1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
19
20 #include <sys/types.h>
21 #include <errno.h>
22 #include <dlfcn.h>
23
24 #include <algorithm>
25 #include <cinttypes>
26 #include <cmath>
27 #include <cstdint>
28 #include <functional>
29 #include <mutex>
30 #include <optional>
31 #include <unordered_map>
32
33 #include <cutils/properties.h>
34 #include <log/log.h>
35
36 #include <binder/IPCThreadState.h>
37 #include <binder/IServiceManager.h>
38 #include <binder/PermissionCache.h>
39
40 #include <compositionengine/CompositionEngine.h>
41 #include <compositionengine/Display.h>
42 #include <compositionengine/DisplayColorProfile.h>
43 #include <compositionengine/Layer.h>
44 #include <compositionengine/OutputLayer.h>
45 #include <compositionengine/RenderSurface.h>
46 #include <compositionengine/impl/LayerCompositionState.h>
47 #include <compositionengine/impl/OutputCompositionState.h>
48 #include <compositionengine/impl/OutputLayerCompositionState.h>
49 #include <dvr/vr_flinger.h>
50 #include <gui/BufferQueue.h>
51 #include <gui/GuiConfig.h>
52 #include <gui/IDisplayEventConnection.h>
53 #include <gui/IProducerListener.h>
54 #include <gui/LayerDebugInfo.h>
55 #include <gui/Surface.h>
56 #include <input/IInputFlinger.h>
57 #include <renderengine/RenderEngine.h>
58 #include <ui/ColorSpace.h>
59 #include <ui/DebugUtils.h>
60 #include <ui/DisplayInfo.h>
61 #include <ui/DisplayStatInfo.h>
62 #include <ui/GraphicBufferAllocator.h>
63 #include <ui/PixelFormat.h>
64 #include <ui/UiConfig.h>
65 #include <utils/StopWatch.h>
66 #include <utils/String16.h>
67 #include <utils/String8.h>
68 #include <utils/Timers.h>
69 #include <utils/Trace.h>
70 #include <utils/misc.h>
71
72 #include <private/android_filesystem_config.h>
73 #include <private/gui/SyncFeatures.h>
74
75 #include "BufferLayer.h"
76 #include "BufferQueueLayer.h"
77 #include "BufferStateLayer.h"
78 #include "Client.h"
79 #include "ColorLayer.h"
80 #include "Colorizer.h"
81 #include "ContainerLayer.h"
82 #include "DisplayDevice.h"
83 #include "Layer.h"
84 #include "LayerVector.h"
85 #include "MonitoredProducer.h"
86 #include "NativeWindowSurface.h"
87 #include "RefreshRateOverlay.h"
88 #include "StartPropertySetThread.h"
89 #include "SurfaceFlinger.h"
90 #include "SurfaceInterceptor.h"
91
92 #include "DisplayHardware/ComposerHal.h"
93 #include "DisplayHardware/DisplayIdentification.h"
94 #include "DisplayHardware/FramebufferSurface.h"
95 #include "DisplayHardware/HWComposer.h"
96 #include "DisplayHardware/VirtualDisplaySurface.h"
97 #include "Effects/Daltonizer.h"
98 #include "RegionSamplingThread.h"
99 #include "Scheduler/DispSync.h"
100 #include "Scheduler/DispSyncSource.h"
101 #include "Scheduler/EventControlThread.h"
102 #include "Scheduler/EventThread.h"
103 #include "Scheduler/InjectVSyncSource.h"
104 #include "Scheduler/MessageQueue.h"
105 #include "Scheduler/PhaseOffsets.h"
106 #include "Scheduler/Scheduler.h"
107 #include "TimeStats/TimeStats.h"
108
109 #include <cutils/compiler.h>
110
111 #include "android-base/stringprintf.h"
112
113 #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
114 #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
115 #include <android/hardware/configstore/1.1/types.h>
116 #include <android/hardware/power/1.0/IPower.h>
117 #include <configstore/Utils.h>
118
119 #include <layerproto/LayerProtoParser.h>
120 #include "SurfaceFlingerProperties.h"
121
122 namespace android {
123
124 using namespace android::hardware::configstore;
125 using namespace android::hardware::configstore::V1_0;
126 using namespace android::sysprop;
127
128 using android::hardware::power::V1_0::PowerHint;
129 using base::StringAppendF;
130 using ui::ColorMode;
131 using ui::Dataspace;
132 using ui::DisplayPrimaries;
133 using ui::Hdr;
134 using ui::RenderIntent;
135
136 namespace {
137
138 #pragma clang diagnostic push
139 #pragma clang diagnostic error "-Wswitch-enum"
140
isWideColorMode(const ColorMode colorMode)141 bool isWideColorMode(const ColorMode colorMode) {
142 switch (colorMode) {
143 case ColorMode::DISPLAY_P3:
144 case ColorMode::ADOBE_RGB:
145 case ColorMode::DCI_P3:
146 case ColorMode::BT2020:
147 case ColorMode::DISPLAY_BT2020:
148 case ColorMode::BT2100_PQ:
149 case ColorMode::BT2100_HLG:
150 return true;
151 case ColorMode::NATIVE:
152 case ColorMode::STANDARD_BT601_625:
153 case ColorMode::STANDARD_BT601_625_UNADJUSTED:
154 case ColorMode::STANDARD_BT601_525:
155 case ColorMode::STANDARD_BT601_525_UNADJUSTED:
156 case ColorMode::STANDARD_BT709:
157 case ColorMode::SRGB:
158 return false;
159 }
160 return false;
161 }
162
isHdrColorMode(const ColorMode colorMode)163 bool isHdrColorMode(const ColorMode colorMode) {
164 switch (colorMode) {
165 case ColorMode::BT2100_PQ:
166 case ColorMode::BT2100_HLG:
167 return true;
168 case ColorMode::DISPLAY_P3:
169 case ColorMode::ADOBE_RGB:
170 case ColorMode::DCI_P3:
171 case ColorMode::BT2020:
172 case ColorMode::DISPLAY_BT2020:
173 case ColorMode::NATIVE:
174 case ColorMode::STANDARD_BT601_625:
175 case ColorMode::STANDARD_BT601_625_UNADJUSTED:
176 case ColorMode::STANDARD_BT601_525:
177 case ColorMode::STANDARD_BT601_525_UNADJUSTED:
178 case ColorMode::STANDARD_BT709:
179 case ColorMode::SRGB:
180 return false;
181 }
182 return false;
183 }
184
fromSurfaceComposerRotation(ISurfaceComposer::Rotation rotation)185 ui::Transform::orientation_flags fromSurfaceComposerRotation(ISurfaceComposer::Rotation rotation) {
186 switch (rotation) {
187 case ISurfaceComposer::eRotateNone:
188 return ui::Transform::ROT_0;
189 case ISurfaceComposer::eRotate90:
190 return ui::Transform::ROT_90;
191 case ISurfaceComposer::eRotate180:
192 return ui::Transform::ROT_180;
193 case ISurfaceComposer::eRotate270:
194 return ui::Transform::ROT_270;
195 }
196 ALOGE("Invalid rotation passed to captureScreen(): %d\n", rotation);
197 return ui::Transform::ROT_0;
198 }
199
200 #pragma clang diagnostic pop
201
202 class ConditionalLock {
203 public:
ConditionalLock(Mutex & mutex,bool lock)204 ConditionalLock(Mutex& mutex, bool lock) : mMutex(mutex), mLocked(lock) {
205 if (lock) {
206 mMutex.lock();
207 }
208 }
~ConditionalLock()209 ~ConditionalLock() { if (mLocked) mMutex.unlock(); }
210 private:
211 Mutex& mMutex;
212 bool mLocked;
213 };
214
215 // Currently we only support V0_SRGB and DISPLAY_P3 as composition preference.
validateCompositionDataspace(Dataspace dataspace)216 bool validateCompositionDataspace(Dataspace dataspace) {
217 return dataspace == Dataspace::V0_SRGB || dataspace == Dataspace::DISPLAY_P3;
218 }
219
220 } // namespace anonymous
221
222 // ---------------------------------------------------------------------------
223
224 const String16 sHardwareTest("android.permission.HARDWARE_TEST");
225 const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
226 const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
227 const String16 sDump("android.permission.DUMP");
228
229 // ---------------------------------------------------------------------------
230 int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
231 bool SurfaceFlinger::useHwcForRgbToYuv;
232 uint64_t SurfaceFlinger::maxVirtualDisplaySize;
233 bool SurfaceFlinger::hasSyncFramework;
234 bool SurfaceFlinger::useVrFlinger;
235 int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
236 bool SurfaceFlinger::hasWideColorDisplay;
237 int SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientationDefault;
238 bool SurfaceFlinger::useColorManagement;
239 bool SurfaceFlinger::useContextPriority;
240 Dataspace SurfaceFlinger::defaultCompositionDataspace = Dataspace::V0_SRGB;
241 ui::PixelFormat SurfaceFlinger::defaultCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
242 Dataspace SurfaceFlinger::wideColorGamutCompositionDataspace = Dataspace::V0_SRGB;
243 ui::PixelFormat SurfaceFlinger::wideColorGamutCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
244
getHwcServiceName()245 std::string getHwcServiceName() {
246 char value[PROPERTY_VALUE_MAX] = {};
247 property_get("debug.sf.hwc_service_name", value, "default");
248 ALOGI("Using HWComposer service: '%s'", value);
249 return std::string(value);
250 }
251
useTrebleTestingOverride()252 bool useTrebleTestingOverride() {
253 char value[PROPERTY_VALUE_MAX] = {};
254 property_get("debug.sf.treble_testing_override", value, "false");
255 ALOGI("Treble testing override: '%s'", value);
256 return std::string(value) == "true";
257 }
258
decodeDisplayColorSetting(DisplayColorSetting displayColorSetting)259 std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) {
260 switch(displayColorSetting) {
261 case DisplayColorSetting::MANAGED:
262 return std::string("Managed");
263 case DisplayColorSetting::UNMANAGED:
264 return std::string("Unmanaged");
265 case DisplayColorSetting::ENHANCED:
266 return std::string("Enhanced");
267 default:
268 return std::string("Unknown ") +
269 std::to_string(static_cast<int>(displayColorSetting));
270 }
271 }
272
SurfaceFlingerBE()273 SurfaceFlingerBE::SurfaceFlingerBE() : mHwcServiceName(getHwcServiceName()) {}
274
SurfaceFlinger(Factory & factory,SkipInitializationTag)275 SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag)
276 : mFactory(factory),
277 mPhaseOffsets(mFactory.createPhaseOffsets()),
278 mInterceptor(mFactory.createSurfaceInterceptor(this)),
279 mTimeStats(mFactory.createTimeStats()),
280 mEventQueue(mFactory.createMessageQueue()),
281 mCompositionEngine(mFactory.createCompositionEngine()) {}
282
SurfaceFlinger(Factory & factory)283 SurfaceFlinger::SurfaceFlinger(Factory& factory) : SurfaceFlinger(factory, SkipInitialization) {
284 ALOGI("SurfaceFlinger is starting");
285
286 hasSyncFramework = running_without_sync_framework(true);
287
288 dispSyncPresentTimeOffset = present_time_offset_from_vsync_ns(0);
289
290 useHwcForRgbToYuv = force_hwc_copy_for_virtual_displays(false);
291
292 maxVirtualDisplaySize = max_virtual_display_dimension(0);
293
294 // Vr flinger is only enabled on Daydream ready devices.
295 useVrFlinger = use_vr_flinger(false);
296
297 maxFrameBufferAcquiredBuffers = max_frame_buffer_acquired_buffers(2);
298
299 hasWideColorDisplay = has_wide_color_display(false);
300
301 useColorManagement = use_color_management(false);
302
303 mDefaultCompositionDataspace =
304 static_cast<ui::Dataspace>(default_composition_dataspace(Dataspace::V0_SRGB));
305 mWideColorGamutCompositionDataspace = static_cast<ui::Dataspace>(wcg_composition_dataspace(
306 hasWideColorDisplay ? Dataspace::DISPLAY_P3 : Dataspace::V0_SRGB));
307 defaultCompositionDataspace = mDefaultCompositionDataspace;
308 wideColorGamutCompositionDataspace = mWideColorGamutCompositionDataspace;
309 defaultCompositionPixelFormat = static_cast<ui::PixelFormat>(
310 default_composition_pixel_format(ui::PixelFormat::RGBA_8888));
311 wideColorGamutCompositionPixelFormat =
312 static_cast<ui::PixelFormat>(wcg_composition_pixel_format(ui::PixelFormat::RGBA_8888));
313
314 useContextPriority = use_context_priority(true);
315
316 auto tmpPrimaryDisplayOrientation = primary_display_orientation(
317 SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_0);
318 switch (tmpPrimaryDisplayOrientation) {
319 case SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_90:
320 SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation90;
321 break;
322 case SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_180:
323 SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation180;
324 break;
325 case SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_270:
326 SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation270;
327 break;
328 default:
329 SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientationDefault;
330 break;
331 }
332 ALOGV("Primary Display Orientation is set to %2d.", SurfaceFlinger::primaryDisplayOrientation);
333
334 mInternalDisplayPrimaries = sysprop::getDisplayNativePrimaries();
335
336 // debugging stuff...
337 char value[PROPERTY_VALUE_MAX];
338
339 property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
340 mGpuToCpuSupported = !atoi(value);
341
342 property_get("debug.sf.showupdates", value, "0");
343 mDebugRegion = atoi(value);
344
345 ALOGI_IF(mDebugRegion, "showupdates enabled");
346
347 // DDMS debugging deprecated (b/120782499)
348 property_get("debug.sf.ddms", value, "0");
349 int debugDdms = atoi(value);
350 ALOGI_IF(debugDdms, "DDMS debugging not supported");
351
352 property_get("debug.sf.disable_backpressure", value, "0");
353 mPropagateBackpressure = !atoi(value);
354 ALOGI_IF(!mPropagateBackpressure, "Disabling backpressure propagation");
355
356 property_get("debug.sf.enable_gl_backpressure", value, "0");
357 mPropagateBackpressureClientComposition = atoi(value);
358 ALOGI_IF(mPropagateBackpressureClientComposition,
359 "Enabling backpressure propagation for Client Composition");
360
361 property_get("debug.sf.enable_hwc_vds", value, "0");
362 mUseHwcVirtualDisplays = atoi(value);
363 ALOGI_IF(mUseHwcVirtualDisplays, "Enabling HWC virtual displays");
364
365 property_get("ro.sf.disable_triple_buffer", value, "0");
366 mLayerTripleBufferingDisabled = atoi(value);
367 ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering");
368
369 const size_t defaultListSize = MAX_LAYERS;
370 auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize));
371 mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize;
372
373 mUseSmart90ForVideo = use_smart_90_for_video(false);
374 property_get("debug.sf.use_smart_90_for_video", value, "0");
375
376 int int_value = atoi(value);
377 if (int_value) {
378 mUseSmart90ForVideo = true;
379 }
380
381 property_get("debug.sf.luma_sampling", value, "1");
382 mLumaSampling = atoi(value);
383
384 const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets();
385 mVsyncModulator.setPhaseOffsets(early, gl, late);
386
387 // We should be reading 'persist.sys.sf.color_saturation' here
388 // but since /data may be encrypted, we need to wait until after vold
389 // comes online to attempt to read the property. The property is
390 // instead read after the boot animation
391
392 if (useTrebleTestingOverride()) {
393 // Without the override SurfaceFlinger cannot connect to HIDL
394 // services that are not listed in the manifests. Considered
395 // deriving the setting from the set service name, but it
396 // would be brittle if the name that's not 'default' is used
397 // for production purposes later on.
398 setenv("TREBLE_TESTING_OVERRIDE", "true", true);
399 }
400 }
401
onFirstRef()402 void SurfaceFlinger::onFirstRef()
403 {
404 mEventQueue->init(this);
405 }
406
407 SurfaceFlinger::~SurfaceFlinger() = default;
408
binderDied(const wp<IBinder> &)409 void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */)
410 {
411 // the window manager died on us. prepare its eulogy.
412
413 // restore initial conditions (default device unblank, etc)
414 initializeDisplays();
415
416 // restart the boot-animation
417 startBootAnim();
418 }
419
initClient(const sp<Client> & client)420 static sp<ISurfaceComposerClient> initClient(const sp<Client>& client) {
421 status_t err = client->initCheck();
422 if (err == NO_ERROR) {
423 return client;
424 }
425 return nullptr;
426 }
427
createConnection()428 sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
429 return initClient(new Client(this));
430 }
431
createDisplay(const String8 & displayName,bool secure)432 sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
433 bool secure)
434 {
435 class DisplayToken : public BBinder {
436 sp<SurfaceFlinger> flinger;
437 virtual ~DisplayToken() {
438 // no more references, this display must be terminated
439 Mutex::Autolock _l(flinger->mStateLock);
440 flinger->mCurrentState.displays.removeItem(this);
441 flinger->setTransactionFlags(eDisplayTransactionNeeded);
442 }
443 public:
444 explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
445 : flinger(flinger) {
446 }
447 };
448
449 sp<BBinder> token = new DisplayToken(this);
450
451 Mutex::Autolock _l(mStateLock);
452 // Display ID is assigned when virtual display is allocated by HWC.
453 DisplayDeviceState state;
454 state.isSecure = secure;
455 state.displayName = displayName;
456 mCurrentState.displays.add(token, state);
457 mInterceptor->saveDisplayCreation(state);
458 return token;
459 }
460
destroyDisplay(const sp<IBinder> & displayToken)461 void SurfaceFlinger::destroyDisplay(const sp<IBinder>& displayToken) {
462 Mutex::Autolock _l(mStateLock);
463
464 ssize_t index = mCurrentState.displays.indexOfKey(displayToken);
465 if (index < 0) {
466 ALOGE("destroyDisplay: Invalid display token %p", displayToken.get());
467 return;
468 }
469
470 const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
471 if (!state.isVirtual()) {
472 ALOGE("destroyDisplay called for non-virtual display");
473 return;
474 }
475 mInterceptor->saveDisplayDeletion(state.sequenceId);
476 mCurrentState.displays.removeItemsAt(index);
477 setTransactionFlags(eDisplayTransactionNeeded);
478 }
479
getPhysicalDisplayIds() const480 std::vector<PhysicalDisplayId> SurfaceFlinger::getPhysicalDisplayIds() const {
481 Mutex::Autolock lock(mStateLock);
482
483 const auto internalDisplayId = getInternalDisplayIdLocked();
484 if (!internalDisplayId) {
485 return {};
486 }
487
488 std::vector<PhysicalDisplayId> displayIds;
489 displayIds.reserve(mPhysicalDisplayTokens.size());
490 displayIds.push_back(internalDisplayId->value);
491
492 for (const auto& [id, token] : mPhysicalDisplayTokens) {
493 if (id != *internalDisplayId) {
494 displayIds.push_back(id.value);
495 }
496 }
497
498 return displayIds;
499 }
500
getPhysicalDisplayToken(PhysicalDisplayId displayId) const501 sp<IBinder> SurfaceFlinger::getPhysicalDisplayToken(PhysicalDisplayId displayId) const {
502 Mutex::Autolock lock(mStateLock);
503 return getPhysicalDisplayTokenLocked(DisplayId{displayId});
504 }
505
getColorManagement(bool * outGetColorManagement) const506 status_t SurfaceFlinger::getColorManagement(bool* outGetColorManagement) const {
507 if (!outGetColorManagement) {
508 return BAD_VALUE;
509 }
510 *outGetColorManagement = useColorManagement;
511 return NO_ERROR;
512 }
513
getHwComposer() const514 HWComposer& SurfaceFlinger::getHwComposer() const {
515 return mCompositionEngine->getHwComposer();
516 }
517
getRenderEngine() const518 renderengine::RenderEngine& SurfaceFlinger::getRenderEngine() const {
519 return mCompositionEngine->getRenderEngine();
520 }
521
getCompositionEngine() const522 compositionengine::CompositionEngine& SurfaceFlinger::getCompositionEngine() const {
523 return *mCompositionEngine.get();
524 }
525
bootFinished()526 void SurfaceFlinger::bootFinished()
527 {
528 if (mStartPropertySetThread->join() != NO_ERROR) {
529 ALOGE("Join StartPropertySetThread failed!");
530 }
531 const nsecs_t now = systemTime();
532 const nsecs_t duration = now - mBootTime;
533 ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
534
535 // wait patiently for the window manager death
536 const String16 name("window");
537 sp<IBinder> window(defaultServiceManager()->getService(name));
538 if (window != 0) {
539 window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
540 }
541 sp<IBinder> input(defaultServiceManager()->getService(
542 String16("inputflinger")));
543 if (input == nullptr) {
544 ALOGE("Failed to link to input service");
545 } else {
546 mInputFlinger = interface_cast<IInputFlinger>(input);
547 }
548
549 if (mVrFlinger) {
550 mVrFlinger->OnBootFinished();
551 }
552
553 // stop boot animation
554 // formerly we would just kill the process, but we now ask it to exit so it
555 // can choose where to stop the animation.
556 property_set("service.bootanim.exit", "1");
557
558 const int LOGTAG_SF_STOP_BOOTANIM = 60110;
559 LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
560 ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
561
562 postMessageAsync(new LambdaMessage([this]() NO_THREAD_SAFETY_ANALYSIS {
563 readPersistentProperties();
564 mBootStage = BootStage::FINISHED;
565
566 // set the refresh rate according to the policy
567 const auto& performanceRefreshRate =
568 mRefreshRateConfigs.getRefreshRate(RefreshRateType::PERFORMANCE);
569
570 if (performanceRefreshRate && isDisplayConfigAllowed(performanceRefreshRate->configId)) {
571 setRefreshRateTo(RefreshRateType::PERFORMANCE, Scheduler::ConfigEvent::None);
572 } else {
573 setRefreshRateTo(RefreshRateType::DEFAULT, Scheduler::ConfigEvent::None);
574 }
575 }));
576 }
577
getNewTexture()578 uint32_t SurfaceFlinger::getNewTexture() {
579 {
580 std::lock_guard lock(mTexturePoolMutex);
581 if (!mTexturePool.empty()) {
582 uint32_t name = mTexturePool.back();
583 mTexturePool.pop_back();
584 ATRACE_INT("TexturePoolSize", mTexturePool.size());
585 return name;
586 }
587
588 // The pool was too small, so increase it for the future
589 ++mTexturePoolSize;
590 }
591
592 // The pool was empty, so we need to get a new texture name directly using a
593 // blocking call to the main thread
594 uint32_t name = 0;
595 postMessageSync(new LambdaMessage([&]() { getRenderEngine().genTextures(1, &name); }));
596 return name;
597 }
598
deleteTextureAsync(uint32_t texture)599 void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
600 std::lock_guard lock(mTexturePoolMutex);
601 // We don't change the pool size, so the fix-up logic in postComposition will decide whether
602 // to actually delete this or not based on mTexturePoolSize
603 mTexturePool.push_back(texture);
604 ATRACE_INT("TexturePoolSize", mTexturePool.size());
605 }
606
607 // Do not call property_set on main thread which will be blocked by init
608 // Use StartPropertySetThread instead.
init()609 void SurfaceFlinger::init() {
610 ALOGI( "SurfaceFlinger's main thread ready to run. "
611 "Initializing graphics H/W...");
612
613 ALOGI("Phase offset NS: %" PRId64 "", mPhaseOffsets->getCurrentAppOffset());
614
615 Mutex::Autolock _l(mStateLock);
616 // start the EventThread
617 mScheduler =
618 getFactory().createScheduler([this](bool enabled) { setPrimaryVsyncEnabled(enabled); },
619 mRefreshRateConfigs);
620 auto resyncCallback =
621 mScheduler->makeResyncCallback(std::bind(&SurfaceFlinger::getVsyncPeriod, this));
622
623 mAppConnectionHandle =
624 mScheduler->createConnection("app", mPhaseOffsets->getCurrentAppOffset(),
625 resyncCallback,
626 impl::EventThread::InterceptVSyncsCallback());
627 mSfConnectionHandle = mScheduler->createConnection("sf", mPhaseOffsets->getCurrentSfOffset(),
628 resyncCallback, [this](nsecs_t timestamp) {
629 mInterceptor->saveVSyncEvent(timestamp);
630 });
631
632 mEventQueue->setEventConnection(mScheduler->getEventConnection(mSfConnectionHandle));
633 mVsyncModulator.setSchedulerAndHandles(mScheduler.get(), mAppConnectionHandle.get(),
634 mSfConnectionHandle.get());
635
636 mRegionSamplingThread =
637 new RegionSamplingThread(*this, *mScheduler,
638 RegionSamplingThread::EnvironmentTimingTunables());
639
640 // Get a RenderEngine for the given display / config (can't fail)
641 int32_t renderEngineFeature = 0;
642 renderEngineFeature |= (useColorManagement ?
643 renderengine::RenderEngine::USE_COLOR_MANAGEMENT : 0);
644 renderEngineFeature |= (useContextPriority ?
645 renderengine::RenderEngine::USE_HIGH_PRIORITY_CONTEXT : 0);
646 renderEngineFeature |=
647 (enable_protected_contents(false) ? renderengine::RenderEngine::ENABLE_PROTECTED_CONTEXT
648 : 0);
649
650 // TODO(b/77156734): We need to stop casting and use HAL types when possible.
651 // Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display.
652 mCompositionEngine->setRenderEngine(
653 renderengine::RenderEngine::create(static_cast<int32_t>(defaultCompositionPixelFormat),
654 renderEngineFeature, maxFrameBufferAcquiredBuffers));
655
656 LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay,
657 "Starting with vr flinger active is not currently supported.");
658 mCompositionEngine->setHwComposer(getFactory().createHWComposer(getBE().mHwcServiceName));
659 mCompositionEngine->getHwComposer().registerCallback(this, getBE().mComposerSequenceId);
660 // Process any initial hotplug and resulting display changes.
661 processDisplayHotplugEventsLocked();
662 const auto display = getDefaultDisplayDeviceLocked();
663 LOG_ALWAYS_FATAL_IF(!display, "Missing internal display after registering composer callback.");
664 LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(*display->getId()),
665 "Internal display is disconnected.");
666
667 if (useVrFlinger) {
668 auto vrFlingerRequestDisplayCallback = [this](bool requestDisplay) {
669 // This callback is called from the vr flinger dispatch thread. We
670 // need to call signalTransaction(), which requires holding
671 // mStateLock when we're not on the main thread. Acquiring
672 // mStateLock from the vr flinger dispatch thread might trigger a
673 // deadlock in surface flinger (see b/66916578), so post a message
674 // to be handled on the main thread instead.
