1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11 /*
12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
13 * the UBIFS B-tree.
14 *
15 * At the moment the locking rules of the TNC tree are quite simple and
16 * straightforward. We just have a mutex and lock it when we traverse the
17 * tree. If a znode is not in memory, we read it from flash while still having
18 * the mutex locked.
19 */
20
21 #ifndef __UBOOT__
22 #include <linux/crc32.h>
23 #include <linux/slab.h>
24 #else
25 #include <linux/compat.h>
26 #include <linux/err.h>
27 #include <linux/stat.h>
28 #endif
29 #include "ubifs.h"
30
31 /*
32 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
33 * @NAME_LESS: name corresponding to the first argument is less than second
34 * @NAME_MATCHES: names match
35 * @NAME_GREATER: name corresponding to the second argument is greater than
36 * first
37 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
38 *
39 * These constants were introduce to improve readability.
40 */
41 enum {
42 NAME_LESS = 0,
43 NAME_MATCHES = 1,
44 NAME_GREATER = 2,
45 NOT_ON_MEDIA = 3,
46 };
47
48 /**
49 * insert_old_idx - record an index node obsoleted since the last commit start.
50 * @c: UBIFS file-system description object
51 * @lnum: LEB number of obsoleted index node
52 * @offs: offset of obsoleted index node
53 *
54 * Returns %0 on success, and a negative error code on failure.
55 *
56 * For recovery, there must always be a complete intact version of the index on
57 * flash at all times. That is called the "old index". It is the index as at the
58 * time of the last successful commit. Many of the index nodes in the old index
59 * may be dirty, but they must not be erased until the next successful commit
60 * (at which point that index becomes the old index).
61 *
62 * That means that the garbage collection and the in-the-gaps method of
63 * committing must be able to determine if an index node is in the old index.
64 * Most of the old index nodes can be found by looking up the TNC using the
65 * 'lookup_znode()' function. However, some of the old index nodes may have
66 * been deleted from the current index or may have been changed so much that
67 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
68 * That is what this function does. The RB-tree is ordered by LEB number and
69 * offset because they uniquely identify the old index node.
70 */
insert_old_idx(struct ubifs_info * c,int lnum,int offs)71 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
72 {
73 struct ubifs_old_idx *old_idx, *o;
74 struct rb_node **p, *parent = NULL;
75
76 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
77 if (unlikely(!old_idx))
78 return -ENOMEM;
79 old_idx->lnum = lnum;
80 old_idx->offs = offs;
81
82 p = &c->old_idx.rb_node;
83 while (*p) {
84 parent = *p;
85 o = rb_entry(parent, struct ubifs_old_idx, rb);
86 if (lnum < o->lnum)
87 p = &(*p)->rb_left;
88 else if (lnum > o->lnum)
89 p = &(*p)->rb_right;
90 else if (offs < o->offs)
91 p = &(*p)->rb_left;
92 else if (offs > o->offs)
93 p = &(*p)->rb_right;
94 else {
95 ubifs_err(c, "old idx added twice!");
96 kfree(old_idx);
97 return 0;
98 }
99 }
100 rb_link_node(&old_idx->rb, parent, p);
101 rb_insert_color(&old_idx->rb, &c->old_idx);
102 return 0;
103 }
104
105 /**
106 * insert_old_idx_znode - record a znode obsoleted since last commit start.
107 * @c: UBIFS file-system description object
108 * @znode: znode of obsoleted index node
109 *
110 * Returns %0 on success, and a negative error code on failure.
111 */
insert_old_idx_znode(struct ubifs_info * c,struct ubifs_znode * znode)112 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
113 {
114 if (znode->parent) {
115 struct ubifs_zbranch *zbr;
116
117 zbr = &znode->parent->zbranch[znode->iip];
118 if (zbr->len)
119 return insert_old_idx(c, zbr->lnum, zbr->offs);
120 } else
121 if (c->zroot.len)
122 return insert_old_idx(c, c->zroot.lnum,
123 c->zroot.offs);
124 return 0;
125 }
126
127 /**
128 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
129 * @c: UBIFS file-system description object
130 * @znode: znode of obsoleted index node
131 *
132 * Returns %0 on success, and a negative error code on failure.
133 */
ins_clr_old_idx_znode(struct ubifs_info * c,struct ubifs_znode * znode)134 static int ins_clr_old_idx_znode(struct ubifs_info *c,
135 struct ubifs_znode *znode)
136 {
137 int err;
138
139 if (znode->parent) {
140 struct ubifs_zbranch *zbr;
141
142 zbr = &znode->parent->zbranch[znode->iip];
143 if (zbr->len) {
144 err = insert_old_idx(c, zbr->lnum, zbr->offs);
145 if (err)
146 return err;
147 zbr->lnum = 0;
148 zbr->offs = 0;
149 zbr->len = 0;
150 }
151 } else
152 if (c->zroot.len) {
153 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
154 if (err)
155 return err;
156 c->zroot.lnum = 0;
157 c->zroot.offs = 0;
158 c->zroot.len = 0;
159 }
160 return 0;
161 }
162
163 /**
164 * destroy_old_idx - destroy the old_idx RB-tree.
165 * @c: UBIFS file-system description object
166 *
167 * During start commit, the old_idx RB-tree is used to avoid overwriting index
168 * nodes that were in the index last commit but have since been deleted. This
169 * is necessary for recovery i.e. the old index must be kept intact until the
170 * new index is successfully written. The old-idx RB-tree is used for the
171 * in-the-gaps method of writing index nodes and is destroyed every commit.
172 */
destroy_old_idx(struct ubifs_info * c)173 void destroy_old_idx(struct ubifs_info *c)
174 {
175 struct ubifs_old_idx *old_idx, *n;
176
177 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
178 kfree(old_idx);
179
180 c->old_idx = RB_ROOT;
181 }
182
183 /**
184 * copy_znode - copy a dirty znode.
185 * @c: UBIFS file-system description object
186 * @znode: znode to copy
187 *
188 * A dirty znode being committed may not be changed, so it is copied.
189 */
copy_znode(struct ubifs_info * c,struct ubifs_znode * znode)190 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
191 struct ubifs_znode *znode)
192 {
193 struct ubifs_znode *zn;
194
195 zn = kmalloc(c->max_znode_sz, GFP_NOFS);
196 if (unlikely(!zn))
197 return ERR_PTR(-ENOMEM);
198
199 memcpy(zn, znode, c->max_znode_sz);
200 zn->cnext = NULL;
201 __set_bit(DIRTY_ZNODE, &zn->flags);
202 __clear_bit(COW_ZNODE, &zn->flags);
203
204 ubifs_assert(!ubifs_zn_obsolete(znode));
205 __set_bit(OBSOLETE_ZNODE, &znode->flags);
206
207 if (znode->level != 0) {
208 int i;
209 const int n = zn->child_cnt;
210
211 /* The children now have new parent */
212 for (i = 0; i < n; i++) {
213 struct ubifs_zbranch *zbr = &zn->zbranch[i];
214
215 if (zbr->znode)
216 zbr->znode->parent = zn;
217 }
218 }
219
220 atomic_long_inc(&c->dirty_zn_cnt);
221 return zn;
222 }
223
224 /**
225 * add_idx_dirt - add dirt due to a dirty znode.
226 * @c: UBIFS file-system description object
227 * @lnum: LEB number of index node
228 * @dirt: size of index node
229 *
230 * This function updates lprops dirty space and the new size of the index.
231 */
add_idx_dirt(struct ubifs_info * c,int lnum,int dirt)232 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
233 {
234 c->calc_idx_sz -= ALIGN(dirt, 8);
235 return ubifs_add_dirt(c, lnum, dirt);
236 }
237
238 /**
239 * dirty_cow_znode - ensure a znode is not being committed.
240 * @c: UBIFS file-system description object
241 * @zbr: branch of znode to check
242 *
243 * Returns dirtied znode on success or negative error code on failure.
244 */
dirty_cow_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)245 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
246 struct ubifs_zbranch *zbr)
247 {
248 struct ubifs_znode *znode = zbr->znode;
249 struct ubifs_znode *zn;
250 int err;
251
252 if (!ubifs_zn_cow(znode)) {
253 /* znode is not being committed */
254 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
255 atomic_long_inc(&c->dirty_zn_cnt);
256 atomic_long_dec(&c->clean_zn_cnt);
257 atomic_long_dec(&ubifs_clean_zn_cnt);
258 err = add_idx_dirt(c, zbr->lnum, zbr->len);
259 if (unlikely(err))
260 return ERR_PTR(err);
261 }
262 return znode;
263 }
264
265 zn = copy_znode(c, znode);
266 if (IS_ERR(zn))
267 return zn;
268
269 if (zbr->len) {
270 err = insert_old_idx(c, zbr->lnum, zbr->offs);
271 if (unlikely(err))
272 return ERR_PTR(err);
273 err = add_idx_dirt(c, zbr->lnum, zbr->len);
274 } else
275 err = 0;
276
277 zbr->znode = zn;
278 zbr->lnum = 0;
279 zbr->offs = 0;
280 zbr->len = 0;
281
282 if (unlikely(err))
283 return ERR_PTR(err);
284 return zn;
285 }
286
287 /**
288 * lnc_add - add a leaf node to the leaf node cache.
289 * @c: UBIFS file-system description object
290 * @zbr: zbranch of leaf node
291 * @node: leaf node
292 *
293 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
294 * purpose of the leaf node cache is to save re-reading the same leaf node over
295 * and over again. Most things are cached by VFS, however the file system must
296 * cache directory entries for readdir and for resolving hash collisions. The
297 * present implementation of the leaf node cache is extremely simple, and
298 * allows for error returns that are not used but that may be needed if a more
299 * complex implementation is created.
300 *
301 * Note, this function does not add the @node object to LNC directly, but
302 * allocates a copy of the object and adds the copy to LNC. The reason for this
303 * is that @node has been allocated outside of the TNC subsystem and will be
304 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
305 * may be changed at any time, e.g. freed by the shrinker.
306 */
lnc_add(struct ubifs_info * c,struct ubifs_zbranch * zbr,const void * node)307 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
308 const void *node)
309 {
310 int err;
311 void *lnc_node;
312 const struct ubifs_dent_node *dent = node;
313
314 ubifs_assert(!zbr->leaf);
315 ubifs_assert(zbr->len != 0);
316 ubifs_assert(is_hash_key(c, &zbr->key));
317
318 err = ubifs_validate_entry(c, dent);
319 if (err) {
320 dump_stack();
321 ubifs_dump_node(c, dent);
322 return err;
323 }
324
325 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
326 if (!lnc_node)
327 /* We don't have to have the cache, so no error */
328 return 0;
329
330 zbr->leaf = lnc_node;
331 return 0;
332 }
333
334 /**
335 * lnc_add_directly - add a leaf node to the leaf-node-cache.
336 * @c: UBIFS file-system description object
337 * @zbr: zbranch of leaf node
338 * @node: leaf node
339 *
340 * This function is similar to 'lnc_add()', but it does not create a copy of
341 * @node but inserts @node to TNC directly.
342 */
lnc_add_directly(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)343 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
344 void *node)
345 {
346 int err;
347
348 ubifs_assert(!zbr->leaf);
349 ubifs_assert(zbr->len != 0);
350
351 err = ubifs_validate_entry(c, node);
352 if (err) {
353 dump_stack();
354 ubifs_dump_node(c, node);
355 return err;
356 }
357
358 zbr->leaf = node;
359 return 0;
360 }
361
362 /**
363 * lnc_free - remove a leaf node from the leaf node cache.
364 * @zbr: zbranch of leaf node
365 * @node: leaf node
366 */
lnc_free(struct ubifs_zbranch * zbr)367 static void lnc_free(struct ubifs_zbranch *zbr)
368 {
369 if (!zbr->leaf)
370 return;
371 kfree(zbr->leaf);
372 zbr->leaf = NULL;
373 }
374
375 /**
376 * tnc_read_node_nm - read a "hashed" leaf node.
377 * @c: UBIFS file-system description object
378 * @zbr: key and position of the node
379 * @node: node is returned here
380 *
381 * This function reads a "hashed" node defined by @zbr from the leaf node cache
382 * (in it is there) or from the hash media, in which case the node is also
383 * added to LNC. Returns zero in case of success or a negative negative error
384 * code in case of failure.
385 */
tnc_read_node_nm(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)386 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
387 void *node)
388 {
389 int err;
390
391 ubifs_assert(is_hash_key(c, &zbr->key));
392
393 if (zbr->leaf) {
394 /* Read from the leaf node cache */
395 ubifs_assert(zbr->len != 0);
396 memcpy(node, zbr->leaf, zbr->len);
397 return 0;
398 }
399
400 err = ubifs_tnc_read_node(c, zbr, node);
401 if (err)
402 return err;
403
404 /* Add the node to the leaf node cache */
405 err = lnc_add(c, zbr, node);
406 return err;
407 }
408
409 /**
410 * try_read_node - read a node if it is a node.
