra_params_vec) {
1063     if (extra_params_vec.empty()) return "";
1064     std::string extra_params = std::to_string(extra_params_vec.size());
1065     for (const auto& p : extra_params_vec) {
1066         extra_params.append(" ");
1067         extra_params.append(p);
1068     }
1069     return extra_params;
1070 }
1071 
1072 /*
1073  * If the ro.crypto.fde_sector_size system property is set, append the
1074  * parameters to make dm-crypt use the specified crypto sector size and round
1075  * the crypto device size down to a crypto sector boundary.
1076  */
add_sector_size_param(std::vector<std::string> * extra_params_vec,struct crypt_mnt_ftr * ftr)1077 static int add_sector_size_param(std::vector<std::string>* extra_params_vec,
1078                                  struct crypt_mnt_ftr* ftr) {
1079     constexpr char DM_CRYPT_SECTOR_SIZE[] = "ro.crypto.fde_sector_size";
1080     char value[PROPERTY_VALUE_MAX];
1081 
1082     if (property_get(DM_CRYPT_SECTOR_SIZE, value, "") > 0) {
1083         unsigned int sector_size;
1084 
1085         if (!ParseUint(value, &sector_size) || sector_size < 512 || sector_size > 4096 ||
1086             (sector_size & (sector_size - 1)) != 0) {
1087             SLOGE("Invalid value for %s: %s.  Must be >= 512, <= 4096, and a power of 2\n",
1088                   DM_CRYPT_SECTOR_SIZE, value);
1089             return -1;
1090         }
1091 
1092         std::string param = StringPrintf("sector_size:%u", sector_size);
1093         extra_params_vec->push_back(std::move(param));
1094 
1095         // With this option, IVs will match the sector numbering, instead
1096         // of being hard-coded to being based on 512-byte sectors.
1097         extra_params_vec->emplace_back("iv_large_sectors");
1098 
1099         // Round the crypto device size down to a crypto sector boundary.
1100         ftr->fs_size &= ~((sector_size / 512) - 1);
1101     }
1102     return 0;
1103 }
1104 
create_crypto_blk_dev(struct crypt_mnt_ftr * crypt_ftr,const unsigned char * master_key,const char * real_blk_name,char * crypto_blk_name,const char * name,uint32_t flags)1105 static int create_crypto_blk_dev(struct crypt_mnt_ftr* crypt_ftr, const unsigned char* master_key,
1106                                  const char* real_blk_name, char* crypto_blk_name, const char* name,
1107                                  uint32_t flags) {
1108     char buffer[DM_CRYPT_BUF_SIZE];
1109     struct dm_ioctl* io;
1110     unsigned int minor;
1111     int fd = 0;
1112     int err;
1113     int retval = -1;
1114     int version[3];
1115     int load_count;
1116     std::vector<std::string> extra_params_vec;
1117 
1118     if ((fd = open("/dev/device-mapper", O_RDWR | O_CLOEXEC)) < 0) {
1119         SLOGE("Cannot open device-mapper\n");
1120         goto errout;
1121     }
1122 
1123     io = (struct dm_ioctl*)buffer;
1124 
1125     ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
1126     err = ioctl(fd, DM_DEV_CREATE, io);
1127     if (err) {
1128         SLOGE("Cannot create dm-crypt device %s: %s\n", name, strerror(errno));
1129         goto errout;
1130     }
1131 
1132     /* Get the device status, in particular, the name of it's device file */
1133     ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
1134     if (ioctl(fd, DM_DEV_STATUS, io)) {
1135         SLOGE("Cannot retrieve dm-crypt device status\n");
1136         goto errout;
1137     }
1138     minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
1139     snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
1140 
1141     if (!get_dm_crypt_version(fd, name, version)) {
1142         /* Support for allow_discards was added in version 1.11.0 */
1143         if ((version[0] >= 2) || ((version[0] == 1) && (version[1] >= 11))) {
1144             extra_params_vec.emplace_back("allow_discards");
1145         }
1146     }
1147     if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) {
1148         extra_params_vec.emplace_back("allow_encrypt_override");
1149     }
1150     if (add_sector_size_param(&extra_params_vec, crypt_ftr)) {
1151         SLOGE("Error processing dm-crypt sector size param\n");
1152         goto errout;
1153     }
1154     load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name, fd,
1155                                            extra_params_as_string(extra_params_vec).c_str());
1156     if (load_count < 0) {
1157         SLOGE("Cannot load dm-crypt mapping table.\n");
1158         goto errout;
1159     } else if (load_count > 1) {
1160         SLOGI("Took %d tries to load dmcrypt table.\n", load_count);
1161     }
1162 
1163     /* Resume this device to activate it */
1164     ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
1165 
1166     if (ioctl(fd, DM_DEV_SUSPEND, io)) {
1167         SLOGE("Cannot resume the dm-crypt device\n");
1168         goto errout;
1169     }
1170 
1171     /* Ensure the dm device has been created before returning. */
1172     if (android::vold::WaitForFile(crypto_blk_name, 1s) < 0) {
1173         // WaitForFile generates a suitable log message
1174         goto errout;
1175     }
1176 
1177     /* We made it here with no errors.  Woot! */
1178     retval = 0;
1179 
1180 errout:
1181     close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
1182 
1183     return retval;
1184 }
1185 
delete_crypto_blk_dev(const char * name)1186 static int delete_crypto_blk_dev(const char* name) {
1187     int fd;
1188     char buffer[DM_CRYPT_BUF_SIZE];
1189     struct dm_ioctl* io;
1190     int retval = -1;
1191     int err;
1192 
1193     if ((fd = open("/dev/device-mapper", O_RDWR | O_CLOEXEC)) < 0) {
1194         SLOGE("Cannot open device-mapper\n");
1195         goto errout;
1196     }
1197 
1198     io = (struct dm_ioctl*)buffer;
1199 
1200     ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
1201     err = ioctl(fd, DM_DEV_REMOVE, io);
1202     if (err) {
1203         SLOGE("Cannot remove dm-crypt device %s: %s\n", name, strerror(errno));
1204         goto errout;
1205     }
1206 
1207     /* We made it here with no errors.  Woot! */
1208     retval = 0;
1209 
1210 errout:
1211     close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
1212 
1213     return retval;
1214 }
1215 
pbkdf2(const char * passwd,const unsigned char * salt,unsigned char * ikey,void * params UNUSED)1216 static int pbkdf2(const char* passwd, const unsigned char* salt, unsigned char* ikey,
1217                   void* params UNUSED) {
1218     SLOGI("Using pbkdf2 for cryptfs KDF");
1219 
1220     /* Turn the password into a key and IV that can decrypt the master key */
1221     return PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN, HASH_COUNT,
1222                                   INTERMEDIATE_BUF_SIZE, ikey) != 1;
1223 }
1224 
scrypt(const char * passwd,const unsigned char * salt,unsigned char * ikey,void * params)1225 static int scrypt(const char* passwd, const unsigned char* salt, unsigned char* ikey, void* params) {
1226     SLOGI("Using scrypt for cryptfs KDF");
1227 
1228     struct crypt_mnt_ftr* ftr = (struct crypt_mnt_ftr*)params;
1229 
1230     int N = 1 << ftr->N_factor;
1231     int r = 1 << ftr->r_factor;
1232     int p = 1 << ftr->p_factor;
1233 
1234     /* Turn the password into a key and IV that can decrypt the master key */
1235     crypto_scrypt((const uint8_t*)passwd, strlen(passwd), salt, SALT_LEN, N, r, p, ikey,
1236                   INTERMEDIATE_BUF_SIZE);
1237 
1238     return 0;
1239 }
1240 
scrypt_keymaster(const char * passwd,const unsigned char * salt,unsigned char * ikey,void * params)1241 static int scrypt_keymaster(const char* passwd, const unsigned char* salt, unsigned char* ikey,
1242                             void* params) {
1243     SLOGI("Using scrypt with keymaster for cryptfs KDF");
1244 
1245     int rc;
1246     size_t signature_size;
1247     unsigned char* signature;
1248     struct crypt_mnt_ftr* ftr = (struct crypt_mnt_ftr*)params;
1249 
1250     int N = 1 << ftr->N_factor;
1251     int r = 1 << ftr->r_factor;
1252     int p = 1 << ftr->p_factor;
1253 
1254     rc = crypto_scrypt((const uint8_t*)passwd, strlen(passwd), salt, SALT_LEN, N, r, p, ikey,
1255                        INTERMEDIATE_BUF_SIZE);
1256 
1257     if (rc) {
1258         SLOGE("scrypt failed");
1259         return -1;
1260     }
1261 
1262     if (keymaster_sign_object(ftr, ikey, INTERMEDIATE_BUF_SIZE, &signature, &signature_size)) {
1263         SLOGE("Signing failed");
1264         return -1;
1265     }
1266 
1267     rc = crypto_scrypt(signature, signature_size, salt, SALT_LEN, N, r, p, ikey,
1268                        INTERMEDIATE_BUF_SIZE);
1269     free(signature);
1270 
1271     if (rc) {
1272         SLOGE("scrypt failed");
1273         return -1;
1274     }
1275 
1276     return 0;
1277 }
1278 
encrypt_master_key(const char * passwd,const unsigned char * salt,const unsigned char * decrypted_master_key,unsigned char * encrypted_master_key,struct crypt_mnt_ftr * crypt_ftr)1279 static int encrypt_master_key(const char* passwd, const unsigned char* salt,
1280                               const unsigned char* decrypted_master_key,
1281                               unsigned char* encrypted_master_key, struct crypt_mnt_ftr* crypt_ftr) {
1282     unsigned char ikey[INTERMEDIATE_BUF_SIZE] = {0};
1283     EVP_CIPHER_CTX e_ctx;
1284     int encrypted_len, final_len;
1285     int rc = 0;
1286 
1287     /* Turn the password into an intermediate key and IV that can decrypt the master key */
1288     get_device_scrypt_params(crypt_ftr);
1289 
1290     switch (crypt_ftr->kdf_type) {
1291         case KDF_SCRYPT_KEYMASTER:
1292             if (keymaster_create_key(crypt_ftr)) {
1293                 SLOGE("keymaster_create_key failed");
1294                 return -1;
1295             }
1296 
1297             if (scrypt_keymaster(passwd, salt, ikey, crypt_ftr)) {
1298                 SLOGE("scrypt failed");
1299                 return -1;
1300             }
1301             break;
1302 
1303         case KDF_SCRYPT:
1304             if (scrypt(passwd, salt, ikey, crypt_ftr)) {
1305                 SLOGE("scrypt failed");
1306                 return -1;
1307             }
1308             break;
1309 
1310         default:
1311             SLOGE("Invalid kdf_type");
1312             return -1;
1313     }
1314 
1315     /* Initialize the decryption engine */
1316     EVP_CIPHER_CTX_init(&e_ctx);
1317     if (!EVP_EncryptInit_ex(&e_ctx, EVP_aes_128_cbc(), NULL, ikey,
1318                             ikey + INTERMEDIATE_KEY_LEN_BYTES)) {
1319         SLOGE("EVP_EncryptInit failed\n");
1320         return -1;
1321     }
1322     EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
1323 
1324     /* Encrypt the master key */
1325     if (!EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len, decrypted_master_key,
1326                            crypt_ftr->keysize)) {
1327         SLOGE("EVP_EncryptUpdate failed\n");
1328         return -1;
1329     }
1330     if (!EVP_EncryptFinal_ex(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
1331         SLOGE("EVP_EncryptFinal failed\n");
1332         return -1;
1333     }
1334 
1335     if (encrypted_len + final_len != static_cast<int>(crypt_ftr->keysize)) {
1336         SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
1337         return -1;
1338     }
1339 
1340     /* Store the scrypt of the intermediate key, so we can validate if it's a
1341        password error or mount error when things go wrong.