675 postMessageAsync(new LambdaMessage([=] {
676 ALOGI("VR request display mode: requestDisplay=%d", requestDisplay);
677 mVrFlingerRequestsDisplay = requestDisplay;
678 signalTransaction();
679 }));
680 };
681 mVrFlinger = dvr::VrFlinger::Create(getHwComposer().getComposer(),
682 getHwComposer()
683 .fromPhysicalDisplayId(*display->getId())
684 .value_or(0),
685 vrFlingerRequestDisplayCallback);
686 if (!mVrFlinger) {
687 ALOGE("Failed to start vrflinger");
688 }
689 }
690
691 // initialize our drawing state
692 mDrawingState = mCurrentState;
693
694 // set initial conditions (e.g. unblank default device)
695 initializeDisplays();
696
697 getRenderEngine().primeCache();
698
699 // Inform native graphics APIs whether the present timestamp is supported:
700
701 const bool presentFenceReliable =
702 !getHwComposer().hasCapability(HWC2::Capability::PresentFenceIsNotReliable);
703 mStartPropertySetThread = getFactory().createStartPropertySetThread(presentFenceReliable);
704
705 if (mStartPropertySetThread->Start() != NO_ERROR) {
706 ALOGE("Run StartPropertySetThread failed!");
707 }
708
709 mScheduler->setChangeRefreshRateCallback(
710 [this](RefreshRateType type, Scheduler::ConfigEvent event) {
711 Mutex::Autolock lock(mStateLock);
712 setRefreshRateTo(type, event);
713 });
714 mScheduler->setGetVsyncPeriodCallback([this] {
715 Mutex::Autolock lock(mStateLock);
716 return getVsyncPeriod();
717 });
718
719 mRefreshRateConfigs.populate(getHwComposer().getConfigs(*display->getId()));
720 mRefreshRateStats.setConfigMode(getHwComposer().getActiveConfigIndex(*display->getId()));
721
722 ALOGV("Done initializing");
723 }
724
readPersistentProperties()725 void SurfaceFlinger::readPersistentProperties() {
726 Mutex::Autolock _l(mStateLock);
727
728 char value[PROPERTY_VALUE_MAX];
729
730 property_get("persist.sys.sf.color_saturation", value, "1.0");
731 mGlobalSaturationFactor = atof(value);
732 updateColorMatrixLocked();
733 ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor);
734
735 property_get("persist.sys.sf.native_mode", value, "0");
736 mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value));
737
738 property_get("persist.sys.sf.color_mode", value, "0");
739 mForceColorMode = static_cast<ColorMode>(atoi(value));
740 }
741
startBootAnim()742 void SurfaceFlinger::startBootAnim() {
743 // Start boot animation service by setting a property mailbox
744 // if property setting thread is already running, Start() will be just a NOP
745 mStartPropertySetThread->Start();
746 // Wait until property was set
747 if (mStartPropertySetThread->join() != NO_ERROR) {
748 ALOGE("Join StartPropertySetThread failed!");
749 }
750 }
751
getMaxTextureSize() const752 size_t SurfaceFlinger::getMaxTextureSize() const {
753 return getRenderEngine().getMaxTextureSize();
754 }
755
getMaxViewportDims() const756 size_t SurfaceFlinger::getMaxViewportDims() const {
757 return getRenderEngine().getMaxViewportDims();
758 }
759
760 // ----------------------------------------------------------------------------
761
authenticateSurfaceTexture(const sp<IGraphicBufferProducer> & bufferProducer) const762 bool SurfaceFlinger::authenticateSurfaceTexture(
763 const sp<IGraphicBufferProducer>& bufferProducer) const {
764 Mutex::Autolock _l(mStateLock);
765 return authenticateSurfaceTextureLocked(bufferProducer);
766 }
767
authenticateSurfaceTextureLocked(const sp<IGraphicBufferProducer> & bufferProducer) const768 bool SurfaceFlinger::authenticateSurfaceTextureLocked(
769 const sp<IGraphicBufferProducer>& bufferProducer) const {
770 sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer));
771 return mGraphicBufferProducerList.count(surfaceTextureBinder.get()) > 0;
772 }
773
getSupportedFrameTimestamps(std::vector<FrameEvent> * outSupported) const774 status_t SurfaceFlinger::getSupportedFrameTimestamps(
775 std::vector<FrameEvent>* outSupported) const {
776 *outSupported = {
777 FrameEvent::REQUESTED_PRESENT,
778 FrameEvent::ACQUIRE,
779 FrameEvent::LATCH,
780 FrameEvent::FIRST_REFRESH_START,
781 FrameEvent::LAST_REFRESH_START,
782 FrameEvent::GPU_COMPOSITION_DONE,
783 FrameEvent::DEQUEUE_READY,
784 FrameEvent::RELEASE,
785 };
786 ConditionalLock _l(mStateLock,
787 std::this_thread::get_id() != mMainThreadId);
788 if (!getHwComposer().hasCapability(
789 HWC2::Capability::PresentFenceIsNotReliable)) {
790 outSupported->push_back(FrameEvent::DISPLAY_PRESENT);
791 }
792 return NO_ERROR;
793 }
794
getDisplayConfigs(const sp<IBinder> & displayToken,Vector<DisplayInfo> * configs)795 status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& displayToken,
796 Vector<DisplayInfo>* configs) {
797 if (!displayToken || !configs) {
798 return BAD_VALUE;
799 }
800
801 Mutex::Autolock lock(mStateLock);
802
803 const auto displayId = getPhysicalDisplayIdLocked(displayToken);
804 if (!displayId) {
805 return NAME_NOT_FOUND;
806 }
807
808 // TODO: Not sure if display density should handled by SF any longer
809 class Density {
810 static float getDensityFromProperty(char const* propName) {
811 char property[PROPERTY_VALUE_MAX];
812 float density = 0.0f;
813 if (property_get(propName, property, nullptr) > 0) {
814 density = strtof(property, nullptr);
815 }
816 return density;
817 }
818 public:
819 static float getEmuDensity() {
820 return getDensityFromProperty("qemu.sf.lcd_density"); }
821 static float getBuildDensity() {
822 return getDensityFromProperty("ro.sf.lcd_density"); }
823 };
824
825 configs->clear();
826
827 for (const auto& hwConfig : getHwComposer().getConfigs(*displayId)) {
828 DisplayInfo info = DisplayInfo();
829
830 float xdpi = hwConfig->getDpiX();
831 float ydpi = hwConfig->getDpiY();
832
833 info.w = hwConfig->getWidth();
834 info.h = hwConfig->getHeight();
835 // Default display viewport to display width and height
836 info.viewportW = info.w;
837 info.viewportH = info.h;
838
839 if (displayId == getInternalDisplayIdLocked()) {
840 // The density of the device is provided by a build property
841 float density = Density::getBuildDensity() / 160.0f;
842 if (density == 0) {
843 // the build doesn't provide a density -- this is wrong!
844 // use xdpi instead
845 ALOGE("ro.sf.lcd_density must be defined as a build property");
846 density = xdpi / 160.0f;
847 }
848 if (Density::getEmuDensity()) {
849 // if "qemu.sf.lcd_density" is specified, it overrides everything
850 xdpi = ydpi = density = Density::getEmuDensity();
851 density /= 160.0f;
852 }
853 info.density = density;
854
855 // TODO: this needs to go away (currently needed only by webkit)
856 const auto display = getDefaultDisplayDeviceLocked();
857 info.orientation = display ? display->getOrientation() : 0;
858
859 // This is for screenrecord
860 const Rect viewport = display->getViewport();
861 if (viewport.isValid()) {
862 info.viewportW = uint32_t(viewport.getWidth());
863 info.viewportH = uint32_t(viewport.getHeight());
864 }
865 } else {
866 // TODO: where should this value come from?
867 static const int TV_DENSITY = 213;
868 info.density = TV_DENSITY / 160.0f;
869 info.orientation = 0;
870 }
871
872 info.xdpi = xdpi;
873 info.ydpi = ydpi;
874 info.fps = 1e9 / hwConfig->getVsyncPeriod();
875 const auto refreshRateType = mRefreshRateConfigs.getRefreshRateType(hwConfig->getId());
876 const auto offset = mPhaseOffsets->getOffsetsForRefreshRate(refreshRateType);
877 info.appVsyncOffset = offset.late.app;
878
879 // This is how far in advance a buffer must be queued for
880 // presentation at a given time. If you want a buffer to appear
881 // on the screen at time N, you must submit the buffer before
882 // (N - presentationDeadline).
883 //
884 // Normally it's one full refresh period (to give SF a chance to
885 // latch the buffer), but this can be reduced by configuring a
886 // DispSync offset. Any additional delays introduced by the hardware
887 // composer or panel must be accounted for here.
888 //
889 // We add an additional 1ms to allow for processing time and
890 // differences between the ideal and actual refresh rate.
891 info.presentationDeadline = hwConfig->getVsyncPeriod() - offset.late.sf + 1000000;
892
893 // All non-virtual displays are currently considered secure.
894 info.secure = true;
895
896 if (displayId == getInternalDisplayIdLocked() &&
897 primaryDisplayOrientation & DisplayState::eOrientationSwapMask) {
898 std::swap(info.w, info.h);
899 }
900
901 configs->push_back(info);
902 }
903
904 return NO_ERROR;
905 }
906
getDisplayStats(const sp<IBinder> &,DisplayStatInfo * stats)907 status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>&, DisplayStatInfo* stats) {
908 if (!stats) {
909 return BAD_VALUE;
910 }
911
912 mScheduler->getDisplayStatInfo(stats);
913 return NO_ERROR;
914 }
915
getActiveConfig(const sp<IBinder> & displayToken)916 int SurfaceFlinger::getActiveConfig(const sp<IBinder>& displayToken) {
917 const auto display = getDisplayDevice(displayToken);
918 if (!display) {
919 ALOGE("getActiveConfig: Invalid display token %p", displayToken.get());
920 return BAD_VALUE;
921 }
922
923 return display->getActiveConfig();
924 }
925
setDesiredActiveConfig(const ActiveConfigInfo & info)926 void SurfaceFlinger::setDesiredActiveConfig(const ActiveConfigInfo& info) {
927 ATRACE_CALL();
928
929 // Don't check against the current mode yet. Worst case we set the desired
930 // config twice. However event generation config might have changed so we need to update it
931 // accordingly
932 std::lock_guard<std::mutex> lock(mActiveConfigLock);
933 const Scheduler::ConfigEvent prevConfig = mDesiredActiveConfig.event;
934 mDesiredActiveConfig = info;
935 mDesiredActiveConfig.event = mDesiredActiveConfig.event | prevConfig;
936
937 if (!mDesiredActiveConfigChanged) {
938 // This will trigger HWC refresh without resetting the idle timer.
939 repaintEverythingForHWC();
940 // Start receiving vsync samples now, so that we can detect a period
941 // switch.
942 mScheduler->resyncToHardwareVsync(true, getVsyncPeriod());
943 mPhaseOffsets->setRefreshRateType(info.type);
944 const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets();
945 mVsyncModulator.onRefreshRateChangeInitiated();
946 mVsyncModulator.setPhaseOffsets(early, gl, late);
947 }
948 mDesiredActiveConfigChanged = true;
949 ATRACE_INT("DesiredActiveConfigChanged", mDesiredActiveConfigChanged);
950
951 if (mRefreshRateOverlay) {
952 mRefreshRateOverlay->changeRefreshRate(mDesiredActiveConfig.type);
953 }
954 }
955
setActiveConfig(const sp<IBinder> & displayToken,int mode)956 status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& displayToken, int mode) {
957 ATRACE_CALL();
958
959 std::vector<int32_t> allowedConfig;
960 allowedConfig.push_back(mode);
961
962 return setAllowedDisplayConfigs(displayToken, allowedConfig);
963 }
964
setActiveConfigInternal()965 void SurfaceFlinger::setActiveConfigInternal() {
966 ATRACE_CALL();
967
968 const auto display = getDefaultDisplayDeviceLocked();
969 if (!display) {
970 return;
971 }
972
973 std::lock_guard<std::mutex> lock(mActiveConfigLock);
974 mRefreshRateStats.setConfigMode(mUpcomingActiveConfig.configId);
975
976 display->setActiveConfig(mUpcomingActiveConfig.configId);
977
978 mScheduler->resyncToHardwareVsync(true, getVsyncPeriod());
979 mPhaseOffsets->setRefreshRateType(mUpcomingActiveConfig.type);
980 const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets();
981 mVsyncModulator.setPhaseOffsets(early, gl, late);
982 ATRACE_INT("ActiveConfigMode", mUpcomingActiveConfig.configId);
983
984 if (mUpcomingActiveConfig.event != Scheduler::ConfigEvent::None) {
985 mScheduler->onConfigChanged(mAppConnectionHandle, display->getId()->value,
986 mUpcomingActiveConfig.configId);
987 }
988 }
989
performSetActiveConfig()990 bool SurfaceFlinger::performSetActiveConfig() {
991 ATRACE_CALL();
992 if (mCheckPendingFence) {
993 if (previousFrameMissed()) {
994 // fence has not signaled yet. wait for the next invalidate
995 mEventQueue->invalidate();
996 return true;
997 }
998
999 // We received the present fence from the HWC, so we assume it successfully updated
1000 // the config, hence we update SF.
1001 mCheckPendingFence = false;
1002 setActiveConfigInternal();
1003 }
1004
1005 // Store the local variable to release the lock.
1006 ActiveConfigInfo desiredActiveConfig;
1007 {
1008 std::lock_guard<std::mutex> lock(mActiveConfigLock);
1009 if (!mDesiredActiveConfigChanged) {
1010 return false;
1011 }
1012 desiredActiveConfig = mDesiredActiveConfig;
1013 }
1014
1015 const auto display = getDefaultDisplayDeviceLocked();
1016 if (!display || display->getActiveConfig() == desiredActiveConfig.configId) {
1017 // display is not valid or we are already in the requested mode
1018 // on both cases there is nothing left to do
1019 std::lock_guard<std::mutex> lock(mActiveConfigLock);
1020 mDesiredActiveConfig.event = Scheduler::ConfigEvent::None;
1021 mDesiredActiveConfigChanged = false;
1022 ATRACE_INT("DesiredActiveConfigChanged", mDesiredActiveConfigChanged);
1023 return false;
1024 }
1025
1026 // Desired active config was set, it is different than the config currently in use, however
1027 // allowed configs might have change by the time we process the refresh.
1028 // Make sure the desired config is still allowed
1029 if (!isDisplayConfigAllowed(desiredActiveConfig.configId)) {
1030 std::lock_guard<std::mutex> lock(mActiveConfigLock);
1031 mDesiredActiveConfig.event = Scheduler::ConfigEvent::None;
1032 mDesiredActiveConfig.configId = display->getActiveConfig();
1033 mDesiredActiveConfigChanged = false;
1034 ATRACE_INT("DesiredActiveConfigChanged", mDesiredActiveConfigChanged);
1035 return false;
1036 }
1037 mUpcomingActiveConfig = desiredActiveConfig;
1038 const auto displayId = display->getId();
1039 LOG_ALWAYS_FATAL_IF(!displayId);
1040
1041 ATRACE_INT("ActiveConfigModeHWC", mUpcomingActiveConfig.configId);
1042 getHwComposer().setActiveConfig(*displayId, mUpcomingActiveConfig.configId);
1043
1044 // we need to submit an empty frame to HWC to start the process
1045 mCheckPendingFence = true;
1046 mEventQueue->invalidate();
1047 return false;
1048 }
1049
getDisplayColorModes(const sp<IBinder> & displayToken,Vector<ColorMode> * outColorModes)1050 status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& displayToken,
1051 Vector<ColorMode>* outColorModes) {
1052 if (!displayToken || !outColorModes) {
1053 return BAD_VALUE;
1054 }
1055
1056 std::vector<ColorMode> modes;
1057 bool isInternalDisplay = false;
1058 {
1059 ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
1060
1061 const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1062 if (!displayId) {
1063 return NAME_NOT_FOUND;
1064 }
1065
1066 modes = getHwComposer().getColorModes(*displayId);
1067 isInternalDisplay = displayId == getInternalDisplayIdLocked();
1068 }
1069 outColorModes->clear();
1070
1071 // If it's built-in display and the configuration claims it's not wide color capable,
1072 // filter out all wide color modes. The typical reason why this happens is that the
1073 // hardware is not good enough to support GPU composition of wide color, and thus the
1074 // OEMs choose to disable this capability.
1075 if (isInternalDisplay && !hasWideColorDisplay) {
1076 std::remove_copy_if(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes),
1077 isWideColorMode);
1078 } else {
1079 std::copy(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes));
1080 }
1081
1082 return NO_ERROR;
1083 }
1084
getDisplayNativePrimaries(const sp<IBinder> & displayToken,ui::DisplayPrimaries & primaries)1085 status_t SurfaceFlinger::getDisplayNativePrimaries(const sp<IBinder>& displayToken,
1086 ui::DisplayPrimaries &primaries) {
1087 if (!displayToken) {
1088 return BAD_VALUE;
1089 }
1090
1091 // Currently we only support this API for a single internal display.
1092 if (getInternalDisplayToken() != displayToken) {
1093 return BAD_VALUE;
1094 }
1095
1096 memcpy(&primaries, &mInternalDisplayPrimaries, sizeof(ui::DisplayPrimaries));
1097 return NO_ERROR;
1098 }
1099
getActiveColorMode(const sp<IBinder> & displayToken)1100 ColorMode SurfaceFlinger::getActiveColorMode(const sp<IBinder>& displayToken) {
1101 if (const auto display = getDisplayDevice(displayToken)) {
1102 return display->getCompositionDisplay()->getState().colorMode;
1103 }
1104 return static_cast<ColorMode>(BAD_VALUE);
1105 }
1106
setActiveColorMode(const sp<IBinder> & displayToken,ColorMode mode)1107 status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& displayToken, ColorMode mode) {
1108 postMessageSync(new LambdaMessage([&] {
1109 Vector<ColorMode> modes;
1110 getDisplayColorModes(displayToken, &modes);
1111 bool exists = std::find(std::begin(modes), std::end(modes), mode) != std::end(modes);
1112 if (mode < ColorMode::NATIVE || !exists) {
1113 ALOGE("Attempt to set invalid active color mode %s (%d) for display token %p",
1114 decodeColorMode(mode).c_str(), mode, displayToken.get());
1115 return;
1116 }
1117 const auto display = getDisplayDevice(displayToken);
1118 if (!display) {
1119 ALOGE("Attempt to set active color mode %s (%d) for invalid display token %p",
1120 decodeColorMode(mode).c_str(), mode, displayToken.get());
1121 } else if (display->isVirtual()) {
1122 ALOGW("Attempt to set active color mode %s (%d) for virtual display",
1123 decodeColorMode(mode).c_str(), mode);
1124 } else {
1125 display->getCompositionDisplay()->setColorMode(mode, Dataspace::UNKNOWN,
1126 RenderIntent::COLORIMETRIC);
1127 }
1128 }));
1129
1130 return NO_ERROR;
1131 }
1132
clearAnimationFrameStats()1133 status_t SurfaceFlinger::clearAnimationFrameStats() {
1134 Mutex::Autolock _l(mStateLock);
1135 mAnimFrameTracker.clearStats();
1136 return NO_ERROR;
1137 }
1138
getAnimationFrameStats(FrameStats * outStats) const1139 status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
1140 Mutex::Autolock _l(mStateLock);
1141 mAnimFrameTracker.getStats(outStats);
1142 return NO_ERROR;
1143 }
1144
getHdrCapabilities(const sp<IBinder> & displayToken,HdrCapabilities * outCapabilities) const1145 status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& displayToken,
1146 HdrCapabilities* outCapabilities) const {
1147 Mutex::Autolock _l(mStateLock);
1148
1149 const auto display = getDisplayDeviceLocked(displayToken);
1150 if (!display) {
1151 ALOGE("getHdrCapabilities: Invalid display token %p", displayToken.get());
1152 return BAD_VALUE;
1153 }
1154
1155 // At this point the DisplayDeivce should already be set up,
1156 // meaning the luminance information is already queried from
1157 // hardware composer and stored properly.
1158 const HdrCapabilities& capabilities = display->getHdrCapabilities();
1159 *outCapabilities = HdrCapabilities(capabilities.getSupportedHdrTypes(),
1160 capabilities.getDesiredMaxLuminance(),
1161 capabilities.getDesiredMaxAverageLuminance(),
1162 capabilities.getDesiredMinLuminance());
1163
1164 return NO_ERROR;
1165 }
1166
getDisplayedContentSamplingAttributes(const sp<IBinder> & displayToken,ui::PixelFormat * outFormat,ui::Dataspace * outDataspace,uint8_t * outComponentMask) const1167 status_t SurfaceFlinger::getDisplayedContentSamplingAttributes(const sp<IBinder>& displayToken,
1168 ui::PixelFormat* outFormat,
1169 ui::Dataspace* outDataspace,
1170 uint8_t* outComponentMask) const {
1171 if (!outFormat || !outDataspace || !outComponentMask) {
1172 return BAD_VALUE;
1173 }
1174 const auto display = getDisplayDevice(displayToken);
1175 if (!display || !display->getId()) {
1176 ALOGE("getDisplayedContentSamplingAttributes: Bad display token: %p", display.get());
1177 return BAD_VALUE;
1178 }
1179 return getHwComposer().getDisplayedContentSamplingAttributes(*display->getId(), outFormat,
1180 outDataspace, outComponentMask);
1181 }
1182
setDisplayContentSamplingEnabled(const sp<IBinder> & displayToken,bool enable,uint8_t componentMask,uint64_t maxFrames) const1183 status_t SurfaceFlinger::setDisplayContentSamplingEnabled(const sp<IBinder>& displayToken,
1184 bool enable, uint8_t componentMask,
1185 uint64_t maxFrames) const {
1186 const auto display = getDisplayDevice(displayToken);
1187 if (!display || !display->getId()) {
1188 ALOGE("setDisplayContentSamplingEnabled: Bad display token: %p", display.get());
1189 return BAD_VALUE;
1190 }
1191
1192 return getHwComposer().setDisplayContentSamplingEnabled(*display->getId(), enable,
1193 componentMask, maxFrames);
1194 }
1195
getDisplayedContentSample(const sp<IBinder> & displayToken,uint64_t maxFrames,uint64_t timestamp,DisplayedFrameStats * outStats) const1196 status_t SurfaceFlinger::getDisplayedContentSample(const sp<IBinder>& displayToken,
1197 uint64_t maxFrames, uint64_t timestamp,
1198 DisplayedFrameStats* outStats) const {
1199 const auto display = getDisplayDevice(displayToken);
1200 if (!display || !display->getId()) {
1201 ALOGE("getDisplayContentSample: Bad display token: %p", displayToken.get());
1202 return BAD_VALUE;
1203 }
1204
1205 return getHwComposer().getDisplayedContentSample(*display->getId(), maxFrames, timestamp,
1206 outStats);
1207 }
1208
getProtectedContentSupport(bool * outSupported) const1209 status_t SurfaceFlinger::getProtectedContentSupport(bool* outSupported) const {
1210 if (!outSupported) {
1211 return BAD_VALUE;
1212 }
1213 *outSupported = getRenderEngine().supportsProtectedContent();
1214 return NO_ERROR;
1215 }
1216
isWideColorDisplay(const sp<IBinder> & displayToken,bool * outIsWideColorDisplay) const1217 status_t SurfaceFlinger::isWideColorDisplay(const sp<IBinder>& displayToken,
1218 bool* outIsWideColorDisplay) const {
1219 if (!displayToken || !outIsWideColorDisplay) {
1220 return BAD_VALUE;
1221 }
1222 Mutex::Autolock _l(mStateLock);
1223 const auto display = getDisplayDeviceLocked(displayToken);
1224 if (!display) {
1225 return BAD_VALUE;
1226 }
1227
1228 // Use hasWideColorDisplay to override built-in display.
1229 const auto displayId = display->getId();
1230 if (displayId && displayId == getInternalDisplayIdLocked()) {
1231 *outIsWideColorDisplay = hasWideColorDisplay;
1232 return NO_ERROR;
1233 }
1234 *outIsWideColorDisplay = display->hasWideColorGamut();
1235 return NO_ERROR;
1236 }
1237
enableVSyncInjections(bool enable)1238 status_t SurfaceFlinger::enableVSyncInjections(bool enable) {
1239 postMessageSync(new LambdaMessage([&] {
1240 Mutex::Autolock _l(mStateLock);
1241
1242 if (mInjectVSyncs == enable) {
1243 return;
1244 }
1245
1246 auto resyncCallback =
1247 mScheduler->makeResyncCallback(std::bind(&SurfaceFlinger::getVsyncPeriod, this));
1248
1249 // TODO(b/128863962): Part of the Injector should be refactored, so that it
1250 // can be passed to Scheduler.
1251 if (enable) {
1252 ALOGV("VSync Injections enabled");
1253 if (mVSyncInjector.get() == nullptr) {
1254 mVSyncInjector = std::make_unique<InjectVSyncSource>();
1255 mInjectorEventThread = std::make_unique<
1256 impl::EventThread>(mVSyncInjector.get(),
1257 impl::EventThread::InterceptVSyncsCallback(),
1258 "injEventThread");
1259 }
1260 mEventQueue->setEventThread(mInjectorEventThread.get(), std::move(resyncCallback));
1261 } else {
1262 ALOGV("VSync Injections disabled");
1263 mEventQueue->setEventThread(mScheduler->getEventThread(mSfConnectionHandle),
1264 std::move(resyncCallback));
1265 }
1266
1267 mInjectVSyncs = enable;
1268 }));
1269
1270 return NO_ERROR;
1271 }
1272
injectVSync(nsecs_t when)1273 status_t SurfaceFlinger::injectVSync(nsecs_t when) {
1274 Mutex::Autolock _l(mStateLock);
1275
1276 if (!mInjectVSyncs) {
1277 ALOGE("VSync Injections not enabled");
1278 return BAD_VALUE;
1279 }
1280 if (mInjectVSyncs && mInjectorEventThread.get() != nullptr) {
1281 ALOGV("Injecting VSync inside SurfaceFlinger");
1282 mVSyncInjector->onInjectSyncEvent(when);
1283 }
1284 return NO_ERROR;
1285 }
1286
getLayerDebugInfo(std::vector<LayerDebugInfo> * outLayers)1287 status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers)
1288 NO_THREAD_SAFETY_ANALYSIS {
1289 outLayers->clear();
1290 postMessageSync(new LambdaMessage([&]() {
1291 mDrawingState.traverseInZOrder([&](Layer* layer) {
1292 outLayers->push_back(layer->getLayerDebugInfo());
1293 });
1294
1295 }));
1296 return NO_ERROR;
1297 }
1298
getCompositionPreference(Dataspace * outDataspace,ui::PixelFormat * outPixelFormat,Dataspace * outWideColorGamutDataspace,ui::PixelFormat * outWideColorGamutPixelFormat) const1299 status_t SurfaceFlinger::getCompositionPreference(
1300 Dataspace* outDataspace, ui::PixelFormat* outPixelFormat,
1301 Dataspace* outWideColorGamutDataspace,
1302 ui::PixelFormat* outWideColorGamutPixelFormat) const {
1303 *outDataspace = mDefaultCompositionDataspace;
1304 *outPixelFormat = defaultCompositionPixelFormat;
1305 *outWideColorGamutDataspace = mWideColorGamutCompositionDataspace;
1306 *outWideColorGamutPixelFormat = wideColorGamutCompositionPixelFormat;
1307 return NO_ERROR;
1308 }
1309
addRegionSamplingListener(const Rect & samplingArea,const sp<IBinder> & stopLayerHandle,const sp<IRegionSamplingListener> & listener)1310 status_t SurfaceFlinger::addRegionSamplingListener(const Rect& samplingArea,
1311 const sp<IBinder>& stopLayerHandle,
1312 const sp<IRegionSamplingListener>& listener) {
1313 if (!listener || samplingArea == Rect::INVALID_RECT) {
1314 return BAD_VALUE;
1315 }
1316 mRegionSamplingThread->addListener(samplingArea, stopLayerHandle, listener);
1317 return NO_ERROR;
1318 }
1319
removeRegionSamplingListener(const sp<IRegionSamplingListener> & listener)1320 status_t SurfaceFlinger::removeRegionSamplingListener(const sp<IRegionSamplingListener>& listener) {
1321 if (!listener) {
1322 return BAD_VALUE;
1323 }
1324 mRegionSamplingThread->removeListener(listener);
1325 return NO_ERROR;
1326 }
1327
getDisplayBrightnessSupport(const sp<IBinder> & displayToken,bool * outSupport) const1328 status_t SurfaceFlinger::getDisplayBrightnessSupport(const sp<IBinder>& displayToken,
1329 bool* outSupport) const {
1330 if (!displayToken || !outSupport) {
1331 return BAD_VALUE;
1332 }
1333 const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1334 if (!displayId) {
1335 return NAME_NOT_FOUND;
1336 }
1337 *outSupport =
1338 getHwComposer().hasDisplayCapability(displayId, HWC2::DisplayCapability::Brightness);
1339 return NO_ERROR;
1340 }
1341
setDisplayBrightness(const sp<IBinder> & displayToken,float brightness) const1342 status_t SurfaceFlinger::setDisplayBrightness(const sp<IBinder>& displayToken,
1343 float brightness) const {
1344 if (!displayToken) {
1345 return BAD_VALUE;
1346 }
1347 const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1348 if (!displayId) {
1349 return NAME_NOT_FOUND;
1350 }
1351 return getHwComposer().setDisplayBrightness(*displayId, brightness);
1352 }
1353
notifyPowerHint(int32_t hintId)1354 status_t SurfaceFlinger::notifyPowerHint(int32_t hintId) {
1355 PowerHint powerHint = static_cast<PowerHint>(hintId);
1356
1357 if (powerHint == PowerHint::INTERACTION) {
1358 mScheduler->notifyTouchEvent();
1359 }
1360
1361 return NO_ERROR;
1362 }
1363
1364 // ----------------------------------------------------------------------------
1365
createDisplayEventConnection(ISurfaceComposer::VsyncSource vsyncSource)1366 sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
1367 ISurfaceComposer::VsyncSource vsyncSource) {
1368 auto resyncCallback = mScheduler->makeResyncCallback([this] {
1369 Mutex::Autolock lock(mStateLock);
1370 return getVsyncPeriod();
1371 });
1372
1373 const auto& handle =
1374 vsyncSource == eVsyncSourceSurfaceFlinger ? mSfConnectionHandle : mAppConnectionHandle;
1375
1376 return mScheduler->createDisplayEventConnection(handle, std::move(resyncCallback));
1377 }
1378
1379 // ----------------------------------------------------------------------------
1380
waitForEvent()1381 void SurfaceFlinger::waitForEvent() {
1382 mEventQueue->waitMessage();
1383 }
1384
signalTransaction()1385 void SurfaceFlinger::signalTransaction() {
1386 mScheduler->resetIdleTimer();
1387 mEventQueue->invalidate();
1388 }
1389
signalLayerUpdate()1390 void SurfaceFlinger::signalLayerUpdate() {
1391 mScheduler->resetIdleTimer();
1392 mEventQueue->invalidate();
1393 }
1394
signalRefresh()1395 void SurfaceFlinger::signalRefresh() {
1396 mRefreshPending = true;
1397 mEventQueue->refresh();
1398 }
1399
postMessageAsync(const sp<MessageBase> & msg,nsecs_t reltime,uint32_t)1400 status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
1401 nsecs_t reltime, uint32_t /* flags */) {
1402 return mEventQueue->postMessage(msg, reltime);
1403 }
1404
postMessageSync(const sp<MessageBase> & msg,nsecs_t reltime,uint32_t)1405 status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
1406 nsecs_t reltime, uint32_t /* flags */) {
1407 status_t res = mEventQueue->postMessage(msg, reltime);
1408 if (res == NO_ERROR) {
1409 msg->wait();
1410 }
1411 return res;
1412 }
1413
run()1414 void SurfaceFlinger::run() {
1415 do {
1416 waitForEvent();
1417 } while (true);
1418 }
1419
getVsyncPeriod() const1420 nsecs_t SurfaceFlinger::getVsyncPeriod() const {
1421 const auto displayId = getInternalDisplayIdLocked();
1422 if (!displayId || !getHwComposer().isConnected(*displayId)) {
1423 return 0;
1424 }
1425
1426 const auto config = getHwComposer().getActiveConfig(*displayId);
1427 return config ? config->getVsyncPeriod() : 0;
1428 }
1429
onVsyncReceived(int32_t sequenceId,hwc2_display_t hwcDisplayId,int64_t timestamp)1430 void SurfaceFlinger::onVsyncReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId,
1431 int64_t timestamp) {
1432 ATRACE_NAME("SF onVsync");
1433
1434 Mutex::Autolock lock(mStateLock);
1435 // Ignore any vsyncs from a previous hardware composer.