411 * @c: UBIFS file-system description object
412 * @buf: buffer to read to
413 * @type: node type
414 * @len: node length (not aligned)
415 * @lnum: LEB number of node to read
416 * @offs: offset of node to read
417 *
418 * This function tries to read a node of known type and length, checks it and
419 * stores it in @buf. This function returns %1 if a node is present and %0 if
420 * a node is not present. A negative error code is returned for I/O errors.
421 * This function performs that same function as ubifs_read_node except that
422 * it does not require that there is actually a node present and instead
423 * the return code indicates if a node was read.
424 *
425 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
426 * is true (it is controlled by corresponding mount option). However, if
427 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
428 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
429 * because during mounting or re-mounting from R/O mode to R/W mode we may read
430 * journal nodes (when replying the journal or doing the recovery) and the
431 * journal nodes may potentially be corrupted, so checking is required.
432 */
try_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)433 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
434 int len, int lnum, int offs)
435 {
436 int err, node_len;
437 struct ubifs_ch *ch = buf;
438 uint32_t crc, node_crc;
439
440 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
441
442 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
443 if (err) {
444 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
445 type, lnum, offs, err);
446 return err;
447 }
448
449 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
450 return 0;
451
452 if (ch->node_type != type)
453 return 0;
454
455 node_len = le32_to_cpu(ch->len);
456 if (node_len != len)
457 return 0;
458
459 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
460 !c->remounting_rw)
461 return 1;
462
463 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
464 node_crc = le32_to_cpu(ch->crc);
465 if (crc != node_crc)
466 return 0;
467
468 return 1;
469 }
470
471 /**
472 * fallible_read_node - try to read a leaf node.
473 * @c: UBIFS file-system description object
474 * @key: key of node to read
475 * @zbr: position of node
476 * @node: node returned
477 *
478 * This function tries to read a node and returns %1 if the node is read, %0
479 * if the node is not present, and a negative error code in the case of error.
480 */
fallible_read_node(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_zbranch * zbr,void * node)481 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
482 struct ubifs_zbranch *zbr, void *node)
483 {
484 int ret;
485
486 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
487
488 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
489 zbr->offs);
490 if (ret == 1) {
491 union ubifs_key node_key;
492 struct ubifs_dent_node *dent = node;
493
494 /* All nodes have key in the same place */
495 key_read(c, &dent->key, &node_key);
496 if (keys_cmp(c, key, &node_key) != 0)
497 ret = 0;
498 }
499 if (ret == 0 && c->replaying)
500 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
501 zbr->lnum, zbr->offs, zbr->len);
502 return ret;
503 }
504
505 /**
506 * matches_name - determine if a direntry or xattr entry matches a given name.
507 * @c: UBIFS file-system description object
508 * @zbr: zbranch of dent
509 * @nm: name to match
510 *
511 * This function checks if xentry/direntry referred by zbranch @zbr matches name
512 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
513 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
514 * of failure, a negative error code is returned.
515 */
matches_name(struct ubifs_info * c,struct ubifs_zbranch * zbr,const struct qstr * nm)516 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
517 const struct qstr *nm)
518 {
519 struct ubifs_dent_node *dent;
520 int nlen, err;
521
522 /* If possible, match against the dent in the leaf node cache */
523 if (!zbr->leaf) {
524 dent = kmalloc(zbr->len, GFP_NOFS);
525 if (!dent)
526 return -ENOMEM;
527
528 err = ubifs_tnc_read_node(c, zbr, dent);
529 if (err)
530 goto out_free;
531
532 /* Add the node to the leaf node cache */
533 err = lnc_add_directly(c, zbr, dent);
534 if (err)
535 goto out_free;
536 } else
537 dent = zbr->leaf;
538
539 nlen = le16_to_cpu(dent->nlen);
540 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
541 if (err == 0) {
542 if (nlen == nm->len)
543 return NAME_MATCHES;
544 else if (nlen < nm->len)
545 return NAME_LESS;
546 else
547 return NAME_GREATER;
548 } else if (err < 0)
549 return NAME_LESS;
550 else
551 return NAME_GREATER;
552
553 out_free:
554 kfree(dent);
555 return err;
556 }
557
558 /**
559 * get_znode - get a TNC znode that may not be loaded yet.
560 * @c: UBIFS file-system description object
561 * @znode: parent znode
562 * @n: znode branch slot number
563 *
564 * This function returns the znode or a negative error code.
565 */
get_znode(struct ubifs_info * c,struct ubifs_znode * znode,int n)566 static struct ubifs_znode *get_znode(struct ubifs_info *c,
567 struct ubifs_znode *znode, int n)
568 {
569 struct ubifs_zbranch *zbr;
570
571 zbr = &znode->zbranch[n];
572 if (zbr->znode)
573 znode = zbr->znode;
574 else
575 znode = ubifs_load_znode(c, zbr, znode, n);
576 return znode;
577 }
578
579 /**
580 * tnc_next - find next TNC entry.
581 * @c: UBIFS file-system description object
582 * @zn: znode is passed and returned here
583 * @n: znode branch slot number is passed and returned here
584 *
585 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
586 * no next entry, or a negative error code otherwise.
587 */
tnc_next(struct ubifs_info * c,struct ubifs_znode ** zn,int * n)588 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
589 {
590 struct ubifs_znode *znode = *zn;
591 int nn = *n;
592
593 nn += 1;
594 if (nn < znode->child_cnt) {
595 *n = nn;
596 return 0;
597 }
598 while (1) {
599 struct ubifs_znode *zp;
600
601 zp = znode->parent;
602 if (!zp)
603 return -ENOENT;
604 nn = znode->iip + 1;
605 znode = zp;
606 if (nn < znode->child_cnt) {
607 znode = get_znode(c, znode, nn);
608 if (IS_ERR(znode))
609 return PTR_ERR(znode);
610 while (znode->level != 0) {
611 znode = get_znode(c, znode, 0);
612 if (IS_ERR(znode))
613 return PTR_ERR(znode);
614 }
615 nn = 0;
616 break;
617 }
618 }
619 *zn = znode;
620 *n = nn;
621 return 0;
622 }
623
624 /**
625 * tnc_prev - find previous TNC entry.
626 * @c: UBIFS file-system description object
627 * @zn: znode is returned here
628 * @n: znode branch slot number is passed and returned here
629 *
630 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
631 * there is no next entry, or a negative error code otherwise.
632 */
tnc_prev(struct ubifs_info * c,struct ubifs_znode ** zn,int * n)633 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
634 {
635 struct ubifs_znode *znode = *zn;
636 int nn = *n;
637
638 if (nn > 0) {
639 *n = nn - 1;
640 return 0;
641 }
642 while (1) {
643 struct ubifs_znode *zp;
644
645 zp = znode->parent;
646 if (!zp)
647 return -ENOENT;
648 nn = znode->iip - 1;
649 znode = zp;
650 if (nn >= 0) {
651 znode = get_znode(c, znode, nn);
652 if (IS_ERR(znode))
653 return PTR_ERR(znode);
654 while (znode->level != 0) {
655 nn = znode->child_cnt - 1;
656 znode = get_znode(c, znode, nn);
657 if (IS_ERR(znode))
658 return PTR_ERR(znode);
659 }
660 nn = znode->child_cnt - 1;
661 break;
662 }
663 }
664 *zn = znode;
665 *n = nn;
666 return 0;
667 }
668
669 /**
670 * resolve_collision - resolve a collision.
671 * @c: UBIFS file-system description object
672 * @key: key of a directory or extended attribute entry
673 * @zn: znode is returned here
674 * @n: zbranch number is passed and returned here
675 * @nm: name of the entry
676 *
677 * This function is called for "hashed" keys to make sure that the found key
678 * really corresponds to the looked up node (directory or extended attribute
679 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
680 * %0 is returned if @nm is not found and @zn and @n are set to the previous
681 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
682 * This means that @n may be set to %-1 if the leftmost key in @zn is the
683 * previous one. A negative error code is returned on failures.
684 */
resolve_collision(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,const struct qstr * nm)685 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
686 struct ubifs_znode **zn, int *n,
687 const struct qstr *nm)
688 {
689 int err;
690
691 err = matches_name(c, &(*zn)->zbranch[*n], nm);
692 if (unlikely(err < 0))
693 return err;
694 if (err == NAME_MATCHES)
695 return 1;
696
697 if (err == NAME_GREATER) {
698 /* Look left */
699 while (1) {
700 err = tnc_prev(c, zn, n);
701 if (err == -ENOENT) {
702 ubifs_assert(*n == 0);
703 *n = -1;
704 return 0;
705 }
706 if (err < 0)
707 return err;
708 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
709 /*
710 * We have found the branch after which we would
711 * like to insert, but inserting in this znode
712 * may still be wrong. Consider the following 3
713 * znodes, in the case where we are resolving a
714 * collision with Key2.
715 *
716 * znode zp
717 * ----------------------
718 * level 1 | Key0 | Key1 |
719 * -----------------------
720 * | |
721 * znode za | | znode zb
722 * ------------ ------------
723 * level 0 | Key0 | | Key2 |
724 * ------------ ------------
725 *
726 * The lookup finds Key2 in znode zb. Lets say
727 * there is no match and the name is greater so
728 * we look left. When we find Key0, we end up
729 * here. If we return now, we will insert into
730 * znode za at slot n = 1. But that is invalid
731 * according to the parent's keys. Key2 must
732 * be inserted into znode zb.
733 *
734 * Note, this problem is not relevant for the
735 * case when we go right, because
736 * 'tnc_insert()' would correct the parent key.
737 */
738 if (*n == (*zn)->child_cnt - 1) {
739 err = tnc_next(c, zn, n);
740 if (err) {
741 /* Should be impossible */
742 ubifs_assert(0);
743 if (err == -ENOENT)
744 err = -EINVAL;
745 return err;
746 }
747 ubifs_assert(*n == 0);
748 *n = -1;
749 }
750 return 0;
751 }
752 err = matches_name(c, &(*zn)->zbranch[*n], nm);
753 if (err < 0)
754 return err;
755 if (err == NAME_LESS)
756 return 0;
757 if (err == NAME_MATCHES)
758 return 1;
759 ubifs_assert(err == NAME_GREATER);
760 }
761 } else {
762 int nn = *n;
763 struct ubifs_znode *znode = *zn;
764
765 /* Look right */
766 while (1) {
767 err = tnc_next(c, &znode, &nn);
768 if (err == -ENOENT)
769 return 0;
770 if (err < 0)
771 return err;
772 if (keys_cmp(c, &znode->zbranch[nn].key, key))
773 return 0;
774 err = matches_name(c, &znode->zbranch[nn], nm);
775 if (err < 0)
776 return err;
777 if (err == NAME_GREATER)
778 return 0;
779 *zn = znode;
780 *n = nn;
781 if (err == NAME_MATCHES)
782 return 1;
783 ubifs_assert(err == NAME_LESS);
784 }
785 }
786 }
787
788 /**
789 * fallible_matches_name - determine if a dent matches a given name.
790 * @c: UBIFS file-system description object
791 * @zbr: zbranch of dent
792 * @nm: name to match
793 *
794 * This is a "fallible" version of 'matches_name()' function which does not
795 * panic if the direntry/xentry referred by @zbr does not exist on the media.
796 *
797 * This function checks if xentry/direntry referred by zbranch @zbr matches name
798 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
799 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
800 * if xentry/direntry referred by @zbr does not exist on the media. A negative
801 * error code is returned in case of failure.
802 */
fallible_matches_name(struct ubifs_info * c,struct ubifs_zbranch * zbr,const struct qstr * nm)803 static int fallible_matches_name(struct ubifs_info *c,
804 struct ubifs_zbranch *zbr,
805 const struct qstr *nm)
806 {
807 struct ubifs_dent_node *dent;
808 int nlen, err;
809
810 /* If possible, match against the dent in the leaf node cache */
811 if (!zbr->leaf) {
812 dent = kmalloc(zbr->len, GFP_NOFS);
813 if (!dent)
814 return -ENOMEM;
815
816 err = fallible_read_node(c, &zbr->key, zbr, dent);
817 if (err < 0)
818 goto out_free;
819 if (err == 0) {
820 /* The node was not present */
821 err = NOT_ON_MEDIA;
822 goto out_free;
823 }
824 ubifs_assert(err == 1);
825
826 err = lnc_add_directly(c, zbr, dent);
827 if (err)
828 goto out_free;
829 } else
830 dent = zbr->leaf;
831
832 nlen = le16_to_cpu(dent->nlen);
833 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
834 if (err == 0) {
835 if (nlen == nm->len)
836 return NAME_MATCHES;
837 else if (nlen < nm->len)
838 return NAME_LESS;
839 else
840 return NAME_GREATER;
841 } else if (err < 0)
842 return NAME_LESS;
843 else
844 return NAME_GREATER;
845
846 out_free:
847 kfree(dent);
848 return err;
849 }
850
851 /**
852 * fallible_resolve_collision - resolve a collision even if nodes are missing.