1342        Note there's no need to check for errors, since if this is incorrect, we
1343        simply won't wipe userdata, which is the correct default behavior
1344     */
1345     int N = 1 << crypt_ftr->N_factor;
1346     int r = 1 << crypt_ftr->r_factor;
1347     int p = 1 << crypt_ftr->p_factor;
1348 
1349     rc = crypto_scrypt(ikey, INTERMEDIATE_KEY_LEN_BYTES, crypt_ftr->salt, sizeof(crypt_ftr->salt),
1350                        N, r, p, crypt_ftr->scrypted_intermediate_key,
1351                        sizeof(crypt_ftr->scrypted_intermediate_key));
1352 
1353     if (rc) {
1354         SLOGE("encrypt_master_key: crypto_scrypt failed");
1355     }
1356 
1357     EVP_CIPHER_CTX_cleanup(&e_ctx);
1358 
1359     return 0;
1360 }
1361 
decrypt_master_key_aux(const char * passwd,unsigned char * salt,const unsigned char * encrypted_master_key,size_t keysize,unsigned char * decrypted_master_key,kdf_func kdf,void * kdf_params,unsigned char ** intermediate_key,size_t * intermediate_key_size)1362 static int decrypt_master_key_aux(const char* passwd, unsigned char* salt,
1363                                   const unsigned char* encrypted_master_key, size_t keysize,
1364                                   unsigned char* decrypted_master_key, kdf_func kdf,
1365                                   void* kdf_params, unsigned char** intermediate_key,
1366                                   size_t* intermediate_key_size) {
1367     unsigned char ikey[INTERMEDIATE_BUF_SIZE] = {0};
1368     EVP_CIPHER_CTX d_ctx;
1369     int decrypted_len, final_len;
1370 
1371     /* Turn the password into an intermediate key and IV that can decrypt the
1372        master key */
1373     if (kdf(passwd, salt, ikey, kdf_params)) {
1374         SLOGE("kdf failed");
1375         return -1;
1376     }
1377 
1378     /* Initialize the decryption engine */
1379     EVP_CIPHER_CTX_init(&d_ctx);
1380     if (!EVP_DecryptInit_ex(&d_ctx, EVP_aes_128_cbc(), NULL, ikey,
1381                             ikey + INTERMEDIATE_KEY_LEN_BYTES)) {
1382         return -1;
1383     }
1384     EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
1385     /* Decrypt the master key */
1386     if (!EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, encrypted_master_key,
1387                            keysize)) {
1388         return -1;
1389     }
1390     if (!EVP_DecryptFinal_ex(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
1391         return -1;
1392     }
1393 
1394     if (decrypted_len + final_len != static_cast<int>(keysize)) {
1395         return -1;
1396     }
1397 
1398     /* Copy intermediate key if needed by params */
1399     if (intermediate_key && intermediate_key_size) {
1400         *intermediate_key = (unsigned char*)malloc(INTERMEDIATE_KEY_LEN_BYTES);
1401         if (*intermediate_key) {
1402             memcpy(*intermediate_key, ikey, INTERMEDIATE_KEY_LEN_BYTES);
1403             *intermediate_key_size = INTERMEDIATE_KEY_LEN_BYTES;
1404         }
1405     }
1406 
1407     EVP_CIPHER_CTX_cleanup(&d_ctx);
1408 
1409     return 0;
1410 }
1411 
get_kdf_func(struct crypt_mnt_ftr * ftr,kdf_func * kdf,void ** kdf_params)1412 static void get_kdf_func(struct crypt_mnt_ftr* ftr, kdf_func* kdf, void** kdf_params) {
1413     if (ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
1414         *kdf = scrypt_keymaster;
1415         *kdf_params = ftr;
1416     } else if (ftr->kdf_type == KDF_SCRYPT) {
1417         *kdf = scrypt;
1418         *kdf_params = ftr;
1419     } else {
1420         *kdf = pbkdf2;
1421         *kdf_params = NULL;
1422     }
1423 }
1424 
decrypt_master_key(const char * passwd,unsigned char * decrypted_master_key,struct crypt_mnt_ftr * crypt_ftr,unsigned char ** intermediate_key,size_t * intermediate_key_size)1425 static int decrypt_master_key(const char* passwd, unsigned char* decrypted_master_key,
1426                               struct crypt_mnt_ftr* crypt_ftr, unsigned char** intermediate_key,
1427                               size_t* intermediate_key_size) {
1428     kdf_func kdf;
1429     void* kdf_params;
1430     int ret;
1431 
1432     get_kdf_func(crypt_ftr, &kdf, &kdf_params);
1433     ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key, crypt_ftr->keysize,
1434                                  decrypted_master_key, kdf, kdf_params, intermediate_key,
1435                                  intermediate_key_size);
1436     if (ret != 0) {
1437         SLOGW("failure decrypting master key");
1438     }
1439 
1440     return ret;
1441 }
1442 
create_encrypted_random_key(const char * passwd,unsigned char * master_key,unsigned char * salt,struct crypt_mnt_ftr * crypt_ftr)1443 static int create_encrypted_random_key(const char* passwd, unsigned char* master_key,
1444                                        unsigned char* salt, struct crypt_mnt_ftr* crypt_ftr) {
1445     unsigned char key_buf[MAX_KEY_LEN];
1446 
1447     /* Get some random bits for a key and salt */
1448     if (android::vold::ReadRandomBytes(sizeof(key_buf), reinterpret_cast<char*>(key_buf)) != 0) {
1449         return -1;
1450     }
1451     if (android::vold::ReadRandomBytes(SALT_LEN, reinterpret_cast<char*>(salt)) != 0) {
1452         return -1;
1453     }
1454 
1455     /* Now encrypt it with the password */
1456     return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr);
1457 }
1458 
wait_and_unmount(const char * mountpoint,bool kill)1459 int wait_and_unmount(const char* mountpoint, bool kill) {
1460     int i, err, rc;
1461 #define WAIT_UNMOUNT_COUNT 20
1462 
1463     /*  Now umount the tmpfs filesystem */
1464     for (i = 0; i < WAIT_UNMOUNT_COUNT; i++) {
1465         if (umount(mountpoint) == 0) {
1466             break;
1467         }
1468 
1469         if (errno == EINVAL) {
1470             /* EINVAL is returned if the directory is not a mountpoint,
1471              * i.e. there is no filesystem mounted there.  So just get out.