1436 if (sequenceId != getBE().mComposerSequenceId) {
1437 return;
1438 }
1439
1440 if (!getHwComposer().onVsync(hwcDisplayId, timestamp)) {
1441 return;
1442 }
1443
1444 if (hwcDisplayId != getHwComposer().getInternalHwcDisplayId()) {
1445 // For now, we don't do anything with external display vsyncs.
1446 return;
1447 }
1448
1449 bool periodChanged = false;
1450 mScheduler->addResyncSample(timestamp, &periodChanged);
1451 if (periodChanged) {
1452 mVsyncModulator.onRefreshRateChangeDetected();
1453 }
1454 }
1455
getCompositorTiming(CompositorTiming * compositorTiming)1456 void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) {
1457 std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
1458 *compositorTiming = getBE().mCompositorTiming;
1459 }
1460
isDisplayConfigAllowed(int32_t configId)1461 bool SurfaceFlinger::isDisplayConfigAllowed(int32_t configId) {
1462 return mAllowedDisplayConfigs.empty() || mAllowedDisplayConfigs.count(configId);
1463 }
1464
setRefreshRateTo(RefreshRateType refreshRate,Scheduler::ConfigEvent event)1465 void SurfaceFlinger::setRefreshRateTo(RefreshRateType refreshRate, Scheduler::ConfigEvent event) {
1466 const auto display = getDefaultDisplayDeviceLocked();
1467 if (!display || mBootStage != BootStage::FINISHED) {
1468 return;
1469 }
1470 ATRACE_CALL();
1471
1472 // Don't do any updating if the current fps is the same as the new one.
1473 const auto& refreshRateConfig = mRefreshRateConfigs.getRefreshRate(refreshRate);
1474 if (!refreshRateConfig) {
1475 ALOGV("Skipping refresh rate change request for unsupported rate.");
1476 return;
1477 }
1478
1479 const int desiredConfigId = refreshRateConfig->configId;
1480
1481 if (!isDisplayConfigAllowed(desiredConfigId)) {
1482 ALOGV("Skipping config %d as it is not part of allowed configs", desiredConfigId);
1483 return;
1484 }
1485
1486 setDesiredActiveConfig({refreshRate, desiredConfigId, event});
1487 }
1488
onHotplugReceived(int32_t sequenceId,hwc2_display_t hwcDisplayId,HWC2::Connection connection)1489 void SurfaceFlinger::onHotplugReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId,
1490 HWC2::Connection connection) {
1491 ALOGV("%s(%d, %" PRIu64 ", %s)", __FUNCTION__, sequenceId, hwcDisplayId,
1492 connection == HWC2::Connection::Connected ? "connected" : "disconnected");
1493
1494 // Ignore events that do not have the right sequenceId.
1495 if (sequenceId != getBE().mComposerSequenceId) {
1496 return;
1497 }
1498
1499 // Only lock if we're not on the main thread. This function is normally
1500 // called on a hwbinder thread, but for the primary display it's called on
1501 // the main thread with the state lock already held, so don't attempt to
1502 // acquire it here.
1503 ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
1504
1505 mPendingHotplugEvents.emplace_back(HotplugEvent{hwcDisplayId, connection});
1506
1507 if (std::this_thread::get_id() == mMainThreadId) {
1508 // Process all pending hot plug events immediately if we are on the main thread.
1509 processDisplayHotplugEventsLocked();
1510 }
1511
1512 setTransactionFlags(eDisplayTransactionNeeded);
1513 }
1514
onRefreshReceived(int sequenceId,hwc2_display_t)1515 void SurfaceFlinger::onRefreshReceived(int sequenceId, hwc2_display_t /*hwcDisplayId*/) {
1516 Mutex::Autolock lock(mStateLock);
1517 if (sequenceId != getBE().mComposerSequenceId) {
1518 return;
1519 }
1520 repaintEverythingForHWC();
1521 }
1522
setPrimaryVsyncEnabled(bool enabled)1523 void SurfaceFlinger::setPrimaryVsyncEnabled(bool enabled) {
1524 ATRACE_CALL();
1525 Mutex::Autolock lock(mStateLock);
1526 if (const auto displayId = getInternalDisplayIdLocked()) {
1527 getHwComposer().setVsyncEnabled(*displayId,
1528 enabled ? HWC2::Vsync::Enable : HWC2::Vsync::Disable);
1529 }
1530 }
1531
1532 // Note: it is assumed the caller holds |mStateLock| when this is called
resetDisplayState()1533 void SurfaceFlinger::resetDisplayState() {
1534 mScheduler->disableHardwareVsync(true);
1535 // Clear the drawing state so that the logic inside of
1536 // handleTransactionLocked will fire. It will determine the delta between
1537 // mCurrentState and mDrawingState and re-apply all changes when we make the
1538 // transition.
1539 mDrawingState.displays.clear();
1540 mDisplays.clear();
1541 }
1542
updateVrFlinger()1543 void SurfaceFlinger::updateVrFlinger() {
1544 ATRACE_CALL();
1545 if (!mVrFlinger)
1546 return;
1547 bool vrFlingerRequestsDisplay = mVrFlingerRequestsDisplay;
1548 if (vrFlingerRequestsDisplay == getHwComposer().isUsingVrComposer()) {
1549 return;
1550 }
1551
1552 if (vrFlingerRequestsDisplay && !getHwComposer().getComposer()->isRemote()) {
1553 ALOGE("Vr flinger is only supported for remote hardware composer"
1554 " service connections. Ignoring request to transition to vr"
1555 " flinger.");
1556 mVrFlingerRequestsDisplay = false;
1557 return;
1558 }
1559
1560 Mutex::Autolock _l(mStateLock);
1561
1562 sp<DisplayDevice> display = getDefaultDisplayDeviceLocked();
1563 LOG_ALWAYS_FATAL_IF(!display);
1564
1565 const int currentDisplayPowerMode = display->getPowerMode();
1566
1567 // Clear out all the output layers from the composition engine for all
1568 // displays before destroying the hardware composer interface. This ensures
1569 // any HWC layers are destroyed through that interface before it becomes
1570 // invalid.
1571 for (const auto& [token, displayDevice] : mDisplays) {
1572 displayDevice->getCompositionDisplay()->setOutputLayersOrderedByZ(
1573 compositionengine::Output::OutputLayers());
1574 }
1575
1576 // This DisplayDevice will no longer be relevant once resetDisplayState() is
1577 // called below. Clear the reference now so we don't accidentally use it
1578 // later.
1579 display.clear();
1580
1581 if (!vrFlingerRequestsDisplay) {
1582 mVrFlinger->SeizeDisplayOwnership();
1583 }
1584
1585 resetDisplayState();
1586 // Delete the current instance before creating the new one
1587 mCompositionEngine->setHwComposer(std::unique_ptr<HWComposer>());
1588 mCompositionEngine->setHwComposer(getFactory().createHWComposer(
1589 vrFlingerRequestsDisplay ? "vr" : getBE().mHwcServiceName));
1590 getHwComposer().registerCallback(this, ++getBE().mComposerSequenceId);
1591
1592 LOG_ALWAYS_FATAL_IF(!getHwComposer().getComposer()->isRemote(),
1593 "Switched to non-remote hardware composer");
1594
1595 if (vrFlingerRequestsDisplay) {
1596 mVrFlinger->GrantDisplayOwnership();
1597 }
1598
1599 mVisibleRegionsDirty = true;
1600 invalidateHwcGeometry();
1601
1602 // Re-enable default display.
1603 display = getDefaultDisplayDeviceLocked();
1604 LOG_ALWAYS_FATAL_IF(!display);
1605 setPowerModeInternal(display, currentDisplayPowerMode);
1606
1607 // Reset the timing values to account for the period of the swapped in HWC
1608 const nsecs_t vsyncPeriod = getVsyncPeriod();
1609 mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod);
1610
1611 // The present fences returned from vr_hwc are not an accurate
1612 // representation of vsync times.
1613 mScheduler->setIgnorePresentFences(getHwComposer().isUsingVrComposer() || !hasSyncFramework);
1614
1615 // Use phase of 0 since phase is not known.
1616 // Use latency of 0, which will snap to the ideal latency.
1617 DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod};
1618 setCompositorTimingSnapped(stats, 0);
1619
1620 mScheduler->resyncToHardwareVsync(false, vsyncPeriod);
1621
1622 mRepaintEverything = true;
1623 setTransactionFlags(eDisplayTransactionNeeded);
1624 }
1625
previousFrameMissed()1626 bool SurfaceFlinger::previousFrameMissed() NO_THREAD_SAFETY_ANALYSIS {
1627 // We are storing the last 2 present fences. If sf's phase offset is to be
1628 // woken up before the actual vsync but targeting the next vsync, we need to check
1629 // fence N-2
1630 const sp<Fence>& fence =
1631 mVsyncModulator.getOffsets().sf < mPhaseOffsets->getOffsetThresholdForNextVsync()
1632 ? mPreviousPresentFences[0]
1633 : mPreviousPresentFences[1];
1634
1635 return fence != Fence::NO_FENCE && (fence->getStatus() == Fence::Status::Unsignaled);
1636 }
1637
onMessageReceived(int32_t what)1638 void SurfaceFlinger::onMessageReceived(int32_t what) NO_THREAD_SAFETY_ANALYSIS {
1639 ATRACE_CALL();
1640 switch (what) {
1641 case MessageQueue::INVALIDATE: {
1642 bool frameMissed = previousFrameMissed();
1643 bool hwcFrameMissed = mHadDeviceComposition && frameMissed;
1644 bool gpuFrameMissed = mHadClientComposition && frameMissed;
1645 ATRACE_INT("FrameMissed", static_cast<int>(frameMissed));
1646 ATRACE_INT("HwcFrameMissed", static_cast<int>(hwcFrameMissed));
1647 ATRACE_INT("GpuFrameMissed", static_cast<int>(gpuFrameMissed));
1648 if (frameMissed) {
1649 mFrameMissedCount++;
1650 mTimeStats->incrementMissedFrames();
1651 }
1652
1653 if (hwcFrameMissed) {
1654 mHwcFrameMissedCount++;
1655 }
1656
1657 if (gpuFrameMissed) {
1658 mGpuFrameMissedCount++;
1659 }
1660
1661 if (mUseSmart90ForVideo) {
1662 // This call is made each time SF wakes up and creates a new frame. It is part
1663 // of video detection feature.
1664 mScheduler->updateFpsBasedOnContent();
1665 }
1666
1667 if (performSetActiveConfig()) {
1668 break;
1669 }
1670
1671 if (frameMissed && mPropagateBackpressure) {
1672 if ((hwcFrameMissed && !gpuFrameMissed) ||
1673 mPropagateBackpressureClientComposition) {
1674 signalLayerUpdate();
1675 break;
1676 }
1677 }
1678
1679 // Now that we're going to make it to the handleMessageTransaction()
1680 // call below it's safe to call updateVrFlinger(), which will
1681 // potentially trigger a display handoff.
1682 updateVrFlinger();
1683
1684 bool refreshNeeded = handleMessageTransaction();
1685 refreshNeeded |= handleMessageInvalidate();
1686
1687 updateCursorAsync();
1688 updateInputFlinger();
1689
1690 refreshNeeded |= mRepaintEverything;
1691 if (refreshNeeded && CC_LIKELY(mBootStage != BootStage::BOOTLOADER)) {
1692 // Signal a refresh if a transaction modified the window state,
1693 // a new buffer was latched, or if HWC has requested a full
1694 // repaint
1695 signalRefresh();
1696 }
1697 break;
1698 }
1699 case MessageQueue::REFRESH: {
1700 handleMessageRefresh();
1701 break;
1702 }
1703 }
1704 }
1705
handleMessageTransaction()1706 bool SurfaceFlinger::handleMessageTransaction() {
1707 ATRACE_CALL();
1708 uint32_t transactionFlags = peekTransactionFlags();
1709
1710 bool flushedATransaction = flushTransactionQueues();
1711
1712 bool runHandleTransaction = transactionFlags &&
1713 ((transactionFlags != eTransactionFlushNeeded) || flushedATransaction);
1714
1715 if (runHandleTransaction) {
1716 handleTransaction(eTransactionMask);
1717 } else {
1718 getTransactionFlags(eTransactionFlushNeeded);
1719 }
1720
1721 if (transactionFlushNeeded()) {
1722 setTransactionFlags(eTransactionFlushNeeded);
1723 }
1724
1725 return runHandleTransaction;
1726 }
1727
handleMessageRefresh()1728 void SurfaceFlinger::handleMessageRefresh() {
1729 ATRACE_CALL();
1730
1731 mRefreshPending = false;
1732
1733 const bool repaintEverything = mRepaintEverything.exchange(false);
1734 preComposition();
1735 rebuildLayerStacks();
1736 calculateWorkingSet();
1737 for (const auto& [token, display] : mDisplays) {
1738 beginFrame(display);
1739 prepareFrame(display);
1740 doDebugFlashRegions(display, repaintEverything);
1741 doComposition(display, repaintEverything);
1742 }
1743
1744 logLayerStats();
1745
1746 postFrame();
1747 postComposition();
1748
1749 mHadClientComposition = false;
1750 mHadDeviceComposition = false;
1751 for (const auto& [token, displayDevice] : mDisplays) {
1752 auto display = displayDevice->getCompositionDisplay();
1753 const auto displayId = display->getId();
1754 mHadClientComposition =
1755 mHadClientComposition || getHwComposer().hasClientComposition(displayId);
1756 mHadDeviceComposition =
1757 mHadDeviceComposition || getHwComposer().hasDeviceComposition(displayId);
1758 }
1759
1760 mVsyncModulator.onRefreshed(mHadClientComposition);
1761
1762 mLayersWithQueuedFrames.clear();
1763 }
1764
1765
handleMessageInvalidate()1766 bool SurfaceFlinger::handleMessageInvalidate() {
1767 ATRACE_CALL();
1768 bool refreshNeeded = handlePageFlip();
1769
1770 if (mVisibleRegionsDirty) {
1771 computeLayerBounds();
1772 if (mTracingEnabled) {
1773 mTracing.notify("visibleRegionsDirty");
1774 }
1775 }
1776
1777 for (auto& layer : mLayersPendingRefresh) {
1778 Region visibleReg;
1779 visibleReg.set(layer->getScreenBounds());
1780 invalidateLayerStack(layer, visibleReg);
1781 }
1782 mLayersPendingRefresh.clear();
1783 return refreshNeeded;
1784 }
1785
calculateWorkingSet()1786 void SurfaceFlinger::calculateWorkingSet() {
1787 ATRACE_CALL();
1788 ALOGV(__FUNCTION__);
1789
1790 // build the h/w work list
1791 if (CC_UNLIKELY(mGeometryInvalid)) {
1792 mGeometryInvalid = false;
1793 for (const auto& [token, displayDevice] : mDisplays) {
1794 auto display = displayDevice->getCompositionDisplay();
1795
1796 uint32_t zOrder = 0;
1797
1798 for (auto& layer : display->getOutputLayersOrderedByZ()) {
1799 auto& compositionState = layer->editState();
1800 compositionState.forceClientComposition = false;
1801 if (!compositionState.hwc || mDebugDisableHWC || mDebugRegion) {
1802 compositionState.forceClientComposition = true;
1803 }
1804
1805 // The output Z order is set here based on a simple counter.
1806 compositionState.z = zOrder++;
1807
1808 // Update the display independent composition state. This goes
1809 // to the general composition layer state structure.
1810 // TODO: Do this once per compositionengine::CompositionLayer.
1811 layer->getLayerFE().latchCompositionState(layer->getLayer().editState().frontEnd,
1812 true);
1813
1814 // Recalculate the geometry state of the output layer.
1815 layer->updateCompositionState(true);
1816
1817 // Write the updated geometry state to the HWC
1818 layer->writeStateToHWC(true);
1819 }
1820 }
1821 }
1822
1823 // Set the per-frame data
1824 for (const auto& [token, displayDevice] : mDisplays) {
1825 auto display = displayDevice->getCompositionDisplay();
1826 const auto displayId = display->getId();
1827 if (!displayId) {
1828 continue;
1829 }
1830 auto* profile = display->getDisplayColorProfile();
1831
1832 if (mDrawingState.colorMatrixChanged) {
1833 display->setColorTransform(mDrawingState.colorMatrix);
1834 }
1835 Dataspace targetDataspace = Dataspace::UNKNOWN;
1836 if (useColorManagement) {
1837 ColorMode colorMode;
1838 RenderIntent renderIntent;
1839 pickColorMode(displayDevice, &colorMode, &targetDataspace, &renderIntent);
1840 display->setColorMode(colorMode, targetDataspace, renderIntent);
1841 }
1842 for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
1843 if (layer->isHdrY410()) {
1844 layer->forceClientComposition(displayDevice);
1845 } else if ((layer->getDataSpace() == Dataspace::BT2020_PQ ||
1846 layer->getDataSpace() == Dataspace::BT2020_ITU_PQ) &&
1847 !profile->hasHDR10Support()) {
1848 layer->forceClientComposition(displayDevice);
1849 } else if ((layer->getDataSpace() == Dataspace::BT2020_HLG ||
1850 layer->getDataSpace() == Dataspace::BT2020_ITU_HLG) &&
1851 !profile->hasHLGSupport()) {
1852 layer->forceClientComposition(displayDevice);
1853 }
1854
1855 if (layer->getRoundedCornerState().radius > 0.0f) {
1856 layer->forceClientComposition(displayDevice);
1857 }
1858
1859 if (layer->getForceClientComposition(displayDevice)) {
1860 ALOGV("[%s] Requesting Client composition", layer->getName().string());
1861 layer->setCompositionType(displayDevice,
1862 Hwc2::IComposerClient::Composition::CLIENT);
1863 continue;
1864 }
1865
1866 const auto& displayState = display->getState();
1867 layer->setPerFrameData(displayDevice, displayState.transform, displayState.viewport,
1868 displayDevice->getSupportedPerFrameMetadata(),
1869 isHdrColorMode(displayState.colorMode) ? Dataspace::UNKNOWN
1870 : targetDataspace);
1871 }
1872 }
1873
1874 mDrawingState.colorMatrixChanged = false;
1875
1876 for (const auto& [token, displayDevice] : mDisplays) {
1877 auto display = displayDevice->getCompositionDisplay();
1878 for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
1879 auto& layerState = layer->getCompositionLayer()->editState().frontEnd;
1880 layerState.compositionType = static_cast<Hwc2::IComposerClient::Composition>(
1881 layer->getCompositionType(displayDevice));
1882 }
1883 }
1884 }
1885
doDebugFlashRegions(const sp<DisplayDevice> & displayDevice,bool repaintEverything)1886 void SurfaceFlinger::doDebugFlashRegions(const sp<DisplayDevice>& displayDevice,
1887 bool repaintEverything) {
1888 auto display = displayDevice->getCompositionDisplay();
1889 const auto& displayState = display->getState();
1890
1891 // is debugging enabled
1892 if (CC_LIKELY(!mDebugRegion))
1893 return;
1894
1895 if (displayState.isEnabled) {
1896 // transform the dirty region into this screen's coordinate space
1897 const Region dirtyRegion = display->getDirtyRegion(repaintEverything);
1898 if (!dirtyRegion.isEmpty()) {
1899 base::unique_fd readyFence;
1900 // redraw the whole screen
1901 doComposeSurfaces(displayDevice, dirtyRegion, &readyFence);
1902
1903 display->getRenderSurface()->queueBuffer(std::move(readyFence));
1904 }
1905 }
1906
1907 postFramebuffer(displayDevice);
1908
1909 if (mDebugRegion > 1) {
1910 usleep(mDebugRegion * 1000);
1911 }
1912
1913 prepareFrame(displayDevice);
1914 }
1915
logLayerStats()1916 void SurfaceFlinger::logLayerStats() {
1917 ATRACE_CALL();
1918 if (CC_UNLIKELY(mLayerStats.isEnabled())) {
1919 for (const auto& [token, display] : mDisplays) {
1920 if (display->isPrimary()) {
1921 mLayerStats.logLayerStats(dumpVisibleLayersProtoInfo(display));
1922 return;
1923 }
1924 }
1925
1926 ALOGE("logLayerStats: no primary display");
1927 }
1928 }
1929
preComposition()1930 void SurfaceFlinger::preComposition()
1931 {
1932 ATRACE_CALL();
1933 ALOGV("preComposition");
1934
1935 mRefreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC);
1936
1937 bool needExtraInvalidate = false;
1938 mDrawingState.traverseInZOrder([&](Layer* layer) {
1939 if (layer->onPreComposition(mRefreshStartTime)) {
1940 needExtraInvalidate = true;
1941 }
1942 });
1943
1944 if (needExtraInvalidate) {
1945 signalLayerUpdate();
1946 }
1947 }
1948
updateCompositorTiming(const DisplayStatInfo & stats,nsecs_t compositeTime,std::shared_ptr<FenceTime> & presentFenceTime)1949 void SurfaceFlinger::updateCompositorTiming(const DisplayStatInfo& stats, nsecs_t compositeTime,
1950 std::shared_ptr<FenceTime>& presentFenceTime) {
1951 // Update queue of past composite+present times and determine the
1952 // most recently known composite to present latency.
1953 getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime});
1954 nsecs_t compositeToPresentLatency = -1;
1955 while (!getBE().mCompositePresentTimes.empty()) {
1956 SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front();
1957 // Cached values should have been updated before calling this method,
1958 // which helps avoid duplicate syscalls.
1959 nsecs_t displayTime = cpt.display->getCachedSignalTime();
1960 if (displayTime == Fence::SIGNAL_TIME_PENDING) {
1961 break;
1962 }
1963 compositeToPresentLatency = displayTime - cpt.composite;
1964 getBE().mCompositePresentTimes.pop();
1965 }
1966
1967 // Don't let mCompositePresentTimes grow unbounded, just in case.
1968 while (getBE().mCompositePresentTimes.size() > 16) {
1969 getBE().mCompositePresentTimes.pop();
1970 }
1971
1972 setCompositorTimingSnapped(stats, compositeToPresentLatency);
1973 }
1974
setCompositorTimingSnapped(const DisplayStatInfo & stats,nsecs_t compositeToPresentLatency)1975 void SurfaceFlinger::setCompositorTimingSnapped(const DisplayStatInfo& stats,
1976 nsecs_t compositeToPresentLatency) {
1977 // Integer division and modulo round toward 0 not -inf, so we need to
1978 // treat negative and positive offsets differently.
1979 nsecs_t idealLatency = (mPhaseOffsets->getCurrentSfOffset() > 0)
1980 ? (stats.vsyncPeriod - (mPhaseOffsets->getCurrentSfOffset() % stats.vsyncPeriod))
1981 : ((-mPhaseOffsets->getCurrentSfOffset()) % stats.vsyncPeriod);
1982
1983 // Just in case mPhaseOffsets->getCurrentSfOffset() == -vsyncInterval.
1984 if (idealLatency <= 0) {
1985 idealLatency = stats.vsyncPeriod;
1986 }
1987
1988 // Snap the latency to a value that removes scheduling jitter from the
1989 // composition and present times, which often have >1ms of jitter.
1990 // Reducing jitter is important if an app attempts to extrapolate
1991 // something (such as user input) to an accurate diasplay time.
1992 // Snapping also allows an app to precisely calculate mPhaseOffsets->getCurrentSfOffset()
1993 // with (presentLatency % interval).
1994 nsecs_t bias = stats.vsyncPeriod / 2;
1995 int64_t extraVsyncs = (compositeToPresentLatency - idealLatency + bias) / stats.vsyncPeriod;
1996 nsecs_t snappedCompositeToPresentLatency =
1997 (extraVsyncs > 0) ? idealLatency + (extraVsyncs * stats.vsyncPeriod) : idealLatency;
1998
1999 std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
2000 getBE().mCompositorTiming.deadline = stats.vsyncTime - idealLatency;
2001 getBE().mCompositorTiming.interval = stats.vsyncPeriod;
2002 getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency;
2003 }
2004
postComposition()2005 void SurfaceFlinger::postComposition()
2006 {
2007 ATRACE_CALL();
2008 ALOGV("postComposition");
2009
2010 // Release any buffers which were replaced this frame
2011 nsecs_t dequeueReadyTime = systemTime();
2012 for (auto& layer : mLayersWithQueuedFrames) {
2013 layer->releasePendingBuffer(dequeueReadyTime);
2014 }
2015
2016 // |mStateLock| not needed as we are on the main thread
2017 const auto displayDevice = getDefaultDisplayDeviceLocked();
2018
2019 getBE().mGlCompositionDoneTimeline.updateSignalTimes();
2020 std::shared_ptr<FenceTime> glCompositionDoneFenceTime;
2021 if (displayDevice && getHwComposer().hasClientComposition(displayDevice->getId())) {
2022 glCompositionDoneFenceTime =
2023 std::make_shared<FenceTime>(displayDevice->getCompositionDisplay()
2024 ->getRenderSurface()
2025 ->getClientTargetAcquireFence());
2026 getBE().mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime);
2027 } else {
2028 glCompositionDoneFenceTime = FenceTime::NO_FENCE;
2029 }
2030
2031 getBE().mDisplayTimeline.updateSignalTimes();
2032 mPreviousPresentFences[1] = mPreviousPresentFences[0];
2033 mPreviousPresentFences[0] = displayDevice
2034 ? getHwComposer().getPresentFence(*displayDevice->getId())
2035 : Fence::NO_FENCE;
2036 auto presentFenceTime = std::make_shared<FenceTime>(mPreviousPresentFences[0]);
2037 getBE().mDisplayTimeline.push(presentFenceTime);
2038
2039 DisplayStatInfo stats;
2040 mScheduler->getDisplayStatInfo(&stats);
2041
2042 // We use the mRefreshStartTime which might be sampled a little later than
2043 // when we started doing work for this frame, but that should be okay
2044 // since updateCompositorTiming has snapping logic.
2045 updateCompositorTiming(stats, mRefreshStartTime, presentFenceTime);
2046 CompositorTiming compositorTiming;
2047 {
2048 std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
2049 compositorTiming = getBE().mCompositorTiming;
2050 }
2051
2052 mDrawingState.traverseInZOrder([&](Layer* layer) {
2053 bool frameLatched =
2054 layer->onPostComposition(displayDevice->getId(), glCompositionDoneFenceTime,
2055 presentFenceTime, compositorTiming);
2056 if (frameLatched) {
2057 recordBufferingStats(layer->getName().string(),
2058 layer->getOccupancyHistory(false));
2059 }
2060 });
2061
2062 if (presentFenceTime->isValid()) {
2063 mScheduler->addPresentFence(presentFenceTime);
2064 }
2065
2066 if (!hasSyncFramework) {
2067 if (displayDevice && getHwComposer().isConnected(*displayDevice->getId()) &&
2068 displayDevice->isPoweredOn()) {
2069 mScheduler->enableHardwareVsync();
2070 }
2071 }
2072
2073 if (mAnimCompositionPending) {
2074 mAnimCompositionPending = false;
2075
2076 if (presentFenceTime->isValid()) {
2077 mAnimFrameTracker.setActualPresentFence(
2078 std::move(presentFenceTime));
2079 } else if (displayDevice && getHwComposer().isConnected(*displayDevice->getId())) {
2080 // The HWC doesn't support present fences, so use the refresh
2081 // timestamp instead.
2082 const nsecs_t presentTime =
2083 getHwComposer().getRefreshTimestamp(*displayDevice->getId());
2084 mAnimFrameTracker.setActualPresentTime(presentTime);
2085 }
2086 mAnimFrameTracker.advanceFrame();
2087 }
2088
2089 mTimeStats->incrementTotalFrames();
2090 if (mHadClientComposition) {
2091 mTimeStats->incrementClientCompositionFrames();
2092 }
2093
2094 mTimeStats->setPresentFenceGlobal(presentFenceTime);
2095
2096 if (displayDevice && getHwComposer().isConnected(*displayDevice->getId()) &&
2097 !displayDevice->isPoweredOn()) {
2098 return;
2099 }
2100
2101 nsecs_t currentTime = systemTime();
2102 if (mHasPoweredOff) {
2103 mHasPoweredOff = false;
2104 } else {
2105 nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime;
2106 size_t numPeriods = static_cast<size_t>(elapsedTime / stats.vsyncPeriod);
2107 if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) {
2108 getBE().mFrameBuckets[numPeriods] += elapsedTime;
2109 } else {
2110 getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime;
2111 }
2112 getBE().mTotalTime += elapsedTime;
2113 }
2114 getBE().mLastSwapTime = currentTime;
2115
2116 {
2117 std::lock_guard lock(mTexturePoolMutex);
2118 if (mTexturePool.size() < mTexturePoolSize) {
2119 const size_t refillCount = mTexturePoolSize - mTexturePool.size();
2120 const size_t offset = mTexturePool.size();
2121 mTexturePool.resize(mTexturePoolSize);
2122 getRenderEngine().genTextures(refillCount, mTexturePool.data() + offset);
2123 ATRACE_INT("TexturePoolSize", mTexturePool.size());
2124 } else if (mTexturePool.size() > mTexturePoolSize) {
2125 const size_t deleteCount = mTexturePool.size() - mTexturePoolSize;
2126 const size_t offset = mTexturePoolSize;
2127 getRenderEngine().deleteTextures(deleteCount, mTexturePool.data() + offset);
2128 mTexturePool.resize(mTexturePoolSize);
2129 ATRACE_INT("TexturePoolSize", mTexturePool.size());
2130 }
2131 }
2132
2133 mTransactionCompletedThread.addPresentFence(mPreviousPresentFences[0]);
2134
2135 // Lock the mStateLock in case SurfaceFlinger is in the middle of applying a transaction.