853 * @c: UBIFS file-system description object
854 * @key: key
855 * @zn: znode is returned here
856 * @n: branch number is passed and returned here
857 * @nm: name of directory entry
858 * @adding: indicates caller is adding a key to the TNC
859 *
860 * This is a "fallible" version of the 'resolve_collision()' function which
861 * does not panic if one of the nodes referred to by TNC does not exist on the
862 * media. This may happen when replaying the journal if a deleted node was
863 * Garbage-collected and the commit was not done. A branch that refers to a node
864 * that is not present is called a dangling branch. The following are the return
865 * codes for this function:
866 * o if @nm was found, %1 is returned and @zn and @n are set to the found
867 * branch;
868 * o if we are @adding and @nm was not found, %0 is returned;
869 * o if we are not @adding and @nm was not found, but a dangling branch was
870 * found, then %1 is returned and @zn and @n are set to the dangling branch;
871 * o a negative error code is returned in case of failure.
872 */
fallible_resolve_collision(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,const struct qstr * nm,int adding)873 static int fallible_resolve_collision(struct ubifs_info *c,
874 const union ubifs_key *key,
875 struct ubifs_znode **zn, int *n,
876 const struct qstr *nm, int adding)
877 {
878 struct ubifs_znode *o_znode = NULL, *znode = *zn;
879 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
880
881 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
882 if (unlikely(cmp < 0))
883 return cmp;
884 if (cmp == NAME_MATCHES)
885 return 1;
886 if (cmp == NOT_ON_MEDIA) {
887 o_znode = znode;
888 o_n = nn;
889 /*
890 * We are unlucky and hit a dangling branch straight away.
891 * Now we do not really know where to go to find the needed
892 * branch - to the left or to the right. Well, let's try left.
893 */
894 unsure = 1;
895 } else if (!adding)
896 unsure = 1; /* Remove a dangling branch wherever it is */
897
898 if (cmp == NAME_GREATER || unsure) {
899 /* Look left */
900 while (1) {
901 err = tnc_prev(c, zn, n);
902 if (err == -ENOENT) {
903 ubifs_assert(*n == 0);
904 *n = -1;
905 break;
906 }
907 if (err < 0)
908 return err;
909 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
910 /* See comments in 'resolve_collision()' */
911 if (*n == (*zn)->child_cnt - 1) {
912 err = tnc_next(c, zn, n);
913 if (err) {
914 /* Should be impossible */
915 ubifs_assert(0);
916 if (err == -ENOENT)
917 err = -EINVAL;
918 return err;
919 }
920 ubifs_assert(*n == 0);
921 *n = -1;
922 }
923 break;
924 }
925 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
926 if (err < 0)
927 return err;
928 if (err == NAME_MATCHES)
929 return 1;
930 if (err == NOT_ON_MEDIA) {
931 o_znode = *zn;
932 o_n = *n;
933 continue;
934 }
935 if (!adding)
936 continue;
937 if (err == NAME_LESS)
938 break;
939 else
940 unsure = 0;
941 }
942 }
943
944 if (cmp == NAME_LESS || unsure) {
945 /* Look right */
946 *zn = znode;
947 *n = nn;
948 while (1) {
949 err = tnc_next(c, &znode, &nn);
950 if (err == -ENOENT)
951 break;
952 if (err < 0)
953 return err;
954 if (keys_cmp(c, &znode->zbranch[nn].key, key))
955 break;
956 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
957 if (err < 0)
958 return err;
959 if (err == NAME_GREATER)
960 break;
961 *zn = znode;
962 *n = nn;
963 if (err == NAME_MATCHES)
964 return 1;
965 if (err == NOT_ON_MEDIA) {
966 o_znode = znode;
967 o_n = nn;
968 }
969 }
970 }
971
972 /* Never match a dangling branch when adding */
973 if (adding || !o_znode)
974 return 0;
975
976 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
977 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
978 o_znode->zbranch[o_n].len);
979 *zn = o_znode;
980 *n = o_n;
981 return 1;
982 }
983
984 /**
985 * matches_position - determine if a zbranch matches a given position.
986 * @zbr: zbranch of dent
987 * @lnum: LEB number of dent to match
988 * @offs: offset of dent to match
989 *
990 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
991 */
matches_position(struct ubifs_zbranch * zbr,int lnum,int offs)992 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
993 {
994 if (zbr->lnum == lnum && zbr->offs == offs)
995 return 1;
996 else
997 return 0;
998 }
999
1000 /**
1001 * resolve_collision_directly - resolve a collision directly.
1002 * @c: UBIFS file-system description object
1003 * @key: key of directory entry
1004 * @zn: znode is passed and returned here
1005 * @n: zbranch number is passed and returned here
1006 * @lnum: LEB number of dent node to match
1007 * @offs: offset of dent node to match
1008 *
1009 * This function is used for "hashed" keys to make sure the found directory or
1010 * extended attribute entry node is what was looked for. It is used when the
1011 * flash address of the right node is known (@lnum:@offs) which makes it much
1012 * easier to resolve collisions (no need to read entries and match full
1013 * names). This function returns %1 and sets @zn and @n if the collision is
1014 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1015 * previous directory entry. Otherwise a negative error code is returned.
1016 */
resolve_collision_directly(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,int lnum,int offs)1017 static int resolve_collision_directly(struct ubifs_info *c,
1018 const union ubifs_key *key,
1019 struct ubifs_znode **zn, int *n,
1020 int lnum, int offs)
1021 {
1022 struct ubifs_znode *znode;
1023 int nn, err;
1024
1025 znode = *zn;
1026 nn = *n;
1027 if (matches_position(&znode->zbranch[nn], lnum, offs))
1028 return 1;
1029
1030 /* Look left */
1031 while (1) {
1032 err = tnc_prev(c, &znode, &nn);
1033 if (err == -ENOENT)
1034 break;
1035 if (err < 0)
1036 return err;
1037 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1038 break;
1039 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1040 *zn = znode;
1041 *n = nn;
1042 return 1;
1043 }
1044 }
1045
1046 /* Look right */
1047 znode = *zn;
1048 nn = *n;
1049 while (1) {
1050 err = tnc_next(c, &znode, &nn);
1051 if (err == -ENOENT)
1052 return 0;
1053 if (err < 0)
1054 return err;
1055 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1056 return 0;
1057 *zn = znode;
1058 *n = nn;
1059 if (matches_position(&znode->zbranch[nn], lnum, offs))
1060 return 1;
1061 }
1062 }
1063
1064 /**
1065 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1066 * @c: UBIFS file-system description object
1067 * @znode: znode to dirty
1068 *
1069 * If we do not have a unique key that resides in a znode, then we cannot
1070 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1071 * This function records the path back to the last dirty ancestor, and then
1072 * dirties the znodes on that path.
1073 */
dirty_cow_bottom_up(struct ubifs_info * c,struct ubifs_znode * znode)1074 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1075 struct ubifs_znode *znode)
1076 {
1077 struct ubifs_znode *zp;
1078 int *path = c->bottom_up_buf, p = 0;
1079
1080 ubifs_assert(c->zroot.znode);
1081 ubifs_assert(znode);
1082 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1083 kfree(c->bottom_up_buf);
1084 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1085 GFP_NOFS);
1086 if (!c->bottom_up_buf)
1087 return ERR_PTR(-ENOMEM);
1088 path = c->bottom_up_buf;
1089 }
1090 if (c->zroot.znode->level) {
1091 /* Go up until parent is dirty */
1092 while (1) {
1093 int n;
1094
1095 zp = znode->parent;
1096 if (!zp)
1097 break;
1098 n = znode->iip;
1099 ubifs_assert(p < c->zroot.znode->level);
1100 path[p++] = n;
1101 if (!zp->cnext && ubifs_zn_dirty(znode))
1102 break;
1103 znode = zp;
1104 }
1105 }
1106
1107 /* Come back down, dirtying as we go */
1108 while (1) {
1109 struct ubifs_zbranch *zbr;
1110
1111 zp = znode->parent;
1112 if (zp) {
1113 ubifs_assert(path[p - 1] >= 0);
1114 ubifs_assert(path[p - 1] < zp->child_cnt);
1115 zbr = &zp->zbranch[path[--p]];
1116 znode = dirty_cow_znode(c, zbr);
1117 } else {
1118 ubifs_assert(znode == c->zroot.znode);
1119 znode = dirty_cow_znode(c, &c->zroot);
1120 }
1121 if (IS_ERR(znode) || !p)
1122 break;
1123 ubifs_assert(path[p - 1] >= 0);
1124 ubifs_assert(path[p - 1] < znode->child_cnt);
1125 znode = znode->zbranch[path[p - 1]].znode;
1126 }
1127
1128 return znode;
1129 }
1130
1131 /**
1132 * ubifs_lookup_level0 - search for zero-level znode.
1133 * @c: UBIFS file-system description object
1134 * @key: key to lookup
1135 * @zn: znode is returned here
1136 * @n: znode branch slot number is returned here
1137 *
1138 * This function looks up the TNC tree and search for zero-level znode which
1139 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1140 * cases:
1141 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1142 * is returned and slot number of the matched branch is stored in @n;
1143 * o not exact match, which means that zero-level znode does not contain
1144 * @key, then %0 is returned and slot number of the closest branch is stored
1145 * in @n;
1146 * o @key is so small that it is even less than the lowest key of the
1147 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1148 *
1149 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1150 * function reads corresponding indexing nodes and inserts them to TNC. In
1151 * case of failure, a negative error code is returned.
1152 */
ubifs_lookup_level0(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n)1153 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1154 struct ubifs_znode **zn, int *n)
1155 {
1156 int err, exact;
1157 struct ubifs_znode *znode;
1158 unsigned long time = get_seconds();
1159
1160 dbg_tnck(key, "search key ");
1161 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1162
1163 znode = c->zroot.znode;
1164 if (unlikely(!znode)) {
1165 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1166 if (IS_ERR(znode))
1167 return PTR_ERR(znode);
1168 }
1169
1170 znode->time = time;
1171
1172 while (1) {
1173 struct ubifs_zbranch *zbr;
1174
1175 exact = ubifs_search_zbranch(c, znode, key, n);
1176
1177 if (znode->level == 0)
1178 break;
1179
1180 if (*n < 0)
1181 *n = 0;
1182 zbr = &znode->zbranch[*n];
1183
1184 if (zbr->znode) {
1185 znode->time = time;
1186 znode = zbr->znode;
1187 continue;
1188 }
1189
1190 /* znode is not in TNC cache, load it from the media */
1191 znode = ubifs_load_znode(c, zbr, znode, *n);
1192 if (IS_ERR(znode))
1193 return PTR_ERR(znode);
1194 }
1195
1196 *zn = znode;
1197 if (exact || !is_hash_key(c, key) || *n != -1) {
1198 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1199 return exact;
1200 }
1201
1202 /*
1203 * Here is a tricky place. We have not found the key and this is a
1204 * "hashed" key, which may collide. The rest of the code deals with
1205 * situations like this:
1206 *
1207 * | 3 | 5 |
1208 * / \
1209 * | 3 | 5 | | 6 | 7 | (x)
1210 *
1211 * Or more a complex example:
1212 *
1213 * | 1 | 5 |
1214 * / \
1215 * | 1 | 3 | | 5 | 8 |
1216 * \ /
1217 * | 5 | 5 | | 6 | 7 | (x)
1218 *
1219 * In the examples, if we are looking for key "5", we may reach nodes
1220 * marked with "(x)". In this case what we have do is to look at the
1221 * left and see if there is "5" key there. If there is, we have to
1222 * return it.
1223 *
1224 * Note, this whole situation is possible because we allow to have
1225 * elements which are equivalent to the next key in the parent in the
1226 * children of current znode. For example, this happens if we split a
1227 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1228 * like this:
1229 * | 3 | 5 |
1230 * / \
1231 * | 3 | 5 | | 5 | 6 | 7 |
1232 * ^
1233 * And this becomes what is at the first "picture" after key "5" marked
1234 * with "^" is removed. What could be done is we could prohibit
1235 * splitting in the middle of the colliding sequence. Also, when
1236 * removing the leftmost key, we would have to correct the key of the
1237 * parent node, which would introduce additional complications. Namely,
1238 * if we changed the leftmost key of the parent znode, the garbage
1239 * collector would be unable to find it (GC is doing this when GC'ing
1240 * indexing LEBs). Although we already have an additional RB-tree where
1241 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1242 * after the commit. But anyway, this does not look easy to implement
1243 * so we did not try this.
1244 */
1245 err = tnc_prev(c, &znode, n);
1246 if (err == -ENOENT) {
1247 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1248 *n = -1;
1249 return 0;
1250 }
1251 if (unlikely(err < 0))
1252 return err;
1253 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1254 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1255 *n = -1;
1256 return 0;
1257 }
1258
1259 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1260 *zn = znode;
1261 return 1;
1262 }
1263
1264 /**
1265 * lookup_level0_dirty - search for zero-level znode dirtying.
1266 * @c: UBIFS file-system description object
1267 * @key: key to lookup
1268 * @zn: znode is returned here
1269 * @n: znode branch slot number is returned here
1270 *
1271 * This function looks up the TNC tree and search for zero-level znode which
1272 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1273 * cases:
1274 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1275 * is returned and slot number of the matched branch is stored in @n;
1276 * o not exact match, which means that zero-level znode does not contain @key
1277 * then %0 is returned and slot number of the closed branch is stored in
1278 * @n;
1279 * o @key is so small that it is even less than the lowest key of the
1280 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1281 *
1282 * Additionally all znodes in the path from the root to the located zero-level
1283 * znode are marked as dirty.