1472              */
1473             break;
1474         }
1475 
1476         err = errno;
1477 
1478         /* If allowed, be increasingly aggressive before the last two retries */
1479         if (kill) {
1480             if (i == (WAIT_UNMOUNT_COUNT - 3)) {
1481                 SLOGW("sending SIGHUP to processes with open files\n");
1482                 android::vold::KillProcessesWithOpenFiles(mountpoint, SIGTERM);
1483             } else if (i == (WAIT_UNMOUNT_COUNT - 2)) {
1484                 SLOGW("sending SIGKILL to processes with open files\n");
1485                 android::vold::KillProcessesWithOpenFiles(mountpoint, SIGKILL);
1486             }
1487         }
1488 
1489         sleep(1);
1490     }
1491 
1492     if (i < WAIT_UNMOUNT_COUNT) {
1493         SLOGD("unmounting %s succeeded\n", mountpoint);
1494         rc = 0;
1495     } else {
1496         android::vold::KillProcessesWithOpenFiles(mountpoint, 0);
1497         SLOGE("unmounting %s failed: %s\n", mountpoint, strerror(err));
1498         rc = -1;
1499     }
1500 
1501     return rc;
1502 }
1503 
prep_data_fs(void)1504 static void prep_data_fs(void) {
1505     // NOTE: post_fs_data results in init calling back around to vold, so all
1506     // callers to this method must be async
1507 
1508     /* Do the prep of the /data filesystem */
1509     property_set("vold.post_fs_data_done", "0");
1510     property_set("vold.decrypt", "trigger_post_fs_data");
1511     SLOGD("Just triggered post_fs_data");
1512 
1513     /* Wait a max of 50 seconds, hopefully it takes much less */
1514     while (!android::base::WaitForProperty("vold.post_fs_data_done", "1", std::chrono::seconds(15))) {
1515         /* We timed out to prep /data in time.  Continue wait. */
1516         SLOGE("waited 15s for vold.post_fs_data_done, still waiting...");
1517     }
1518     SLOGD("post_fs_data done");
1519 }
1520 
cryptfs_set_corrupt()1521 static void cryptfs_set_corrupt() {
1522     // Mark the footer as bad
1523     struct crypt_mnt_ftr crypt_ftr;
1524     if (get_crypt_ftr_and_key(&crypt_ftr)) {
1525         SLOGE("Failed to get crypto footer - panic");
1526         return;
1527     }
1528 
1529     crypt_ftr.flags |= CRYPT_DATA_CORRUPT;
1530     if (put_crypt_ftr_and_key(&crypt_ftr)) {
1531         SLOGE("Failed to set crypto footer - panic");
1532         return;
1533     }
1534 }
1535 
cryptfs_trigger_restart_min_framework()1536 static void cryptfs_trigger_restart_min_framework() {
1537     if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
1538         SLOGE("Failed to mount tmpfs on data - panic");
1539         return;
1540     }
1541 
1542     if (property_set("vold.decrypt", "trigger_post_fs_data")) {
1543         SLOGE("Failed to trigger post fs data - panic");
1544         return;
1545     }
1546 
1547     if (property_set("vold.decrypt", "trigger_restart_min_framework")) {
1548         SLOGE("Failed to trigger restart min framework - panic");
1549         return;
1550     }
1551 }
1552 
1553 /* returns < 0 on failure */
cryptfs_restart_internal(int restart_main)1554 static int cryptfs_restart_internal(int restart_main) {
1555     char crypto_blkdev[MAXPATHLEN];
1556     int rc = -1;
1557     static int restart_successful = 0;
1558 
1559     /* Validate that it's OK to call this routine */
1560     if (!master_key_saved) {
1561         SLOGE("Encrypted filesystem not validated, aborting");
1562         return -1;
1563     }
1564 
1565     if (restart_successful) {
1566         SLOGE("System already restarted with encrypted disk, aborting");
1567         return -1;
1568     }
1569 
1570     if (restart_main) {
1571         /* Here is where we shut down the framework.  The init scripts
1572          * start all services in one of these classes: core, early_hal, hal,
1573          * main and late_start. To get to the minimal UI for PIN entry, we
1574          * need to start core, early_hal, hal and main. When we want to
1575          * shutdown the framework again, we need to stop most of the services in
1576          * these classes, but only those services that were started after
1577          * /data was mounted. This excludes critical services like vold and
1578          * ueventd, which need to keep running. We could possible stop
1579          * even fewer services, but because we want services to pick up APEX
1580          * libraries from the real /data, restarting is better, as it makes
1581          * these devices consistent with FBE devices and lets them use the
1582          * most recent code.
1583          *
1584          * Once these services have stopped, we should be able
1585          * to umount the tmpfs /data, then mount the encrypted /data.
1586          * We then restart the class core, hal, main, and also the class
1587          * late_start.
1588          *
1589          * At the moment, I've only put a few things in late_start that I know
1590          * are not needed to bring up the framework, and that also cause problems
1591          * with unmounting the tmpfs /data, but I hope to add add more services
1592          * to the late_start class as we optimize this to decrease the delay
1593          * till the user is asked for the password to the filesystem.
1594          */
1595 
1596         /* The init files are setup to stop the right set of services when
1597          * vold.decrypt is set to trigger_shutdown_framework.
1598          */
1599         property_set("vold.decrypt", "trigger_shutdown_framework");
1600         SLOGD("Just asked init to shut down class main\n");
1601 
1602         /* Ugh, shutting down the framework is not synchronous, so until it
1603          * can be fixed, this horrible hack will wait a moment for it all to
1604          * shut down before proceeding.  Without it, some devices cannot
1605          * restart the graphics services.
1606          */
1607         sleep(2);
1608     }
1609 
1610     /* Now that the framework is shutdown, we should be able to umount()
1611      * the tmpfs filesystem, and mount the real one.
1612      */
1613 
1614     property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
1615     if (strlen(crypto_blkdev) == 0) {
1616         SLOGE("fs_crypto_blkdev not set\n");
1617         return -1;
1618     }
1619 
1620     if (!(rc = wait_and_unmount(DATA_MNT_POINT, true))) {
1621         /* If ro.crypto.readonly is set to 1, mount the decrypted
1622          * filesystem readonly.  This is used when /data is mounted by
1623          * recovery mode.
1624          */
1625         char ro_prop[PROPERTY_VALUE_MAX];
1626         property_get("ro.crypto.readonly", ro_prop, "");
1627         if (strlen(ro_prop) > 0 && std::stoi(ro_prop)) {
1628             auto entry = GetEntryForMountPoint(&fstab_default, DATA_MNT_POINT);
1629             if (entry != nullptr) {
1630                 entry->flags |= MS_RDONLY;
1631             }
1632         }
1633 
1634         /* If that succeeded, then mount the decrypted filesystem */
1635         int retries = RETRY_MOUNT_ATTEMPTS;
1636         int mount_rc;
1637 
1638         /*
1639          * fs_mgr_do_mount runs fsck. Use setexeccon to run trusted
1640          * partitions in the fsck domain.
1641          */
1642         if (setexeccon(android::vold::sFsckContext)) {
1643             SLOGE("Failed to setexeccon");
1644             return -1;
1645         }
1646         bool needs_cp = android::vold::cp_needsCheckpoint();
1647         while ((mount_rc = fs_mgr_do_mount(&fstab_default, DATA_MNT_POINT, crypto_blkdev, 0,
1648                                            needs_cp)) != 0) {
1649             if (mount_rc == FS_MGR_DOMNT_BUSY) {
1650                 /* TODO: invoke something similar to
1651                    Process::killProcessWithOpenFiles(DATA_MNT_POINT,
1652                                    retries > RETRY_MOUNT_ATTEMPT/2 ? 1 : 2 ) */
1653                 SLOGI("Failed to mount %s because it is busy - waiting", crypto_blkdev);
1654                 if (--retries) {
1655                     sleep(RETRY_MOUNT_DELAY_SECONDS);
1656                 } else {
1657                     /* Let's hope that a reboot clears away whatever is keeping
1658                        the mount busy */
1659                     cryptfs_reboot(RebootType::reboot);
1660                 }
1661             } else {
1662                 SLOGE("Failed to mount decrypted data");
1663                 cryptfs_set_corrupt();
1664                 cryptfs_trigger_restart_min_framework();
1665                 SLOGI("Started framework to offer wipe");
1666                 if (setexeccon(NULL)) {
1667                     SLOGE("Failed to setexeccon");
1668                 }
1669                 return -1;
1670             }
1671         }
1672         if (setexeccon(NULL)) {
1673             SLOGE("Failed to setexeccon");
1674             return -1;
1675         }
1676 
1677         /* Create necessary paths on /data */
1678         prep_data_fs();
1679         property_set("vold.decrypt", "trigger_load_persist_props");
1680 
1681         /* startup service classes main and late_start */
1682         property_set("vold.decrypt", "trigger_restart_framework");
1683         SLOGD("Just triggered restart_framework\n");
1684 
1685         /* Give it a few moments to get started */
1686         sleep(1);
1687     }
1688 
1689     if (rc == 0) {
1690         restart_successful = 1;
1691     }
1692 
1693     return rc;
1694 }
1695 
cryptfs_restart(void)1696 int cryptfs_restart(void) {
1697     SLOGI("cryptfs_restart");
1698     if (fscrypt_is_native()) {
1699         SLOGE("cryptfs_restart not valid for file encryption:");
1700         return -1;
1701     }
1702 
1703     /* Call internal implementation forcing a restart of main service group */
1704     return cryptfs_restart_internal(1);
1705 }
1706 
do_crypto_complete(const char * mount_point)1707 static int do_crypto_complete(const char* mount_point) {
1708     struct crypt_mnt_ftr crypt_ftr;
1709     char encrypted_state[PROPERTY_VALUE_MAX];
1710 
1711     property_get("ro.crypto.state", encrypted_state, "");
1712     if (strcmp(encrypted_state, "encrypted")) {
1713         SLOGE("not running with encryption, aborting");
1714         return CRYPTO_COMPLETE_NOT_ENCRYPTED;
1715     }
1716 
1717     // crypto_complete is full disk encrypted status
1718     if (fscrypt_is_native()) {
1719         return CRYPTO_COMPLETE_NOT_ENCRYPTED;
1720     }
1721 
1722     if (get_crypt_ftr_and_key(&crypt_ftr)) {
1723         std::string key_loc;
1724         get_crypt_info(&key_loc, nullptr);
1725 
1726         /*
1727          * Only report this error if key_loc is a file and it exists.
1728          * If the device was never encrypted, and /data is not mountable for
1729          * some reason, returning 1 should prevent the UI from presenting the
1730          * a "enter password" screen, or worse, a "press button to wipe the
1731          * device" screen.