2136 // If we do not lock here, a callback could be sent without all of its SurfaceControls and
2137 // metrics.
2138 {
2139 Mutex::Autolock _l(mStateLock);
2140 mTransactionCompletedThread.sendCallbacks();
2141 }
2142
2143 if (mLumaSampling && mRegionSamplingThread) {
2144 mRegionSamplingThread->notifyNewContent();
2145 }
2146
2147 // Even though ATRACE_INT64 already checks if tracing is enabled, it doesn't prevent the
2148 // side-effect of getTotalSize(), so we check that again here
2149 if (ATRACE_ENABLED()) {
2150 ATRACE_INT64("Total Buffer Size", GraphicBufferAllocator::get().getTotalSize());
2151 }
2152 }
2153
computeLayerBounds()2154 void SurfaceFlinger::computeLayerBounds() {
2155 for (const auto& pair : mDisplays) {
2156 const auto& displayDevice = pair.second;
2157 const auto display = displayDevice->getCompositionDisplay();
2158 for (const auto& layer : mDrawingState.layersSortedByZ) {
2159 // only consider the layers on the given layer stack
2160 if (!display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
2161 continue;
2162 }
2163
2164 layer->computeBounds(displayDevice->getViewport().toFloatRect(), ui::Transform());
2165 }
2166 }
2167 }
2168
rebuildLayerStacks()2169 void SurfaceFlinger::rebuildLayerStacks() {
2170 ATRACE_CALL();
2171 ALOGV("rebuildLayerStacks");
2172
2173 // rebuild the visible layer list per screen
2174 if (CC_UNLIKELY(mVisibleRegionsDirty)) {
2175 ATRACE_NAME("rebuildLayerStacks VR Dirty");
2176 mVisibleRegionsDirty = false;
2177 invalidateHwcGeometry();
2178
2179 for (const auto& pair : mDisplays) {
2180 const auto& displayDevice = pair.second;
2181 auto display = displayDevice->getCompositionDisplay();
2182 const auto& displayState = display->getState();
2183 Region opaqueRegion;
2184 Region dirtyRegion;
2185 compositionengine::Output::OutputLayers layersSortedByZ;
2186 Vector<sp<Layer>> deprecated_layersSortedByZ;
2187 Vector<sp<Layer>> layersNeedingFences;
2188 const ui::Transform& tr = displayState.transform;
2189 const Rect bounds = displayState.bounds;
2190 if (displayState.isEnabled) {
2191 computeVisibleRegions(displayDevice, dirtyRegion, opaqueRegion);
2192
2193 mDrawingState.traverseInZOrder([&](Layer* layer) {
2194 auto compositionLayer = layer->getCompositionLayer();
2195 if (compositionLayer == nullptr) {
2196 return;
2197 }
2198
2199 const auto displayId = displayDevice->getId();
2200 sp<compositionengine::LayerFE> layerFE = compositionLayer->getLayerFE();
2201 LOG_ALWAYS_FATAL_IF(layerFE.get() == nullptr);
2202
2203 bool needsOutputLayer = false;
2204
2205 if (display->belongsInOutput(layer->getLayerStack(),
2206 layer->getPrimaryDisplayOnly())) {
2207 Region drawRegion(tr.transform(
2208 layer->visibleNonTransparentRegion));
2209 drawRegion.andSelf(bounds);
2210 if (!drawRegion.isEmpty()) {
2211 needsOutputLayer = true;
2212 }
2213 }
2214
2215 if (needsOutputLayer) {
2216 layersSortedByZ.emplace_back(
2217 display->getOrCreateOutputLayer(displayId, compositionLayer,
2218 layerFE));
2219 deprecated_layersSortedByZ.add(layer);
2220
2221 auto& outputLayerState = layersSortedByZ.back()->editState();
2222 outputLayerState.visibleRegion =
2223 tr.transform(layer->visibleRegion.intersect(displayState.viewport));
2224 } else if (displayId) {
2225 // For layers that are being removed from a HWC display,
2226 // and that have queued frames, add them to a a list of
2227 // released layers so we can properly set a fence.
2228 bool hasExistingOutputLayer =
2229 display->getOutputLayerForLayer(compositionLayer.get()) != nullptr;
2230 bool hasQueuedFrames = std::find(mLayersWithQueuedFrames.cbegin(),
2231 mLayersWithQueuedFrames.cend(),
2232 layer) != mLayersWithQueuedFrames.cend();
2233
2234 if (hasExistingOutputLayer && hasQueuedFrames) {
2235 layersNeedingFences.add(layer);
2236 }
2237 }
2238 });
2239 }
2240
2241 display->setOutputLayersOrderedByZ(std::move(layersSortedByZ));
2242
2243 displayDevice->setVisibleLayersSortedByZ(deprecated_layersSortedByZ);
2244 displayDevice->setLayersNeedingFences(layersNeedingFences);
2245
2246 Region undefinedRegion{bounds};
2247 undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
2248
2249 display->editState().undefinedRegion = undefinedRegion;
2250 display->editState().dirtyRegion.orSelf(dirtyRegion);
2251 }
2252 }
2253 }
2254
2255 // Returns a data space that fits all visible layers. The returned data space
2256 // can only be one of
2257 // - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
2258 // - Dataspace::DISPLAY_P3
2259 // - Dataspace::DISPLAY_BT2020
2260 // The returned HDR data space is one of
2261 // - Dataspace::UNKNOWN
2262 // - Dataspace::BT2020_HLG
2263 // - Dataspace::BT2020_PQ
getBestDataspace(const sp<DisplayDevice> & display,Dataspace * outHdrDataSpace,bool * outIsHdrClientComposition) const2264 Dataspace SurfaceFlinger::getBestDataspace(const sp<DisplayDevice>& display,
2265 Dataspace* outHdrDataSpace,
2266 bool* outIsHdrClientComposition) const {
2267 Dataspace bestDataSpace = Dataspace::V0_SRGB;
2268 *outHdrDataSpace = Dataspace::UNKNOWN;
2269
2270 for (const auto& layer : display->getVisibleLayersSortedByZ()) {
2271 switch (layer->getDataSpace()) {
2272 case Dataspace::V0_SCRGB:
2273 case Dataspace::V0_SCRGB_LINEAR:
2274 case Dataspace::BT2020:
2275 case Dataspace::BT2020_ITU:
2276 case Dataspace::BT2020_LINEAR:
2277 case Dataspace::DISPLAY_BT2020:
2278 bestDataSpace = Dataspace::DISPLAY_BT2020;
2279 break;
2280 case Dataspace::DISPLAY_P3:
2281 bestDataSpace = Dataspace::DISPLAY_P3;
2282 break;
2283 case Dataspace::BT2020_PQ:
2284 case Dataspace::BT2020_ITU_PQ:
2285 bestDataSpace = Dataspace::DISPLAY_P3;
2286 *outHdrDataSpace = Dataspace::BT2020_PQ;
2287 *outIsHdrClientComposition = layer->getForceClientComposition(display);
2288 break;
2289 case Dataspace::BT2020_HLG:
2290 case Dataspace::BT2020_ITU_HLG:
2291 bestDataSpace = Dataspace::DISPLAY_P3;
2292 // When there's mixed PQ content and HLG content, we set the HDR
2293 // data space to be BT2020_PQ and convert HLG to PQ.
2294 if (*outHdrDataSpace == Dataspace::UNKNOWN) {
2295 *outHdrDataSpace = Dataspace::BT2020_HLG;
2296 }
2297 break;
2298 default:
2299 break;
2300 }
2301 }
2302
2303 return bestDataSpace;
2304 }
2305
2306 // Pick the ColorMode / Dataspace for the display device.
pickColorMode(const sp<DisplayDevice> & display,ColorMode * outMode,Dataspace * outDataSpace,RenderIntent * outRenderIntent) const2307 void SurfaceFlinger::pickColorMode(const sp<DisplayDevice>& display, ColorMode* outMode,
2308 Dataspace* outDataSpace, RenderIntent* outRenderIntent) const {
2309 if (mDisplayColorSetting == DisplayColorSetting::UNMANAGED) {
2310 *outMode = ColorMode::NATIVE;
2311 *outDataSpace = Dataspace::UNKNOWN;
2312 *outRenderIntent = RenderIntent::COLORIMETRIC;
2313 return;
2314 }
2315
2316 Dataspace hdrDataSpace;
2317 bool isHdrClientComposition = false;
2318 Dataspace bestDataSpace = getBestDataspace(display, &hdrDataSpace, &isHdrClientComposition);
2319
2320 auto* profile = display->getCompositionDisplay()->getDisplayColorProfile();
2321
2322 switch (mForceColorMode) {
2323 case ColorMode::SRGB:
2324 bestDataSpace = Dataspace::V0_SRGB;
2325 break;
2326 case ColorMode::DISPLAY_P3:
2327 bestDataSpace = Dataspace::DISPLAY_P3;
2328 break;
2329 default:
2330 break;
2331 }
2332
2333 // respect hdrDataSpace only when there is no legacy HDR support
2334 const bool isHdr = hdrDataSpace != Dataspace::UNKNOWN &&
2335 !profile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
2336 if (isHdr) {
2337 bestDataSpace = hdrDataSpace;
2338 }
2339
2340 RenderIntent intent;
2341 switch (mDisplayColorSetting) {
2342 case DisplayColorSetting::MANAGED:
2343 case DisplayColorSetting::UNMANAGED:
2344 intent = isHdr ? RenderIntent::TONE_MAP_COLORIMETRIC : RenderIntent::COLORIMETRIC;
2345 break;
2346 case DisplayColorSetting::ENHANCED:
2347 intent = isHdr ? RenderIntent::TONE_MAP_ENHANCE : RenderIntent::ENHANCE;
2348 break;
2349 default: // vendor display color setting
2350 intent = static_cast<RenderIntent>(mDisplayColorSetting);
2351 break;
2352 }
2353
2354 profile->getBestColorMode(bestDataSpace, intent, outDataSpace, outMode, outRenderIntent);
2355 }
2356
beginFrame(const sp<DisplayDevice> & displayDevice)2357 void SurfaceFlinger::beginFrame(const sp<DisplayDevice>& displayDevice) {
2358 auto display = displayDevice->getCompositionDisplay();
2359 const auto& displayState = display->getState();
2360
2361 bool dirty = !display->getDirtyRegion(false).isEmpty();
2362 bool empty = displayDevice->getVisibleLayersSortedByZ().size() == 0;
2363 bool wasEmpty = !displayState.lastCompositionHadVisibleLayers;
2364
2365 // If nothing has changed (!dirty), don't recompose.
2366 // If something changed, but we don't currently have any visible layers,
2367 // and didn't when we last did a composition, then skip it this time.
2368 // The second rule does two things:
2369 // - When all layers are removed from a display, we'll emit one black
2370 // frame, then nothing more until we get new layers.
2371 // - When a display is created with a private layer stack, we won't
2372 // emit any black frames until a layer is added to the layer stack.
2373 bool mustRecompose = dirty && !(empty && wasEmpty);
2374
2375 const char flagPrefix[] = {'-', '+'};
2376 static_cast<void>(flagPrefix);
2377 ALOGV_IF(displayDevice->isVirtual(), "%s: %s composition for %s (%cdirty %cempty %cwasEmpty)",
2378 __FUNCTION__, mustRecompose ? "doing" : "skipping",
2379 displayDevice->getDebugName().c_str(), flagPrefix[dirty], flagPrefix[empty],
2380 flagPrefix[wasEmpty]);
2381
2382 display->getRenderSurface()->beginFrame(mustRecompose);
2383
2384 if (mustRecompose) {
2385 display->editState().lastCompositionHadVisibleLayers = !empty;
2386 }
2387 }
2388
prepareFrame(const sp<DisplayDevice> & displayDevice)2389 void SurfaceFlinger::prepareFrame(const sp<DisplayDevice>& displayDevice) {
2390 auto display = displayDevice->getCompositionDisplay();
2391 const auto& displayState = display->getState();
2392
2393 if (!displayState.isEnabled) {
2394 return;
2395 }
2396
2397 status_t result = display->getRenderSurface()->prepareFrame();
2398 ALOGE_IF(result != NO_ERROR, "prepareFrame failed for %s: %d (%s)",
2399 displayDevice->getDebugName().c_str(), result, strerror(-result));
2400 }
2401
doComposition(const sp<DisplayDevice> & displayDevice,bool repaintEverything)2402 void SurfaceFlinger::doComposition(const sp<DisplayDevice>& displayDevice, bool repaintEverything) {
2403 ATRACE_CALL();
2404 ALOGV("doComposition");
2405
2406 auto display = displayDevice->getCompositionDisplay();
2407 const auto& displayState = display->getState();
2408
2409 if (displayState.isEnabled) {
2410 // transform the dirty region into this screen's coordinate space
2411 const Region dirtyRegion = display->getDirtyRegion(repaintEverything);
2412
2413 // repaint the framebuffer (if needed)
2414 doDisplayComposition(displayDevice, dirtyRegion);
2415
2416 display->editState().dirtyRegion.clear();
2417 display->getRenderSurface()->flip();
2418 }
2419 postFramebuffer(displayDevice);
2420 }
2421
postFrame()2422 void SurfaceFlinger::postFrame()
2423 {
2424 // |mStateLock| not needed as we are on the main thread
2425 const auto display = getDefaultDisplayDeviceLocked();
2426 if (display && getHwComposer().isConnected(*display->getId())) {
2427 uint32_t flipCount = display->getPageFlipCount();
2428 if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
2429 logFrameStats();
2430 }
2431 }
2432 }
2433
postFramebuffer(const sp<DisplayDevice> & displayDevice)2434 void SurfaceFlinger::postFramebuffer(const sp<DisplayDevice>& displayDevice) {
2435 ATRACE_CALL();
2436 ALOGV("postFramebuffer");
2437
2438 auto display = displayDevice->getCompositionDisplay();
2439 const auto& displayState = display->getState();
2440 const auto displayId = display->getId();
2441
2442 if (displayState.isEnabled) {
2443 if (displayId) {
2444 getHwComposer().presentAndGetReleaseFences(*displayId);
2445 }
2446 display->getRenderSurface()->onPresentDisplayCompleted();
2447 for (auto& layer : display->getOutputLayersOrderedByZ()) {
2448 sp<Fence> releaseFence = Fence::NO_FENCE;
2449 bool usedClientComposition = true;
2450
2451 // The layer buffer from the previous frame (if any) is released
2452 // by HWC only when the release fence from this frame (if any) is
2453 // signaled. Always get the release fence from HWC first.
2454 if (layer->getState().hwc) {
2455 const auto& hwcState = *layer->getState().hwc;
2456 releaseFence =
2457 getHwComposer().getLayerReleaseFence(*displayId, hwcState.hwcLayer.get());
2458 usedClientComposition =
2459 hwcState.hwcCompositionType == Hwc2::IComposerClient::Composition::CLIENT;
2460 }
2461
2462 // If the layer was client composited in the previous frame, we
2463 // need to merge with the previous client target acquire fence.
2464 // Since we do not track that, always merge with the current
2465 // client target acquire fence when it is available, even though
2466 // this is suboptimal.
2467 if (usedClientComposition) {
2468 releaseFence =
2469 Fence::merge("LayerRelease", releaseFence,
2470 display->getRenderSurface()->getClientTargetAcquireFence());
2471 }
2472
2473 layer->getLayerFE().onLayerDisplayed(releaseFence);
2474 }
2475
2476 // We've got a list of layers needing fences, that are disjoint with
2477 // display->getVisibleLayersSortedByZ. The best we can do is to
2478 // supply them with the present fence.
2479 if (!displayDevice->getLayersNeedingFences().isEmpty()) {
2480 sp<Fence> presentFence =
2481 displayId ? getHwComposer().getPresentFence(*displayId) : Fence::NO_FENCE;
2482 for (auto& layer : displayDevice->getLayersNeedingFences()) {
2483 layer->getCompositionLayer()->getLayerFE()->onLayerDisplayed(presentFence);
2484 }
2485 }
2486
2487 if (displayId) {
2488 getHwComposer().clearReleaseFences(*displayId);
2489 }
2490 }
2491 }
2492
handleTransaction(uint32_t transactionFlags)2493 void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
2494 {
2495 ATRACE_CALL();
2496
2497 // here we keep a copy of the drawing state (that is the state that's
2498 // going to be overwritten by handleTransactionLocked()) outside of
2499 // mStateLock so that the side-effects of the State assignment
2500 // don't happen with mStateLock held (which can cause deadlocks).
2501 State drawingState(mDrawingState);
2502
2503 Mutex::Autolock _l(mStateLock);
2504 mDebugInTransaction = systemTime();
2505
2506 // Here we're guaranteed that some transaction flags are set
2507 // so we can call handleTransactionLocked() unconditionally.
2508 // We call getTransactionFlags(), which will also clear the flags,
2509 // with mStateLock held to guarantee that mCurrentState won't change
2510 // until the transaction is committed.
2511
2512 mVsyncModulator.onTransactionHandled();
2513 transactionFlags = getTransactionFlags(eTransactionMask);
2514 handleTransactionLocked(transactionFlags);
2515
2516 mDebugInTransaction = 0;
2517 invalidateHwcGeometry();
2518 // here the transaction has been committed
2519 }
2520
processDisplayHotplugEventsLocked()2521 void SurfaceFlinger::processDisplayHotplugEventsLocked() {
2522 for (const auto& event : mPendingHotplugEvents) {
2523 const std::optional<DisplayIdentificationInfo> info =
2524 getHwComposer().onHotplug(event.hwcDisplayId, event.connection);
2525
2526 if (!info) {
2527 continue;
2528 }
2529
2530 if (event.connection == HWC2::Connection::Connected) {
2531 if (!mPhysicalDisplayTokens.count(info->id)) {
2532 ALOGV("Creating display %s", to_string(info->id).c_str());
2533 mPhysicalDisplayTokens[info->id] = new BBinder();
2534 DisplayDeviceState state;
2535 state.displayId = info->id;
2536 state.isSecure = true; // All physical displays are currently considered secure.
2537 state.displayName = info->name;
2538 mCurrentState.displays.add(mPhysicalDisplayTokens[info->id], state);
2539 mInterceptor->saveDisplayCreation(state);
2540 }
2541 } else {
2542 ALOGV("Removing display %s", to_string(info->id).c_str());
2543
2544 ssize_t index = mCurrentState.displays.indexOfKey(mPhysicalDisplayTokens[info->id]);
2545 if (index >= 0) {
2546 const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
2547 mInterceptor->saveDisplayDeletion(state.sequenceId);
2548 mCurrentState.displays.removeItemsAt(index);
2549 }
2550 mPhysicalDisplayTokens.erase(info->id);
2551 }
2552
2553 processDisplayChangesLocked();
2554 }
2555
2556 mPendingHotplugEvents.clear();
2557 }
2558
dispatchDisplayHotplugEvent(PhysicalDisplayId displayId,bool connected)2559 void SurfaceFlinger::dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected) {
2560 mScheduler->hotplugReceived(mAppConnectionHandle, displayId, connected);
2561 mScheduler->hotplugReceived(mSfConnectionHandle, displayId, connected);
2562 }
2563
setupNewDisplayDeviceInternal(const wp<IBinder> & displayToken,const std::optional<DisplayId> & displayId,const DisplayDeviceState & state,const sp<compositionengine::DisplaySurface> & dispSurface,const sp<IGraphicBufferProducer> & producer)2564 sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal(
2565 const wp<IBinder>& displayToken, const std::optional<DisplayId>& displayId,
2566 const DisplayDeviceState& state, const sp<compositionengine::DisplaySurface>& dispSurface,
2567 const sp<IGraphicBufferProducer>& producer) {
2568 DisplayDeviceCreationArgs creationArgs(this, displayToken, displayId);
2569 creationArgs.sequenceId = state.sequenceId;
2570 creationArgs.isVirtual = state.isVirtual();
2571 creationArgs.isSecure = state.isSecure;
2572 creationArgs.displaySurface = dispSurface;
2573 creationArgs.hasWideColorGamut = false;
2574 creationArgs.supportedPerFrameMetadata = 0;
2575
2576 const bool isInternalDisplay = displayId && displayId == getInternalDisplayIdLocked();
2577 creationArgs.isPrimary = isInternalDisplay;
2578
2579 if (useColorManagement && displayId) {
2580 std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId);
2581 for (ColorMode colorMode : modes) {
2582 if (isWideColorMode(colorMode)) {
2583 creationArgs.hasWideColorGamut = true;
2584 }
2585
2586 std::vector<RenderIntent> renderIntents =
2587 getHwComposer().getRenderIntents(*displayId, colorMode);
2588 creationArgs.hwcColorModes.emplace(colorMode, renderIntents);
2589 }
2590 }
2591
2592 if (displayId) {
2593 getHwComposer().getHdrCapabilities(*displayId, &creationArgs.hdrCapabilities);
2594 creationArgs.supportedPerFrameMetadata =
2595 getHwComposer().getSupportedPerFrameMetadata(*displayId);
2596 }
2597
2598 auto nativeWindowSurface = getFactory().createNativeWindowSurface(producer);
2599 auto nativeWindow = nativeWindowSurface->getNativeWindow();
2600 creationArgs.nativeWindow = nativeWindow;
2601
2602 // Make sure that composition can never be stalled by a virtual display
2603 // consumer that isn't processing buffers fast enough. We have to do this
2604 // here, in case the display is composed entirely by HWC.
2605 if (state.isVirtual()) {
2606 nativeWindow->setSwapInterval(nativeWindow.get(), 0);
2607 }
2608
2609 creationArgs.displayInstallOrientation =
2610 isInternalDisplay ? primaryDisplayOrientation : DisplayState::eOrientationDefault;
2611
2612 // virtual displays are always considered enabled
2613 creationArgs.initialPowerMode = state.isVirtual() ? HWC_POWER_MODE_NORMAL : HWC_POWER_MODE_OFF;
2614
2615 sp<DisplayDevice> display = getFactory().createDisplayDevice(std::move(creationArgs));
2616
2617 if (maxFrameBufferAcquiredBuffers >= 3) {
2618 nativeWindowSurface->preallocateBuffers();
2619 }
2620
2621 ColorMode defaultColorMode = ColorMode::NATIVE;
2622 Dataspace defaultDataSpace = Dataspace::UNKNOWN;
2623 if (display->hasWideColorGamut()) {
2624 defaultColorMode = ColorMode::SRGB;
2625 defaultDataSpace = Dataspace::V0_SRGB;
2626 }
2627 display->getCompositionDisplay()->setColorMode(defaultColorMode, defaultDataSpace,
2628 RenderIntent::COLORIMETRIC);
2629 if (!state.isVirtual()) {
2630 LOG_ALWAYS_FATAL_IF(!displayId);
2631 display->setActiveConfig(getHwComposer().getActiveConfigIndex(*displayId));
2632 }
2633
2634 display->setLayerStack(state.layerStack);
2635 display->setProjection(state.orientation, state.viewport, state.frame);
2636 display->setDisplayName(state.displayName);
2637
2638 return display;
2639 }
2640
processDisplayChangesLocked()2641 void SurfaceFlinger::processDisplayChangesLocked() {
2642 // here we take advantage of Vector's copy-on-write semantics to
2643 // improve performance by skipping the transaction entirely when
2644 // know that the lists are identical
2645 const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
2646 const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
2647 if (!curr.isIdenticalTo(draw)) {
2648 mVisibleRegionsDirty = true;
2649 const size_t cc = curr.size();
2650 size_t dc = draw.size();
2651
2652 // find the displays that were removed
2653 // (ie: in drawing state but not in current state)
2654 // also handle displays that changed
2655 // (ie: displays that are in both lists)
2656 for (size_t i = 0; i < dc;) {
2657 const ssize_t j = curr.indexOfKey(draw.keyAt(i));
2658 if (j < 0) {
2659 // in drawing state but not in current state
2660 if (const auto display = getDisplayDeviceLocked(draw.keyAt(i))) {
2661 // Save display ID before disconnecting.
2662 const auto displayId = display->getId();
2663 display->disconnect();
2664
2665 if (!display->isVirtual()) {
2666 LOG_ALWAYS_FATAL_IF(!displayId);
2667 dispatchDisplayHotplugEvent(displayId->value, false);
2668 }
2669 }
2670
2671 mDisplays.erase(draw.keyAt(i));
2672 } else {
2673 // this display is in both lists. see if something changed.
2674 const DisplayDeviceState& state(curr[j]);
2675 const wp<IBinder>& displayToken = curr.keyAt(j);
2676 const sp<IBinder> state_binder = IInterface::asBinder(state.surface);
2677 const sp<IBinder> draw_binder = IInterface::asBinder(draw[i].surface);
2678 if (state_binder != draw_binder) {
2679 // changing the surface is like destroying and
2680 // recreating the DisplayDevice, so we just remove it
2681 // from the drawing state, so that it get re-added
2682 // below.
2683 if (const auto display = getDisplayDeviceLocked(displayToken)) {
2684 display->disconnect();
2685 }
2686 mDisplays.erase(displayToken);
2687 mDrawingState.displays.removeItemsAt(i);
2688 dc--;
2689 // at this point we must loop to the next item
2690 continue;
2691 }
2692
2693 if (const auto display = getDisplayDeviceLocked(displayToken)) {
2694 if (state.layerStack != draw[i].layerStack) {
2695 display->setLayerStack(state.layerStack);
2696 }
2697 if ((state.orientation != draw[i].orientation) ||
2698 (state.viewport != draw[i].viewport) || (state.frame != draw[i].frame)) {
2699 display->setProjection(state.orientation, state.viewport, state.frame);
2700 }
2701 if (state.width != draw[i].width || state.height != draw[i].height) {
2702 display->setDisplaySize(state.width, state.height);
2703 }
2704 }
2705 }
2706 ++i;
2707 }
2708
2709 // find displays that were added
2710 // (ie: in current state but not in drawing state)
2711 for (size_t i = 0; i < cc; i++) {
2712 if (draw.indexOfKey(curr.keyAt(i)) < 0) {
2713 const DisplayDeviceState& state(curr[i]);
2714
2715 sp<compositionengine::DisplaySurface> dispSurface;
2716 sp<IGraphicBufferProducer> producer;
2717 sp<IGraphicBufferProducer> bqProducer;
2718 sp<IGraphicBufferConsumer> bqConsumer;
2719 getFactory().createBufferQueue(&bqProducer, &bqConsumer, false);
2720
2721 std::optional<DisplayId> displayId;
2722 if (state.isVirtual()) {
2723 // Virtual displays without a surface are dormant:
2724 // they have external state (layer stack, projection,
2725 // etc.) but no internal state (i.e. a DisplayDevice).
2726 if (state.surface != nullptr) {
2727 // Allow VR composer to use virtual displays.
2728 if (mUseHwcVirtualDisplays || getHwComposer().isUsingVrComposer()) {
2729 int width = 0;
2730 int status = state.surface->query(NATIVE_WINDOW_WIDTH, &width);
2731 ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status);
2732 int height = 0;
2733 status = state.surface->query(NATIVE_WINDOW_HEIGHT, &height);
2734 ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status);
2735 int intFormat = 0;
2736 status = state.surface->query(NATIVE_WINDOW_FORMAT, &intFormat);
2737 ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status);
2738 auto format = static_cast<ui::PixelFormat>(intFormat);
2739
2740 displayId =
2741 getHwComposer().allocateVirtualDisplay(width, height, &format);
2742 }
2743
2744 // TODO: Plumb requested format back up to consumer
2745
2746 sp<VirtualDisplaySurface> vds =
2747 new VirtualDisplaySurface(getHwComposer(), displayId, state.surface,
2748 bqProducer, bqConsumer,
2749 state.displayName);
2750
2751 dispSurface = vds;
2752 producer = vds;
2753 }
2754 } else {
2755 ALOGE_IF(state.surface != nullptr,
2756 "adding a supported display, but rendering "
2757 "surface is provided (%p), ignoring it",
2758 state.surface.get());
2759
2760 displayId = state.displayId;
2761 LOG_ALWAYS_FATAL_IF(!displayId);
2762 dispSurface = new FramebufferSurface(getHwComposer(), *displayId, bqConsumer);
2763 producer = bqProducer;
2764 }
2765
2766 const wp<IBinder>& displayToken = curr.keyAt(i);
2767 if (dispSurface != nullptr) {
2768 mDisplays.emplace(displayToken,
2769 setupNewDisplayDeviceInternal(displayToken, displayId, state,
2770 dispSurface, producer));
2771 if (!state.isVirtual()) {
2772 LOG_ALWAYS_FATAL_IF(!displayId);
2773 dispatchDisplayHotplugEvent(displayId->value, true);
2774 }
2775 }
2776 }
2777 }
2778 }
2779
2780 mDrawingState.displays = mCurrentState.displays;
2781 }
2782
handleTransactionLocked(uint32_t transactionFlags)2783 void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
2784 {
2785 // Notify all layers of available frames
2786 mCurrentState.traverseInZOrder([](Layer* layer) {
2787 layer->notifyAvailableFrames();
2788 });
2789
2790 /*
2791 * Traversal of the children
2792 * (perform the transaction for each of them if needed)
2793 */
2794
2795 if ((transactionFlags & eTraversalNeeded) || mTraversalNeededMainThread) {
2796 mCurrentState.traverseInZOrder([&](Layer* layer) {
2797 uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
2798 if (!trFlags) return;
2799
2800 const uint32_t flags = layer->doTransaction(0);
2801 if (flags & Layer::eVisibleRegion)
2802 mVisibleRegionsDirty = true;
2803
2804 if (flags & Layer::eInputInfoChanged) {
2805 mInputInfoChanged = true;
2806 }
2807 });
2808 mTraversalNeededMainThread = false;
2809 }
2810
2811 /*
2812 * Perform display own transactions if needed
2813 */
2814
2815 if (transactionFlags & eDisplayTransactionNeeded) {
2816 processDisplayChangesLocked();
2817 processDisplayHotplugEventsLocked();
2818 }
2819
2820 if (transactionFlags & (eDisplayLayerStackChanged|eDisplayTransactionNeeded)) {
2821 // The transform hint might have changed for some layers
2822 // (either because a display has changed, or because a layer
2823 // as changed).