1284 *
1285 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1286 * function reads corresponding indexing nodes and inserts them to TNC. In
1287 * case of failure, a negative error code is returned.
1288 */
lookup_level0_dirty(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n)1289 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1290 struct ubifs_znode **zn, int *n)
1291 {
1292 int err, exact;
1293 struct ubifs_znode *znode;
1294 unsigned long time = get_seconds();
1295
1296 dbg_tnck(key, "search and dirty key ");
1297
1298 znode = c->zroot.znode;
1299 if (unlikely(!znode)) {
1300 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1301 if (IS_ERR(znode))
1302 return PTR_ERR(znode);
1303 }
1304
1305 znode = dirty_cow_znode(c, &c->zroot);
1306 if (IS_ERR(znode))
1307 return PTR_ERR(znode);
1308
1309 znode->time = time;
1310
1311 while (1) {
1312 struct ubifs_zbranch *zbr;
1313
1314 exact = ubifs_search_zbranch(c, znode, key, n);
1315
1316 if (znode->level == 0)
1317 break;
1318
1319 if (*n < 0)
1320 *n = 0;
1321 zbr = &znode->zbranch[*n];
1322
1323 if (zbr->znode) {
1324 znode->time = time;
1325 znode = dirty_cow_znode(c, zbr);
1326 if (IS_ERR(znode))
1327 return PTR_ERR(znode);
1328 continue;
1329 }
1330
1331 /* znode is not in TNC cache, load it from the media */
1332 znode = ubifs_load_znode(c, zbr, znode, *n);
1333 if (IS_ERR(znode))
1334 return PTR_ERR(znode);
1335 znode = dirty_cow_znode(c, zbr);
1336 if (IS_ERR(znode))
1337 return PTR_ERR(znode);
1338 }
1339
1340 *zn = znode;
1341 if (exact || !is_hash_key(c, key) || *n != -1) {
1342 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1343 return exact;
1344 }
1345
1346 /*
1347 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1348 * code.
1349 */
1350 err = tnc_prev(c, &znode, n);
1351 if (err == -ENOENT) {
1352 *n = -1;
1353 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1354 return 0;
1355 }
1356 if (unlikely(err < 0))
1357 return err;
1358 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1359 *n = -1;
1360 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1361 return 0;
1362 }
1363
1364 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1365 znode = dirty_cow_bottom_up(c, znode);
1366 if (IS_ERR(znode))
1367 return PTR_ERR(znode);
1368 }
1369
1370 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1371 *zn = znode;
1372 return 1;
1373 }
1374
1375 /**
1376 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1377 * @c: UBIFS file-system description object
1378 * @lnum: LEB number
1379 * @gc_seq1: garbage collection sequence number
1380 *
1381 * This function determines if @lnum may have been garbage collected since
1382 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1383 * %0 is returned.
1384 */
maybe_leb_gced(struct ubifs_info * c,int lnum,int gc_seq1)1385 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1386 {
1387 #ifndef __UBOOT__
1388 int gc_seq2, gced_lnum;
1389
1390 gced_lnum = c->gced_lnum;
1391 smp_rmb();
1392 gc_seq2 = c->gc_seq;
1393 /* Same seq means no GC */
1394 if (gc_seq1 == gc_seq2)
1395 return 0;
1396 /* Different by more than 1 means we don't know */
1397 if (gc_seq1 + 1 != gc_seq2)
1398 return 1;
1399 /*
1400 * We have seen the sequence number has increased by 1. Now we need to
1401 * be sure we read the right LEB number, so read it again.
1402 */
1403 smp_rmb();
1404 if (gced_lnum != c->gced_lnum)
1405 return 1;
1406 /* Finally we can check lnum */
1407 if (gced_lnum == lnum)
1408 return 1;
1409 #else
1410 /* No garbage collection in the read-only U-Boot implementation */
1411 #endif
1412 return 0;
1413 }
1414
1415 /**
1416 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1417 * @c: UBIFS file-system description object
1418 * @key: node key to lookup
1419 * @node: the node is returned here
1420 * @lnum: LEB number is returned here
1421 * @offs: offset is returned here
1422 *
1423 * This function looks up and reads node with key @key. The caller has to make
1424 * sure the @node buffer is large enough to fit the node. Returns zero in case
1425 * of success, %-ENOENT if the node was not found, and a negative error code in
1426 * case of failure. The node location can be returned in @lnum and @offs.
1427 */
ubifs_tnc_locate(struct ubifs_info * c,const union ubifs_key * key,void * node,int * lnum,int * offs)1428 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1429 void *node, int *lnum, int *offs)
1430 {
1431 int found, n, err, safely = 0, gc_seq1;
1432 struct ubifs_znode *znode;
1433 struct ubifs_zbranch zbr, *zt;
1434
1435 again:
1436 mutex_lock(&c->tnc_mutex);
1437 found = ubifs_lookup_level0(c, key, &znode, &n);
1438 if (!found) {
1439 err = -ENOENT;
1440 goto out;
1441 } else if (found < 0) {
1442 err = found;
1443 goto out;
1444 }
1445 zt = &znode->zbranch[n];
1446 if (lnum) {
1447 *lnum = zt->lnum;
1448 *offs = zt->offs;
1449 }
1450 if (is_hash_key(c, key)) {
1451 /*
1452 * In this case the leaf node cache gets used, so we pass the
1453 * address of the zbranch and keep the mutex locked
1454 */
1455 err = tnc_read_node_nm(c, zt, node);
1456 goto out;
1457 }
1458 if (safely) {
1459 err = ubifs_tnc_read_node(c, zt, node);
1460 goto out;
1461 }
1462 /* Drop the TNC mutex prematurely and race with garbage collection */
1463 zbr = znode->zbranch[n];
1464 gc_seq1 = c->gc_seq;
1465 mutex_unlock(&c->tnc_mutex);
1466
1467 if (ubifs_get_wbuf(c, zbr.lnum)) {
1468 /* We do not GC journal heads */
1469 err = ubifs_tnc_read_node(c, &zbr, node);
1470 return err;
1471 }
1472
1473 err = fallible_read_node(c, key, &zbr, node);
1474 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1475 /*
1476 * The node may have been GC'ed out from under us so try again
1477 * while keeping the TNC mutex locked.
1478 */
1479 safely = 1;
1480 goto again;
1481 }
1482 return 0;
1483
1484 out:
1485 mutex_unlock(&c->tnc_mutex);
1486 return err;
1487 }
1488
1489 /**
1490 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1491 * @c: UBIFS file-system description object
1492 * @bu: bulk-read parameters and results
1493 *
1494 * Lookup consecutive data node keys for the same inode that reside
1495 * consecutively in the same LEB. This function returns zero in case of success
1496 * and a negative error code in case of failure.
1497 *
1498 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1499 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1500 * maximum possible amount of nodes for bulk-read.
1501 */
ubifs_tnc_get_bu_keys(struct ubifs_info * c,struct bu_info * bu)1502 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1503 {
1504 int n, err = 0, lnum = -1, uninitialized_var(offs);
1505 int uninitialized_var(len);
1506 unsigned int block = key_block(c, &bu->key);
1507 struct ubifs_znode *znode;
1508
1509 bu->cnt = 0;
1510 bu->blk_cnt = 0;
1511 bu->eof = 0;
1512
1513 mutex_lock(&c->tnc_mutex);
1514 /* Find first key */
1515 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1516 if (err < 0)
1517 goto out;
1518 if (err) {
1519 /* Key found */
1520 len = znode->zbranch[n].len;
1521 /* The buffer must be big enough for at least 1 node */
1522 if (len > bu->buf_len) {
1523 err = -EINVAL;
1524 goto out;
1525 }
1526 /* Add this key */
1527 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1528 bu->blk_cnt += 1;
1529 lnum = znode->zbranch[n].lnum;
1530 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1531 }
1532 while (1) {
1533 struct ubifs_zbranch *zbr;
1534 union ubifs_key *key;
1535 unsigned int next_block;
1536
1537 /* Find next key */
1538 err = tnc_next(c, &znode, &n);
1539 if (err)
1540 goto out;
1541 zbr = &znode->zbranch[n];
1542 key = &zbr->key;
1543 /* See if there is another data key for this file */
1544 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1545 key_type(c, key) != UBIFS_DATA_KEY) {
1546 err = -ENOENT;
1547 goto out;
1548 }
1549 if (lnum < 0) {
1550 /* First key found */
1551 lnum = zbr->lnum;
1552 offs = ALIGN(zbr->offs + zbr->len, 8);
1553 len = zbr->len;
1554 if (len > bu->buf_len) {
1555 err = -EINVAL;
1556 goto out;
1557 }
1558 } else {
1559 /*
1560 * The data nodes must be in consecutive positions in
1561 * the same LEB.
1562 */
1563 if (zbr->lnum != lnum || zbr->offs != offs)
1564 goto out;
1565 offs += ALIGN(zbr->len, 8);
1566 len = ALIGN(len, 8) + zbr->len;
1567 /* Must not exceed buffer length */
1568 if (len > bu->buf_len)
1569 goto out;
1570 }
1571 /* Allow for holes */
1572 next_block = key_block(c, key);
1573 bu->blk_cnt += (next_block - block - 1);
1574 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1575 goto out;
1576 block = next_block;
1577 /* Add this key */
1578 bu->zbranch[bu->cnt++] = *zbr;
1579 bu->blk_cnt += 1;
1580 /* See if we have room for more */
1581 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1582 goto out;
1583 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1584 goto out;
1585 }
1586 out:
1587 if (err == -ENOENT) {
1588 bu->eof = 1;
1589 err = 0;
1590 }
1591 bu->gc_seq = c->gc_seq;
1592 mutex_unlock(&c->tnc_mutex);
1593 if (err)
1594 return err;
1595 /*
1596 * An enormous hole could cause bulk-read to encompass too many
1597 * page cache pages, so limit the number here.
1598 */
1599 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1600 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1601 /*
1602 * Ensure that bulk-read covers a whole number of page cache
1603 * pages.
1604 */
1605 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1606 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1607 return 0;
1608 if (bu->eof) {
1609 /* At the end of file we can round up */
1610 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1611 return 0;
1612 }
1613 /* Exclude data nodes that do not make up a whole page cache page */
1614 block = key_block(c, &bu->key) + bu->blk_cnt;
1615 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1616 while (bu->cnt) {
1617 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1618 break;
1619 bu->cnt -= 1;
1620 }
1621 return 0;
1622 }
1623
1624 /**
1625 * read_wbuf - bulk-read from a LEB with a wbuf.
1626 * @wbuf: wbuf that may overlap the read
1627 * @buf: buffer into which to read
1628 * @len: read length
1629 * @lnum: LEB number from which to read
1630 * @offs: offset from which to read
1631 *
1632 * This functions returns %0 on success or a negative error code on failure.
1633 */
read_wbuf(struct ubifs_wbuf * wbuf,void * buf,int len,int lnum,int offs)1634 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1635 int offs)
1636 {
1637 const struct ubifs_info *c = wbuf->c;
1638 int rlen, overlap;
1639
1640 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1641 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1642 ubifs_assert(!(offs & 7) && offs < c->leb_size);
1643 ubifs_assert(offs + len <= c->leb_size);
1644
1645 spin_lock(&wbuf->lock);
1646 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1647 if (!overlap) {
1648 /* We may safely unlock the write-buffer and read the data */
1649 spin_unlock(&wbuf->lock);
1650 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1651 }
1652
1653 /* Don't read under wbuf */
1654 rlen = wbuf->offs - offs;
1655 if (rlen < 0)
1656 rlen = 0;
1657
1658 /* Copy the rest from the write-buffer */
1659 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1660 spin_unlock(&wbuf->lock);
1661
1662 if (rlen > 0)
1663 /* Read everything that goes before write-buffer */
1664 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1665
1666 return 0;
1667 }
1668
1669 /**
1670 * validate_data_node - validate data nodes for bulk-read.
1671 * @c: UBIFS file-system description object
1672 * @buf: buffer containing data node to validate
1673 * @zbr: zbranch of data node to validate
1674 *
1675 * This functions returns %0 on success or a negative error code on failure.
1676 */
validate_data_node(struct ubifs_info * c,void * buf,struct ubifs_zbranch * zbr)1677 static int validate_data_node(struct ubifs_info *c, void *buf,
1678 struct ubifs_zbranch *zbr)
1679 {
1680 union ubifs_key key1;
1681 struct ubifs_ch *ch = buf;
1682 int err, len;
1683
1684 if (ch->node_type != UBIFS_DATA_NODE) {
1685 ubifs_err(c, "bad node type (%d but expected %d)",
1686 ch->node_type, UBIFS_DATA_NODE);
1687 goto out_err;
1688 }
1689
1690 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1691 if (err) {
1692 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1693 goto out;
1694 }
1695
1696 len = le32_to_cpu(ch->len);
1697 if (len != zbr->len) {
1698 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1699 goto out_err;
1700 }
1701
1702 /* Make sure the key of the read node is correct */
1703 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1704 if (!keys_eq(c, &zbr->key, &key1)) {
1705 ubifs_err(c, "bad key in node at LEB %d:%d",
1706 zbr->lnum, zbr->offs);
1707 dbg_tnck(&zbr->key, "looked for key ");
1708 dbg_tnck(&key1, "found node's key ");
1709 goto out_err;
1710 }
1711
1712 return 0;
1713
1714 out_err:
1715 err = -EINVAL;
1716 out:
1717 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1718 ubifs_dump_node(c, buf);
1719 dump_stack();
1720 return err;
1721 }
1722
1723 /**
1724 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1725 * @c: UBIFS file-system description object
1726 * @bu: bulk-read parameters and results
1727 *
1728 * This functions reads and validates the data nodes that were identified by the
1729 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1730 * -EAGAIN to indicate a race with GC, or another negative error code on
1731 * failure.