1732          */
1733         if (!key_loc.empty() && key_loc[0] == '/' && (access("key_loc", F_OK) == -1)) {
1734             SLOGE("master key file does not exist, aborting");
1735             return CRYPTO_COMPLETE_NOT_ENCRYPTED;
1736         } else {
1737             SLOGE("Error getting crypt footer and key\n");
1738             return CRYPTO_COMPLETE_BAD_METADATA;
1739         }
1740     }
1741 
1742     // Test for possible error flags
1743     if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) {
1744         SLOGE("Encryption process is partway completed\n");
1745         return CRYPTO_COMPLETE_PARTIAL;
1746     }
1747 
1748     if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) {
1749         SLOGE("Encryption process was interrupted but cannot continue\n");
1750         return CRYPTO_COMPLETE_INCONSISTENT;
1751     }
1752 
1753     if (crypt_ftr.flags & CRYPT_DATA_CORRUPT) {
1754         SLOGE("Encryption is successful but data is corrupt\n");
1755         return CRYPTO_COMPLETE_CORRUPT;
1756     }
1757 
1758     /* We passed the test! We shall diminish, and return to the west */
1759     return CRYPTO_COMPLETE_ENCRYPTED;
1760 }
1761 
test_mount_encrypted_fs(struct crypt_mnt_ftr * crypt_ftr,const char * passwd,const char * mount_point,const char * label)1762 static int test_mount_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr, const char* passwd,
1763                                    const char* mount_point, const char* label) {
1764     unsigned char decrypted_master_key[MAX_KEY_LEN];
1765     char crypto_blkdev[MAXPATHLEN];
1766     std::string real_blkdev;
1767     char tmp_mount_point[64];
1768     unsigned int orig_failed_decrypt_count;
1769     int rc;
1770     int use_keymaster = 0;
1771     int upgrade = 0;
1772     unsigned char* intermediate_key = 0;
1773     size_t intermediate_key_size = 0;
1774     int N = 1 << crypt_ftr->N_factor;
1775     int r = 1 << crypt_ftr->r_factor;
1776     int p = 1 << crypt_ftr->p_factor;
1777 
1778     SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size);
1779     orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count;
1780 
1781     if (!(crypt_ftr->flags & CRYPT_MNT_KEY_UNENCRYPTED)) {
1782         if (decrypt_master_key(passwd, decrypted_master_key, crypt_ftr, &intermediate_key,
1783                                &intermediate_key_size)) {
1784             SLOGE("Failed to decrypt master key\n");
1785             rc = -1;
1786             goto errout;
1787         }
1788     }
1789 
1790     get_crypt_info(nullptr, &real_blkdev);
1791 
1792     // Create crypto block device - all (non fatal) code paths
1793     // need it
1794     if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key, real_blkdev.c_str(), crypto_blkdev,
1795                               label, 0)) {
1796         SLOGE("Error creating decrypted block device\n");
1797         rc = -1;
1798         goto errout;
1799     }
1800 
1801     /* Work out if the problem is the password or the data */
1802     unsigned char scrypted_intermediate_key[sizeof(crypt_ftr->scrypted_intermediate_key)];
1803 
1804     rc = crypto_scrypt(intermediate_key, intermediate_key_size, crypt_ftr->salt,
1805                        sizeof(crypt_ftr->salt), N, r, p, scrypted_intermediate_key,
1806                        sizeof(scrypted_intermediate_key));
1807 
1808     // Does the key match the crypto footer?
1809     if (rc == 0 && memcmp(scrypted_intermediate_key, crypt_ftr->scrypted_intermediate_key,
1810                           sizeof(scrypted_intermediate_key)) == 0) {
1811         SLOGI("Password matches");
1812         rc = 0;
1813     } else {
1814         /* Try mounting the file system anyway, just in case the problem's with
1815          * the footer, not the key. */
1816         snprintf(tmp_mount_point, sizeof(tmp_mount_point), "%s/tmp_mnt", mount_point);
1817         mkdir(tmp_mount_point, 0755);
1818         if (fs_mgr_do_mount(&fstab_default, DATA_MNT_POINT, crypto_blkdev, tmp_mount_point)) {
1819             SLOGE("Error temp mounting decrypted block device\n");
1820             delete_crypto_blk_dev(label);
1821 
1822             rc = ++crypt_ftr->failed_decrypt_count;
1823             put_crypt_ftr_and_key(crypt_ftr);
1824         } else {
1825             /* Success! */
1826             SLOGI("Password did not match but decrypted drive mounted - continue");
1827             umount(tmp_mount_point);
1828             rc = 0;
1829         }
1830     }
1831 
1832     if (rc == 0) {
1833         crypt_ftr->failed_decrypt_count = 0;
1834         if (orig_failed_decrypt_count != 0) {
1835             put_crypt_ftr_and_key(crypt_ftr);
1836         }
1837 
1838         /* Save the name of the crypto block device
1839          * so we can mount it when restarting the framework. */
1840         property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
1841 
1842         /* Also save a the master key so we can reencrypted the key
1843          * the key when we want to change the password on it. */
1844         memcpy(saved_master_key, decrypted_master_key, crypt_ftr->keysize);
1845         saved_mount_point = strdup(mount_point);
1846         master_key_saved = 1;
1847         SLOGD("%s(): Master key saved\n", __FUNCTION__);
1848         rc = 0;
1849 
1850         // Upgrade if we're not using the latest KDF.
1851         use_keymaster = keymaster_check_compatibility();
1852         if (crypt_ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
1853             // Don't allow downgrade
1854         } else if (use_keymaster == 1 && crypt_ftr->kdf_type != KDF_SCRYPT_KEYMASTER) {
1855             crypt_ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
1856             upgrade = 1;
1857         } else if (use_keymaster == 0 && crypt_ftr->kdf_type != KDF_SCRYPT) {
1858             crypt_ftr->kdf_type = KDF_SCRYPT;
1859             upgrade = 1;
1860         }
1861 
1862         if (upgrade) {
1863             rc = encrypt_master_key(passwd, crypt_ftr->salt, saved_master_key,
1864                                     crypt_ftr->master_key, crypt_ftr);
1865             if (!rc) {
1866                 rc = put_crypt_ftr_and_key(crypt_ftr);
1867             }
1868             SLOGD("Key Derivation Function upgrade: rc=%d\n", rc);
1869 
1870             // Do not fail even if upgrade failed - machine is bootable
1871             // Note that if this code is ever hit, there is a *serious* problem
1872             // since KDFs should never fail. You *must* fix the kdf before
1873             // proceeding!
1874             if (rc) {
1875                 SLOGW(
1876                     "Upgrade failed with error %d,"
1877                     " but continuing with previous state",
1878                     rc);
1879                 rc = 0;
1880             }
1881         }
1882     }
1883 
1884 errout:
1885     if (intermediate_key) {
1886         memset(intermediate_key, 0, intermediate_key_size);
1887         free(intermediate_key);
1888     }
1889     return rc;
1890 }
1891 
1892 /*
1893  * Called by vold when it's asked to mount an encrypted external
1894  * storage volume. The incoming partition has no crypto header/footer,
1895  * as any metadata is been stored in a separate, small partition.  We
1896  * assume it must be using our same crypt type and keysize.
1897  *
1898  * out_crypto_blkdev must be MAXPATHLEN.
1899  */
cryptfs_setup_ext_volume(const char * label,const char * real_blkdev,const unsigned char * key,char * out_crypto_blkdev)1900 int cryptfs_setup_ext_volume(const char* label, const char* real_blkdev, const unsigned char* key,
1901                              char* out_crypto_blkdev) {
1902     uint64_t nr_sec = 0;
1903     if (android::vold::GetBlockDev512Sectors(real_blkdev, &nr_sec) != android::OK) {
1904         SLOGE("Failed to get size of %s: %s", real_blkdev, strerror(errno));
1905         return -1;
1906     }
1907 
1908     struct crypt_mnt_ftr ext_crypt_ftr;
1909     memset(&ext_crypt_ftr, 0, sizeof(ext_crypt_ftr));
1910     ext_crypt_ftr.fs_size = nr_sec;
1911     ext_crypt_ftr.keysize = cryptfs_get_keysize();
1912     strlcpy((char*)ext_crypt_ftr.crypto_type_name, cryptfs_get_crypto_name(),
1913             MAX_CRYPTO_TYPE_NAME_LEN);
1914     uint32_t flags = 0;
1915     if (fscrypt_is_native() &&
1916         android::base::GetBoolProperty("ro.crypto.allow_encrypt_override", false))
1917         flags |= CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE;
1918 
1919     return create_crypto_blk_dev(&ext_crypt_ftr, key, real_blkdev, out_crypto_blkdev, label, flags);
1920 }
1921 
1922 /*
1923  * Called by vold when it's asked to unmount an encrypted external
1924  * storage volume.