2824 //
2825 // Walk through all the layers in currentLayers,
2826 // and update their transform hint.
2827 //
2828 // If a layer is visible only on a single display, then that
2829 // display is used to calculate the hint, otherwise we use the
2830 // default display.
2831 //
2832 // NOTE: we do this here, rather than in rebuildLayerStacks() so that
2833 // the hint is set before we acquire a buffer from the surface texture.
2834 //
2835 // NOTE: layer transactions have taken place already, so we use their
2836 // drawing state. However, SurfaceFlinger's own transaction has not
2837 // happened yet, so we must use the current state layer list
2838 // (soon to become the drawing state list).
2839 //
2840 sp<const DisplayDevice> hintDisplay;
2841 uint32_t currentlayerStack = 0;
2842 bool first = true;
2843 mCurrentState.traverseInZOrder([&](Layer* layer) {
2844 // NOTE: we rely on the fact that layers are sorted by
2845 // layerStack first (so we don't have to traverse the list
2846 // of displays for every layer).
2847 uint32_t layerStack = layer->getLayerStack();
2848 if (first || currentlayerStack != layerStack) {
2849 currentlayerStack = layerStack;
2850 // figure out if this layerstack is mirrored
2851 // (more than one display) if so, pick the default display,
2852 // if not, pick the only display it's on.
2853 hintDisplay = nullptr;
2854 for (const auto& [token, display] : mDisplays) {
2855 if (display->getCompositionDisplay()
2856 ->belongsInOutput(layer->getLayerStack(),
2857 layer->getPrimaryDisplayOnly())) {
2858 if (hintDisplay) {
2859 hintDisplay = nullptr;
2860 break;
2861 } else {
2862 hintDisplay = display;
2863 }
2864 }
2865 }
2866 }
2867
2868 if (!hintDisplay) {
2869 // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
2870 // redraw after transform hint changes. See bug 8508397.
2871
2872 // could be null when this layer is using a layerStack
2873 // that is not visible on any display. Also can occur at
2874 // screen off/on times.
2875 hintDisplay = getDefaultDisplayDeviceLocked();
2876 }
2877
2878 // could be null if there is no display available at all to get
2879 // the transform hint from.
2880 if (hintDisplay) {
2881 layer->updateTransformHint(hintDisplay);
2882 }
2883
2884 first = false;
2885 });
2886 }
2887
2888
2889 /*
2890 * Perform our own transaction if needed
2891 */
2892
2893 if (mLayersAdded) {
2894 mLayersAdded = false;
2895 // Layers have been added.
2896 mVisibleRegionsDirty = true;
2897 }
2898
2899 // some layers might have been removed, so
2900 // we need to update the regions they're exposing.
2901 if (mLayersRemoved) {
2902 mLayersRemoved = false;
2903 mVisibleRegionsDirty = true;
2904 mDrawingState.traverseInZOrder([&](Layer* layer) {
2905 if (mLayersPendingRemoval.indexOf(layer) >= 0) {
2906 // this layer is not visible anymore
2907 Region visibleReg;
2908 visibleReg.set(layer->getScreenBounds());
2909 invalidateLayerStack(layer, visibleReg);
2910 }
2911 });
2912 }
2913
2914 commitInputWindowCommands();
2915 commitTransaction();
2916 }
2917
updateInputFlinger()2918 void SurfaceFlinger::updateInputFlinger() {
2919 ATRACE_CALL();
2920 if (!mInputFlinger) {
2921 return;
2922 }
2923
2924 if (mVisibleRegionsDirty || mInputInfoChanged) {
2925 mInputInfoChanged = false;
2926 updateInputWindowInfo();
2927 } else if (mInputWindowCommands.syncInputWindows) {
2928 // If the caller requested to sync input windows, but there are no
2929 // changes to input windows, notify immediately.
2930 setInputWindowsFinished();
2931 }
2932
2933 executeInputWindowCommands();
2934 }
2935
updateInputWindowInfo()2936 void SurfaceFlinger::updateInputWindowInfo() {
2937 std::vector<InputWindowInfo> inputHandles;
2938
2939 mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
2940 if (layer->hasInput()) {
2941 // When calculating the screen bounds we ignore the transparent region since it may
2942 // result in an unwanted offset.
2943 inputHandles.push_back(layer->fillInputInfo());
2944 }
2945 });
2946
2947 mInputFlinger->setInputWindows(inputHandles,
2948 mInputWindowCommands.syncInputWindows ? mSetInputWindowsListener
2949 : nullptr);
2950 }
2951
commitInputWindowCommands()2952 void SurfaceFlinger::commitInputWindowCommands() {
2953 mInputWindowCommands = mPendingInputWindowCommands;
2954 mPendingInputWindowCommands.clear();
2955 }
2956
executeInputWindowCommands()2957 void SurfaceFlinger::executeInputWindowCommands() {
2958 for (const auto& transferTouchFocusCommand : mInputWindowCommands.transferTouchFocusCommands) {
2959 if (transferTouchFocusCommand.fromToken != nullptr &&
2960 transferTouchFocusCommand.toToken != nullptr &&
2961 transferTouchFocusCommand.fromToken != transferTouchFocusCommand.toToken) {
2962 mInputFlinger->transferTouchFocus(transferTouchFocusCommand.fromToken,
2963 transferTouchFocusCommand.toToken);
2964 }
2965 }
2966
2967 mInputWindowCommands.clear();
2968 }
2969
updateCursorAsync()2970 void SurfaceFlinger::updateCursorAsync()
2971 {
2972 for (const auto& [token, display] : mDisplays) {
2973 if (!display->getId()) {
2974 continue;
2975 }
2976
2977 for (auto& layer : display->getVisibleLayersSortedByZ()) {
2978 layer->updateCursorPosition(display);
2979 }
2980 }
2981 }
2982
latchAndReleaseBuffer(const sp<Layer> & layer)2983 void SurfaceFlinger::latchAndReleaseBuffer(const sp<Layer>& layer) {
2984 if (layer->hasReadyFrame()) {
2985 bool ignored = false;
2986 layer->latchBuffer(ignored, systemTime());
2987 }
2988 layer->releasePendingBuffer(systemTime());
2989 }
2990
commitTransaction()2991 void SurfaceFlinger::commitTransaction()
2992 {
2993 if (!mLayersPendingRemoval.isEmpty()) {
2994 // Notify removed layers now that they can't be drawn from
2995 for (const auto& l : mLayersPendingRemoval) {
2996 recordBufferingStats(l->getName().string(),
2997 l->getOccupancyHistory(true));
2998
2999 // Ensure any buffers set to display on any children are released.
3000 if (l->isRemovedFromCurrentState()) {
3001 latchAndReleaseBuffer(l);
3002 }
3003
3004 // If the layer has been removed and has no parent, then it will not be reachable
3005 // when traversing layers on screen. Add the layer to the offscreenLayers set to
3006 // ensure we can copy its current to drawing state.
3007 if (!l->getParent()) {
3008 mOffscreenLayers.emplace(l.get());
3009 }
3010 }
3011 mLayersPendingRemoval.clear();
3012 }
3013
3014 // If this transaction is part of a window animation then the next frame
3015 // we composite should be considered an animation as well.
3016 mAnimCompositionPending = mAnimTransactionPending;
3017
3018 withTracingLock([&]() {
3019 mDrawingState = mCurrentState;
3020 // clear the "changed" flags in current state
3021 mCurrentState.colorMatrixChanged = false;
3022
3023 mDrawingState.traverseInZOrder([&](Layer* layer) {
3024 layer->commitChildList();
3025
3026 // If the layer can be reached when traversing mDrawingState, then the layer is no
3027 // longer offscreen. Remove the layer from the offscreenLayer set.
3028 if (mOffscreenLayers.count(layer)) {
3029 mOffscreenLayers.erase(layer);
3030 }
3031 });
3032
3033 commitOffscreenLayers();
3034 });
3035
3036 mTransactionPending = false;
3037 mAnimTransactionPending = false;
3038 mTransactionCV.broadcast();
3039 }
3040
withTracingLock(std::function<void ()> lockedOperation)3041 void SurfaceFlinger::withTracingLock(std::function<void()> lockedOperation) {
3042 if (mTracingEnabledChanged) {
3043 mTracingEnabled = mTracing.isEnabled();
3044 mTracingEnabledChanged = false;
3045 }
3046
3047 // Synchronize with Tracing thread
3048 std::unique_lock<std::mutex> lock;
3049 if (mTracingEnabled) {
3050 lock = std::unique_lock<std::mutex>(mDrawingStateLock);
3051 }
3052
3053 lockedOperation();
3054
3055 // Synchronize with Tracing thread
3056 if (mTracingEnabled) {
3057 lock.unlock();
3058 }
3059 }
3060
commitOffscreenLayers()3061 void SurfaceFlinger::commitOffscreenLayers() {
3062 for (Layer* offscreenLayer : mOffscreenLayers) {
3063 offscreenLayer->traverseInZOrder(LayerVector::StateSet::Drawing, [](Layer* layer) {
3064 uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
3065 if (!trFlags) return;
3066
3067 layer->doTransaction(0);
3068 layer->commitChildList();
3069 });
3070 }
3071 }
3072
computeVisibleRegions(const sp<const DisplayDevice> & displayDevice,Region & outDirtyRegion,Region & outOpaqueRegion)3073 void SurfaceFlinger::computeVisibleRegions(const sp<const DisplayDevice>& displayDevice,
3074 Region& outDirtyRegion, Region& outOpaqueRegion) {
3075 ATRACE_CALL();
3076 ALOGV("computeVisibleRegions");
3077
3078 auto display = displayDevice->getCompositionDisplay();
3079
3080 Region aboveOpaqueLayers;
3081 Region aboveCoveredLayers;
3082 Region dirty;
3083
3084 outDirtyRegion.clear();
3085
3086 mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
3087 // start with the whole surface at its current location
3088 const Layer::State& s(layer->getDrawingState());
3089
3090 // only consider the layers on the given layer stack
3091 if (!display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
3092 return;
3093 }
3094
3095 /*
3096 * opaqueRegion: area of a surface that is fully opaque.
3097 */
3098 Region opaqueRegion;
3099
3100 /*
3101 * visibleRegion: area of a surface that is visible on screen
3102 * and not fully transparent. This is essentially the layer's
3103 * footprint minus the opaque regions above it.
3104 * Areas covered by a translucent surface are considered visible.
3105 */
3106 Region visibleRegion;
3107
3108 /*
3109 * coveredRegion: area of a surface that is covered by all
3110 * visible regions above it (which includes the translucent areas).
3111 */
3112 Region coveredRegion;
3113
3114 /*
3115 * transparentRegion: area of a surface that is hinted to be completely
3116 * transparent. This is only used to tell when the layer has no visible
3117 * non-transparent regions and can be removed from the layer list. It
3118 * does not affect the visibleRegion of this layer or any layers
3119 * beneath it. The hint may not be correct if apps don't respect the
3120 * SurfaceView restrictions (which, sadly, some don't).
3121 */
3122 Region transparentRegion;
3123
3124
3125 // handle hidden surfaces by setting the visible region to empty
3126 if (CC_LIKELY(layer->isVisible())) {
3127 const bool translucent = !layer->isOpaque(s);
3128 Rect bounds(layer->getScreenBounds());
3129
3130 visibleRegion.set(bounds);
3131 ui::Transform tr = layer->getTransform();
3132 if (!visibleRegion.isEmpty()) {
3133 // Remove the transparent area from the visible region
3134 if (translucent) {
3135 if (tr.preserveRects()) {
3136 // transform the transparent region
3137 transparentRegion = tr.transform(layer->getActiveTransparentRegion(s));
3138 } else {
3139 // transformation too complex, can't do the
3140 // transparent region optimization.
3141 transparentRegion.clear();
3142 }
3143 }
3144
3145 // compute the opaque region
3146 const int32_t layerOrientation = tr.getOrientation();
3147 if (layer->getAlpha() == 1.0f && !translucent &&
3148 layer->getRoundedCornerState().radius == 0.0f &&
3149 ((layerOrientation & ui::Transform::ROT_INVALID) == false)) {
3150 // the opaque region is the layer's footprint
3151 opaqueRegion = visibleRegion;
3152 }
3153 }
3154 }
3155
3156 if (visibleRegion.isEmpty()) {
3157 layer->clearVisibilityRegions();
3158 return;
3159 }
3160
3161 // Clip the covered region to the visible region
3162 coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
3163
3164 // Update aboveCoveredLayers for next (lower) layer
3165 aboveCoveredLayers.orSelf(visibleRegion);
3166
3167 // subtract the opaque region covered by the layers above us
3168 visibleRegion.subtractSelf(aboveOpaqueLayers);
3169
3170 // compute this layer's dirty region
3171 if (layer->contentDirty) {
3172 // we need to invalidate the whole region
3173 dirty = visibleRegion;
3174 // as well, as the old visible region
3175 dirty.orSelf(layer->visibleRegion);
3176 layer->contentDirty = false;
3177 } else {
3178 /* compute the exposed region:
3179 * the exposed region consists of two components:
3180 * 1) what's VISIBLE now and was COVERED before
3181 * 2) what's EXPOSED now less what was EXPOSED before
3182 *
3183 * note that (1) is conservative, we start with the whole
3184 * visible region but only keep what used to be covered by
3185 * something -- which mean it may have been exposed.
3186 *
3187 * (2) handles areas that were not covered by anything but got
3188 * exposed because of a resize.
3189 */
3190 const Region newExposed = visibleRegion - coveredRegion;
3191 const Region oldVisibleRegion = layer->visibleRegion;
3192 const Region oldCoveredRegion = layer->coveredRegion;
3193 const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
3194 dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
3195 }
3196 dirty.subtractSelf(aboveOpaqueLayers);
3197
3198 // accumulate to the screen dirty region
3199 outDirtyRegion.orSelf(dirty);
3200
3201 // Update aboveOpaqueLayers for next (lower) layer
3202 aboveOpaqueLayers.orSelf(opaqueRegion);
3203
3204 // Store the visible region in screen space
3205 layer->setVisibleRegion(visibleRegion);
3206 layer->setCoveredRegion(coveredRegion);
3207 layer->setVisibleNonTransparentRegion(
3208 visibleRegion.subtract(transparentRegion));
3209 });
3210
3211 outOpaqueRegion = aboveOpaqueLayers;
3212 }
3213
invalidateLayerStack(const sp<const Layer> & layer,const Region & dirty)3214 void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) {
3215 for (const auto& [token, displayDevice] : mDisplays) {
3216 auto display = displayDevice->getCompositionDisplay();
3217 if (display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
3218 display->editState().dirtyRegion.orSelf(dirty);
3219 }
3220 }
3221 }
3222
handlePageFlip()3223 bool SurfaceFlinger::handlePageFlip()
3224 {
3225 ATRACE_CALL();
3226 ALOGV("handlePageFlip");
3227
3228 nsecs_t latchTime = systemTime();
3229
3230 bool visibleRegions = false;
3231 bool frameQueued = false;
3232 bool newDataLatched = false;
3233
3234 // Store the set of layers that need updates. This set must not change as
3235 // buffers are being latched, as this could result in a deadlock.
3236 // Example: Two producers share the same command stream and:
3237 // 1.) Layer 0 is latched
3238 // 2.) Layer 0 gets a new frame
3239 // 2.) Layer 1 gets a new frame
3240 // 3.) Layer 1 is latched.
3241 // Display is now waiting on Layer 1's frame, which is behind layer 0's
3242 // second frame. But layer 0's second frame could be waiting on display.
3243 mDrawingState.traverseInZOrder([&](Layer* layer) {
3244 if (layer->hasReadyFrame()) {
3245 frameQueued = true;
3246 nsecs_t expectedPresentTime;
3247 expectedPresentTime = mScheduler->expectedPresentTime();
3248 if (layer->shouldPresentNow(expectedPresentTime)) {
3249 mLayersWithQueuedFrames.push_back(layer);
3250 } else {
3251 ATRACE_NAME("!layer->shouldPresentNow()");
3252 layer->useEmptyDamage();
3253 }
3254 } else {
3255 layer->useEmptyDamage();
3256 }
3257 });
3258
3259 if (!mLayersWithQueuedFrames.empty()) {
3260 // mStateLock is needed for latchBuffer as LayerRejecter::reject()
3261 // writes to Layer current state. See also b/119481871
3262 Mutex::Autolock lock(mStateLock);
3263
3264 for (auto& layer : mLayersWithQueuedFrames) {
3265 if (layer->latchBuffer(visibleRegions, latchTime)) {
3266 mLayersPendingRefresh.push_back(layer);
3267 }
3268 layer->useSurfaceDamage();
3269 if (layer->isBufferLatched()) {
3270 newDataLatched = true;
3271 }
3272 }
3273 }
3274
3275 mVisibleRegionsDirty |= visibleRegions;
3276
3277 // If we will need to wake up at some time in the future to deal with a
3278 // queued frame that shouldn't be displayed during this vsync period, wake
3279 // up during the next vsync period to check again.
3280 if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
3281 signalLayerUpdate();
3282 }
3283
3284 // enter boot animation on first buffer latch
3285 if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) {
3286 ALOGI("Enter boot animation");
3287 mBootStage = BootStage::BOOTANIMATION;
3288 }
3289
3290 // Only continue with the refresh if there is actually new work to do
3291 return !mLayersWithQueuedFrames.empty() && newDataLatched;
3292 }
3293
invalidateHwcGeometry()3294 void SurfaceFlinger::invalidateHwcGeometry()
3295 {
3296 mGeometryInvalid = true;
3297 }
3298
doDisplayComposition(const sp<DisplayDevice> & displayDevice,const Region & inDirtyRegion)3299 void SurfaceFlinger::doDisplayComposition(const sp<DisplayDevice>& displayDevice,
3300 const Region& inDirtyRegion) {
3301 auto display = displayDevice->getCompositionDisplay();
3302 // We only need to actually compose the display if:
3303 // 1) It is being handled by hardware composer, which may need this to
3304 // keep its virtual display state machine in sync, or
3305 // 2) There is work to be done (the dirty region isn't empty)
3306 if (!displayDevice->getId() && inDirtyRegion.isEmpty()) {
3307 ALOGV("Skipping display composition");
3308 return;
3309 }
3310
3311 ALOGV("doDisplayComposition");
3312 base::unique_fd readyFence;
3313 if (!doComposeSurfaces(displayDevice, Region::INVALID_REGION, &readyFence)) return;
3314
3315 // swap buffers (presentation)
3316 display->getRenderSurface()->queueBuffer(std::move(readyFence));
3317 }
3318
doComposeSurfaces(const sp<DisplayDevice> & displayDevice,const Region & debugRegion,base::unique_fd * readyFence)3319 bool SurfaceFlinger::doComposeSurfaces(const sp<DisplayDevice>& displayDevice,
3320 const Region& debugRegion, base::unique_fd* readyFence) {
3321 ATRACE_CALL();
3322 ALOGV("doComposeSurfaces");
3323
3324 auto display = displayDevice->getCompositionDisplay();
3325 const auto& displayState = display->getState();
3326 const auto displayId = display->getId();
3327 auto& renderEngine = getRenderEngine();
3328 const bool supportProtectedContent = renderEngine.supportsProtectedContent();
3329
3330 const Region bounds(displayState.bounds);
3331 const DisplayRenderArea renderArea(displayDevice);
3332 const bool hasClientComposition = getHwComposer().hasClientComposition(displayId);
3333 ATRACE_INT("hasClientComposition", hasClientComposition);
3334
3335 bool applyColorMatrix = false;
3336
3337 renderengine::DisplaySettings clientCompositionDisplay;
3338 std::vector<renderengine::LayerSettings> clientCompositionLayers;
3339 sp<GraphicBuffer> buf;
3340 base::unique_fd fd;
3341
3342 if (hasClientComposition) {
3343 ALOGV("hasClientComposition");
3344
3345 if (displayDevice->isPrimary() && supportProtectedContent) {
3346 bool needsProtected = false;
3347 for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
3348 // If the layer is a protected layer, mark protected context is needed.
3349 if (layer->isProtected()) {
3350 needsProtected = true;
3351 break;
3352 }
3353 }
3354 if (needsProtected != renderEngine.isProtected()) {
3355 renderEngine.useProtectedContext(needsProtected);
3356 }
3357 if (needsProtected != display->getRenderSurface()->isProtected() &&
3358 needsProtected == renderEngine.isProtected()) {
3359 display->getRenderSurface()->setProtected(needsProtected);
3360 }
3361 }
3362
3363 buf = display->getRenderSurface()->dequeueBuffer(&fd);
3364
3365 if (buf == nullptr) {
3366 ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
3367 "client composition for this frame",
3368 displayDevice->getDisplayName().c_str());
3369 return false;
3370 }
3371
3372 clientCompositionDisplay.physicalDisplay = displayState.scissor;
3373 clientCompositionDisplay.clip = displayState.scissor;
3374 const ui::Transform& displayTransform = displayState.transform;
3375 clientCompositionDisplay.globalTransform = displayTransform.asMatrix4();
3376 clientCompositionDisplay.orientation = displayState.orientation;
3377
3378 const auto* profile = display->getDisplayColorProfile();
3379 Dataspace outputDataspace = Dataspace::UNKNOWN;
3380 if (profile->hasWideColorGamut()) {
3381 outputDataspace = displayState.dataspace;
3382 }
3383 clientCompositionDisplay.outputDataspace = outputDataspace;
3384 clientCompositionDisplay.maxLuminance =
3385 profile->getHdrCapabilities().getDesiredMaxLuminance();
3386
3387 const bool hasDeviceComposition = getHwComposer().hasDeviceComposition(displayId);
3388 const bool skipClientColorTransform =
3389 getHwComposer()
3390 .hasDisplayCapability(displayId,
3391 HWC2::DisplayCapability::SkipClientColorTransform);
3392
3393 // Compute the global color transform matrix.
3394 applyColorMatrix = !hasDeviceComposition && !skipClientColorTransform;
3395 if (applyColorMatrix) {
3396 clientCompositionDisplay.colorTransform = displayState.colorTransformMat;
3397 }
3398 }
3399
3400 /*
3401 * and then, render the layers targeted at the framebuffer
3402 */
3403
3404 ALOGV("Rendering client layers");
3405 bool firstLayer = true;
3406 Region clearRegion = Region::INVALID_REGION;
3407 for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
3408 const Region viewportRegion(displayState.viewport);
3409 const Region clip(viewportRegion.intersect(layer->visibleRegion));
3410 ALOGV("Layer: %s", layer->getName().string());
3411 ALOGV(" Composition type: %s", toString(layer->getCompositionType(displayDevice)).c_str());
3412 if (!clip.isEmpty()) {
3413 switch (layer->getCompositionType(displayDevice)) {
3414 case Hwc2::IComposerClient::Composition::CURSOR:
3415 case Hwc2::IComposerClient::Composition::DEVICE:
3416 case Hwc2::IComposerClient::Composition::SIDEBAND:
3417 case Hwc2::IComposerClient::Composition::SOLID_COLOR: {
3418 LOG_ALWAYS_FATAL_IF(!displayId);
3419 const Layer::State& state(layer->getDrawingState());
3420 if (layer->getClearClientTarget(displayDevice) && !firstLayer &&
3421 layer->isOpaque(state) && (layer->getAlpha() == 1.0f) &&
3422 layer->getRoundedCornerState().radius == 0.0f && hasClientComposition) {
3423 // never clear the very first layer since we're
3424 // guaranteed the FB is already cleared
3425 renderengine::LayerSettings layerSettings;
3426 Region dummyRegion;
3427 bool prepared =
3428 layer->prepareClientLayer(renderArea, clip, dummyRegion,
3429 supportProtectedContent, layerSettings);
3430
3431 if (prepared) {
3432 layerSettings.source.buffer.buffer = nullptr;
3433 layerSettings.source.solidColor = half3(0.0, 0.0, 0.0);
3434 layerSettings.alpha = half(0.0);
3435 layerSettings.disableBlending = true;
3436 clientCompositionLayers.push_back(layerSettings);
3437 }
3438 }
3439 break;
3440 }
3441 case Hwc2::IComposerClient::Composition::CLIENT: {
3442 renderengine::LayerSettings layerSettings;
3443 bool prepared =
3444 layer->prepareClientLayer(renderArea, clip, clearRegion,
3445 supportProtectedContent, layerSettings);
3446 if (prepared) {
3447 clientCompositionLayers.push_back(layerSettings);
3448 }
3449 break;
3450 }
3451 default:
3452 break;
3453 }
3454 } else {
3455 ALOGV(" Skipping for empty clip");
3456 }
3457 firstLayer = false;
3458 }
3459
3460 // Perform some cleanup steps if we used client composition.
3461 if (hasClientComposition) {
3462 clientCompositionDisplay.clearRegion = clearRegion;
3463
3464 // We boost GPU frequency here because there will be color spaces conversion
3465 // and it's expensive. We boost the GPU frequency so that GPU composition can
3466 // finish in time. We must reset GPU frequency afterwards, because high frequency
3467 // consumes extra battery.
3468 const bool expensiveRenderingExpected =
3469 clientCompositionDisplay.outputDataspace == Dataspace::DISPLAY_P3;
3470 if (expensiveRenderingExpected && displayId) {
3471 mPowerAdvisor.setExpensiveRenderingExpected(*displayId, true);
3472 }
3473 if (!debugRegion.isEmpty()) {
3474 Region::const_iterator it = debugRegion.begin();
3475 Region::const_iterator end = debugRegion.end();
3476 while (it != end) {
3477 const Rect& rect = *it++;
3478 renderengine::LayerSettings layerSettings;
3479 layerSettings.source.buffer.buffer = nullptr;
3480 layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
3481 layerSettings.geometry.boundaries = rect.toFloatRect();
3482 layerSettings.alpha = half(1.0);
3483 clientCompositionLayers.push_back(layerSettings);
3484 }
3485 }
3486 renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayers,
3487 buf->getNativeBuffer(), /*useFramebufferCache=*/true, std::move(fd),
3488 readyFence);
3489 } else if (displayId) {
3490 mPowerAdvisor.setExpensiveRenderingExpected(*displayId, false);
3491 }
3492 return true;
3493 }
3494
drawWormhole(const Region & region) const3495 void SurfaceFlinger::drawWormhole(const Region& region) const {
3496 auto& engine(getRenderEngine());
3497 engine.fillRegionWithColor(region, 0, 0, 0, 0);
3498 }
3499
addClientLayer(const sp<Client> & client,const sp<IBinder> & handle,const sp<IGraphicBufferProducer> & gbc,const sp<Layer> & lbc,const sp<IBinder> & parentHandle,const sp<Layer> & parentLayer,bool addToCurrentState)3500 status_t SurfaceFlinger::addClientLayer(const sp<Client>& client, const sp<IBinder>& handle,
3501 const sp<IGraphicBufferProducer>& gbc, const sp<Layer>& lbc,
3502 const sp<IBinder>& parentHandle,
3503 const sp<Layer>& parentLayer, bool addToCurrentState) {
3504 // add this layer to the current state list
3505 {
3506 Mutex::Autolock _l(mStateLock);
3507 sp<Layer> parent;
3508 if (parentHandle != nullptr) {
3509 parent = fromHandle(parentHandle);
3510 if (parent == nullptr) {
3511 return NAME_NOT_FOUND;
3512 }
3513 } else {
3514 parent = parentLayer;
3515 }
3516
3517 if (mNumLayers >= MAX_LAYERS) {
3518 ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers,
3519 MAX_LAYERS);
3520 return NO_MEMORY;
3521 }
3522
3523 mLayersByLocalBinderToken.emplace(handle->localBinder(), lbc);
3524
3525 if (parent == nullptr && addToCurrentState) {
3526 mCurrentState.layersSortedByZ.add(lbc);
3527 } else if (parent == nullptr) {
3528 lbc->onRemovedFromCurrentState();
3529 } else if (parent->isRemovedFromCurrentState()) {
3530 parent->addChild(lbc);
3531 lbc->onRemovedFromCurrentState();
3532 } else {
3533 parent->addChild(lbc);
3534 }
3535
3536 if (gbc != nullptr) {
3537 mGraphicBufferProducerList.insert(IInterface::asBinder(gbc).get());
3538 LOG_ALWAYS_FATAL_IF(mGraphicBufferProducerList.size() >
3539 mMaxGraphicBufferProducerListSize,
3540 "Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers",
3541 mGraphicBufferProducerList.size(),
3542 mMaxGraphicBufferProducerListSize, mNumLayers);
3543 }
3544 mLayersAdded = true;
3545 }
3546
3547 // attach this layer to the client
3548 client->attachLayer(handle, lbc);
3549
3550 return NO_ERROR;
3551 }
3552
peekTransactionFlags()3553 uint32_t SurfaceFlinger::peekTransactionFlags() {
3554 return mTransactionFlags;
3555 }
3556
getTransactionFlags(uint32_t flags)3557 uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
3558 return mTransactionFlags.fetch_and(~flags) & flags;
3559 }
3560
setTransactionFlags(uint32_t flags)3561 uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
3562 return setTransactionFlags(flags, Scheduler::TransactionStart::NORMAL);
3563 }
3564
setTransactionFlags(uint32_t flags,Scheduler::TransactionStart transactionStart)3565 uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags,
3566 Scheduler::TransactionStart transactionStart) {
3567 uint32_t old = mTransactionFlags.fetch_or(flags);
3568 mVsyncModulator.setTransactionStart(transactionStart);
3569 if ((old & flags)==0) { // wake the server up
3570 signalTransaction();
3571 }
3572 return old;
3573 }
3574
flushTransactionQueues()3575 bool SurfaceFlinger::flushTransactionQueues() {
3576 // to prevent onHandleDestroyed from being called while the lock is held,
3577 // we must keep a copy of the transactions (specifically the composer
3578 // states) around outside the scope of the lock
3579 std::vector<const TransactionState> transactions;
3580 bool flushedATransaction = false;
3581 {
3582 Mutex::Autolock _l(mStateLock);
3583
3584 auto it = mTransactionQueues.begin();
3585 while (it != mTransactionQueues.end()) {
3586 auto& [applyToken, transactionQueue] = *it;
3587
3588 while (!transactionQueue.empty()) {
3589 const auto& transaction = transactionQueue.front();
3590 if (!transactionIsReadyToBeApplied(transaction.desiredPresentTime,
3591 transaction.states)) {
3592 setTransactionFlags(eTransactionFlushNeeded);
3593 break;
3594 }
3595 transactions.push_back(transaction);
3596 applyTransactionState(transaction.states, transaction.displays, transaction.flags,
3597 mPendingInputWindowCommands, transaction.desiredPresentTime,
3598 transaction.buffer, transaction.callback,
3599 transaction.postTime, transaction.privileged,
3600 /*isMainThread*/ true);
3601 transactionQueue.pop();
3602 flushedATransaction = true;
3603 }
3604
3605 if (transactionQueue.empty()) {
3606 it = mTransactionQueues.erase(it);
3607 mTransactionCV.broadcast();
3608 } else {
3609 it = std::next(it, 1);
3610 }
3611 }
3612 }
3613 return flushedATransaction;
3614 }
3615
transactionFlushNeeded()3616 bool SurfaceFlinger::transactionFlushNeeded() {
3617 return !mTransactionQueues.empty();
3618 }
3619
containsAnyInvalidClientState(const Vector<ComposerState> & states)3620 bool SurfaceFlinger::containsAnyInvalidClientState(const Vector<ComposerState>& states) {
3621 for (const ComposerState& state : states) {
3622 // Here we need to check that the interface we're given is indeed
3623 // one of our own. A malicious client could give us a nullptr
3624 // IInterface, or one of its own or even one of our own but a
3625 // different type. All these situations would cause us to crash.