1732 */
ubifs_tnc_bulk_read(struct ubifs_info * c,struct bu_info * bu)1733 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1734 {
1735 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1736 struct ubifs_wbuf *wbuf;
1737 void *buf;
1738
1739 len = bu->zbranch[bu->cnt - 1].offs;
1740 len += bu->zbranch[bu->cnt - 1].len - offs;
1741 if (len > bu->buf_len) {
1742 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1743 return -EINVAL;
1744 }
1745
1746 /* Do the read */
1747 wbuf = ubifs_get_wbuf(c, lnum);
1748 if (wbuf)
1749 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1750 else
1751 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1752
1753 /* Check for a race with GC */
1754 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1755 return -EAGAIN;
1756
1757 if (err && err != -EBADMSG) {
1758 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1759 lnum, offs, err);
1760 dump_stack();
1761 dbg_tnck(&bu->key, "key ");
1762 return err;
1763 }
1764
1765 /* Validate the nodes read */
1766 buf = bu->buf;
1767 for (i = 0; i < bu->cnt; i++) {
1768 err = validate_data_node(c, buf, &bu->zbranch[i]);
1769 if (err)
1770 return err;
1771 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1772 }
1773
1774 return 0;
1775 }
1776
1777 /**
1778 * do_lookup_nm- look up a "hashed" node.
1779 * @c: UBIFS file-system description object
1780 * @key: node key to lookup
1781 * @node: the node is returned here
1782 * @nm: node name
1783 *
1784 * This function look up and reads a node which contains name hash in the key.
1785 * Since the hash may have collisions, there may be many nodes with the same
1786 * key, so we have to sequentially look to all of them until the needed one is
1787 * found. This function returns zero in case of success, %-ENOENT if the node
1788 * was not found, and a negative error code in case of failure.
1789 */
do_lookup_nm(struct ubifs_info * c,const union ubifs_key * key,void * node,const struct qstr * nm)1790 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1791 void *node, const struct qstr *nm)
1792 {
1793 int found, n, err;
1794 struct ubifs_znode *znode;
1795
1796 dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1797 mutex_lock(&c->tnc_mutex);
1798 found = ubifs_lookup_level0(c, key, &znode, &n);
1799 if (!found) {
1800 err = -ENOENT;
1801 goto out_unlock;
1802 } else if (found < 0) {
1803 err = found;
1804 goto out_unlock;
1805 }
1806
1807 ubifs_assert(n >= 0);
1808
1809 err = resolve_collision(c, key, &znode, &n, nm);
1810 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1811 if (unlikely(err < 0))
1812 goto out_unlock;
1813 if (err == 0) {
1814 err = -ENOENT;
1815 goto out_unlock;
1816 }
1817
1818 err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1819
1820 out_unlock:
1821 mutex_unlock(&c->tnc_mutex);
1822 return err;
1823 }
1824
1825 /**
1826 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1827 * @c: UBIFS file-system description object
1828 * @key: node key to lookup
1829 * @node: the node is returned here
1830 * @nm: node name
1831 *
1832 * This function look up and reads a node which contains name hash in the key.
1833 * Since the hash may have collisions, there may be many nodes with the same
1834 * key, so we have to sequentially look to all of them until the needed one is
1835 * found. This function returns zero in case of success, %-ENOENT if the node
1836 * was not found, and a negative error code in case of failure.
1837 */
ubifs_tnc_lookup_nm(struct ubifs_info * c,const union ubifs_key * key,void * node,const struct qstr * nm)1838 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1839 void *node, const struct qstr *nm)
1840 {
1841 int err, len;
1842 const struct ubifs_dent_node *dent = node;
1843
1844 /*
1845 * We assume that in most of the cases there are no name collisions and
1846 * 'ubifs_tnc_lookup()' returns us the right direntry.
1847 */
1848 err = ubifs_tnc_lookup(c, key, node);
1849 if (err)
1850 return err;
1851
1852 len = le16_to_cpu(dent->nlen);
1853 if (nm->len == len && !memcmp(dent->name, nm->name, len))
1854 return 0;
1855
1856 /*
1857 * Unluckily, there are hash collisions and we have to iterate over
1858 * them look at each direntry with colliding name hash sequentially.
1859 */
1860 return do_lookup_nm(c, key, node, nm);
1861 }
1862
1863 /**
1864 * correct_parent_keys - correct parent znodes' keys.
1865 * @c: UBIFS file-system description object
1866 * @znode: znode to correct parent znodes for
1867 *
1868 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1869 * zbranch changes, keys of parent znodes have to be corrected. This helper
1870 * function is called in such situations and corrects the keys if needed.
1871 */
correct_parent_keys(const struct ubifs_info * c,struct ubifs_znode * znode)1872 static void correct_parent_keys(const struct ubifs_info *c,
1873 struct ubifs_znode *znode)
1874 {
1875 union ubifs_key *key, *key1;
1876
1877 ubifs_assert(znode->parent);
1878 ubifs_assert(znode->iip == 0);
1879
1880 key = &znode->zbranch[0].key;
1881 key1 = &znode->parent->zbranch[0].key;
1882
1883 while (keys_cmp(c, key, key1) < 0) {
1884 key_copy(c, key, key1);
1885 znode = znode->parent;
1886 znode->alt = 1;
1887 if (!znode->parent || znode->iip)
1888 break;
1889 key1 = &znode->parent->zbranch[0].key;
1890 }
1891 }
1892
1893 /**
1894 * insert_zbranch - insert a zbranch into a znode.
1895 * @znode: znode into which to insert
1896 * @zbr: zbranch to insert
1897 * @n: slot number to insert to
1898 *
1899 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1900 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1901 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1902 * slot, zbranches starting from @n have to be moved right.
1903 */
insert_zbranch(struct ubifs_znode * znode,const struct ubifs_zbranch * zbr,int n)1904 static void insert_zbranch(struct ubifs_znode *znode,
1905 const struct ubifs_zbranch *zbr, int n)
1906 {
1907 int i;
1908
1909 ubifs_assert(ubifs_zn_dirty(znode));
1910
1911 if (znode->level) {
1912 for (i = znode->child_cnt; i > n; i--) {
1913 znode->zbranch[i] = znode->zbranch[i - 1];
1914 if (znode->zbranch[i].znode)
1915 znode->zbranch[i].znode->iip = i;
1916 }
1917 if (zbr->znode)
1918 zbr->znode->iip = n;
1919 } else
1920 for (i = znode->child_cnt; i > n; i--)
1921 znode->zbranch[i] = znode->zbranch[i - 1];
1922
1923 znode->zbranch[n] = *zbr;
1924 znode->child_cnt += 1;
1925
1926 /*
1927 * After inserting at slot zero, the lower bound of the key range of
1928 * this znode may have changed. If this znode is subsequently split
1929 * then the upper bound of the key range may change, and furthermore
1930 * it could change to be lower than the original lower bound. If that
1931 * happens, then it will no longer be possible to find this znode in the
1932 * TNC using the key from the index node on flash. That is bad because
1933 * if it is not found, we will assume it is obsolete and may overwrite
1934 * it. Then if there is an unclean unmount, we will start using the
1935 * old index which will be broken.
1936 *
1937 * So we first mark znodes that have insertions at slot zero, and then
1938 * if they are split we add their lnum/offs to the old_idx tree.
1939 */
1940 if (n == 0)
1941 znode->alt = 1;
1942 }
1943
1944 /**
1945 * tnc_insert - insert a node into TNC.
1946 * @c: UBIFS file-system description object
1947 * @znode: znode to insert into
1948 * @zbr: branch to insert
1949 * @n: slot number to insert new zbranch to
1950 *
1951 * This function inserts a new node described by @zbr into znode @znode. If
1952 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1953 * are splat as well if needed. Returns zero in case of success or a negative
1954 * error code in case of failure.
1955 */
tnc_insert(struct ubifs_info * c,struct ubifs_znode * znode,struct ubifs_zbranch * zbr,int n)1956 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1957 struct ubifs_zbranch *zbr, int n)
1958 {
1959 struct ubifs_znode *zn, *zi, *zp;
1960 int i, keep, move, appending = 0;
1961 union ubifs_key *key = &zbr->key, *key1;
1962
1963 ubifs_assert(n >= 0 && n <= c->fanout);
1964
1965 /* Implement naive insert for now */
1966 again:
1967 zp = znode->parent;
1968 if (znode->child_cnt < c->fanout) {
1969 ubifs_assert(n != c->fanout);
1970 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1971
1972 insert_zbranch(znode, zbr, n);
1973
1974 /* Ensure parent's key is correct */
1975 if (n == 0 && zp && znode->iip == 0)
1976 correct_parent_keys(c, znode);
1977
1978 return 0;
1979 }
1980
1981 /*
1982 * Unfortunately, @znode does not have more empty slots and we have to
1983 * split it.
1984 */
1985 dbg_tnck(key, "splitting level %d, key ", znode->level);
1986
1987 if (znode->alt)
1988 /*
1989 * We can no longer be sure of finding this znode by key, so we
1990 * record it in the old_idx tree.
1991 */
1992 ins_clr_old_idx_znode(c, znode);
1993
1994 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1995 if (!zn)
1996 return -ENOMEM;
1997 zn->parent = zp;
1998 zn->level = znode->level;
1999
2000 /* Decide where to split */
2001 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2002 /* Try not to split consecutive data keys */
2003 if (n == c->fanout) {
2004 key1 = &znode->zbranch[n - 1].key;
2005 if (key_inum(c, key1) == key_inum(c, key) &&
2006 key_type(c, key1) == UBIFS_DATA_KEY)
2007 appending = 1;
2008 } else
2009 goto check_split;
2010 } else if (appending && n != c->fanout) {
2011 /* Try not to split consecutive data keys */
2012 appending = 0;
2013 check_split:
2014 if (n >= (c->fanout + 1) / 2) {
2015 key1 = &znode->zbranch[0].key;
2016 if (key_inum(c, key1) == key_inum(c, key) &&
2017 key_type(c, key1) == UBIFS_DATA_KEY) {
2018 key1 = &znode->zbranch[n].key;
2019 if (key_inum(c, key1) != key_inum(c, key) ||
2020 key_type(c, key1) != UBIFS_DATA_KEY) {
2021 keep = n;
2022 move = c->fanout - keep;
2023 zi = znode;
2024 goto do_split;
2025 }
2026 }
2027 }
2028 }
2029
2030 if (appending) {
2031 keep = c->fanout;
2032 move = 0;
2033 } else {
2034 keep = (c->fanout + 1) / 2;
2035 move = c->fanout - keep;
2036 }
2037
2038 /*
2039 * Although we don't at present, we could look at the neighbors and see
2040 * if we can move some zbranches there.
2041 */
2042
2043 if (n < keep) {
2044 /* Insert into existing znode */
2045 zi = znode;
2046 move += 1;
2047 keep -= 1;
2048 } else {
2049 /* Insert into new znode */
2050 zi = zn;
2051 n -= keep;
2052 /* Re-parent */
2053 if (zn->level != 0)
2054 zbr->znode->parent = zn;
2055 }
2056
2057 do_split:
2058
2059 __set_bit(DIRTY_ZNODE, &zn->flags);
2060 atomic_long_inc(&c->dirty_zn_cnt);
2061
2062 zn->child_cnt = move;
2063 znode->child_cnt = keep;
2064
2065 dbg_tnc("moving %d, keeping %d", move, keep);
2066
2067 /* Move zbranch */
2068 for (i = 0; i < move; i++) {
2069 zn->zbranch[i] = znode->zbranch[keep + i];
2070 /* Re-parent */
2071 if (zn->level != 0)
2072 if (zn->zbranch[i].znode) {
2073 zn->zbranch[i].znode->parent = zn;
2074 zn->zbranch[i].znode->iip = i;
2075 }
2076 }
2077
2078 /* Insert new key and branch */
2079 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2080
2081 insert_zbranch(zi, zbr, n);
2082
2083 /* Insert new znode (produced by spitting) into the parent */
2084 if (zp) {
2085 if (n == 0 && zi == znode && znode->iip == 0)
2086 correct_parent_keys(c, znode);
2087
2088 /* Locate insertion point */
2089 n = znode->iip + 1;
2090
2091 /* Tail recursion */
2092 zbr->key = zn->zbranch[0].key;
2093 zbr->znode = zn;
2094 zbr->lnum = 0;
2095 zbr->offs = 0;
2096 zbr->len = 0;
2097 znode = zp;
2098
2099 goto again;
2100 }
2101
2102 /* We have to split root znode */
2103 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2104
2105 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2106 if (!zi)
2107 return -ENOMEM;
2108
2109 zi->child_cnt = 2;
2110 zi->level = znode->level + 1;
2111
2112 __set_bit(DIRTY_ZNODE, &zi->flags);
2113 atomic_long_inc(&c->dirty_zn_cnt);
2114
2115 zi->zbranch[0].key = znode->zbranch[0].key;
2116 zi->zbranch[0].znode = znode;
2117 zi->zbranch[0].lnum = c->zroot.lnum;
2118 zi->zbranch[0].offs = c->zroot.offs;
2119 zi->zbranch[0].len = c->zroot.len;
2120 zi->zbranch[1].key = zn->zbranch[0].key;
2121 zi->zbranch[1].znode = zn;
2122
2123 c->zroot.lnum = 0;
2124 c->zroot.offs = 0;
2125 c->zroot.len = 0;
2126 c->zroot.znode = zi;
2127
2128 zn->parent = zi;
2129 zn->iip = 1;
2130 znode->parent = zi;
2131 znode->iip = 0;
2132
2133 return 0;
2134 }
2135
2136 /**
2137 * ubifs_tnc_add - add a node to TNC.