1925  */
cryptfs_revert_ext_volume(const char * label)1926 int cryptfs_revert_ext_volume(const char* label) {
1927     return delete_crypto_blk_dev((char*)label);
1928 }
1929 
cryptfs_crypto_complete(void)1930 int cryptfs_crypto_complete(void) {
1931     return do_crypto_complete("/data");
1932 }
1933 
check_unmounted_and_get_ftr(struct crypt_mnt_ftr * crypt_ftr)1934 int check_unmounted_and_get_ftr(struct crypt_mnt_ftr* crypt_ftr) {
1935     char encrypted_state[PROPERTY_VALUE_MAX];
1936     property_get("ro.crypto.state", encrypted_state, "");
1937     if (master_key_saved || strcmp(encrypted_state, "encrypted")) {
1938         SLOGE(
1939             "encrypted fs already validated or not running with encryption,"
1940             " aborting");
1941         return -1;
1942     }
1943 
1944     if (get_crypt_ftr_and_key(crypt_ftr)) {
1945         SLOGE("Error getting crypt footer and key");
1946         return -1;
1947     }
1948 
1949     return 0;
1950 }
1951 
cryptfs_check_passwd(const char * passwd)1952 int cryptfs_check_passwd(const char* passwd) {
1953     SLOGI("cryptfs_check_passwd");
1954     if (fscrypt_is_native()) {
1955         SLOGE("cryptfs_check_passwd not valid for file encryption");
1956         return -1;
1957     }
1958 
1959     struct crypt_mnt_ftr crypt_ftr;
1960     int rc;
1961 
1962     rc = check_unmounted_and_get_ftr(&crypt_ftr);
1963     if (rc) {
1964         SLOGE("Could not get footer");
1965         return rc;
1966     }
1967 
1968     rc = test_mount_encrypted_fs(&crypt_ftr, passwd, DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE);
1969     if (rc) {
1970         SLOGE("Password did not match");
1971         return rc;
1972     }
1973 
1974     if (crypt_ftr.flags & CRYPT_FORCE_COMPLETE) {
1975         // Here we have a default actual password but a real password
1976         // we must test against the scrypted value
1977         // First, we must delete the crypto block device that
1978         // test_mount_encrypted_fs leaves behind as a side effect
1979         delete_crypto_blk_dev(CRYPTO_BLOCK_DEVICE);
1980         rc = test_mount_encrypted_fs(&crypt_ftr, DEFAULT_PASSWORD, DATA_MNT_POINT,
1981                                      CRYPTO_BLOCK_DEVICE);
1982         if (rc) {
1983             SLOGE("Default password did not match on reboot encryption");
1984             return rc;
1985         }
1986 
1987         crypt_ftr.flags &= ~CRYPT_FORCE_COMPLETE;
1988         put_crypt_ftr_and_key(&crypt_ftr);
1989         rc = cryptfs_changepw(crypt_ftr.crypt_type, passwd);
1990         if (rc) {
1991             SLOGE("Could not change password on reboot encryption");
1992             return rc;
1993         }
1994     }
1995 
1996     if (crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) {
1997         cryptfs_clear_password();
1998         password = strdup(passwd);
1999         struct timespec now;
2000         clock_gettime(CLOCK_BOOTTIME, &now);
2001         password_expiry_time = now.tv_sec + password_max_age_seconds;
2002     }
2003 
2004     return rc;
2005 }
2006 
cryptfs_verify_passwd(const char * passwd)2007 int cryptfs_verify_passwd(const char* passwd) {
2008     struct crypt_mnt_ftr crypt_ftr;
2009     unsigned char decrypted_master_key[MAX_KEY_LEN];
2010     char encrypted_state[PROPERTY_VALUE_MAX];
2011     int rc;
2012 
2013     property_get("ro.crypto.state", encrypted_state, "");
2014     if (strcmp(encrypted_state, "encrypted")) {
2015         SLOGE("device not encrypted, aborting");
2016         return -2;
2017     }
2018 
2019     if (!master_key_saved) {
2020         SLOGE("encrypted fs not yet mounted, aborting");
2021         return -1;
2022     }
2023 
2024     if (!saved_mount_point) {
2025         SLOGE("encrypted fs failed to save mount point, aborting");
2026         return -1;
2027     }
2028 
2029     if (get_crypt_ftr_and_key(&crypt_ftr)) {
2030         SLOGE("Error getting crypt footer and key\n");
2031         return -1;
2032     }
2033 
2034     if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
2035         /* If the device has no password, then just say the password is valid */
2036         rc = 0;
2037     } else {
2038         decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
2039         if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
2040             /* They match, the password is correct */
2041             rc = 0;
2042         } else {
2043             /* If incorrect, sleep for a bit to prevent dictionary attacks */
2044             sleep(1);
2045             rc = 1;
2046         }
2047     }
2048 
2049     return rc;
2050 }
2051 
2052 /* Initialize a crypt_mnt_ftr structure.  The keysize is
2053  * defaulted to cryptfs_get_keysize() bytes, and the filesystem size to 0.
2054  * Presumably, at a minimum, the caller will update the
2055  * filesystem size and crypto_type_name after calling this function.
2056  */
cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr * ftr)2057 static int cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr* ftr) {
2058     off64_t off;
2059 
2060     memset(ftr, 0, sizeof(struct crypt_mnt_ftr));
2061     ftr->magic = CRYPT_MNT_MAGIC;
2062     ftr->major_version = CURRENT_MAJOR_VERSION;
2063     ftr->minor_version = CURRENT_MINOR_VERSION;
2064     ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
2065     ftr->keysize = cryptfs_get_keysize();
2066 
2067     switch (keymaster_check_compatibility()) {
2068         case 1:
2069             ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
2070             break;
2071 
2072         case 0:
2073             ftr->kdf_type = KDF_SCRYPT;
2074             break;
2075 
2076         default:
2077             SLOGE("keymaster_check_compatibility failed");
2078             return -1;
2079     }
2080 
2081     get_device_scrypt_params(ftr);
2082 
2083     ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
2084     if (get_crypt_ftr_info(NULL, &off) == 0) {
2085         ftr->persist_data_offset[0] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET;
2086         ftr->persist_data_offset[1] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET + ftr->persist_data_size;
2087     }
2088 
2089     return 0;
2090 }
2091 
2092 #define FRAMEWORK_BOOT_WAIT 60
2093 
cryptfs_SHA256_fileblock(const char * filename,__le8 * buf)2094 static int cryptfs_SHA256_fileblock(const char* filename, __le8* buf) {
2095     int fd = open(filename, O_RDONLY | O_CLOEXEC);
2096     if (fd == -1) {
2097         SLOGE("Error opening file %s", filename);
2098         return -1;
2099     }
2100 
2101     char block[CRYPT_INPLACE_BUFSIZE];
2102     memset(block, 0, sizeof(block));
2103     if (unix_read(fd, block, sizeof(block)) < 0) {
2104         SLOGE("Error reading file %s", filename);
2105         close(fd);
2106         return -1;
2107     }
2108 
2109     close(fd);
2110 
2111     SHA256_CTX c;
2112     SHA256_Init(&c);
2113     SHA256_Update(&c, block, sizeof(block));
2114     SHA256_Final(buf, &c);
2115 
2116     return 0;
2117 }
2118 
cryptfs_enable_all_volumes(struct crypt_mnt_ftr * crypt_ftr,char * crypto_blkdev,char * real_blkdev,int previously_encrypted_upto)2119 static int cryptfs_enable_all_volumes(struct crypt_mnt_ftr* crypt_ftr, char* crypto_blkdev,
2120                                       char* real_blkdev, int previously_encrypted_upto) {
2121     off64_t cur_encryption_done = 0, tot_encryption_size = 0;
2122     int rc = -1;
2123 
2124     /* The size of the userdata partition, and add in the vold volumes below */
2125     tot_encryption_size = crypt_ftr->fs_size;
2126 
2127     rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr->fs_size, &cur_encryption_done,
2128                                 tot_encryption_size, previously_encrypted_upto, true);
2129 
2130     if (rc == ENABLE_INPLACE_ERR_DEV) {
2131         /* Hack for b/17898962 */
2132         SLOGE("cryptfs_enable: crypto block dev failure. Must reboot...\n");
2133         cryptfs_reboot(RebootType::reboot);
2134     }
2135 
2136     if (!rc) {
2137         crypt_ftr->encrypted_upto = cur_encryption_done;
2138     }
2139 
2140     if (!rc && crypt_ftr->encrypted_upto == crypt_ftr->fs_size) {
2141         /* The inplace routine never actually sets the progress to 100% due
2142          * to the round down nature of integer division, so set it here */
2143         property_set("vold.encrypt_progress", "100");
2144     }
2145 
2146     return rc;
2147 }
2148 
vold_unmountAll(void)2149 static int vold_unmountAll(void) {
2150     VolumeManager* vm = VolumeManager::Instance();
2151     return vm->unmountAll();
2152 }
2153 
cryptfs_enable_internal(int crypt_type,const char * passwd,int no_ui)2154 int cryptfs_enable_internal(int crypt_type, const char* passwd, int no_ui) {
2155     char crypto_blkdev[MAXPATHLEN];
2156     std::string real_blkdev;
2157     unsigned char decrypted_master_key[MAX_KEY_LEN];
2158     int rc = -1, i;
2159     struct crypt_mnt_ftr crypt_ftr;
2160     struct crypt_persist_data* pdata;
2161     char encrypted_state[PROPERTY_VALUE_MAX];
2162     char lockid[32] = {0};
2163     std::string key_loc;
2164     int num_vols;
2165     off64_t previously_encrypted_upto = 0;
2166     bool rebootEncryption = false;
2167     bool onlyCreateHeader = false;
2168 
2169     if (get_crypt_ftr_and_key(&crypt_ftr) == 0) {
2170         if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) {
2171             /* An encryption was underway and was interrupted */
2172             previously_encrypted_upto = crypt_ftr.encrypted_upto;
2173             crypt_ftr.encrypted_upto = 0;
2174             crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;
2175 
2176             /* At this point, we are in an inconsistent state. Until we successfully
2177                complete encryption, a reboot will leave us broken. So mark the
2178                encryption failed in case that happens.
2179                On successfully completing encryption, remove this flag */
2180             crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE;
2181 
2182             put_crypt_ftr_and_key(&crypt_ftr);
2183         } else if (crypt_ftr.flags & CRYPT_FORCE_ENCRYPTION) {
2184             if (!check_ftr_sha(&crypt_ftr)) {
2185                 memset(&crypt_ftr, 0, sizeof(crypt_ftr));
2186                 put_crypt_ftr_and_key(&crypt_ftr);
2187                 goto error_unencrypted;
2188             }
2189 
2190             /* Doing a reboot-encryption*/
2191             crypt_ftr.flags &= ~CRYPT_FORCE_ENCRYPTION;
2192             crypt_ftr.flags |= CRYPT_FORCE_COMPLETE;
2193             rebootEncryption = true;
2194         }
2195     } else {
2196         // We don't want to accidentally reference invalid data.