3626 if (state.client == nullptr) {
3627 return true;
3628 }
3629
3630 sp<IBinder> binder = IInterface::asBinder(state.client);
3631 if (binder == nullptr) {
3632 return true;
3633 }
3634
3635 if (binder->queryLocalInterface(ISurfaceComposerClient::descriptor) == nullptr) {
3636 return true;
3637 }
3638 }
3639 return false;
3640 }
3641
transactionIsReadyToBeApplied(int64_t desiredPresentTime,const Vector<ComposerState> & states)3642 bool SurfaceFlinger::transactionIsReadyToBeApplied(int64_t desiredPresentTime,
3643 const Vector<ComposerState>& states) {
3644 nsecs_t expectedPresentTime = mScheduler->expectedPresentTime();
3645 // Do not present if the desiredPresentTime has not passed unless it is more than one second
3646 // in the future. We ignore timestamps more than 1 second in the future for stability reasons.
3647 if (desiredPresentTime >= 0 && desiredPresentTime >= expectedPresentTime &&
3648 desiredPresentTime < expectedPresentTime + s2ns(1)) {
3649 return false;
3650 }
3651
3652 for (const ComposerState& state : states) {
3653 const layer_state_t& s = state.state;
3654 if (!(s.what & layer_state_t::eAcquireFenceChanged)) {
3655 continue;
3656 }
3657 if (s.acquireFence && s.acquireFence->getStatus() == Fence::Status::Unsignaled) {
3658 return false;
3659 }
3660 }
3661 return true;
3662 }
3663
setTransactionState(const Vector<ComposerState> & states,const Vector<DisplayState> & displays,uint32_t flags,const sp<IBinder> & applyToken,const InputWindowCommands & inputWindowCommands,int64_t desiredPresentTime,const client_cache_t & uncacheBuffer,const std::vector<ListenerCallbacks> & listenerCallbacks)3664 void SurfaceFlinger::setTransactionState(const Vector<ComposerState>& states,
3665 const Vector<DisplayState>& displays, uint32_t flags,
3666 const sp<IBinder>& applyToken,
3667 const InputWindowCommands& inputWindowCommands,
3668 int64_t desiredPresentTime,
3669 const client_cache_t& uncacheBuffer,
3670 const std::vector<ListenerCallbacks>& listenerCallbacks) {
3671 ATRACE_CALL();
3672
3673 const int64_t postTime = systemTime();
3674
3675 bool privileged = callingThreadHasUnscopedSurfaceFlingerAccess();
3676
3677 Mutex::Autolock _l(mStateLock);
3678
3679 if (containsAnyInvalidClientState(states)) {
3680 return;
3681 }
3682
3683 // If its TransactionQueue already has a pending TransactionState or if it is pending
3684 auto itr = mTransactionQueues.find(applyToken);
3685 // if this is an animation frame, wait until prior animation frame has
3686 // been applied by SF
3687 if (flags & eAnimation) {
3688 while (itr != mTransactionQueues.end()) {
3689 status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
3690 if (CC_UNLIKELY(err != NO_ERROR)) {
3691 ALOGW_IF(err == TIMED_OUT,
3692 "setTransactionState timed out "
3693 "waiting for animation frame to apply");
3694 break;
3695 }
3696 itr = mTransactionQueues.find(applyToken);
3697 }
3698 }
3699 if (itr != mTransactionQueues.end() ||
3700 !transactionIsReadyToBeApplied(desiredPresentTime, states)) {
3701 mTransactionQueues[applyToken].emplace(states, displays, flags, desiredPresentTime,
3702 uncacheBuffer, listenerCallbacks, postTime,
3703 privileged);
3704 setTransactionFlags(eTransactionFlushNeeded);
3705 return;
3706 }
3707
3708 applyTransactionState(states, displays, flags, inputWindowCommands, desiredPresentTime,
3709 uncacheBuffer, listenerCallbacks, postTime, privileged);
3710 }
3711
applyTransactionState(const Vector<ComposerState> & states,const Vector<DisplayState> & displays,uint32_t flags,const InputWindowCommands & inputWindowCommands,const int64_t desiredPresentTime,const client_cache_t & uncacheBuffer,const std::vector<ListenerCallbacks> & listenerCallbacks,const int64_t postTime,bool privileged,bool isMainThread)3712 void SurfaceFlinger::applyTransactionState(const Vector<ComposerState>& states,
3713 const Vector<DisplayState>& displays, uint32_t flags,
3714 const InputWindowCommands& inputWindowCommands,
3715 const int64_t desiredPresentTime,
3716 const client_cache_t& uncacheBuffer,
3717 const std::vector<ListenerCallbacks>& listenerCallbacks,
3718 const int64_t postTime, bool privileged,
3719 bool isMainThread) {
3720 uint32_t transactionFlags = 0;
3721
3722 if (flags & eAnimation) {
3723 // For window updates that are part of an animation we must wait for
3724 // previous animation "frames" to be handled.
3725 while (!isMainThread && mAnimTransactionPending) {
3726 status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
3727 if (CC_UNLIKELY(err != NO_ERROR)) {
3728 // just in case something goes wrong in SF, return to the
3729 // caller after a few seconds.
3730 ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
3731 "waiting for previous animation frame");
3732 mAnimTransactionPending = false;
3733 break;
3734 }
3735 }
3736 }
3737
3738 for (const DisplayState& display : displays) {
3739 transactionFlags |= setDisplayStateLocked(display);
3740 }
3741
3742 // In case the client has sent a Transaction that should receive callbacks but without any
3743 // SurfaceControls that should be included in the callback, send the listener and callbackIds
3744 // to the callback thread so it can send an empty callback
3745 if (!listenerCallbacks.empty()) {
3746 mTransactionCompletedThread.run();
3747 }
3748 for (const auto& [listener, callbackIds] : listenerCallbacks) {
3749 mTransactionCompletedThread.addCallback(listener, callbackIds);
3750 }
3751
3752 uint32_t clientStateFlags = 0;
3753 for (const ComposerState& state : states) {
3754 clientStateFlags |= setClientStateLocked(state, desiredPresentTime, listenerCallbacks,
3755 postTime, privileged);
3756 }
3757
3758 // If the state doesn't require a traversal and there are callbacks, send them now
3759 if (!(clientStateFlags & eTraversalNeeded) && !listenerCallbacks.empty()) {
3760 mTransactionCompletedThread.sendCallbacks();
3761 }
3762 transactionFlags |= clientStateFlags;
3763
3764 transactionFlags |= addInputWindowCommands(inputWindowCommands);
3765
3766 if (uncacheBuffer.isValid()) {
3767 ClientCache::getInstance().erase(uncacheBuffer);
3768 }
3769
3770 // If a synchronous transaction is explicitly requested without any changes, force a transaction
3771 // anyway. This can be used as a flush mechanism for previous async transactions.
3772 // Empty animation transaction can be used to simulate back-pressure, so also force a
3773 // transaction for empty animation transactions.
3774 if (transactionFlags == 0 &&
3775 ((flags & eSynchronous) || (flags & eAnimation))) {
3776 transactionFlags = eTransactionNeeded;
3777 }
3778
3779 // If we are on the main thread, we are about to preform a traversal. Clear the traversal bit
3780 // so we don't have to wake up again next frame to preform an uneeded traversal.
3781 if (isMainThread && (transactionFlags & eTraversalNeeded)) {
3782 transactionFlags = transactionFlags & (~eTraversalNeeded);
3783 mTraversalNeededMainThread = true;
3784 }
3785
3786 if (transactionFlags) {
3787 if (mInterceptor->isEnabled()) {
3788 mInterceptor->saveTransaction(states, mCurrentState.displays, displays, flags);
3789 }
3790
3791 // this triggers the transaction
3792 const auto start = (flags & eEarlyWakeup) ? Scheduler::TransactionStart::EARLY
3793 : Scheduler::TransactionStart::NORMAL;
3794 setTransactionFlags(transactionFlags, start);
3795
3796 // if this is a synchronous transaction, wait for it to take effect
3797 // before returning.
3798 if (flags & eSynchronous) {
3799 mTransactionPending = true;
3800 }
3801 if (flags & eAnimation) {
3802 mAnimTransactionPending = true;
3803 }
3804 if (mPendingInputWindowCommands.syncInputWindows) {
3805 mPendingSyncInputWindows = true;
3806 }
3807
3808 // applyTransactionState can be called by either the main SF thread or by
3809 // another process through setTransactionState. While a given process may wish
3810 // to wait on synchronous transactions, the main SF thread should never
3811 // be blocked. Therefore, we only wait if isMainThread is false.
3812 while (!isMainThread && (mTransactionPending || mPendingSyncInputWindows)) {
3813 status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
3814 if (CC_UNLIKELY(err != NO_ERROR)) {
3815 // just in case something goes wrong in SF, return to the
3816 // called after a few seconds.
3817 ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
3818 mTransactionPending = false;
3819 mPendingSyncInputWindows = false;
3820 break;
3821 }
3822 }
3823 }
3824 }
3825
setDisplayStateLocked(const DisplayState & s)3826 uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) {
3827 const ssize_t index = mCurrentState.displays.indexOfKey(s.token);
3828 if (index < 0) return 0;
3829
3830 uint32_t flags = 0;
3831 DisplayDeviceState& state = mCurrentState.displays.editValueAt(index);
3832
3833 const uint32_t what = s.what;
3834 if (what & DisplayState::eSurfaceChanged) {
3835 if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) {
3836 state.surface = s.surface;
3837 flags |= eDisplayTransactionNeeded;
3838 }
3839 }
3840 if (what & DisplayState::eLayerStackChanged) {
3841 if (state.layerStack != s.layerStack) {
3842 state.layerStack = s.layerStack;
3843 flags |= eDisplayTransactionNeeded;
3844 }
3845 }
3846 if (what & DisplayState::eDisplayProjectionChanged) {
3847 if (state.orientation != s.orientation) {
3848 state.orientation = s.orientation;
3849 flags |= eDisplayTransactionNeeded;
3850 }
3851 if (state.frame != s.frame) {
3852 state.frame = s.frame;
3853 flags |= eDisplayTransactionNeeded;
3854 }
3855 if (state.viewport != s.viewport) {
3856 state.viewport = s.viewport;
3857 flags |= eDisplayTransactionNeeded;
3858 }
3859 }
3860 if (what & DisplayState::eDisplaySizeChanged) {
3861 if (state.width != s.width) {
3862 state.width = s.width;
3863 flags |= eDisplayTransactionNeeded;
3864 }
3865 if (state.height != s.height) {
3866 state.height = s.height;
3867 flags |= eDisplayTransactionNeeded;
3868 }
3869 }
3870
3871 return flags;
3872 }
3873
callingThreadHasUnscopedSurfaceFlingerAccess()3874 bool SurfaceFlinger::callingThreadHasUnscopedSurfaceFlingerAccess() {
3875 IPCThreadState* ipc = IPCThreadState::self();
3876 const int pid = ipc->getCallingPid();
3877 const int uid = ipc->getCallingUid();
3878 if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) &&
3879 !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
3880 return false;
3881 }
3882 return true;
3883 }
3884
setClientStateLocked(const ComposerState & composerState,int64_t desiredPresentTime,const std::vector<ListenerCallbacks> & listenerCallbacks,int64_t postTime,bool privileged)3885 uint32_t SurfaceFlinger::setClientStateLocked(
3886 const ComposerState& composerState, int64_t desiredPresentTime,
3887 const std::vector<ListenerCallbacks>& listenerCallbacks, int64_t postTime,
3888 bool privileged) {
3889 const layer_state_t& s = composerState.state;
3890 sp<Client> client(static_cast<Client*>(composerState.client.get()));
3891
3892 sp<Layer> layer(client->getLayerUser(s.surface));
3893 if (layer == nullptr) {
3894 return 0;
3895 }
3896
3897 uint32_t flags = 0;
3898
3899 const uint64_t what = s.what;
3900 bool geometryAppliesWithResize =
3901 what & layer_state_t::eGeometryAppliesWithResize;
3902
3903 // If we are deferring transaction, make sure to push the pending state, as otherwise the
3904 // pending state will also be deferred.
3905 if (what & layer_state_t::eDeferTransaction_legacy) {
3906 layer->pushPendingState();
3907 }
3908
3909 if (what & layer_state_t::ePositionChanged) {
3910 if (layer->setPosition(s.x, s.y, !geometryAppliesWithResize)) {
3911 flags |= eTraversalNeeded;
3912 }
3913 }
3914 if (what & layer_state_t::eLayerChanged) {
3915 // NOTE: index needs to be calculated before we update the state
3916 const auto& p = layer->getParent();
3917 if (p == nullptr) {
3918 ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
3919 if (layer->setLayer(s.z) && idx >= 0) {
3920 mCurrentState.layersSortedByZ.removeAt(idx);
3921 mCurrentState.layersSortedByZ.add(layer);
3922 // we need traversal (state changed)
3923 // AND transaction (list changed)
3924 flags |= eTransactionNeeded|eTraversalNeeded;
3925 }
3926 } else {
3927 if (p->setChildLayer(layer, s.z)) {
3928 flags |= eTransactionNeeded|eTraversalNeeded;
3929 }
3930 }
3931 }
3932 if (what & layer_state_t::eRelativeLayerChanged) {
3933 // NOTE: index needs to be calculated before we update the state
3934 const auto& p = layer->getParent();
3935 if (p == nullptr) {
3936 ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
3937 if (layer->setRelativeLayer(s.relativeLayerHandle, s.z) && idx >= 0) {
3938 mCurrentState.layersSortedByZ.removeAt(idx);
3939 mCurrentState.layersSortedByZ.add(layer);
3940 // we need traversal (state changed)
3941 // AND transaction (list changed)
3942 flags |= eTransactionNeeded|eTraversalNeeded;
3943 }
3944 } else {
3945 if (p->setChildRelativeLayer(layer, s.relativeLayerHandle, s.z)) {
3946 flags |= eTransactionNeeded|eTraversalNeeded;
3947 }
3948 }
3949 }
3950 if (what & layer_state_t::eSizeChanged) {
3951 if (layer->setSize(s.w, s.h)) {
3952 flags |= eTraversalNeeded;
3953 }
3954 }
3955 if (what & layer_state_t::eAlphaChanged) {
3956 if (layer->setAlpha(s.alpha))
3957 flags |= eTraversalNeeded;
3958 }
3959 if (what & layer_state_t::eColorChanged) {
3960 if (layer->setColor(s.color))
3961 flags |= eTraversalNeeded;
3962 }
3963 if (what & layer_state_t::eColorTransformChanged) {
3964 if (layer->setColorTransform(s.colorTransform)) {
3965 flags |= eTraversalNeeded;
3966 }
3967 }
3968 if (what & layer_state_t::eBackgroundColorChanged) {
3969 if (layer->setBackgroundColor(s.color, s.bgColorAlpha, s.bgColorDataspace)) {
3970 flags |= eTraversalNeeded;
3971 }
3972 }
3973 if (what & layer_state_t::eMatrixChanged) {
3974 // TODO: b/109894387
3975 //
3976 // SurfaceFlinger's renderer is not prepared to handle cropping in the face of arbitrary
3977 // rotation. To see the problem observe that if we have a square parent, and a child
3978 // of the same size, then we rotate the child 45 degrees around it's center, the child
3979 // must now be cropped to a non rectangular 8 sided region.
3980 //
3981 // Of course we can fix this in the future. For now, we are lucky, SurfaceControl is
3982 // private API, and the WindowManager only uses rotation in one case, which is on a top
3983 // level layer in which cropping is not an issue.
3984 //
3985 // However given that abuse of rotation matrices could lead to surfaces extending outside
3986 // of cropped areas, we need to prevent non-root clients without permission ACCESS_SURFACE_FLINGER
3987 // (a.k.a. everyone except WindowManager and tests) from setting non rectangle preserving
3988 // transformations.
3989 if (layer->setMatrix(s.matrix, privileged))
3990 flags |= eTraversalNeeded;
3991 }
3992 if (what & layer_state_t::eTransparentRegionChanged) {
3993 if (layer->setTransparentRegionHint(s.transparentRegion))
3994 flags |= eTraversalNeeded;
3995 }
3996 if (what & layer_state_t::eFlagsChanged) {
3997 if (layer->setFlags(s.flags, s.mask))
3998 flags |= eTraversalNeeded;
3999 }
4000 if (what & layer_state_t::eCropChanged_legacy) {
4001 if (layer->setCrop_legacy(s.crop_legacy, !geometryAppliesWithResize))
4002 flags |= eTraversalNeeded;
4003 }
4004 if (what & layer_state_t::eCornerRadiusChanged) {
4005 if (layer->setCornerRadius(s.cornerRadius))
4006 flags |= eTraversalNeeded;
4007 }
4008 if (what & layer_state_t::eLayerStackChanged) {
4009 ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
4010 // We only allow setting layer stacks for top level layers,
4011 // everything else inherits layer stack from its parent.
4012 if (layer->hasParent()) {
4013 ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid",
4014 layer->getName().string());
4015 } else if (idx < 0) {
4016 ALOGE("Attempt to set layer stack on layer without parent (%s) that "
4017 "that also does not appear in the top level layer list. Something"
4018 " has gone wrong.", layer->getName().string());
4019 } else if (layer->setLayerStack(s.layerStack)) {
4020 mCurrentState.layersSortedByZ.removeAt(idx);
4021 mCurrentState.layersSortedByZ.add(layer);
4022 // we need traversal (state changed)
4023 // AND transaction (list changed)
4024 flags |= eTransactionNeeded|eTraversalNeeded|eDisplayLayerStackChanged;
4025 }
4026 }
4027 if (what & layer_state_t::eDeferTransaction_legacy) {
4028 if (s.barrierHandle_legacy != nullptr) {
4029 layer->deferTransactionUntil_legacy(s.barrierHandle_legacy, s.frameNumber_legacy);
4030 } else if (s.barrierGbp_legacy != nullptr) {
4031 const sp<IGraphicBufferProducer>& gbp = s.barrierGbp_legacy;
4032 if (authenticateSurfaceTextureLocked(gbp)) {
4033 const auto& otherLayer =
4034 (static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
4035 layer->deferTransactionUntil_legacy(otherLayer, s.frameNumber_legacy);
4036 } else {
4037 ALOGE("Attempt to defer transaction to to an"
4038 " unrecognized GraphicBufferProducer");
4039 }
4040 }
4041 // We don't trigger a traversal here because if no other state is
4042 // changed, we don't want this to cause any more work
4043 }
4044 if (what & layer_state_t::eReparent) {
4045 bool hadParent = layer->hasParent();
4046 if (layer->reparent(s.parentHandleForChild)) {
4047 if (!hadParent) {
4048 mCurrentState.layersSortedByZ.remove(layer);
4049 }
4050 flags |= eTransactionNeeded|eTraversalNeeded;
4051 }
4052 }
4053 if (what & layer_state_t::eReparentChildren) {
4054 if (layer->reparentChildren(s.reparentHandle)) {
4055 flags |= eTransactionNeeded|eTraversalNeeded;
4056 }
4057 }
4058 if (what & layer_state_t::eDetachChildren) {
4059 layer->detachChildren();
4060 }
4061 if (what & layer_state_t::eOverrideScalingModeChanged) {
4062 layer->setOverrideScalingMode(s.overrideScalingMode);
4063 // We don't trigger a traversal here because if no other state is
4064 // changed, we don't want this to cause any more work
4065 }
4066 if (what & layer_state_t::eTransformChanged) {
4067 if (layer->setTransform(s.transform)) flags |= eTraversalNeeded;
4068 }
4069 if (what & layer_state_t::eTransformToDisplayInverseChanged) {
4070 if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse))
4071 flags |= eTraversalNeeded;
4072 }
4073 if (what & layer_state_t::eCropChanged) {
4074 if (layer->setCrop(s.crop)) flags |= eTraversalNeeded;
4075 }
4076 if (what & layer_state_t::eFrameChanged) {
4077 if (layer->setFrame(s.frame)) flags |= eTraversalNeeded;
4078 }
4079 if (what & layer_state_t::eAcquireFenceChanged) {
4080 if (layer->setAcquireFence(s.acquireFence)) flags |= eTraversalNeeded;
4081 }
4082 if (what & layer_state_t::eDataspaceChanged) {
4083 if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded;
4084 }
4085 if (what & layer_state_t::eHdrMetadataChanged) {
4086 if (layer->setHdrMetadata(s.hdrMetadata)) flags |= eTraversalNeeded;
4087 }
4088 if (what & layer_state_t::eSurfaceDamageRegionChanged) {
4089 if (layer->setSurfaceDamageRegion(s.surfaceDamageRegion)) flags |= eTraversalNeeded;
4090 }
4091 if (what & layer_state_t::eApiChanged) {
4092 if (layer->setApi(s.api)) flags |= eTraversalNeeded;
4093 }
4094 if (what & layer_state_t::eSidebandStreamChanged) {
4095 if (layer->setSidebandStream(s.sidebandStream)) flags |= eTraversalNeeded;
4096 }
4097 if (what & layer_state_t::eInputInfoChanged) {
4098 if (privileged) {
4099 layer->setInputInfo(s.inputInfo);
4100 flags |= eTraversalNeeded;
4101 } else {
4102 ALOGE("Attempt to update InputWindowInfo without permission ACCESS_SURFACE_FLINGER");
4103 }
4104 }
4105 if (what & layer_state_t::eMetadataChanged) {
4106 if (layer->setMetadata(s.metadata)) flags |= eTraversalNeeded;
4107 }
4108 if (what & layer_state_t::eColorSpaceAgnosticChanged) {
4109 if (layer->setColorSpaceAgnostic(s.colorSpaceAgnostic)) {
4110 flags |= eTraversalNeeded;
4111 }
4112 }
4113 std::vector<sp<CallbackHandle>> callbackHandles;
4114 if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!listenerCallbacks.empty())) {
4115 for (const auto& [listener, callbackIds] : listenerCallbacks) {
4116 callbackHandles.emplace_back(new CallbackHandle(listener, callbackIds, s.surface));
4117 }
4118 }
4119 bool bufferChanged = what & layer_state_t::eBufferChanged;
4120 bool cacheIdChanged = what & layer_state_t::eCachedBufferChanged;
4121 sp<GraphicBuffer> buffer;
4122 if (bufferChanged && cacheIdChanged) {
4123 ClientCache::getInstance().add(s.cachedBuffer, s.buffer);
4124 buffer = s.buffer;
4125 } else if (cacheIdChanged) {
4126 buffer = ClientCache::getInstance().get(s.cachedBuffer);
4127 } else if (bufferChanged) {
4128 buffer = s.buffer;
4129 }
4130 if (buffer) {
4131 if (layer->setBuffer(buffer, postTime, desiredPresentTime, s.cachedBuffer)) {
4132 flags |= eTraversalNeeded;
4133 }
4134 }
4135 if (layer->setTransactionCompletedListeners(callbackHandles)) flags |= eTraversalNeeded;
4136 // Do not put anything that updates layer state or modifies flags after
4137 // setTransactionCompletedListener
4138 return flags;
4139 }
4140
addInputWindowCommands(const InputWindowCommands & inputWindowCommands)4141 uint32_t SurfaceFlinger::addInputWindowCommands(const InputWindowCommands& inputWindowCommands) {
4142 uint32_t flags = 0;
4143 if (!inputWindowCommands.transferTouchFocusCommands.empty()) {
4144 flags |= eTraversalNeeded;
4145 }
4146
4147 if (inputWindowCommands.syncInputWindows) {
4148 flags |= eTraversalNeeded;
4149 }
4150
4151 mPendingInputWindowCommands.merge(inputWindowCommands);
4152 return flags;
4153 }
4154
createLayer(const String8 & name,const sp<Client> & client,uint32_t w,uint32_t h,PixelFormat format,uint32_t flags,LayerMetadata metadata,sp<IBinder> * handle,sp<IGraphicBufferProducer> * gbp,const sp<IBinder> & parentHandle,const sp<Layer> & parentLayer)4155 status_t SurfaceFlinger::createLayer(const String8& name, const sp<Client>& client, uint32_t w,
4156 uint32_t h, PixelFormat format, uint32_t flags,
4157 LayerMetadata metadata, sp<IBinder>* handle,
4158 sp<IGraphicBufferProducer>* gbp,
4159 const sp<IBinder>& parentHandle,
4160 const sp<Layer>& parentLayer) {
4161 if (int32_t(w|h) < 0) {
4162 ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
4163 int(w), int(h));
4164 return BAD_VALUE;
4165 }
4166
4167 ALOG_ASSERT(parentLayer == nullptr || parentHandle == nullptr,
4168 "Expected only one of parentLayer or parentHandle to be non-null. "
4169 "Programmer error?");
4170
4171 status_t result = NO_ERROR;
4172
4173 sp<Layer> layer;
4174
4175 String8 uniqueName = getUniqueLayerName(name);
4176
4177 bool primaryDisplayOnly = false;
4178
4179 // window type is WINDOW_TYPE_DONT_SCREENSHOT from SurfaceControl.java
4180 // TODO b/64227542
4181 if (metadata.has(METADATA_WINDOW_TYPE)) {
4182 int32_t windowType = metadata.getInt32(METADATA_WINDOW_TYPE, 0);
4183 if (windowType == 441731) {
4184 metadata.setInt32(METADATA_WINDOW_TYPE, InputWindowInfo::TYPE_NAVIGATION_BAR_PANEL);
4185 primaryDisplayOnly = true;
4186 }
4187 }
4188
4189 switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
4190 case ISurfaceComposerClient::eFXSurfaceBufferQueue:
4191 result = createBufferQueueLayer(client, uniqueName, w, h, flags, std::move(metadata),
4192 format, handle, gbp, &layer);
4193
4194 break;
4195 case ISurfaceComposerClient::eFXSurfaceBufferState:
4196 result = createBufferStateLayer(client, uniqueName, w, h, flags, std::move(metadata),
4197 handle, &layer);
4198 break;
4199 case ISurfaceComposerClient::eFXSurfaceColor:
4200 // check if buffer size is set for color layer.
4201 if (w > 0 || h > 0) {
4202 ALOGE("createLayer() failed, w or h cannot be set for color layer (w=%d, h=%d)",
4203 int(w), int(h));
4204 return BAD_VALUE;
4205 }
4206
4207 result = createColorLayer(client, uniqueName, w, h, flags, std::move(metadata), handle,
4208 &layer);
4209 break;
4210 case ISurfaceComposerClient::eFXSurfaceContainer:
4211 // check if buffer size is set for container layer.