2138 * @c: UBIFS file-system description object
2139 * @key: key to add
2140 * @lnum: LEB number of node
2141 * @offs: node offset
2142 * @len: node length
2143 *
2144 * This function adds a node with key @key to TNC. The node may be new or it may
2145 * obsolete some existing one. Returns %0 on success or negative error code on
2146 * failure.
2147 */
ubifs_tnc_add(struct ubifs_info * c,const union ubifs_key * key,int lnum,int offs,int len)2148 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2149 int offs, int len)
2150 {
2151 int found, n, err = 0;
2152 struct ubifs_znode *znode;
2153
2154 mutex_lock(&c->tnc_mutex);
2155 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2156 found = lookup_level0_dirty(c, key, &znode, &n);
2157 if (!found) {
2158 struct ubifs_zbranch zbr;
2159
2160 zbr.znode = NULL;
2161 zbr.lnum = lnum;
2162 zbr.offs = offs;
2163 zbr.len = len;
2164 key_copy(c, key, &zbr.key);
2165 err = tnc_insert(c, znode, &zbr, n + 1);
2166 } else if (found == 1) {
2167 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2168
2169 lnc_free(zbr);
2170 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2171 zbr->lnum = lnum;
2172 zbr->offs = offs;
2173 zbr->len = len;
2174 } else
2175 err = found;
2176 if (!err)
2177 err = dbg_check_tnc(c, 0);
2178 mutex_unlock(&c->tnc_mutex);
2179
2180 return err;
2181 }
2182
2183 /**
2184 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2185 * @c: UBIFS file-system description object
2186 * @key: key to add
2187 * @old_lnum: LEB number of old node
2188 * @old_offs: old node offset
2189 * @lnum: LEB number of node
2190 * @offs: node offset
2191 * @len: node length
2192 *
2193 * This function replaces a node with key @key in the TNC only if the old node
2194 * is found. This function is called by garbage collection when node are moved.
2195 * Returns %0 on success or negative error code on failure.
2196 */
ubifs_tnc_replace(struct ubifs_info * c,const union ubifs_key * key,int old_lnum,int old_offs,int lnum,int offs,int len)2197 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2198 int old_lnum, int old_offs, int lnum, int offs, int len)
2199 {
2200 int found, n, err = 0;
2201 struct ubifs_znode *znode;
2202
2203 mutex_lock(&c->tnc_mutex);
2204 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2205 old_offs, lnum, offs, len);
2206 found = lookup_level0_dirty(c, key, &znode, &n);
2207 if (found < 0) {
2208 err = found;
2209 goto out_unlock;
2210 }
2211
2212 if (found == 1) {
2213 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2214
2215 found = 0;
2216 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2217 lnc_free(zbr);
2218 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2219 if (err)
2220 goto out_unlock;
2221 zbr->lnum = lnum;
2222 zbr->offs = offs;
2223 zbr->len = len;
2224 found = 1;
2225 } else if (is_hash_key(c, key)) {
2226 found = resolve_collision_directly(c, key, &znode, &n,
2227 old_lnum, old_offs);
2228 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2229 found, znode, n, old_lnum, old_offs);
2230 if (found < 0) {
2231 err = found;
2232 goto out_unlock;
2233 }
2234
2235 if (found) {
2236 /* Ensure the znode is dirtied */
2237 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2238 znode = dirty_cow_bottom_up(c, znode);
2239 if (IS_ERR(znode)) {
2240 err = PTR_ERR(znode);
2241 goto out_unlock;
2242 }
2243 }
2244 zbr = &znode->zbranch[n];
2245 lnc_free(zbr);
2246 err = ubifs_add_dirt(c, zbr->lnum,
2247 zbr->len);
2248 if (err)
2249 goto out_unlock;
2250 zbr->lnum = lnum;
2251 zbr->offs = offs;
2252 zbr->len = len;
2253 }
2254 }
2255 }
2256
2257 if (!found)
2258 err = ubifs_add_dirt(c, lnum, len);
2259
2260 if (!err)
2261 err = dbg_check_tnc(c, 0);
2262
2263 out_unlock:
2264 mutex_unlock(&c->tnc_mutex);
2265 return err;
2266 }
2267
2268 /**
2269 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2270 * @c: UBIFS file-system description object
2271 * @key: key to add
2272 * @lnum: LEB number of node
2273 * @offs: node offset
2274 * @len: node length
2275 * @nm: node name
2276 *
2277 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2278 * may have collisions, like directory entry keys.
2279 */
ubifs_tnc_add_nm(struct ubifs_info * c,const union ubifs_key * key,int lnum,int offs,int len,const struct qstr * nm)2280 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2281 int lnum, int offs, int len, const struct qstr *nm)
2282 {
2283 int found, n, err = 0;
2284 struct ubifs_znode *znode;
2285
2286 mutex_lock(&c->tnc_mutex);
2287 dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2288 lnum, offs, nm->len, nm->name);
2289 found = lookup_level0_dirty(c, key, &znode, &n);
2290 if (found < 0) {
2291 err = found;
2292 goto out_unlock;
2293 }
2294
2295 if (found == 1) {
2296 if (c->replaying)
2297 found = fallible_resolve_collision(c, key, &znode, &n,
2298 nm, 1);
2299 else
2300 found = resolve_collision(c, key, &znode, &n, nm);
2301 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2302 if (found < 0) {
2303 err = found;
2304 goto out_unlock;
2305 }
2306
2307 /* Ensure the znode is dirtied */
2308 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2309 znode = dirty_cow_bottom_up(c, znode);
2310 if (IS_ERR(znode)) {
2311 err = PTR_ERR(znode);
2312 goto out_unlock;
2313 }
2314 }
2315
2316 if (found == 1) {
2317 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2318
2319 lnc_free(zbr);
2320 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2321 zbr->lnum = lnum;
2322 zbr->offs = offs;
2323 zbr->len = len;
2324 goto out_unlock;
2325 }
2326 }
2327
2328 if (!found) {
2329 struct ubifs_zbranch zbr;
2330
2331 zbr.znode = NULL;
2332 zbr.lnum = lnum;
2333 zbr.offs = offs;
2334 zbr.len = len;
2335 key_copy(c, key, &zbr.key);
2336 err = tnc_insert(c, znode, &zbr, n + 1);
2337 if (err)
2338 goto out_unlock;
2339 if (c->replaying) {
2340 /*
2341 * We did not find it in the index so there may be a
2342 * dangling branch still in the index. So we remove it
2343 * by passing 'ubifs_tnc_remove_nm()' the same key but
2344 * an unmatchable name.
2345 */
2346 struct qstr noname = { .name = "" };
2347
2348 err = dbg_check_tnc(c, 0);
2349 mutex_unlock(&c->tnc_mutex);
2350 if (err)
2351 return err;
2352 return ubifs_tnc_remove_nm(c, key, &noname);
2353 }
2354 }
2355
2356 out_unlock:
2357 if (!err)
2358 err = dbg_check_tnc(c, 0);
2359 mutex_unlock(&c->tnc_mutex);
2360 return err;
2361 }
2362
2363 /**
2364 * tnc_delete - delete a znode form TNC.
2365 * @c: UBIFS file-system description object
2366 * @znode: znode to delete from
2367 * @n: zbranch slot number to delete
2368 *
2369 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2370 * case of success and a negative error code in case of failure.
2371 */
tnc_delete(struct ubifs_info * c,struct ubifs_znode * znode,int n)2372 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2373 {
2374 struct ubifs_zbranch *zbr;
2375 struct ubifs_znode *zp;
2376 int i, err;
2377
2378 /* Delete without merge for now */
2379 ubifs_assert(znode->level == 0);
2380 ubifs_assert(n >= 0 && n < c->fanout);
2381 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2382
2383 zbr = &znode->zbranch[n];
2384 lnc_free(zbr);
2385
2386 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2387 if (err) {
2388 ubifs_dump_znode(c, znode);
2389 return err;
2390 }
2391
2392 /* We do not "gap" zbranch slots */
2393 for (i = n; i < znode->child_cnt - 1; i++)
2394 znode->zbranch[i] = znode->zbranch[i + 1];
2395 znode->child_cnt -= 1;
2396
2397 if (znode->child_cnt > 0)
2398 return 0;
2399
2400 /*
2401 * This was the last zbranch, we have to delete this znode from the
2402 * parent.
2403 */
2404
2405 do {
2406 ubifs_assert(!ubifs_zn_obsolete(znode));
2407 ubifs_assert(ubifs_zn_dirty(znode));
2408
2409 zp = znode->parent;
2410 n = znode->iip;
2411
2412 atomic_long_dec(&c->dirty_zn_cnt);
2413
2414 err = insert_old_idx_znode(c, znode);
2415 if (err)
2416 return err;
2417
2418 if (znode->cnext) {
2419 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2420 atomic_long_inc(&c->clean_zn_cnt);
2421 atomic_long_inc(&ubifs_clean_zn_cnt);
2422 } else
2423 kfree(znode);
2424 znode = zp;
2425 } while (znode->child_cnt == 1); /* while removing last child */
2426
2427 /* Remove from znode, entry n - 1 */
2428 znode->child_cnt -= 1;
2429 ubifs_assert(znode->level != 0);
2430 for (i = n; i < znode->child_cnt; i++) {
2431 znode->zbranch[i] = znode->zbranch[i + 1];
2432 if (znode->zbranch[i].znode)
2433 znode->zbranch[i].znode->iip = i;
2434 }
2435
2436 /*
2437 * If this is the root and it has only 1 child then
2438 * collapse the tree.
2439 */
2440 if (!znode->parent) {
2441 while (znode->child_cnt == 1 && znode->level != 0) {
2442 zp = znode;
2443 zbr = &znode->zbranch[0];
2444 znode = get_znode(c, znode, 0);
2445 if (IS_ERR(znode))
2446 return PTR_ERR(znode);
2447 znode = dirty_cow_znode(c, zbr);
2448 if (IS_ERR(znode))
2449 return PTR_ERR(znode);
2450 znode->parent = NULL;
2451 znode->iip = 0;
2452 if (c->zroot.len) {
2453 err = insert_old_idx(c, c->zroot.lnum,
2454 c->zroot.offs);
2455 if (err)
2456 return err;
2457 }
2458 c->zroot.lnum = zbr->lnum;
2459 c->zroot.offs = zbr->offs;
2460 c->zroot.len = zbr->len;
2461 c->zroot.znode = znode;
2462 ubifs_assert(!ubifs_zn_obsolete(zp));
2463 ubifs_assert(ubifs_zn_dirty(zp));
2464 atomic_long_dec(&c->dirty_zn_cnt);
2465
2466 if (zp->cnext) {
2467 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2468 atomic_long_inc(&c->clean_zn_cnt);
2469 atomic_long_inc(&ubifs_clean_zn_cnt);
2470 } else
2471 kfree(zp);
2472 }
2473 }
2474
2475 return 0;
2476 }
2477
2478 /**
2479 * ubifs_tnc_remove - remove an index entry of a node.
2480 * @c: UBIFS file-system description object
2481 * @key: key of node
2482 *
2483 * Returns %0 on success or negative error code on failure.
2484 */
ubifs_tnc_remove(struct ubifs_info * c,const union ubifs_key * key)2485 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2486 {
2487 int found, n, err = 0;
2488 struct ubifs_znode *znode;
2489
2490 mutex_lock(&c->tnc_mutex);
2491 dbg_tnck(key, "key ");
2492 found = lookup_level0_dirty(c, key, &znode, &n);
2493 if (found < 0) {
2494 err = found;
2495 goto out_unlock;
2496 }
2497 if (found == 1)
2498 err = tnc_delete(c, znode, n);
2499 if (!err)
2500 err = dbg_check_tnc(c, 0);
2501
2502 out_unlock:
2503 mutex_unlock(&c->tnc_mutex);
2504 return err;
2505 }
2506
2507 /**
2508 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2509 * @c: UBIFS file-system description object
2510 * @key: key of node
2511 * @nm: directory entry name
2512 *
2513 * Returns %0 on success or negative error code on failure.