2197         memset(&crypt_ftr, 0, sizeof(crypt_ftr));
2198     }
2199 
2200     property_get("ro.crypto.state", encrypted_state, "");
2201     if (!strcmp(encrypted_state, "encrypted") && !previously_encrypted_upto) {
2202         SLOGE("Device is already running encrypted, aborting");
2203         goto error_unencrypted;
2204     }
2205 
2206     get_crypt_info(&key_loc, &real_blkdev);
2207 
2208     /* Get the size of the real block device */
2209     uint64_t nr_sec;
2210     if (android::vold::GetBlockDev512Sectors(real_blkdev, &nr_sec) != android::OK) {
2211         SLOGE("Cannot get size of block device %s\n", real_blkdev.c_str());
2212         goto error_unencrypted;
2213     }
2214 
2215     /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
2216     if (key_loc == KEY_IN_FOOTER) {
2217         uint64_t fs_size_sec, max_fs_size_sec;
2218         fs_size_sec = get_fs_size(real_blkdev.c_str());
2219         if (fs_size_sec == 0) fs_size_sec = get_f2fs_filesystem_size_sec(real_blkdev.data());
2220 
2221         max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);
2222 
2223         if (fs_size_sec > max_fs_size_sec) {
2224             SLOGE("Orig filesystem overlaps crypto footer region.  Cannot encrypt in place.");
2225             goto error_unencrypted;
2226         }
2227     }
2228 
2229     /* Get a wakelock as this may take a while, and we don't want the
2230      * device to sleep on us.  We'll grab a partial wakelock, and if the UI
2231      * wants to keep the screen on, it can grab a full wakelock.
2232      */
2233     snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int)getpid());
2234     acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid);
2235 
2236     /* The init files are setup to stop the class main and late start when
2237      * vold sets trigger_shutdown_framework.
2238      */
2239     property_set("vold.decrypt", "trigger_shutdown_framework");
2240     SLOGD("Just asked init to shut down class main\n");
2241 
2242     /* Ask vold to unmount all devices that it manages */
2243     if (vold_unmountAll()) {
2244         SLOGE("Failed to unmount all vold managed devices");
2245     }
2246 
2247     /* no_ui means we are being called from init, not settings.
2248        Now we always reboot from settings, so !no_ui means reboot
2249      */
2250     if (!no_ui) {
2251         /* Try fallback, which is to reboot and try there */
2252         onlyCreateHeader = true;
2253         FILE* breadcrumb = fopen(BREADCRUMB_FILE, "we");
2254         if (breadcrumb == 0) {
2255             SLOGE("Failed to create breadcrumb file");
2256             goto error_shutting_down;
2257         }
2258         fclose(breadcrumb);
2259     }
2260 
2261     /* Do extra work for a better UX when doing the long inplace encryption */
2262     if (!onlyCreateHeader) {
2263         /* Now that /data is unmounted, we need to mount a tmpfs
2264          * /data, set a property saying we're doing inplace encryption,
2265          * and restart the framework.
2266          */
2267         if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
2268             goto error_shutting_down;
2269         }
2270         /* Tells the framework that inplace encryption is starting */
2271         property_set("vold.encrypt_progress", "0");
2272 
2273         /* restart the framework. */
2274         /* Create necessary paths on /data */
2275         prep_data_fs();
2276 
2277         /* Ugh, shutting down the framework is not synchronous, so until it
2278          * can be fixed, this horrible hack will wait a moment for it all to
2279          * shut down before proceeding.  Without it, some devices cannot
2280          * restart the graphics services.
2281          */
2282         sleep(2);
2283     }
2284 
2285     /* Start the actual work of making an encrypted filesystem */
2286     /* Initialize a crypt_mnt_ftr for the partition */
2287     if (previously_encrypted_upto == 0 && !rebootEncryption) {
2288         if (cryptfs_init_crypt_mnt_ftr(&crypt_ftr)) {
2289             goto error_shutting_down;
2290         }
2291 
2292         if (key_loc == KEY_IN_FOOTER) {
2293             crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);
2294         } else {
2295             crypt_ftr.fs_size = nr_sec;
2296         }
2297         /* At this point, we are in an inconsistent state. Until we successfully
2298            complete encryption, a reboot will leave us broken. So mark the
2299            encryption failed in case that happens.
2300            On successfully completing encryption, remove this flag */
2301         if (onlyCreateHeader) {
2302             crypt_ftr.flags |= CRYPT_FORCE_ENCRYPTION;
2303         } else {
2304             crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE;
2305         }
2306         crypt_ftr.crypt_type = crypt_type;
2307         strlcpy((char*)crypt_ftr.crypto_type_name, cryptfs_get_crypto_name(),
2308                 MAX_CRYPTO_TYPE_NAME_LEN);
2309 
2310         /* Make an encrypted master key */
2311         if (create_encrypted_random_key(onlyCreateHeader ? DEFAULT_PASSWORD : passwd,
2312                                         crypt_ftr.master_key, crypt_ftr.salt, &crypt_ftr)) {
2313             SLOGE("Cannot create encrypted master key\n");
2314             goto error_shutting_down;
2315         }
2316 
2317         /* Replace scrypted intermediate key if we are preparing for a reboot */
2318         if (onlyCreateHeader) {
2319             unsigned char fake_master_key[MAX_KEY_LEN];
2320             unsigned char encrypted_fake_master_key[MAX_KEY_LEN];
2321             memset(fake_master_key, 0, sizeof(fake_master_key));
2322             encrypt_master_key(passwd, crypt_ftr.salt, fake_master_key, encrypted_fake_master_key,
2323                                &crypt_ftr);
2324         }
2325 
2326         /* Write the key to the end of the partition */
2327         put_crypt_ftr_and_key(&crypt_ftr);
2328 
2329         /* If any persistent data has been remembered, save it.
2330          * If none, create a valid empty table and save that.
2331          */
2332         if (!persist_data) {
2333             pdata = (crypt_persist_data*)malloc(CRYPT_PERSIST_DATA_SIZE);
2334             if (pdata) {
2335                 init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
2336                 persist_data = pdata;
2337             }
2338         }
2339         if (persist_data) {
2340             save_persistent_data();
2341         }
2342     }
2343 
2344     if (onlyCreateHeader) {
2345         sleep(2);
2346         cryptfs_reboot(RebootType::reboot);
2347     }
2348 
2349     if (!no_ui || rebootEncryption) {
2350         /* startup service classes main and late_start */
2351         property_set("vold.decrypt", "trigger_restart_min_framework");
2352         SLOGD("Just triggered restart_min_framework\n");
2353 
2354         /* OK, the framework is restarted and will soon be showing a
2355          * progress bar.  Time to setup an encrypted mapping, and
2356          * either write a new filesystem, or encrypt in place updating
2357          * the progress bar as we work.
2358          */
2359     }
2360 
2361     decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
2362     create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev.c_str(), crypto_blkdev,
2363                           CRYPTO_BLOCK_DEVICE, 0);
2364 
2365     /* If we are continuing, check checksums match */
2366     rc = 0;
2367     if (previously_encrypted_upto) {
2368         __le8 hash_first_block[SHA256_DIGEST_LENGTH];
2369         rc = cryptfs_SHA256_fileblock(crypto_blkdev, hash_first_block);
2370 
2371         if (!rc &&
2372             memcmp(hash_first_block, crypt_ftr.hash_first_block, sizeof(hash_first_block)) != 0) {
2373             SLOGE("Checksums do not match - trigger wipe");
2374             rc = -1;
2375         }
2376     }
2377 
2378     if (!rc) {
2379         rc = cryptfs_enable_all_volumes(&crypt_ftr, crypto_blkdev, real_blkdev.data(),
2380                                         previously_encrypted_upto);
2381     }
2382 
2383     /* Calculate checksum if we are not finished */
2384     if (!rc && crypt_ftr.encrypted_upto != crypt_ftr.fs_size) {
2385         rc = cryptfs_SHA256_fileblock(crypto_blkdev, crypt_ftr.hash_first_block);
2386         if (rc) {
2387             SLOGE("Error calculating checksum for continuing encryption");
2388             rc = -1;
2389         }
2390     }
2391 
2392     /* Undo the dm-crypt mapping whether we succeed or not */
2393     delete_crypto_blk_dev(CRYPTO_BLOCK_DEVICE);
2394 
2395     if (!rc) {
2396         /* Success */
2397         crypt_ftr.flags &= ~CRYPT_INCONSISTENT_STATE;
2398 
2399         if (crypt_ftr.encrypted_upto != crypt_ftr.fs_size) {
2400             SLOGD("Encrypted up to sector %lld - will continue after reboot",
2401                   crypt_ftr.encrypted_upto);
2402             crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
2403         }
2404 
2405         put_crypt_ftr_and_key(&crypt_ftr);
2406 
2407         if (crypt_ftr.encrypted_upto == crypt_ftr.fs_size) {
2408             char value[PROPERTY_VALUE_MAX];
2409             property_get("ro.crypto.state", value, "");
2410             if (!strcmp(value, "")) {
2411                 /* default encryption - continue first boot sequence */
2412                 property_set("ro.crypto.state", "encrypted");
2413                 property_set("ro.crypto.type", "block");
2414                 release_wake_lock(lockid);
2415                 if (rebootEncryption && crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) {
2416                     // Bring up cryptkeeper that will check the password and set it
2417                     property_set("vold.decrypt", "trigger_shutdown_framework");
2418                     sleep(2);
2419                     property_set("vold.encrypt_progress", "");
2420                     cryptfs_trigger_restart_min_framework();
2421                 } else {
2422                     cryptfs_check_passwd(DEFAULT_PASSWORD);
2423                     cryptfs_restart_internal(1);
2424                 }
2425                 return 0;
2426             } else {
2427                 sleep(2); /* Give the UI a chance to show 100% progress */
2428                 cryptfs_reboot(RebootType::reboot);
2429             }
2430         } else {
2431             sleep(2); /* Partially encrypted, ensure writes flushed to ssd */
2432             cryptfs_reboot(RebootType::shutdown);
2433         }
2434     } else {
2435         char value[PROPERTY_VALUE_MAX];
2436 
2437         property_get("ro.vold.wipe_on_crypt_fail", value, "0");
2438         if (!strcmp(value, "1")) {
2439             /* wipe data if encryption failed */
2440             SLOGE("encryption failed - rebooting into recovery to wipe data\n");
2441             std::string err;
2442             const std::vector<std::string> options = {
2443                 "--wipe_data\n--reason=cryptfs_enable_internal\n"};
2444             if (!write_bootloader_message(options, &err)) {
2445                 SLOGE("could not write bootloader message: %s", err.c_str());
2446             }
2447             cryptfs_reboot(RebootType::recovery);
2448         } else {
2449             /* set property to trigger dialog */
2450             property_set("vold.encrypt_progress", "error_partially_encrypted");
2451             release_wake_lock(lockid);
2452         }
2453         return -1;
2454     }
2455 
2456     /* hrm, the encrypt step claims success, but the reboot failed.