4212 if (w > 0 || h > 0) {
4213 ALOGE("createLayer() failed, w or h cannot be set for container layer (w=%d, h=%d)",
4214 int(w), int(h));
4215 return BAD_VALUE;
4216 }
4217 result = createContainerLayer(client, uniqueName, w, h, flags, std::move(metadata),
4218 handle, &layer);
4219 break;
4220 default:
4221 result = BAD_VALUE;
4222 break;
4223 }
4224
4225 if (result != NO_ERROR) {
4226 return result;
4227 }
4228
4229 if (primaryDisplayOnly) {
4230 layer->setPrimaryDisplayOnly();
4231 }
4232
4233 bool addToCurrentState = callingThreadHasUnscopedSurfaceFlingerAccess();
4234 result = addClientLayer(client, *handle, *gbp, layer, parentHandle, parentLayer,
4235 addToCurrentState);
4236 if (result != NO_ERROR) {
4237 return result;
4238 }
4239 mInterceptor->saveSurfaceCreation(layer);
4240
4241 setTransactionFlags(eTransactionNeeded);
4242 return result;
4243 }
4244
getUniqueLayerName(const String8 & name)4245 String8 SurfaceFlinger::getUniqueLayerName(const String8& name)
4246 {
4247 bool matchFound = true;
4248 uint32_t dupeCounter = 0;
4249
4250 // Tack on our counter whether there is a hit or not, so everyone gets a tag
4251 String8 uniqueName = name + "#" + String8(std::to_string(dupeCounter).c_str());
4252
4253 // Grab the state lock since we're accessing mCurrentState
4254 Mutex::Autolock lock(mStateLock);
4255
4256 // Loop over layers until we're sure there is no matching name
4257 while (matchFound) {
4258 matchFound = false;
4259 mCurrentState.traverseInZOrder([&](Layer* layer) {
4260 if (layer->getName() == uniqueName) {
4261 matchFound = true;
4262 uniqueName = name + "#" + String8(std::to_string(++dupeCounter).c_str());
4263 }
4264 });
4265 }
4266
4267 ALOGV_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name.c_str(),
4268 uniqueName.c_str());
4269
4270 return uniqueName;
4271 }
4272
createBufferQueueLayer(const sp<Client> & client,const String8 & name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata,PixelFormat & format,sp<IBinder> * handle,sp<IGraphicBufferProducer> * gbp,sp<Layer> * outLayer)4273 status_t SurfaceFlinger::createBufferQueueLayer(const sp<Client>& client, const String8& name,
4274 uint32_t w, uint32_t h, uint32_t flags,
4275 LayerMetadata metadata, PixelFormat& format,
4276 sp<IBinder>* handle,
4277 sp<IGraphicBufferProducer>* gbp,
4278 sp<Layer>* outLayer) {
4279 // initialize the surfaces
4280 switch (format) {
4281 case PIXEL_FORMAT_TRANSPARENT:
4282 case PIXEL_FORMAT_TRANSLUCENT:
4283 format = PIXEL_FORMAT_RGBA_8888;
4284 break;
4285 case PIXEL_FORMAT_OPAQUE:
4286 format = PIXEL_FORMAT_RGBX_8888;
4287 break;
4288 }
4289
4290 sp<BufferQueueLayer> layer = getFactory().createBufferQueueLayer(
4291 LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata)));
4292 status_t err = layer->setDefaultBufferProperties(w, h, format);
4293 if (err == NO_ERROR) {
4294 *handle = layer->getHandle();
4295 *gbp = layer->getProducer();
4296 *outLayer = layer;
4297 }
4298
4299 ALOGE_IF(err, "createBufferQueueLayer() failed (%s)", strerror(-err));
4300 return err;
4301 }
4302
createBufferStateLayer(const sp<Client> & client,const String8 & name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata,sp<IBinder> * handle,sp<Layer> * outLayer)4303 status_t SurfaceFlinger::createBufferStateLayer(const sp<Client>& client, const String8& name,
4304 uint32_t w, uint32_t h, uint32_t flags,
4305 LayerMetadata metadata, sp<IBinder>* handle,
4306 sp<Layer>* outLayer) {
4307 sp<BufferStateLayer> layer = getFactory().createBufferStateLayer(
4308 LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata)));
4309 *handle = layer->getHandle();
4310 *outLayer = layer;
4311
4312 return NO_ERROR;
4313 }
4314
createColorLayer(const sp<Client> & client,const String8 & name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata,sp<IBinder> * handle,sp<Layer> * outLayer)4315 status_t SurfaceFlinger::createColorLayer(const sp<Client>& client, const String8& name, uint32_t w,
4316 uint32_t h, uint32_t flags, LayerMetadata metadata,
4317 sp<IBinder>* handle, sp<Layer>* outLayer) {
4318 *outLayer = getFactory().createColorLayer(
4319 LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata)));
4320 *handle = (*outLayer)->getHandle();
4321 return NO_ERROR;
4322 }
4323
createContainerLayer(const sp<Client> & client,const String8 & name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata,sp<IBinder> * handle,sp<Layer> * outLayer)4324 status_t SurfaceFlinger::createContainerLayer(const sp<Client>& client, const String8& name,
4325 uint32_t w, uint32_t h, uint32_t flags,
4326 LayerMetadata metadata, sp<IBinder>* handle,
4327 sp<Layer>* outLayer) {
4328 *outLayer = getFactory().createContainerLayer(
4329 LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata)));
4330 *handle = (*outLayer)->getHandle();
4331 return NO_ERROR;
4332 }
4333
4334
markLayerPendingRemovalLocked(const sp<Layer> & layer)4335 void SurfaceFlinger::markLayerPendingRemovalLocked(const sp<Layer>& layer) {
4336 mLayersPendingRemoval.add(layer);
4337 mLayersRemoved = true;
4338 setTransactionFlags(eTransactionNeeded);
4339 }
4340
onHandleDestroyed(sp<Layer> & layer)4341 void SurfaceFlinger::onHandleDestroyed(sp<Layer>& layer)
4342 {
4343 Mutex::Autolock lock(mStateLock);
4344 // If a layer has a parent, we allow it to out-live it's handle
4345 // with the idea that the parent holds a reference and will eventually
4346 // be cleaned up. However no one cleans up the top-level so we do so
4347 // here.
4348 if (layer->getParent() == nullptr) {
4349 mCurrentState.layersSortedByZ.remove(layer);
4350 }
4351 markLayerPendingRemovalLocked(layer);
4352
4353 auto it = mLayersByLocalBinderToken.begin();
4354 while (it != mLayersByLocalBinderToken.end()) {
4355 if (it->second == layer) {
4356 it = mLayersByLocalBinderToken.erase(it);
4357 } else {
4358 it++;
4359 }
4360 }
4361
4362 layer.clear();
4363 }
4364
4365 // ---------------------------------------------------------------------------
4366
onInitializeDisplays()4367 void SurfaceFlinger::onInitializeDisplays() {
4368 const auto display = getDefaultDisplayDeviceLocked();
4369 if (!display) return;
4370
4371 const sp<IBinder> token = display->getDisplayToken().promote();
4372 LOG_ALWAYS_FATAL_IF(token == nullptr);
4373
4374 // reset screen orientation and use primary layer stack
4375 Vector<ComposerState> state;
4376 Vector<DisplayState> displays;
4377 DisplayState d;
4378 d.what = DisplayState::eDisplayProjectionChanged |
4379 DisplayState::eLayerStackChanged;
4380 d.token = token;
4381 d.layerStack = 0;
4382 d.orientation = DisplayState::eOrientationDefault;
4383 d.frame.makeInvalid();
4384 d.viewport.makeInvalid();
4385 d.width = 0;
4386 d.height = 0;
4387 displays.add(d);
4388 setTransactionState(state, displays, 0, nullptr, mPendingInputWindowCommands, -1, {}, {});
4389
4390 setPowerModeInternal(display, HWC_POWER_MODE_NORMAL);
4391
4392 const nsecs_t vsyncPeriod = getVsyncPeriod();
4393 mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod);
4394
4395 // Use phase of 0 since phase is not known.
4396 // Use latency of 0, which will snap to the ideal latency.
4397 DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod};
4398 setCompositorTimingSnapped(stats, 0);
4399 }
4400
initializeDisplays()4401 void SurfaceFlinger::initializeDisplays() {
4402 // Async since we may be called from the main thread.
4403 postMessageAsync(
4404 new LambdaMessage([this]() NO_THREAD_SAFETY_ANALYSIS { onInitializeDisplays(); }));
4405 }
4406
setPowerModeInternal(const sp<DisplayDevice> & display,int mode)4407 void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& display, int mode) {
4408 if (display->isVirtual()) {
4409 ALOGE("%s: Invalid operation on virtual display", __FUNCTION__);
4410 return;
4411 }
4412
4413 const auto displayId = display->getId();
4414 LOG_ALWAYS_FATAL_IF(!displayId);
4415
4416 ALOGD("Setting power mode %d on display %s", mode, to_string(*displayId).c_str());
4417
4418 int currentMode = display->getPowerMode();
4419 if (mode == currentMode) {
4420 return;
4421 }
4422
4423 display->setPowerMode(mode);
4424
4425 if (mInterceptor->isEnabled()) {
4426 mInterceptor->savePowerModeUpdate(display->getSequenceId(), mode);
4427 }
4428
4429 if (currentMode == HWC_POWER_MODE_OFF) {
4430 // Turn on the display
4431 getHwComposer().setPowerMode(*displayId, mode);
4432 if (display->isPrimary() && mode != HWC_POWER_MODE_DOZE_SUSPEND) {
4433 mScheduler->onScreenAcquired(mAppConnectionHandle);
4434 mScheduler->resyncToHardwareVsync(true, getVsyncPeriod());
4435 }
4436
4437 mVisibleRegionsDirty = true;
4438 mHasPoweredOff = true;
4439 repaintEverything();
4440
4441 struct sched_param param = {0};
4442 param.sched_priority = 1;
4443 if (sched_setscheduler(0, SCHED_FIFO, ¶m) != 0) {
4444 ALOGW("Couldn't set SCHED_FIFO on display on");
4445 }
4446 } else if (mode == HWC_POWER_MODE_OFF) {
4447 // Turn off the display
4448 struct sched_param param = {0};
4449 if (sched_setscheduler(0, SCHED_OTHER, ¶m) != 0) {
4450 ALOGW("Couldn't set SCHED_OTHER on display off");
4451 }
4452
4453 if (display->isPrimary() && currentMode != HWC_POWER_MODE_DOZE_SUSPEND) {
4454 mScheduler->disableHardwareVsync(true);
4455 mScheduler->onScreenReleased(mAppConnectionHandle);
4456 }
4457
4458 getHwComposer().setPowerMode(*displayId, mode);
4459 mVisibleRegionsDirty = true;
4460 // from this point on, SF will stop drawing on this display
4461 } else if (mode == HWC_POWER_MODE_DOZE ||
4462 mode == HWC_POWER_MODE_NORMAL) {
4463 // Update display while dozing
4464 getHwComposer().setPowerMode(*displayId, mode);
4465 if (display->isPrimary() && currentMode == HWC_POWER_MODE_DOZE_SUSPEND) {
4466 mScheduler->onScreenAcquired(mAppConnectionHandle);
4467 mScheduler->resyncToHardwareVsync(true, getVsyncPeriod());
4468 }
4469 } else if (mode == HWC_POWER_MODE_DOZE_SUSPEND) {
4470 // Leave display going to doze
4471 if (display->isPrimary()) {
4472 mScheduler->disableHardwareVsync(true);
4473 mScheduler->onScreenReleased(mAppConnectionHandle);
4474 }
4475 getHwComposer().setPowerMode(*displayId, mode);
4476 } else {
4477 ALOGE("Attempting to set unknown power mode: %d\n", mode);
4478 getHwComposer().setPowerMode(*displayId, mode);
4479 }
4480
4481 if (display->isPrimary()) {
4482 mTimeStats->setPowerMode(mode);
4483 mRefreshRateStats.setPowerMode(mode);
4484 }
4485
4486 ALOGD("Finished setting power mode %d on display %s", mode, to_string(*displayId).c_str());
4487 }
4488
setPowerMode(const sp<IBinder> & displayToken,int mode)4489 void SurfaceFlinger::setPowerMode(const sp<IBinder>& displayToken, int mode) {
4490 postMessageSync(new LambdaMessage([&]() NO_THREAD_SAFETY_ANALYSIS {
4491 const auto display = getDisplayDevice(displayToken);
4492 if (!display) {
4493 ALOGE("Attempt to set power mode %d for invalid display token %p", mode,
4494 displayToken.get());
4495 } else if (display->isVirtual()) {
4496 ALOGW("Attempt to set power mode %d for virtual display", mode);
4497 } else {
4498 setPowerModeInternal(display, mode);
4499 }
4500 }));
4501 }
4502
4503 // ---------------------------------------------------------------------------
4504
doDump(int fd,const DumpArgs & args,bool asProto)4505 status_t SurfaceFlinger::doDump(int fd, const DumpArgs& args,
4506 bool asProto) NO_THREAD_SAFETY_ANALYSIS {
4507 std::string result;
4508
4509 IPCThreadState* ipc = IPCThreadState::self();
4510 const int pid = ipc->getCallingPid();
4511 const int uid = ipc->getCallingUid();
4512
4513 if ((uid != AID_SHELL) &&
4514 !PermissionCache::checkPermission(sDump, pid, uid)) {
4515 StringAppendF(&result, "Permission Denial: can't dump SurfaceFlinger from pid=%d, uid=%d\n",
4516 pid, uid);
4517 } else {
4518 // Try to get the main lock, but give up after one second
4519 // (this would indicate SF is stuck, but we want to be able to
4520 // print something in dumpsys).
4521 status_t err = mStateLock.timedLock(s2ns(1));
4522 bool locked = (err == NO_ERROR);
4523 if (!locked) {
4524 StringAppendF(&result,
4525 "SurfaceFlinger appears to be unresponsive (%s [%d]), dumping anyways "
4526 "(no locks held)\n",
4527 strerror(-err), err);
4528 }
4529
4530 using namespace std::string_literals;
4531
4532 static const std::unordered_map<std::string, Dumper> dumpers = {
4533 {"--clear-layer-stats"s, dumper([this](std::string&) { mLayerStats.clear(); })},
4534 {"--disable-layer-stats"s, dumper([this](std::string&) { mLayerStats.disable(); })},
4535 {"--display-id"s, dumper(&SurfaceFlinger::dumpDisplayIdentificationData)},
4536 {"--dispsync"s, dumper([this](std::string& s) {
4537 mScheduler->dumpPrimaryDispSync(s);
4538 })},
4539 {"--dump-layer-stats"s, dumper([this](std::string& s) { mLayerStats.dump(s); })},
4540 {"--enable-layer-stats"s, dumper([this](std::string&) { mLayerStats.enable(); })},
4541 {"--frame-events"s, dumper(&SurfaceFlinger::dumpFrameEventsLocked)},
4542 {"--latency"s, argsDumper(&SurfaceFlinger::dumpStatsLocked)},
4543 {"--latency-clear"s, argsDumper(&SurfaceFlinger::clearStatsLocked)},
4544 {"--list"s, dumper(&SurfaceFlinger::listLayersLocked)},
4545 {"--static-screen"s, dumper(&SurfaceFlinger::dumpStaticScreenStats)},
4546 {"--timestats"s, protoDumper(&SurfaceFlinger::dumpTimeStats)},
4547 {"--vsync"s, dumper(&SurfaceFlinger::dumpVSync)},
4548 {"--wide-color"s, dumper(&SurfaceFlinger::dumpWideColorInfo)},
4549 };
4550
4551 const auto flag = args.empty() ? ""s : std::string(String8(args[0]));
4552
4553 if (const auto it = dumpers.find(flag); it != dumpers.end()) {
4554 (it->second)(args, asProto, result);
4555 } else {
4556 if (asProto) {
4557 LayersProto layersProto = dumpProtoInfo(LayerVector::StateSet::Current);
4558 result.append(layersProto.SerializeAsString().c_str(), layersProto.ByteSize());
4559 } else {
4560 dumpAllLocked(args, result);
4561 }
4562 }
4563
4564 if (locked) {
4565 mStateLock.unlock();
4566 }
4567 }
4568 write(fd, result.c_str(), result.size());
4569 return NO_ERROR;
4570 }
4571
dumpCritical(int fd,const DumpArgs &,bool asProto)4572 status_t SurfaceFlinger::dumpCritical(int fd, const DumpArgs&, bool asProto) {
4573 if (asProto && mTracing.isEnabled()) {
4574 mTracing.writeToFileAsync();
4575 }
4576
4577 return doDump(fd, DumpArgs(), asProto);
4578 }
4579
listLayersLocked(std::string & result) const4580 void SurfaceFlinger::listLayersLocked(std::string& result) const {
4581 mCurrentState.traverseInZOrder(
4582 [&](Layer* layer) { StringAppendF(&result, "%s\n", layer->getName().string()); });
4583 }
4584
dumpStatsLocked(const DumpArgs & args,std::string & result) const4585 void SurfaceFlinger::dumpStatsLocked(const DumpArgs& args, std::string& result) const {
4586 StringAppendF(&result, "%" PRId64 "\n", getVsyncPeriod());
4587
4588 if (args.size() > 1) {
4589 const auto name = String8(args[1]);
4590 mCurrentState.traverseInZOrder([&](Layer* layer) {
4591 if (name == layer->getName()) {
4592 layer->dumpFrameStats(result);
4593 }
4594 });
4595 } else {
4596 mAnimFrameTracker.dumpStats(result);
4597 }
4598 }
4599
clearStatsLocked(const DumpArgs & args,std::string &)4600 void SurfaceFlinger::clearStatsLocked(const DumpArgs& args, std::string&) {
4601 mCurrentState.traverseInZOrder([&](Layer* layer) {
4602 if (args.size() < 2 || String8(args[1]) == layer->getName()) {
4603 layer->clearFrameStats();
4604 }
4605 });
4606
4607 mAnimFrameTracker.clearStats();
4608 }
4609
dumpTimeStats(const DumpArgs & args,bool asProto,std::string & result) const4610 void SurfaceFlinger::dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const {
4611 mTimeStats->parseArgs(asProto, args, result);
4612 }
4613
4614 // This should only be called from the main thread. Otherwise it would need
4615 // the lock and should use mCurrentState rather than mDrawingState.
logFrameStats()4616 void SurfaceFlinger::logFrameStats() {
4617 mDrawingState.traverseInZOrder([&](Layer* layer) {
4618 layer->logFrameStats();
4619 });
4620
4621 mAnimFrameTracker.logAndResetStats(String8("<win-anim>"));
4622 }
4623
appendSfConfigString(std::string & result) const4624 void SurfaceFlinger::appendSfConfigString(std::string& result) const {
4625 result.append(" [sf");
4626
4627 if (isLayerTripleBufferingDisabled())
4628 result.append(" DISABLE_TRIPLE_BUFFERING");
4629
4630 StringAppendF(&result, " PRESENT_TIME_OFFSET=%" PRId64, dispSyncPresentTimeOffset);
4631 StringAppendF(&result, " FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv);
4632 StringAppendF(&result, " MAX_VIRT_DISPLAY_DIM=%" PRIu64, maxVirtualDisplaySize);
4633 StringAppendF(&result, " RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework);
4634 StringAppendF(&result, " NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64,
4635 maxFrameBufferAcquiredBuffers);
4636 result.append("]");
4637 }
4638
dumpVSync(std::string & result) const4639 void SurfaceFlinger::dumpVSync(std::string& result) const {
4640 mPhaseOffsets->dump(result);
4641 StringAppendF(&result,
4642 " present offset: %9" PRId64 " ns\t VSYNC period: %9" PRId64 " ns\n\n",
4643 dispSyncPresentTimeOffset, getVsyncPeriod());
4644
4645 StringAppendF(&result, "Scheduler enabled.");
4646 StringAppendF(&result, "+ Smart 90 for video detection: %s\n\n",
4647 mUseSmart90ForVideo ? "on" : "off");
4648 mScheduler->dump(mAppConnectionHandle, result);
4649 }
4650
dumpStaticScreenStats(std::string & result) const4651 void SurfaceFlinger::dumpStaticScreenStats(std::string& result) const {
4652 result.append("Static screen stats:\n");
4653 for (size_t b = 0; b < SurfaceFlingerBE::NUM_BUCKETS - 1; ++b) {
4654 float bucketTimeSec = getBE().mFrameBuckets[b] / 1e9;
4655 float percent = 100.0f *
4656 static_cast<float>(getBE().mFrameBuckets[b]) / getBE().mTotalTime;
4657 StringAppendF(&result, " < %zd frames: %.3f s (%.1f%%)\n", b + 1, bucketTimeSec, percent);
4658 }
4659 float bucketTimeSec = getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] / 1e9;
4660 float percent = 100.0f *
4661 static_cast<float>(getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1]) / getBE().mTotalTime;
4662 StringAppendF(&result, " %zd+ frames: %.3f s (%.1f%%)\n", SurfaceFlingerBE::NUM_BUCKETS - 1,
4663 bucketTimeSec, percent);
4664 }
4665
recordBufferingStats(const char * layerName,std::vector<OccupancyTracker::Segment> && history)4666 void SurfaceFlinger::recordBufferingStats(const char* layerName,
4667 std::vector<OccupancyTracker::Segment>&& history) {
4668 Mutex::Autolock lock(getBE().mBufferingStatsMutex);
4669 auto& stats = getBE().mBufferingStats[layerName];
4670 for (const auto& segment : history) {
4671 if (!segment.usedThirdBuffer) {
4672 stats.twoBufferTime += segment.totalTime;
4673 }
4674 if (segment.occupancyAverage < 1.0f) {
4675 stats.doubleBufferedTime += segment.totalTime;
4676 } else if (segment.occupancyAverage < 2.0f) {
4677 stats.tripleBufferedTime += segment.totalTime;
4678 }
4679 ++stats.numSegments;
4680 stats.totalTime += segment.totalTime;
4681 }
4682 }
4683
dumpFrameEventsLocked(std::string & result)4684 void SurfaceFlinger::dumpFrameEventsLocked(std::string& result) {
4685 result.append("Layer frame timestamps:\n");
4686
4687 const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
4688 const size_t count = currentLayers.size();
4689 for (size_t i=0 ; i<count ; i++) {
4690 currentLayers[i]->dumpFrameEvents(result);
4691 }
4692 }
4693
dumpBufferingStats(std::string & result) const4694 void SurfaceFlinger::dumpBufferingStats(std::string& result) const {
4695 result.append("Buffering stats:\n");
4696 result.append(" [Layer name] <Active time> <Two buffer> "
4697 "<Double buffered> <Triple buffered>\n");
4698 Mutex::Autolock lock(getBE().mBufferingStatsMutex);
4699 typedef std::tuple<std::string, float, float, float> BufferTuple;
4700 std::map<float, BufferTuple, std::greater<float>> sorted;
4701 for (const auto& statsPair : getBE().mBufferingStats) {
4702 const char* name = statsPair.first.c_str();
4703 const SurfaceFlingerBE::BufferingStats& stats = statsPair.second;
4704 if (stats.numSegments == 0) {
4705 continue;
4706 }
4707 float activeTime = ns2ms(stats.totalTime) / 1000.0f;
4708 float twoBufferRatio = static_cast<float>(stats.twoBufferTime) /
4709 stats.totalTime;
4710 float doubleBufferRatio = static_cast<float>(
4711 stats.doubleBufferedTime) / stats.totalTime;
4712 float tripleBufferRatio = static_cast<float>(
4713 stats.tripleBufferedTime) / stats.totalTime;
4714 sorted.insert({activeTime, {name, twoBufferRatio,
4715 doubleBufferRatio, tripleBufferRatio}});
4716 }
4717 for (const auto& sortedPair : sorted) {
4718 float activeTime = sortedPair.first;
4719 const BufferTuple& values = sortedPair.second;
4720 StringAppendF(&result, " [%s] %.2f %.3f %.3f %.3f\n", std::get<0>(values).c_str(),
4721 activeTime, std::get<1>(values), std::get<2>(values), std::get<3>(values));
4722 }
4723 result.append("\n");
4724 }
4725
dumpDisplayIdentificationData(std::string & result) const4726 void SurfaceFlinger::dumpDisplayIdentificationData(std::string& result) const {
4727 for (const auto& [token, display] : mDisplays) {
4728 const auto displayId = display->getId();
4729 if (!displayId) {
4730 continue;
4731 }
4732 const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId);
4733 if (!hwcDisplayId) {
4734 continue;
4735 }
4736
4737 StringAppendF(&result,
4738 "Display %s (HWC display %" PRIu64 "): ", to_string(*displayId).c_str(),
4739 *hwcDisplayId);
4740 uint8_t port;
4741 DisplayIdentificationData data;
4742 if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) {
4743 result.append("no identification data\n");
4744 continue;
4745 }
4746
4747 if (!isEdid(data)) {
4748 result.append("unknown identification data: ");
4749 for (uint8_t byte : data) {
4750 StringAppendF(&result, "%x ", byte);
4751 }
4752 result.append("\n");
4753 continue;
4754 }
4755
4756 const auto edid = parseEdid(data);
4757 if (!edid) {
4758 result.append("invalid EDID: ");
4759 for (uint8_t byte : data) {
4760 StringAppendF(&result, "%x ", byte);
4761 }
4762 result.append("\n");
4763 continue;
4764 }
4765
4766 StringAppendF(&result, "port=%u pnpId=%s displayName=\"", port, edid->pnpId.data());
4767 result.append(edid->displayName.data(), edid->displayName.length());
4768 result.append("\"\n");
4769 }
4770 }
4771
dumpWideColorInfo(std::string & result) const4772 void SurfaceFlinger::dumpWideColorInfo(std::string& result) const {
4773 StringAppendF(&result, "Device has wide color built-in display: %d\n", hasWideColorDisplay);
4774 StringAppendF(&result, "Device uses color management: %d\n", useColorManagement);
4775 StringAppendF(&result, "DisplayColorSetting: %s\n",
4776 decodeDisplayColorSetting(mDisplayColorSetting).c_str());
4777
4778 // TODO: print out if wide-color mode is active or not
4779
4780 for (const auto& [token, display] : mDisplays) {
4781 const auto displayId = display->getId();
4782 if (!displayId) {
4783 continue;
4784 }
4785
4786 StringAppendF(&result, "Display %s color modes:\n", to_string(*displayId).c_str());
4787 std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId);
4788 for (auto&& mode : modes) {
4789 StringAppendF(&result, " %s (%d)\n", decodeColorMode(mode).c_str(), mode);
4790 }
4791
4792 ColorMode currentMode = display->getCompositionDisplay()->getState().colorMode;
4793 StringAppendF(&result, " Current color mode: %s (%d)\n",
4794 decodeColorMode(currentMode).c_str(), currentMode);
4795 }
4796 result.append("\n");
4797 }
4798
dumpProtoInfo(LayerVector::StateSet stateSet,uint32_t traceFlags) const4799 LayersProto SurfaceFlinger::dumpProtoInfo(LayerVector::StateSet stateSet,
4800 uint32_t traceFlags) const {
4801 LayersProto layersProto;
4802 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
4803 const State& state = useDrawing ? mDrawingState : mCurrentState;
4804 state.traverseInZOrder([&](Layer* layer) {
4805 LayerProto* layerProto = layersProto.add_layers();
4806 layer->writeToProto(layerProto, stateSet, traceFlags);
4807 });
4808
4809 return layersProto;
4810 }
4811
dumpVisibleLayersProtoInfo(const sp<DisplayDevice> & displayDevice) const4812 LayersProto SurfaceFlinger::dumpVisibleLayersProtoInfo(
4813 const sp<DisplayDevice>& displayDevice) const {
4814 LayersProto layersProto;
4815
4816 SizeProto* resolution = layersProto.mutable_resolution();
4817 resolution->set_w(displayDevice->getWidth());
4818 resolution->set_h(displayDevice->getHeight());
4819
4820 auto display = displayDevice->getCompositionDisplay();
4821 const auto& displayState = display->getState();
4822
4823 layersProto.set_color_mode(decodeColorMode(displayState.colorMode));
4824 layersProto.set_color_transform(decodeColorTransform(displayState.colorTransform));
4825 layersProto.set_global_transform(displayState.orientation);
4826
4827 const auto displayId = displayDevice->getId();
4828 LOG_ALWAYS_FATAL_IF(!displayId);
4829 mDrawingState.traverseInZOrder([&](Layer* layer) {
4830 if (!layer->visibleRegion.isEmpty() && !display->getOutputLayersOrderedByZ().empty()) {
4831 LayerProto* layerProto = layersProto.add_layers();
4832 layer->writeToProto(layerProto, displayDevice);
4833 }
4834 });
4835
4836 return layersProto;
4837 }
4838
dumpAllLocked(const DumpArgs & args,std::string & result) const4839 void SurfaceFlinger::dumpAllLocked(const DumpArgs& args, std::string& result) const {
4840 const bool colorize = !args.empty() && args[0] == String16("--color");
4841 Colorizer colorizer(colorize);
4842
4843 // figure out if we're stuck somewhere
4844 const nsecs_t now = systemTime();
4845 const nsecs_t inTransaction(mDebugInTransaction);
4846 nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
4847
4848 /*
4849 * Dump library configuration.