2514 */
ubifs_tnc_remove_nm(struct ubifs_info * c,const union ubifs_key * key,const struct qstr * nm)2515 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2516 const struct qstr *nm)
2517 {
2518 int n, err;
2519 struct ubifs_znode *znode;
2520
2521 mutex_lock(&c->tnc_mutex);
2522 dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2523 err = lookup_level0_dirty(c, key, &znode, &n);
2524 if (err < 0)
2525 goto out_unlock;
2526
2527 if (err) {
2528 if (c->replaying)
2529 err = fallible_resolve_collision(c, key, &znode, &n,
2530 nm, 0);
2531 else
2532 err = resolve_collision(c, key, &znode, &n, nm);
2533 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2534 if (err < 0)
2535 goto out_unlock;
2536 if (err) {
2537 /* Ensure the znode is dirtied */
2538 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2539 znode = dirty_cow_bottom_up(c, znode);
2540 if (IS_ERR(znode)) {
2541 err = PTR_ERR(znode);
2542 goto out_unlock;
2543 }
2544 }
2545 err = tnc_delete(c, znode, n);
2546 }
2547 }
2548
2549 out_unlock:
2550 if (!err)
2551 err = dbg_check_tnc(c, 0);
2552 mutex_unlock(&c->tnc_mutex);
2553 return err;
2554 }
2555
2556 /**
2557 * key_in_range - determine if a key falls within a range of keys.
2558 * @c: UBIFS file-system description object
2559 * @key: key to check
2560 * @from_key: lowest key in range
2561 * @to_key: highest key in range
2562 *
2563 * This function returns %1 if the key is in range and %0 otherwise.
2564 */
key_in_range(struct ubifs_info * c,union ubifs_key * key,union ubifs_key * from_key,union ubifs_key * to_key)2565 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2566 union ubifs_key *from_key, union ubifs_key *to_key)
2567 {
2568 if (keys_cmp(c, key, from_key) < 0)
2569 return 0;
2570 if (keys_cmp(c, key, to_key) > 0)
2571 return 0;
2572 return 1;
2573 }
2574
2575 /**
2576 * ubifs_tnc_remove_range - remove index entries in range.
2577 * @c: UBIFS file-system description object
2578 * @from_key: lowest key to remove
2579 * @to_key: highest key to remove
2580 *
2581 * This function removes index entries starting at @from_key and ending at
2582 * @to_key. This function returns zero in case of success and a negative error
2583 * code in case of failure.
2584 */
ubifs_tnc_remove_range(struct ubifs_info * c,union ubifs_key * from_key,union ubifs_key * to_key)2585 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2586 union ubifs_key *to_key)
2587 {
2588 int i, n, k, err = 0;
2589 struct ubifs_znode *znode;
2590 union ubifs_key *key;
2591
2592 mutex_lock(&c->tnc_mutex);
2593 while (1) {
2594 /* Find first level 0 znode that contains keys to remove */
2595 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2596 if (err < 0)
2597 goto out_unlock;
2598
2599 if (err)
2600 key = from_key;
2601 else {
2602 err = tnc_next(c, &znode, &n);
2603 if (err == -ENOENT) {
2604 err = 0;
2605 goto out_unlock;
2606 }
2607 if (err < 0)
2608 goto out_unlock;
2609 key = &znode->zbranch[n].key;
2610 if (!key_in_range(c, key, from_key, to_key)) {
2611 err = 0;
2612 goto out_unlock;
2613 }
2614 }
2615
2616 /* Ensure the znode is dirtied */
2617 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2618 znode = dirty_cow_bottom_up(c, znode);
2619 if (IS_ERR(znode)) {
2620 err = PTR_ERR(znode);
2621 goto out_unlock;
2622 }
2623 }
2624
2625 /* Remove all keys in range except the first */
2626 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2627 key = &znode->zbranch[i].key;
2628 if (!key_in_range(c, key, from_key, to_key))
2629 break;
2630 lnc_free(&znode->zbranch[i]);
2631 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2632 znode->zbranch[i].len);
2633 if (err) {
2634 ubifs_dump_znode(c, znode);
2635 goto out_unlock;
2636 }
2637 dbg_tnck(key, "removing key ");
2638 }
2639 if (k) {
2640 for (i = n + 1 + k; i < znode->child_cnt; i++)
2641 znode->zbranch[i - k] = znode->zbranch[i];
2642 znode->child_cnt -= k;
2643 }
2644
2645 /* Now delete the first */
2646 err = tnc_delete(c, znode, n);
2647 if (err)
2648 goto out_unlock;
2649 }
2650
2651 out_unlock:
2652 if (!err)
2653 err = dbg_check_tnc(c, 0);
2654 mutex_unlock(&c->tnc_mutex);
2655 return err;
2656 }
2657
2658 /**
2659 * ubifs_tnc_remove_ino - remove an inode from TNC.
2660 * @c: UBIFS file-system description object
2661 * @inum: inode number to remove
2662 *
2663 * This function remove inode @inum and all the extended attributes associated
2664 * with the anode from TNC and returns zero in case of success or a negative
2665 * error code in case of failure.
2666 */
ubifs_tnc_remove_ino(struct ubifs_info * c,ino_t inum)2667 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2668 {
2669 union ubifs_key key1, key2;
2670 struct ubifs_dent_node *xent, *pxent = NULL;
2671 struct qstr nm = { .name = NULL };
2672
2673 dbg_tnc("ino %lu", (unsigned long)inum);
2674
2675 /*
2676 * Walk all extended attribute entries and remove them together with
2677 * corresponding extended attribute inodes.
2678 */
2679 lowest_xent_key(c, &key1, inum);
2680 while (1) {
2681 ino_t xattr_inum;
2682 int err;
2683
2684 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2685 if (IS_ERR(xent)) {
2686 err = PTR_ERR(xent);
2687 if (err == -ENOENT)
2688 break;
2689 return err;
2690 }
2691
2692 xattr_inum = le64_to_cpu(xent->inum);
2693 dbg_tnc("xent '%s', ino %lu", xent->name,
2694 (unsigned long)xattr_inum);
2695
2696 nm.name = xent->name;
2697 nm.len = le16_to_cpu(xent->nlen);
2698 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2699 if (err) {
2700 kfree(xent);
2701 return err;
2702 }
2703
2704 lowest_ino_key(c, &key1, xattr_inum);
2705 highest_ino_key(c, &key2, xattr_inum);
2706 err = ubifs_tnc_remove_range(c, &key1, &key2);
2707 if (err) {
2708 kfree(xent);
2709 return err;
2710 }
2711
2712 kfree(pxent);
2713 pxent = xent;
2714 key_read(c, &xent->key, &key1);
2715 }
2716
2717 kfree(pxent);
2718 lowest_ino_key(c, &key1, inum);
2719 highest_ino_key(c, &key2, inum);
2720
2721 return ubifs_tnc_remove_range(c, &key1, &key2);
2722 }
2723
2724 /**
2725 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2726 * @c: UBIFS file-system description object
2727 * @key: key of last entry
2728 * @nm: name of last entry found or %NULL
2729 *
2730 * This function finds and reads the next directory or extended attribute entry
2731 * after the given key (@key) if there is one. @nm is used to resolve
2732 * collisions.
2733 *
2734 * If the name of the current entry is not known and only the key is known,
2735 * @nm->name has to be %NULL. In this case the semantics of this function is a
2736 * little bit different and it returns the entry corresponding to this key, not
2737 * the next one. If the key was not found, the closest "right" entry is
2738 * returned.
2739 *
2740 * If the fist entry has to be found, @key has to contain the lowest possible
2741 * key value for this inode and @name has to be %NULL.
2742 *
2743 * This function returns the found directory or extended attribute entry node
2744 * in case of success, %-ENOENT is returned if no entry was found, and a
2745 * negative error code is returned in case of failure.
2746 */
ubifs_tnc_next_ent(struct ubifs_info * c,union ubifs_key * key,const struct qstr * nm)2747 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2748 union ubifs_key *key,
2749 const struct qstr *nm)
2750 {
2751 int n, err, type = key_type(c, key);
2752 struct ubifs_znode *znode;
2753 struct ubifs_dent_node *dent;
2754 struct ubifs_zbranch *zbr;
2755 union ubifs_key *dkey;
2756
2757 dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2758 ubifs_assert(is_hash_key(c, key));
2759
2760 mutex_lock(&c->tnc_mutex);
2761 err = ubifs_lookup_level0(c, key, &znode, &n);
2762 if (unlikely(err < 0))
2763 goto out_unlock;
2764
2765 if (nm->name) {
2766 if (err) {
2767 /* Handle collisions */
2768 err = resolve_collision(c, key, &znode, &n, nm);
2769 dbg_tnc("rc returned %d, znode %p, n %d",
2770 err, znode, n);
2771 if (unlikely(err < 0))
2772 goto out_unlock;
2773 }
2774
2775 /* Now find next entry */
2776 err = tnc_next(c, &znode, &n);
2777 if (unlikely(err))
2778 goto out_unlock;
2779 } else {
2780 /*
2781 * The full name of the entry was not given, in which case the
2782 * behavior of this function is a little different and it
2783 * returns current entry, not the next one.
2784 */
2785 if (!err) {
2786 /*
2787 * However, the given key does not exist in the TNC
2788 * tree and @znode/@n variables contain the closest
2789 * "preceding" element. Switch to the next one.
2790 */
2791 err = tnc_next(c, &znode, &n);
2792 if (err)
2793 goto out_unlock;
2794 }
2795 }
2796
2797 zbr = &znode->zbranch[n];
2798 dent = kmalloc(zbr->len, GFP_NOFS);
2799 if (unlikely(!dent)) {
2800 err = -ENOMEM;
2801 goto out_unlock;
2802 }
2803
2804 /*
2805 * The above 'tnc_next()' call could lead us to the next inode, check
2806 * this.
2807 */
2808 dkey = &zbr->key;
2809 if (key_inum(c, dkey) != key_inum(c, key) ||
2810 key_type(c, dkey) != type) {
2811 err = -ENOENT;
2812 goto out_free;
2813 }
2814
2815 err = tnc_read_node_nm(c, zbr, dent);
2816 if (unlikely(err))
2817 goto out_free;
2818
2819 mutex_unlock(&c->tnc_mutex);
2820 return dent;
2821
2822 out_free:
2823 kfree(dent);
2824 out_unlock:
2825 mutex_unlock(&c->tnc_mutex);
2826 return ERR_PTR(err);
2827 }
2828
2829 /**
2830 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2831 * @c: UBIFS file-system description object
2832 *
2833 * Destroy left-over obsolete znodes from a failed commit.
2834 */
tnc_destroy_cnext(struct ubifs_info * c)2835 static void tnc_destroy_cnext(struct ubifs_info *c)
2836 {
2837 struct ubifs_znode *cnext;
2838
2839 if (!c->cnext)
2840 return;
2841 ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2842 cnext = c->cnext;
2843 do {
2844 struct ubifs_znode *znode = cnext;
2845
2846 cnext = cnext->cnext;
2847 if (ubifs_zn_obsolete(znode))
2848 kfree(znode);
2849 } while (cnext && cnext != c->cnext);
2850 }
2851
2852 /**
2853 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2854 * @c: UBIFS file-system description object
2855 */
ubifs_tnc_close(struct ubifs_info * c)2856 void ubifs_tnc_close(struct ubifs_info *c)
2857 {
2858 tnc_destroy_cnext(c);
2859 if (c->zroot.znode) {
2860 long n, freed;
2861
2862 n = atomic_long_read(&c->clean_zn_cnt);
2863 freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2864 ubifs_assert(freed == n);
2865 atomic_long_sub(n, &ubifs_clean_zn_cnt);
2866 }
2867 kfree(c->gap_lebs);
2868 kfree(c->ilebs);
2869 destroy_old_idx(c);
2870 }
2871
2872 /**
2873 * left_znode - get the znode to the left.
2874 * @c: UBIFS file-system description object
2875 * @znode: znode
2876 *
2877 * This function returns a pointer to the znode to the left of @znode or NULL if
2878 * there is not one. A negative error code is returned on failure.
2879 */
left_znode(struct ubifs_info * c,struct ubifs_znode * znode)2880 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2881 struct ubifs_znode *znode)
2882 {
2883 int level = znode->level;
2884
2885 while (1) {
2886 int n = znode->iip - 1;
2887
2888 /* Go up until we can go left */
2889 znode = znode->parent;
2890 if (!znode)
2891 return NULL;
2892 if (n >= 0) {
2893 /* Now go down the rightmost branch to 'level' */
2894 znode = get_znode(c, znode, n);
2895 if (IS_ERR(znode))
2896 return znode;
2897 while (znode->level != level) {
2898 n = znode->child_cnt - 1;
2899 znode = get_znode(c, znode, n);
2900 if (IS_ERR(znode))
2901 return znode;
2902 }
2903 break;
2904 }
2905 }
2906 return znode;
2907 }
2908
2909 /**
2910 * right_znode - get the znode to the right.