2457      * This should not happen.
2458      * Set the property and return.  Hope the framework can deal with it.
2459      */
2460     property_set("vold.encrypt_progress", "error_reboot_failed");
2461     release_wake_lock(lockid);
2462     return rc;
2463 
2464 error_unencrypted:
2465     property_set("vold.encrypt_progress", "error_not_encrypted");
2466     if (lockid[0]) {
2467         release_wake_lock(lockid);
2468     }
2469     return -1;
2470 
2471 error_shutting_down:
2472     /* we failed, and have not encrypted anthing, so the users's data is still intact,
2473      * but the framework is stopped and not restarted to show the error, so it's up to
2474      * vold to restart the system.
2475      */
2476     SLOGE(
2477         "Error enabling encryption after framework is shutdown, no data changed, restarting "
2478         "system");
2479     cryptfs_reboot(RebootType::reboot);
2480 
2481     /* shouldn't get here */
2482     property_set("vold.encrypt_progress", "error_shutting_down");
2483     if (lockid[0]) {
2484         release_wake_lock(lockid);
2485     }
2486     return -1;
2487 }
2488 
cryptfs_enable(int type,const char * passwd,int no_ui)2489 int cryptfs_enable(int type, const char* passwd, int no_ui) {
2490     return cryptfs_enable_internal(type, passwd, no_ui);
2491 }
2492 
cryptfs_enable_default(int no_ui)2493 int cryptfs_enable_default(int no_ui) {
2494     return cryptfs_enable_internal(CRYPT_TYPE_DEFAULT, DEFAULT_PASSWORD, no_ui);
2495 }
2496 
cryptfs_changepw(int crypt_type,const char * newpw)2497 int cryptfs_changepw(int crypt_type, const char* newpw) {
2498     if (fscrypt_is_native()) {
2499         SLOGE("cryptfs_changepw not valid for file encryption");
2500         return -1;
2501     }
2502 
2503     struct crypt_mnt_ftr crypt_ftr;
2504     int rc;
2505 
2506     /* This is only allowed after we've successfully decrypted the master key */
2507     if (!master_key_saved) {
2508         SLOGE("Key not saved, aborting");
2509         return -1;
2510     }
2511 
2512     if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
2513         SLOGE("Invalid crypt_type %d", crypt_type);
2514         return -1;
2515     }
2516 
2517     /* get key */
2518     if (get_crypt_ftr_and_key(&crypt_ftr)) {
2519         SLOGE("Error getting crypt footer and key");
2520         return -1;
2521     }
2522 
2523     crypt_ftr.crypt_type = crypt_type;
2524 
2525     rc = encrypt_master_key(crypt_type == CRYPT_TYPE_DEFAULT ? DEFAULT_PASSWORD : newpw,
2526                             crypt_ftr.salt, saved_master_key, crypt_ftr.master_key, &crypt_ftr);
2527     if (rc) {
2528         SLOGE("Encrypt master key failed: %d", rc);
2529         return -1;
2530     }
2531     /* save the key */
2532     put_crypt_ftr_and_key(&crypt_ftr);
2533 
2534     return 0;
2535 }
2536 
persist_get_max_entries(int encrypted)2537 static unsigned int persist_get_max_entries(int encrypted) {
2538     struct crypt_mnt_ftr crypt_ftr;
2539     unsigned int dsize;
2540 
2541     /* If encrypted, use the values from the crypt_ftr, otherwise
2542      * use the values for the current spec.
2543      */
2544     if (encrypted) {
2545         if (get_crypt_ftr_and_key(&crypt_ftr)) {
2546             /* Something is wrong, assume no space for entries */
2547             return 0;
2548         }
2549         dsize = crypt_ftr.persist_data_size;
2550     } else {
2551         dsize = CRYPT_PERSIST_DATA_SIZE;
2552     }
2553 
2554     if (dsize > sizeof(struct crypt_persist_data)) {
2555         return (dsize - sizeof(struct crypt_persist_data)) / sizeof(struct crypt_persist_entry);
2556     } else {
2557         return 0;
2558     }
2559 }
2560 
persist_get_key(const char * fieldname,char * value)2561 static int persist_get_key(const char* fieldname, char* value) {
2562     unsigned int i;
2563 
2564     if (persist_data == NULL) {
2565         return -1;
2566     }
2567     for (i = 0; i < persist_data->persist_valid_entries; i++) {
2568         if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
2569             /* We found it! */
2570             strlcpy(value, persist_data->persist_entry[i].val, PROPERTY_VALUE_MAX);
2571             return 0;
2572         }
2573     }
2574 
2575     return -1;
2576 }
2577 
persist_set_key(const char * fieldname,const char * value,int encrypted)2578 static int persist_set_key(const char* fieldname, const char* value, int encrypted) {
2579     unsigned int i;
2580     unsigned int num;
2581     unsigned int max_persistent_entries;
2582 
2583     if (persist_data == NULL) {
2584         return -1;
2585     }
2586 
2587     max_persistent_entries = persist_get_max_entries(encrypted);
2588 
2589     num = persist_data->persist_valid_entries;
2590 
2591     for (i = 0; i < num; i++) {
2592         if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
2593             /* We found an existing entry, update it! */
2594             memset(persist_data->persist_entry[i].val, 0, PROPERTY_VALUE_MAX);
2595             strlcpy(persist_data->persist_entry[i].val, value, PROPERTY_VALUE_MAX);
2596             return 0;
2597         }
2598     }
2599 
2600     /* We didn't find it, add it to the end, if there is room */
2601     if (persist_data->persist_valid_entries < max_persistent_entries) {
2602         memset(&persist_data->persist_entry[num], 0, sizeof(struct crypt_persist_entry));
2603         strlcpy(persist_data->persist_entry[num].key, fieldname, PROPERTY_KEY_MAX);
2604         strlcpy(persist_data->persist_entry[num].val, value, PROPERTY_VALUE_MAX);
2605         persist_data->persist_valid_entries++;
2606         return 0;
2607     }
2608 
2609     return -1;
2610 }
2611 
2612 /**
2613  * Test if key is part of the multi-entry (field, index) sequence. Return non-zero if key is in the
2614  * sequence and its index is greater than or equal to index. Return 0 otherwise.
2615  */
match_multi_entry(const char * key,const char * field,unsigned index)2616 int match_multi_entry(const char* key, const char* field, unsigned index) {
2617     std::string key_ = key;
2618     std::string field_ = field;
2619 
2620     std::string parsed_field;
2621     unsigned parsed_index;
2622 
2623     std::string::size_type split = key_.find_last_of('_');
2624     if (split == std::string::npos) {
2625         parsed_field = key_;
2626         parsed_index = 0;
2627     } else {
2628         parsed_field = key_.substr(0, split);
2629         parsed_index = std::stoi(key_.substr(split + 1));
2630     }
2631 
2632     return parsed_field == field_ && parsed_index >= index;
2633 }
2634 
2635 /*
2636  * Delete entry/entries from persist_data. If the entries are part of a multi-segment field, all
2637  * remaining entries starting from index will be deleted.
2638  * returns PERSIST_DEL_KEY_OK if deletion succeeds,
2639  * PERSIST_DEL_KEY_ERROR_NO_FIELD if the field does not exist,
2640  * and PERSIST_DEL_KEY_ERROR_OTHER if error occurs.
2641  *
2642  */
persist_del_keys(const char * fieldname,unsigned index)2643 static int persist_del_keys(const char* fieldname, unsigned index) {
2644     unsigned int i;
2645     unsigned int j;
2646     unsigned int num;
2647 
2648     if (persist_data == NULL) {
2649         return PERSIST_DEL_KEY_ERROR_OTHER;
2650     }
2651 
2652     num = persist_data->persist_valid_entries;
2653 
2654     j = 0;  // points to the end of non-deleted entries.
2655     // Filter out to-be-deleted entries in place.