2911 * @c: UBIFS file-system description object
2912 * @znode: znode
2913 *
2914 * This function returns a pointer to the znode to the right of @znode or NULL
2915 * if there is not one. A negative error code is returned on failure.
2916 */
right_znode(struct ubifs_info * c,struct ubifs_znode * znode)2917 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2918 struct ubifs_znode *znode)
2919 {
2920 int level = znode->level;
2921
2922 while (1) {
2923 int n = znode->iip + 1;
2924
2925 /* Go up until we can go right */
2926 znode = znode->parent;
2927 if (!znode)
2928 return NULL;
2929 if (n < znode->child_cnt) {
2930 /* Now go down the leftmost branch to 'level' */
2931 znode = get_znode(c, znode, n);
2932 if (IS_ERR(znode))
2933 return znode;
2934 while (znode->level != level) {
2935 znode = get_znode(c, znode, 0);
2936 if (IS_ERR(znode))
2937 return znode;
2938 }
2939 break;
2940 }
2941 }
2942 return znode;
2943 }
2944
2945 /**
2946 * lookup_znode - find a particular indexing node from TNC.
2947 * @c: UBIFS file-system description object
2948 * @key: index node key to lookup
2949 * @level: index node level
2950 * @lnum: index node LEB number
2951 * @offs: index node offset
2952 *
2953 * This function searches an indexing node by its first key @key and its
2954 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2955 * nodes it traverses to TNC. This function is called for indexing nodes which
2956 * were found on the media by scanning, for example when garbage-collecting or
2957 * when doing in-the-gaps commit. This means that the indexing node which is
2958 * looked for does not have to have exactly the same leftmost key @key, because
2959 * the leftmost key may have been changed, in which case TNC will contain a
2960 * dirty znode which still refers the same @lnum:@offs. This function is clever
2961 * enough to recognize such indexing nodes.
2962 *
2963 * Note, if a znode was deleted or changed too much, then this function will
2964 * not find it. For situations like this UBIFS has the old index RB-tree
2965 * (indexed by @lnum:@offs).
2966 *
2967 * This function returns a pointer to the znode found or %NULL if it is not
2968 * found. A negative error code is returned on failure.
2969 */
lookup_znode(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)2970 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2971 union ubifs_key *key, int level,
2972 int lnum, int offs)
2973 {
2974 struct ubifs_znode *znode, *zn;
2975 int n, nn;
2976
2977 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2978
2979 /*
2980 * The arguments have probably been read off flash, so don't assume
2981 * they are valid.
2982 */
2983 if (level < 0)
2984 return ERR_PTR(-EINVAL);
2985
2986 /* Get the root znode */
2987 znode = c->zroot.znode;
2988 if (!znode) {
2989 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2990 if (IS_ERR(znode))
2991 return znode;
2992 }
2993 /* Check if it is the one we are looking for */
2994 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2995 return znode;
2996 /* Descend to the parent level i.e. (level + 1) */
2997 if (level >= znode->level)
2998 return NULL;
2999 while (1) {
3000 ubifs_search_zbranch(c, znode, key, &n);
3001 if (n < 0) {
3002 /*
3003 * We reached a znode where the leftmost key is greater
3004 * than the key we are searching for. This is the same
3005 * situation as the one described in a huge comment at
3006 * the end of the 'ubifs_lookup_level0()' function. And
3007 * for exactly the same reasons we have to try to look
3008 * left before giving up.
3009 */
3010 znode = left_znode(c, znode);
3011 if (!znode)
3012 return NULL;
3013 if (IS_ERR(znode))
3014 return znode;
3015 ubifs_search_zbranch(c, znode, key, &n);
3016 ubifs_assert(n >= 0);
3017 }
3018 if (znode->level == level + 1)
3019 break;
3020 znode = get_znode(c, znode, n);
3021 if (IS_ERR(znode))
3022 return znode;
3023 }
3024 /* Check if the child is the one we are looking for */
3025 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3026 return get_znode(c, znode, n);
3027 /* If the key is unique, there is nowhere else to look */
3028 if (!is_hash_key(c, key))
3029 return NULL;
3030 /*
3031 * The key is not unique and so may be also in the znodes to either
3032 * side.
3033 */
3034 zn = znode;
3035 nn = n;
3036 /* Look left */
3037 while (1) {
3038 /* Move one branch to the left */
3039 if (n)
3040 n -= 1;
3041 else {
3042 znode = left_znode(c, znode);
3043 if (!znode)
3044 break;
3045 if (IS_ERR(znode))
3046 return znode;
3047 n = znode->child_cnt - 1;
3048 }
3049 /* Check it */
3050 if (znode->zbranch[n].lnum == lnum &&
3051 znode->zbranch[n].offs == offs)
3052 return get_znode(c, znode, n);
3053 /* Stop if the key is less than the one we are looking for */
3054 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3055 break;
3056 }
3057 /* Back to the middle */
3058 znode = zn;
3059 n = nn;
3060 /* Look right */
3061 while (1) {
3062 /* Move one branch to the right */
3063 if (++n >= znode->child_cnt) {
3064 znode = right_znode(c, znode);
3065 if (!znode)
3066 break;
3067 if (IS_ERR(znode))
3068 return znode;
3069 n = 0;
3070 }
3071 /* Check it */
3072 if (znode->zbranch[n].lnum == lnum &&
3073 znode->zbranch[n].offs == offs)
3074 return get_znode(c, znode, n);
3075 /* Stop if the key is greater than the one we are looking for */
3076 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3077 break;
3078 }
3079 return NULL;
3080 }
3081
3082 /**
3083 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3084 * @c: UBIFS file-system description object
3085 * @key: key of index node
3086 * @level: index node level
3087 * @lnum: LEB number of index node
3088 * @offs: offset of index node
3089 *
3090 * This function returns %0 if the index node is not referred to in the TNC, %1
3091 * if the index node is referred to in the TNC and the corresponding znode is
3092 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3093 * znode is clean, and a negative error code in case of failure.
3094 *
3095 * Note, the @key argument has to be the key of the first child. Also note,
3096 * this function relies on the fact that 0:0 is never a valid LEB number and
3097 * offset for a main-area node.
3098 */
is_idx_node_in_tnc(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3099 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3100 int lnum, int offs)
3101 {
3102 struct ubifs_znode *znode;
3103
3104 znode = lookup_znode(c, key, level, lnum, offs);
3105 if (!znode)
3106 return 0;
3107 if (IS_ERR(znode))
3108 return PTR_ERR(znode);
3109
3110 return ubifs_zn_dirty(znode) ? 1 : 2;
3111 }
3112
3113 /**
3114 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3115 * @c: UBIFS file-system description object
3116 * @key: node key
3117 * @lnum: node LEB number
3118 * @offs: node offset
3119 *
3120 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3121 * not, and a negative error code in case of failure.
3122 *
3123 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3124 * and offset for a main-area node.
3125 */
is_leaf_node_in_tnc(struct ubifs_info * c,union ubifs_key * key,int lnum,int offs)3126 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3127 int lnum, int offs)
3128 {
3129 struct ubifs_zbranch *zbr;
3130 struct ubifs_znode *znode, *zn;
3131 int n, found, err, nn;
3132 const int unique = !is_hash_key(c, key);
3133
3134 found = ubifs_lookup_level0(c, key, &znode, &n);
3135 if (found < 0)
3136 return found; /* Error code */
3137 if (!found)
3138 return 0;
3139 zbr = &znode->zbranch[n];
3140 if (lnum == zbr->lnum && offs == zbr->offs)
3141 return 1; /* Found it */
3142 if (unique)
3143 return 0;
3144 /*
3145 * Because the key is not unique, we have to look left
3146 * and right as well
3147 */
3148 zn = znode;
3149 nn = n;
3150 /* Look left */
3151 while (1) {
3152 err = tnc_prev(c, &znode, &n);
3153 if (err == -ENOENT)
3154 break;
3155 if (err)
3156 return err;
3157 if (keys_cmp(c, key, &znode->zbranch[n].key))
3158 break;
3159 zbr = &znode->zbranch[n];
3160 if (lnum == zbr->lnum && offs == zbr->offs)
3161 return 1; /* Found it */
3162 }
3163 /* Look right */
3164 znode = zn;
3165 n = nn;
3166 while (1) {
3167 err = tnc_next(c, &znode, &n);
3168 if (err) {
3169 if (err == -ENOENT)
3170 return 0;
3171 return err;
3172 }
3173 if (keys_cmp(c, key, &znode->zbranch[n].key))
3174 break;
3175 zbr = &znode->zbranch[n];
3176 if (lnum == zbr->lnum && offs == zbr->offs)
3177 return 1; /* Found it */
3178 }
3179 return 0;
3180 }
3181
3182 /**
3183 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3184 * @c: UBIFS file-system description object
3185 * @key: node key
3186 * @level: index node level (if it is an index node)
3187 * @lnum: node LEB number
3188 * @offs: node offset
3189 * @is_idx: non-zero if the node is an index node
3190 *
3191 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3192 * negative error code in case of failure. For index nodes, @key has to be the
3193 * key of the first child. An index node is considered to be in the TNC only if
3194 * the corresponding znode is clean or has not been loaded.
3195 */
ubifs_tnc_has_node(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs,int is_idx)3196 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3197 int lnum, int offs, int is_idx)
3198 {
3199 int err;
3200
3201 mutex_lock(&c->tnc_mutex);
3202 if (is_idx) {
3203 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3204 if (err < 0)
3205 goto out_unlock;
3206 if (err == 1)
3207 /* The index node was found but it was dirty */
3208 err = 0;
3209 else if (err == 2)
3210 /* The index node was found and it was clean */
3211 err = 1;
3212 else
3213 BUG_ON(err != 0);
3214 } else
3215 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3216
3217 out_unlock:
3218 mutex_unlock(&c->tnc_mutex);
3219 return err;
3220 }
3221
3222 /**
3223 * ubifs_dirty_idx_node - dirty an index node.
3224 * @c: UBIFS file-system description object
3225 * @key: index node key
3226 * @level: index node level
3227 * @lnum: index node LEB number
3228 * @offs: index node offset
3229 *
3230 * This function loads and dirties an index node so that it can be garbage
3231 * collected. The @key argument has to be the key of the first child. This
3232 * function relies on the fact that 0:0 is never a valid LEB number and offset
3233 * for a main-area node. Returns %0 on success and a negative error code on
3234 * failure.
3235 */
ubifs_dirty_idx_node(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3236 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3237 int lnum, int offs)
3238 {
3239 struct ubifs_znode *znode;
3240 int err = 0;
3241
3242 mutex_lock(&c->tnc_mutex);
3243 znode = lookup_znode(c, key, level, lnum, offs);
3244 if (!znode)
3245 goto out_unlock;
3246 if (IS_ERR(znode)) {
3247 err = PTR_ERR(znode);
3248 goto out_unlock;
3249 }
3250 znode = dirty_cow_bottom_up(c, znode);
3251 if (IS_ERR(znode)) {
3252 err = PTR_ERR(znode);
3253 goto out_unlock;
3254 }
3255
3256 out_unlock:
3257 mutex_unlock(&c->tnc_mutex);
3258 return err;
3259 }
3260
3261 /**
3262 * dbg_check_inode_size - check if inode size is correct.
3263 * @c: UBIFS file-system description object
3264 * @inum: inode number
3265 * @size: inode size
3266 *
3267 * This function makes sure that the inode size (@size) is correct and it does
3268 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3269 * if it has a data page beyond @size, and other negative error code in case of
3270 * other errors.
3271 */
dbg_check_inode_size(struct ubifs_info * c,const struct inode * inode,loff_t size)3272 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3273 loff_t size)
3274 {
3275 int err, n;
3276 union ubifs_key from_key, to_key, *key;
3277 struct ubifs_znode *znode;
3278 unsigned int block;
3279
3280 if (!S_ISREG(inode->i_mode))
3281 return 0;
3282 if (!dbg_is_chk_gen(c))
3283 return 0;
3284
3285 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3286 data_key_init(c, &from_key, inode->i_ino, block);
3287 highest_data_key(c, &to_key, inode->i_ino);
3288
3289 mutex_lock(&c->tnc_mutex);
3290 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3291 if (err < 0)
3292 goto out_unlock;
3293
3294 if (err) {
3295 key = &from_key;
3296 goto out_dump;
3297 }
3298
3299 err = tnc_next(c, &znode, &n);
3300 if (err == -ENOENT) {
3301 err = 0;
3302 goto out_unlock;
3303 }
3304 if (err < 0)
3305 goto out_unlock;
3306
3307 ubifs_assert(err == 0);
3308 key = &znode->zbranch[n].key;
3309 if (!key_in_range(c, key, &from_key, &to_key))
3310 goto out_unlock;
3311
3312 out_dump:
3313 block = key_block(c, key);
3314 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3315 (unsigned long)inode->i_ino, size,
3316 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3317 mutex_unlock(&c->tnc_mutex);
3318 ubifs_dump_inode(c, inode);
3319 dump_stack();
3320 return -EINVAL;
3321
3322 out_unlock:
3323 mutex_unlock(&c->tnc_mutex);
3324 return err;
3325 }
3326