2656     for (i = 0; i < num; i++) {
2657         if (!match_multi_entry(persist_data->persist_entry[i].key, fieldname, index)) {
2658             persist_data->persist_entry[j] = persist_data->persist_entry[i];
2659             j++;
2660         }
2661     }
2662 
2663     if (j < num) {
2664         persist_data->persist_valid_entries = j;
2665         // Zeroise the remaining entries
2666         memset(&persist_data->persist_entry[j], 0, (num - j) * sizeof(struct crypt_persist_entry));
2667         return PERSIST_DEL_KEY_OK;
2668     } else {
2669         // Did not find an entry matching the given fieldname
2670         return PERSIST_DEL_KEY_ERROR_NO_FIELD;
2671     }
2672 }
2673 
persist_count_keys(const char * fieldname)2674 static int persist_count_keys(const char* fieldname) {
2675     unsigned int i;
2676     unsigned int count;
2677 
2678     if (persist_data == NULL) {
2679         return -1;
2680     }
2681 
2682     count = 0;
2683     for (i = 0; i < persist_data->persist_valid_entries; i++) {
2684         if (match_multi_entry(persist_data->persist_entry[i].key, fieldname, 0)) {
2685             count++;
2686         }
2687     }
2688 
2689     return count;
2690 }
2691 
2692 /* Return the value of the specified field. */
cryptfs_getfield(const char * fieldname,char * value,int len)2693 int cryptfs_getfield(const char* fieldname, char* value, int len) {
2694     if (fscrypt_is_native()) {
2695         SLOGE("Cannot get field when file encrypted");
2696         return -1;
2697     }
2698 
2699     char temp_value[PROPERTY_VALUE_MAX];
2700     /* CRYPTO_GETFIELD_OK is success,
2701      * CRYPTO_GETFIELD_ERROR_NO_FIELD is value not set,
2702      * CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL is buffer (as given by len) too small,
2703      * CRYPTO_GETFIELD_ERROR_OTHER is any other error
2704      */
2705     int rc = CRYPTO_GETFIELD_ERROR_OTHER;
2706     int i;
2707     char temp_field[PROPERTY_KEY_MAX];
2708 
2709     if (persist_data == NULL) {
2710         load_persistent_data();
2711         if (persist_data == NULL) {
2712             SLOGE("Getfield error, cannot load persistent data");
2713             goto out;
2714         }
2715     }
2716 
2717     // Read value from persistent entries. If the original value is split into multiple entries,
2718     // stitch them back together.
2719     if (!persist_get_key(fieldname, temp_value)) {
2720         // We found it, copy it to the caller's buffer and keep going until all entries are read.
2721         if (strlcpy(value, temp_value, len) >= (unsigned)len) {
2722             // value too small
2723             rc = CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL;
2724             goto out;
2725         }
2726         rc = CRYPTO_GETFIELD_OK;
2727 
2728         for (i = 1; /* break explicitly */; i++) {
2729             if (snprintf(temp_field, sizeof(temp_field), "%s_%d", fieldname, i) >=
2730                 (int)sizeof(temp_field)) {
2731                 // If the fieldname is very long, we stop as soon as it begins to overflow the
2732                 // maximum field length. At this point we have in fact fully read out the original
2733                 // value because cryptfs_setfield would not allow fields with longer names to be
2734                 // written in the first place.
2735                 break;
2736             }
2737             if (!persist_get_key(temp_field, temp_value)) {
2738                 if (strlcat(value, temp_value, len) >= (unsigned)len) {
2739                     // value too small.
2740                     rc = CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL;
2741                     goto out;
2742                 }
2743             } else {
2744                 // Exhaust all entries.
2745                 break;
2746             }
2747         }
2748     } else {
2749         /* Sadness, it's not there.  Return the error */
2750         rc = CRYPTO_GETFIELD_ERROR_NO_FIELD;
2751     }
2752 
2753 out:
2754     return rc;
2755 }
2756 
2757 /* Set the value of the specified field. */
cryptfs_setfield(const char * fieldname,const char * value)2758 int cryptfs_setfield(const char* fieldname, const char* value) {
2759     if (fscrypt_is_native()) {
2760         SLOGE("Cannot set field when file encrypted");
2761         return -1;
2762     }
2763 
2764     char encrypted_state[PROPERTY_VALUE_MAX];
2765     /* 0 is success, negative values are error */
2766     int rc = CRYPTO_SETFIELD_ERROR_OTHER;
2767     int encrypted = 0;
2768     unsigned int field_id;
2769     char temp_field[PROPERTY_KEY_MAX];
2770     unsigned int num_entries;
2771     unsigned int max_keylen;
2772 
2773     if (persist_data == NULL) {
2774         load_persistent_data();
2775         if (persist_data == NULL) {
2776             SLOGE("Setfield error, cannot load persistent data");
2777             goto out;
2778         }
2779     }
2780 
2781     property_get("ro.crypto.state", encrypted_state, "");
2782     if (!strcmp(encrypted_state, "encrypted")) {
2783         encrypted = 1;
2784     }
2785 
2786     // Compute the number of entries required to store value, each entry can store up to
2787     // (PROPERTY_VALUE_MAX - 1) chars
2788     if (strlen(value) == 0) {
2789         // Empty value also needs one entry to store.
2790         num_entries = 1;
2791     } else {
2792         num_entries = (strlen(value) + (PROPERTY_VALUE_MAX - 1) - 1) / (PROPERTY_VALUE_MAX - 1);
2793     }
2794 
2795     max_keylen = strlen(fieldname);
2796     if (num_entries > 1) {
2797         // Need an extra "_%d" suffix.
2798         max_keylen += 1 + log10(num_entries);
2799     }
2800     if (max_keylen > PROPERTY_KEY_MAX - 1) {
2801         rc = CRYPTO_SETFIELD_ERROR_FIELD_TOO_LONG;
2802         goto out;
2803     }
2804 
2805     // Make sure we have enough space to write the new value
2806     if (persist_data->persist_valid_entries + num_entries - persist_count_keys(fieldname) >
2807         persist_get_max_entries(encrypted)) {
2808         rc = CRYPTO_SETFIELD_ERROR_VALUE_TOO_LONG;
2809         goto out;
2810     }
2811 
2812     // Now that we know persist_data has enough space for value, let's delete the old field first
2813     // to make up space.
2814     persist_del_keys(fieldname, 0);
2815 
2816     if (persist_set_key(fieldname, value, encrypted)) {
2817         // fail to set key, should not happen as we have already checked the available space
2818         SLOGE("persist_set_key() error during setfield()");
2819         goto out;
2820     }
2821 
2822     for (field_id = 1; field_id < num_entries; field_id++) {
2823         snprintf(temp_field, sizeof(temp_field), "%s_%u", fieldname, field_id);
2824 
2825         if (persist_set_key(temp_field, value + field_id * (PROPERTY_VALUE_MAX - 1), encrypted)) {
2826             // fail to set key, should not happen as we have already checked the available space.
2827             SLOGE("persist_set_key() error during setfield()");
2828             goto out;
2829         }
2830     }
2831 
2832     /* If we are running encrypted, save the persistent data now */
2833     if (encrypted) {
2834         if (save_persistent_data()) {
2835             SLOGE("Setfield error, cannot save persistent data");
2836             goto out;
2837         }
2838     }
2839 
2840     rc = CRYPTO_SETFIELD_OK;
2841 
2842 out:
2843     return rc;
2844 }
2845 
2846 /* Checks userdata. Attempt to mount the volume if default-
2847  * encrypted.
2848  * On success trigger next init phase and return 0.
2849  * Currently do not handle failure - see TODO below.
2850  */
cryptfs_mount_default_encrypted(void)2851 int cryptfs_mount_default_encrypted(void) {
2852     int crypt_type = cryptfs_get_password_type();
2853     if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
2854         SLOGE("Bad crypt type - error");
2855     } else if (crypt_type != CRYPT_TYPE_DEFAULT) {
2856         SLOGD(
2857             "Password is not default - "
2858             "starting min framework to prompt");
2859         property_set("vold.decrypt", "trigger_restart_min_framework");
2860         return 0;
2861     } else if (cryptfs_check_passwd(DEFAULT_PASSWORD) == 0) {
2862         SLOGD("Password is default - restarting filesystem");
2863         cryptfs_restart_internal(0);
2864         return 0;
2865     } else {
2866         SLOGE("Encrypted, default crypt type but can't decrypt");
2867     }
2868 
2869     /** Corrupt. Allow us to boot into framework, which will detect bad
2870         crypto when it calls do_crypto_complete, then do a factory reset
2871      */
2872     property_set("vold.decrypt", "trigger_restart_min_framework");
2873     return 0;
2874 }
2875 
2876 /* Returns type of the password, default, pattern, pin or password.
2877  */
cryptfs_get_password_type(void)2878 int cryptfs_get_password_type(void) {
2879     if (fscrypt_is_native()) {
2880         SLOGE("cryptfs_get_password_type not valid for file encryption");
2881         return -1;
2882     }
2883 
2884     struct crypt_mnt_ftr crypt_ftr;
2885 
2886     if (get_crypt_ftr_and_key(&crypt_ftr)) {
2887         SLOGE("Error getting crypt footer and key\n");
2888         return -1;
2889     }
2890 
2891     if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) {
2892         return -1;
2893     }
2894 
2895     return crypt_ftr.crypt_type;
2896 }
2897 
cryptfs_get_password()2898 const char* cryptfs_get_password() {
2899     if (fscrypt_is_native()) {
2900         SLOGE("cryptfs_get_password not valid for file encryption");
2901         return 0;
2902     }
2903 
2904     struct timespec now;
2905     clock_gettime(CLOCK_BOOTTIME, &now);
2906     if (now.tv_sec < password_expiry_time) {
2907         return password;
2908     } else {
2909         cryptfs_clear_password();
2910         return 0;
2911     }
2912 }
2913 
cryptfs_clear_password()2914 void cryptfs_clear_password() {
2915     if (password) {
2916         size_t len = strlen(password);
2917         memset(password, 0, len);
2918         free(password);
2919         password = 0;
2920         password_expiry_time = 0;
2921     }
2922 }
2923 
cryptfs_isConvertibleToFBE()2924 int cryptfs_isConvertibleToFBE() {
2925     auto entry = GetEntryForMountPoint(&fstab_default, DATA_MNT_POINT);
2926     return entry && entry->fs_mgr_flags.force_fde_or_fbe;
2927 }
2928