4850 */
4851
4852 colorizer.bold(result);
4853 result.append("Build configuration:");
4854 colorizer.reset(result);
4855 appendSfConfigString(result);
4856 appendUiConfigString(result);
4857 appendGuiConfigString(result);
4858 result.append("\n");
4859
4860 result.append("\nDisplay identification data:\n");
4861 dumpDisplayIdentificationData(result);
4862
4863 result.append("\nWide-Color information:\n");
4864 dumpWideColorInfo(result);
4865
4866 colorizer.bold(result);
4867 result.append("Sync configuration: ");
4868 colorizer.reset(result);
4869 result.append(SyncFeatures::getInstance().toString());
4870 result.append("\n\n");
4871
4872 colorizer.bold(result);
4873 result.append("VSYNC configuration:\n");
4874 colorizer.reset(result);
4875 dumpVSync(result);
4876 result.append("\n");
4877
4878 dumpStaticScreenStats(result);
4879 result.append("\n");
4880
4881 StringAppendF(&result, "Total missed frame count: %u\n", mFrameMissedCount.load());
4882 StringAppendF(&result, "HWC missed frame count: %u\n", mHwcFrameMissedCount.load());
4883 StringAppendF(&result, "GPU missed frame count: %u\n\n", mGpuFrameMissedCount.load());
4884
4885 dumpBufferingStats(result);
4886
4887 /*
4888 * Dump the visible layer list
4889 */
4890 colorizer.bold(result);
4891 StringAppendF(&result, "Visible layers (count = %zu)\n", mNumLayers);
4892 StringAppendF(&result, "GraphicBufferProducers: %zu, max %zu\n",
4893 mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize);
4894 colorizer.reset(result);
4895
4896 {
4897 LayersProto layersProto = dumpProtoInfo(LayerVector::StateSet::Current);
4898 auto layerTree = LayerProtoParser::generateLayerTree(layersProto);
4899 result.append(LayerProtoParser::layerTreeToString(layerTree));
4900 result.append("\n");
4901 }
4902
4903 {
4904 StringAppendF(&result, "Composition layers\n");
4905 mDrawingState.traverseInZOrder([&](Layer* layer) {
4906 auto compositionLayer = layer->getCompositionLayer();
4907 if (compositionLayer) compositionLayer->dump(result);
4908 });
4909 }
4910
4911 /*
4912 * Dump Display state
4913 */
4914
4915 colorizer.bold(result);
4916 StringAppendF(&result, "Displays (%zu entries)\n", mDisplays.size());
4917 colorizer.reset(result);
4918 for (const auto& [token, display] : mDisplays) {
4919 display->dump(result);
4920 }
4921 result.append("\n");
4922
4923 /*
4924 * Dump SurfaceFlinger global state
4925 */
4926
4927 colorizer.bold(result);
4928 result.append("SurfaceFlinger global state:\n");
4929 colorizer.reset(result);
4930
4931 getRenderEngine().dump(result);
4932
4933 if (const auto display = getDefaultDisplayDeviceLocked()) {
4934 display->getCompositionDisplay()->getState().undefinedRegion.dump(result,
4935 "undefinedRegion");
4936 StringAppendF(&result, " orientation=%d, isPoweredOn=%d\n", display->getOrientation(),
4937 display->isPoweredOn());
4938 }
4939 StringAppendF(&result,
4940 " transaction-flags : %08x\n"
4941 " gpu_to_cpu_unsupported : %d\n",
4942 mTransactionFlags.load(), !mGpuToCpuSupported);
4943
4944 if (const auto displayId = getInternalDisplayIdLocked();
4945 displayId && getHwComposer().isConnected(*displayId)) {
4946 const auto activeConfig = getHwComposer().getActiveConfig(*displayId);
4947 StringAppendF(&result,
4948 " refresh-rate : %f fps\n"
4949 " x-dpi : %f\n"
4950 " y-dpi : %f\n",
4951 1e9 / activeConfig->getVsyncPeriod(), activeConfig->getDpiX(),
4952 activeConfig->getDpiY());
4953 }
4954
4955 StringAppendF(&result, " transaction time: %f us\n", inTransactionDuration / 1000.0);
4956
4957 /*
4958 * Tracing state
4959 */
4960 mTracing.dump(result);
4961 result.append("\n");
4962
4963 /*
4964 * HWC layer minidump
4965 */
4966 for (const auto& [token, display] : mDisplays) {
4967 const auto displayId = display->getId();
4968 if (!displayId) {
4969 continue;
4970 }
4971
4972 StringAppendF(&result, "Display %s HWC layers:\n", to_string(*displayId).c_str());
4973 Layer::miniDumpHeader(result);
4974 const sp<DisplayDevice> displayDevice = display;
4975 mCurrentState.traverseInZOrder(
4976 [&](Layer* layer) { layer->miniDump(result, displayDevice); });
4977 result.append("\n");
4978 }
4979
4980 /*
4981 * Dump HWComposer state
4982 */
4983 colorizer.bold(result);
4984 result.append("h/w composer state:\n");
4985 colorizer.reset(result);
4986 bool hwcDisabled = mDebugDisableHWC || mDebugRegion;
4987 StringAppendF(&result, " h/w composer %s\n", hwcDisabled ? "disabled" : "enabled");
4988 getHwComposer().dump(result);
4989
4990 /*
4991 * Dump gralloc state
4992 */
4993 const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
4994 alloc.dump(result);
4995
4996 /*
4997 * Dump VrFlinger state if in use.
4998 */
4999 if (mVrFlingerRequestsDisplay && mVrFlinger) {
5000 result.append("VrFlinger state:\n");
5001 result.append(mVrFlinger->Dump());
5002 result.append("\n");
5003 }
5004
5005 /**
5006 * Scheduler dump state.
5007 */
5008 result.append("\nScheduler state:\n");
5009 result.append(mScheduler->doDump() + "\n");
5010 StringAppendF(&result, "+ Smart video mode: %s\n\n", mUseSmart90ForVideo ? "on" : "off");
5011 result.append(mRefreshRateStats.doDump() + "\n");
5012
5013 result.append(mTimeStats->miniDump());
5014 result.append("\n");
5015 }
5016
getLayerSortedByZForHwcDisplay(DisplayId displayId)5017 const Vector<sp<Layer>>& SurfaceFlinger::getLayerSortedByZForHwcDisplay(DisplayId displayId) {
5018 // Note: mStateLock is held here
5019 for (const auto& [token, display] : mDisplays) {
5020 if (display->getId() == displayId) {
5021 return getDisplayDeviceLocked(token)->getVisibleLayersSortedByZ();
5022 }
5023 }
5024
5025 ALOGE("%s: Invalid display %s", __FUNCTION__, to_string(displayId).c_str());
5026 static const Vector<sp<Layer>> empty;
5027 return empty;
5028 }
5029
updateColorMatrixLocked()5030 void SurfaceFlinger::updateColorMatrixLocked() {
5031 mat4 colorMatrix;
5032 if (mGlobalSaturationFactor != 1.0f) {
5033 // Rec.709 luma coefficients
5034 float3 luminance{0.213f, 0.715f, 0.072f};
5035 luminance *= 1.0f - mGlobalSaturationFactor;
5036 mat4 saturationMatrix = mat4(
5037 vec4{luminance.r + mGlobalSaturationFactor, luminance.r, luminance.r, 0.0f},
5038 vec4{luminance.g, luminance.g + mGlobalSaturationFactor, luminance.g, 0.0f},
5039 vec4{luminance.b, luminance.b, luminance.b + mGlobalSaturationFactor, 0.0f},
5040 vec4{0.0f, 0.0f, 0.0f, 1.0f}
5041 );
5042 colorMatrix = mClientColorMatrix * saturationMatrix * mDaltonizer();
5043 } else {
5044 colorMatrix = mClientColorMatrix * mDaltonizer();
5045 }
5046
5047 if (mCurrentState.colorMatrix != colorMatrix) {
5048 mCurrentState.colorMatrix = colorMatrix;
5049 mCurrentState.colorMatrixChanged = true;
5050 setTransactionFlags(eTransactionNeeded);
5051 }
5052 }
5053
CheckTransactCodeCredentials(uint32_t code)5054 status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) {
5055 #pragma clang diagnostic push
5056 #pragma clang diagnostic error "-Wswitch-enum"
5057 switch (static_cast<ISurfaceComposerTag>(code)) {
5058 // These methods should at minimum make sure that the client requested
5059 // access to SF.
5060 case BOOT_FINISHED:
5061 case CLEAR_ANIMATION_FRAME_STATS:
5062 case CREATE_DISPLAY:
5063 case DESTROY_DISPLAY:
5064 case ENABLE_VSYNC_INJECTIONS:
5065 case GET_ANIMATION_FRAME_STATS:
5066 case GET_HDR_CAPABILITIES:
5067 case SET_ACTIVE_CONFIG:
5068 case SET_ALLOWED_DISPLAY_CONFIGS:
5069 case GET_ALLOWED_DISPLAY_CONFIGS:
5070 case SET_ACTIVE_COLOR_MODE:
5071 case INJECT_VSYNC:
5072 case SET_POWER_MODE:
5073 case GET_DISPLAYED_CONTENT_SAMPLING_ATTRIBUTES:
5074 case SET_DISPLAY_CONTENT_SAMPLING_ENABLED:
5075 case GET_DISPLAYED_CONTENT_SAMPLE:
5076 case NOTIFY_POWER_HINT: {
5077 if (!callingThreadHasUnscopedSurfaceFlingerAccess()) {
5078 IPCThreadState* ipc = IPCThreadState::self();
5079 ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d",
5080 ipc->getCallingPid(), ipc->getCallingUid());
5081 return PERMISSION_DENIED;
5082 }
5083 return OK;
5084 }
5085 case GET_LAYER_DEBUG_INFO: {
5086 IPCThreadState* ipc = IPCThreadState::self();
5087 const int pid = ipc->getCallingPid();
5088 const int uid = ipc->getCallingUid();
5089 if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) {
5090 ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid);
5091 return PERMISSION_DENIED;
5092 }
5093 return OK;
5094 }
5095 // Used by apps to hook Choreographer to SurfaceFlinger.
5096 case CREATE_DISPLAY_EVENT_CONNECTION:
5097 // The following calls are currently used by clients that do not
5098 // request necessary permissions. However, they do not expose any secret
5099 // information, so it is OK to pass them.
5100 case AUTHENTICATE_SURFACE:
5101 case GET_ACTIVE_COLOR_MODE:
5102 case GET_ACTIVE_CONFIG:
5103 case GET_PHYSICAL_DISPLAY_IDS:
5104 case GET_PHYSICAL_DISPLAY_TOKEN:
5105 case GET_DISPLAY_COLOR_MODES:
5106 case GET_DISPLAY_NATIVE_PRIMARIES:
5107 case GET_DISPLAY_CONFIGS:
5108 case GET_DISPLAY_STATS:
5109 case GET_SUPPORTED_FRAME_TIMESTAMPS:
5110 // Calling setTransactionState is safe, because you need to have been
5111 // granted a reference to Client* and Handle* to do anything with it.
5112 case SET_TRANSACTION_STATE:
5113 case CREATE_CONNECTION:
5114 case GET_COLOR_MANAGEMENT:
5115 case GET_COMPOSITION_PREFERENCE:
5116 case GET_PROTECTED_CONTENT_SUPPORT:
5117 case IS_WIDE_COLOR_DISPLAY:
5118 case GET_DISPLAY_BRIGHTNESS_SUPPORT:
5119 case SET_DISPLAY_BRIGHTNESS: {
5120 return OK;
5121 }
5122 case CAPTURE_LAYERS:
5123 case CAPTURE_SCREEN:
5124 case ADD_REGION_SAMPLING_LISTENER:
5125 case REMOVE_REGION_SAMPLING_LISTENER: {
5126 // codes that require permission check
5127 IPCThreadState* ipc = IPCThreadState::self();
5128 const int pid = ipc->getCallingPid();
5129 const int uid = ipc->getCallingUid();
5130 if ((uid != AID_GRAPHICS) &&
5131 !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
5132 ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid);
5133 return PERMISSION_DENIED;
5134 }
5135 return OK;
5136 }
5137 // The following codes are deprecated and should never be allowed to access SF.
5138 case CONNECT_DISPLAY_UNUSED:
5139 case CREATE_GRAPHIC_BUFFER_ALLOC_UNUSED: {
5140 ALOGE("Attempting to access SurfaceFlinger with unused code: %u", code);
5141 return PERMISSION_DENIED;
5142 }
5143 case CAPTURE_SCREEN_BY_ID: {
5144 IPCThreadState* ipc = IPCThreadState::self();
5145 const int uid = ipc->getCallingUid();
5146 if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) {
5147 return OK;
5148 }
5149 return PERMISSION_DENIED;
5150 }
5151 }
5152
5153 // These codes are used for the IBinder protocol to either interrogate the recipient
5154 // side of the transaction for its canonical interface descriptor or to dump its state.
5155 // We let them pass by default.
5156 if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION ||
5157 code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION ||
5158 code == IBinder::SYSPROPS_TRANSACTION) {
5159 return OK;
5160 }
5161 // Numbers from 1000 to 1034 are currently used for backdoors. The code
5162 // in onTransact verifies that the user is root, and has access to use SF.
5163 if (code >= 1000 && code <= 1035) {
5164 ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code);
5165 return OK;
5166 }
5167 ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code);
5168 return PERMISSION_DENIED;
5169 #pragma clang diagnostic pop
5170 }
5171
onTransact(uint32_t code,const Parcel & data,Parcel * reply,uint32_t flags)5172 status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply,
5173 uint32_t flags) {
5174 status_t credentialCheck = CheckTransactCodeCredentials(code);
5175 if (credentialCheck != OK) {
5176 return credentialCheck;
5177 }
5178
5179 status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
5180 if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
5181 CHECK_INTERFACE(ISurfaceComposer, data, reply);
5182 IPCThreadState* ipc = IPCThreadState::self();
5183 const int uid = ipc->getCallingUid();
5184 if (CC_UNLIKELY(uid != AID_SYSTEM
5185 && !PermissionCache::checkCallingPermission(sHardwareTest))) {
5186 const int pid = ipc->getCallingPid();
5187 ALOGE("Permission Denial: "
5188 "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
5189 return PERMISSION_DENIED;
5190 }
5191 int n;
5192 switch (code) {
5193 case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
5194 case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
5195 return NO_ERROR;
5196 case 1002: // SHOW_UPDATES
5197 n = data.readInt32();
5198 mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
5199 invalidateHwcGeometry();
5200 repaintEverything();
5201 return NO_ERROR;
5202 case 1004:{ // repaint everything
5203 repaintEverything();
5204 return NO_ERROR;
5205 }
5206 case 1005:{ // force transaction
5207 Mutex::Autolock _l(mStateLock);
5208 setTransactionFlags(
5209 eTransactionNeeded|
5210 eDisplayTransactionNeeded|
5211 eTraversalNeeded);
5212 return NO_ERROR;
5213 }
5214 case 1006:{ // send empty update
5215 signalRefresh();
5216 return NO_ERROR;
5217 }
5218 case 1008: // toggle use of hw composer
5219 n = data.readInt32();
5220 mDebugDisableHWC = n != 0;
5221 invalidateHwcGeometry();
5222 repaintEverything();
5223 return NO_ERROR;
5224 case 1009: // toggle use of transform hint
5225 n = data.readInt32();
5226 mDebugDisableTransformHint = n != 0;
5227 invalidateHwcGeometry();
5228 repaintEverything();
5229 return NO_ERROR;
5230 case 1010: // interrogate.
5231 reply->writeInt32(0);
5232 reply->writeInt32(0);
5233 reply->writeInt32(mDebugRegion);
5234 reply->writeInt32(0);
5235 reply->writeInt32(mDebugDisableHWC);
5236 return NO_ERROR;
5237 case 1013: {
5238 const auto display = getDefaultDisplayDevice();
5239 if (!display) {
5240 return NAME_NOT_FOUND;
5241 }
5242
5243 reply->writeInt32(display->getPageFlipCount());
5244 return NO_ERROR;
5245 }
5246 case 1014: {
5247 Mutex::Autolock _l(mStateLock);
5248 // daltonize
5249 n = data.readInt32();
5250 switch (n % 10) {
5251 case 1:
5252 mDaltonizer.setType(ColorBlindnessType::Protanomaly);
5253 break;
5254 case 2:
5255 mDaltonizer.setType(ColorBlindnessType::Deuteranomaly);
5256 break;
5257 case 3:
5258 mDaltonizer.setType(ColorBlindnessType::Tritanomaly);
5259 break;
5260 default:
5261 mDaltonizer.setType(ColorBlindnessType::None);
5262 break;
5263 }
5264 if (n >= 10) {
5265 mDaltonizer.setMode(ColorBlindnessMode::Correction);
5266 } else {
5267 mDaltonizer.setMode(ColorBlindnessMode::Simulation);
5268 }
5269
5270 updateColorMatrixLocked();
5271 return NO_ERROR;
5272 }
5273 case 1015: {
5274 Mutex::Autolock _l(mStateLock);
5275 // apply a color matrix
5276 n = data.readInt32();
5277 if (n) {
5278 // color matrix is sent as a column-major mat4 matrix
5279 for (size_t i = 0 ; i < 4; i++) {
5280 for (size_t j = 0; j < 4; j++) {
5281 mClientColorMatrix[i][j] = data.readFloat();
5282 }
5283 }
5284 } else {
5285 mClientColorMatrix = mat4();
5286 }
5287
5288 // Check that supplied matrix's last row is {0,0,0,1} so we can avoid
5289 // the division by w in the fragment shader
5290 float4 lastRow(transpose(mClientColorMatrix)[3]);
5291 if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) {
5292 ALOGE("The color transform's last row must be (0, 0, 0, 1)");
5293 }
5294
5295 updateColorMatrixLocked();
5296 return NO_ERROR;
5297 }
5298 // This is an experimental interface
5299 // Needs to be shifted to proper binder interface when we productize
5300 case 1016: {
5301 n = data.readInt32();
5302 // TODO(b/113612090): Evaluate if this can be removed.
5303 mScheduler->setRefreshSkipCount(n);
5304 return NO_ERROR;
5305 }
5306 case 1017: {
5307 n = data.readInt32();
5308 mForceFullDamage = n != 0;
5309 return NO_ERROR;
5310 }
5311 case 1018: { // Modify Choreographer's phase offset
5312 n = data.readInt32();
5313 mScheduler->setPhaseOffset(mAppConnectionHandle, static_cast<nsecs_t>(n));
5314 return NO_ERROR;
5315 }
5316 case 1019: { // Modify SurfaceFlinger's phase offset
5317 n = data.readInt32();
5318 mScheduler->setPhaseOffset(mSfConnectionHandle, static_cast<nsecs_t>(n));
5319 return NO_ERROR;
5320 }
5321 case 1020: { // Layer updates interceptor
5322 n = data.readInt32();
5323 if (n) {
5324 ALOGV("Interceptor enabled");
5325 mInterceptor->enable(mDrawingState.layersSortedByZ, mDrawingState.displays);
5326 }
5327 else{
5328 ALOGV("Interceptor disabled");
5329 mInterceptor->disable();
5330 }
5331 return NO_ERROR;
5332 }
5333 case 1021: { // Disable HWC virtual displays
5334 n = data.readInt32();
5335 mUseHwcVirtualDisplays = !n;
5336 return NO_ERROR;
5337 }
5338 case 1022: { // Set saturation boost
5339 Mutex::Autolock _l(mStateLock);
5340 mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f));
5341
5342 updateColorMatrixLocked();
5343 return NO_ERROR;
5344 }
5345 case 1023: { // Set native mode
5346 mDisplayColorSetting = static_cast<DisplayColorSetting>(data.readInt32());
5347 invalidateHwcGeometry();
5348 repaintEverything();
5349 return NO_ERROR;
5350 }
5351 // Deprecate, use 1030 to check whether the device is color managed.
5352 case 1024: {
5353 return NAME_NOT_FOUND;
5354 }
5355 case 1025: { // Set layer tracing
5356 n = data.readInt32();
5357 if (n) {
5358 ALOGD("LayerTracing enabled");
5359 Mutex::Autolock lock(mStateLock);
5360 mTracingEnabledChanged = true;
5361 mTracing.enable();
5362 reply->writeInt32(NO_ERROR);
5363 } else {
5364 ALOGD("LayerTracing disabled");
5365 bool writeFile = false;
5366 {
5367 Mutex::Autolock lock(mStateLock);
5368 mTracingEnabledChanged = true;
5369 writeFile = mTracing.disable();
5370 }
5371
5372 if (writeFile) {
5373 reply->writeInt32(mTracing.writeToFile());
5374 } else {
5375 reply->writeInt32(NO_ERROR);
5376 }
5377 }
5378 return NO_ERROR;
5379 }
5380 case 1026: { // Get layer tracing status
5381 reply->writeBool(mTracing.isEnabled());
5382 return NO_ERROR;
5383 }
5384 // Is a DisplayColorSetting supported?
5385 case 1027: {
5386 const auto display = getDefaultDisplayDevice();
5387 if (!display) {
5388 return NAME_NOT_FOUND;
5389 }
5390
5391 DisplayColorSetting setting = static_cast<DisplayColorSetting>(data.readInt32());
5392 switch (setting) {
5393 case DisplayColorSetting::MANAGED:
5394 reply->writeBool(useColorManagement);
5395 break;
5396 case DisplayColorSetting::UNMANAGED:
5397 reply->writeBool(true);
5398 break;
5399 case DisplayColorSetting::ENHANCED:
5400 reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE));
5401 break;
5402 default: // vendor display color setting
5403 reply->writeBool(
5404 display->hasRenderIntent(static_cast<RenderIntent>(setting)));
5405 break;
5406 }
5407 return NO_ERROR;
5408 }
5409 // Is VrFlinger active?
5410 case 1028: {
5411 Mutex::Autolock _l(mStateLock);
5412 reply->writeBool(getHwComposer().isUsingVrComposer());
5413 return NO_ERROR;
5414 }
5415 // Set buffer size for SF tracing (value in KB)
5416 case 1029: {
5417 n = data.readInt32();
5418 if (n <= 0 || n > MAX_TRACING_MEMORY) {
5419 ALOGW("Invalid buffer size: %d KB", n);
5420 reply->writeInt32(BAD_VALUE);
5421 return BAD_VALUE;
5422 }
5423
5424 ALOGD("Updating trace buffer to %d KB", n);
5425 mTracing.setBufferSize(n * 1024);
5426 reply->writeInt32(NO_ERROR);
5427 return NO_ERROR;
5428 }
5429 // Is device color managed?
5430 case 1030: {
5431 reply->writeBool(useColorManagement);
5432 return NO_ERROR;
5433 }
5434 // Override default composition data space
5435 // adb shell service call SurfaceFlinger 1031 i32 1 DATASPACE_NUMBER DATASPACE_NUMBER \
5436 // && adb shell stop zygote && adb shell start zygote
5437 // to restore: adb shell service call SurfaceFlinger 1031 i32 0 && \
5438 // adb shell stop zygote && adb shell start zygote
5439 case 1031: {
5440 Mutex::Autolock _l(mStateLock);
5441 n = data.readInt32();
5442 if (n) {
5443 n = data.readInt32();
5444 if (n) {
5445 Dataspace dataspace = static_cast<Dataspace>(n);
5446 if (!validateCompositionDataspace(dataspace)) {
5447 return BAD_VALUE;
5448 }
5449 mDefaultCompositionDataspace = dataspace;
5450 }
5451 n = data.readInt32();
5452 if (n) {
5453 Dataspace dataspace = static_cast<Dataspace>(n);
5454 if (!validateCompositionDataspace(dataspace)) {
5455 return BAD_VALUE;
5456 }
5457 mWideColorGamutCompositionDataspace = dataspace;
5458 }
5459 } else {
5460 // restore composition data space.
5461 mDefaultCompositionDataspace = defaultCompositionDataspace;
5462 mWideColorGamutCompositionDataspace = wideColorGamutCompositionDataspace;
5463 }
5464 return NO_ERROR;
5465 }
5466 // Set trace flags
5467 case 1033: {
5468 n = data.readUint32();
5469 ALOGD("Updating trace flags to 0x%x", n);
5470 mTracing.setTraceFlags(n);
5471 reply->writeInt32(NO_ERROR);
5472 return NO_ERROR;
5473 }
5474 case 1034: {
5475 // TODO(b/129297325): expose this via developer menu option
5476 n = data.readInt32();
5477 if (n && !mRefreshRateOverlay) {
5478 RefreshRateType type;
5479 {
5480 std::lock_guard<std::mutex> lock(mActiveConfigLock);
5481 type = mDesiredActiveConfig.type;
5482 }
5483 mRefreshRateOverlay = std::make_unique<RefreshRateOverlay>(*this);
5484 mRefreshRateOverlay->changeRefreshRate(type);
5485 } else if (!n) {
5486 mRefreshRateOverlay.reset();
5487 }
5488 return NO_ERROR;
5489 }
5490 case 1035: {
5491 n = data.readInt32();
5492 mDebugDisplayConfigSetByBackdoor = false;
5493 if (n >= 0) {
5494 const auto displayToken = getInternalDisplayToken();
5495 status_t result = setAllowedDisplayConfigs(displayToken, {n});
5496 if (result != NO_ERROR) {
5497 return result;
5498 }
5499 mDebugDisplayConfigSetByBackdoor = true;
5500 }
5501 return NO_ERROR;
5502 }
5503 }
5504 }
5505 return err;
5506 }
5507
repaintEverything()5508 void SurfaceFlinger::repaintEverything() {
5509 mRepaintEverything = true;
5510 signalTransaction();
5511 }
5512
repaintEverythingForHWC()5513 void SurfaceFlinger::repaintEverythingForHWC() {
5514 mRepaintEverything = true;
5515 mEventQueue->invalidate();
5516 }
5517
5518 // A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope
5519 class WindowDisconnector {
5520 public:
WindowDisconnector(ANativeWindow * window,int api)5521 WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {}
~WindowDisconnector()5522 ~WindowDisconnector() {
5523 native_window_api_disconnect(mWindow, mApi);
5524 }
5525
5526 private:
5527 ANativeWindow* mWindow;
5528 const int mApi;
5529 };
5530
captureScreen(const sp<IBinder> & displayToken,sp<GraphicBuffer> * outBuffer,bool & outCapturedSecureLayers,const Dataspace reqDataspace,const ui::PixelFormat reqPixelFormat,Rect sourceCrop,uint32_t reqWidth,uint32_t reqHeight,bool useIdentityTransform,ISurfaceComposer::Rotation rotation,bool captureSecureLayers)5531 status_t SurfaceFlinger::captureScreen(const sp<IBinder>& displayToken,
5532 sp<GraphicBuffer>* outBuffer, bool& outCapturedSecureLayers,
5533 const Dataspace reqDataspace,
5534 const ui::PixelFormat reqPixelFormat, Rect sourceCrop,
5535 uint32_t reqWidth, uint32_t reqHeight,
5536 bool useIdentityTransform,
5537 ISurfaceComposer::Rotation rotation,
5538 bool captureSecureLayers) {
5539 ATRACE_CALL();
5540
5541 if (!displayToken) return BAD_VALUE;
5542
5543 auto renderAreaRotation = fromSurfaceComposerRotation(rotation);
5544
5545 sp<DisplayDevice> display;
5546 {
5547 Mutex::Autolock _l(mStateLock);
5548
5549 display = getDisplayDeviceLocked(displayToken);
5550 if (!display) return BAD_VALUE;
5551
5552 // set the requested width/height to the logical display viewport size
5553 // by default
5554 if (reqWidth == 0 || reqHeight == 0) {
5555 reqWidth = uint32_t(display->getViewport().width());
5556 reqHeight = uint32_t(display->getViewport().height());
5557 }
5558 }
5559
5560 DisplayRenderArea renderArea(display, sourceCrop, reqWidth, reqHeight, reqDataspace,
5561 renderAreaRotation, captureSecureLayers);
5562
5563 auto traverseLayers = std::bind(&SurfaceFlinger::traverseLayersInDisplay, this, display,
5564 std::placeholders::_1);
5565 return captureScreenCommon(renderArea, traverseLayers, outBuffer, reqPixelFormat,
5566 useIdentityTransform, outCapturedSecureLayers);
5567 }
5568
pickDataspaceFromColorMode(const ColorMode colorMode)5569 static Dataspace pickDataspaceFromColorMode(const ColorMode colorMode) {
5570 switch (colorMode) {
5571 case ColorMode::DISPLAY_P3:
5572 case ColorMode::BT2100_PQ:
5573 case ColorMode::BT2100_HLG:
5574 case ColorMode::DISPLAY_BT2020:
5575 return Dataspace::DISPLAY_P3;
5576 default:
5577 return Dataspace::V0_SRGB;
5578 }
5579 }
5580
getDisplayByIdOrLayerStack(uint64_t displayOrLayerStack)5581 const sp<DisplayDevice> SurfaceFlinger::getDisplayByIdOrLayerStack(uint64_t displayOrLayerStack) {
5582 const sp<IBinder> displayToken = getPhysicalDisplayTokenLocked(DisplayId{displayOrLayerStack});
5583 if (displayToken) {
5584 return getDisplayDeviceLocked(displayToken);
5585 }
5586 // Couldn't find display by displayId. Try to get display by layerStack since virtual displays
5587 // may not have a displayId.
5588 for (const auto& [token, display] : mDisplays) {
5589 if (display->getLayerStack() == displayOrLayerStack) {
5590 return display;
5591 }
5592 }
5593 return nullptr;
5594 }
5595
captureScreen(uint64_t displayOrLayerStack,Dataspace * outDataspace,sp<GraphicBuffer> * outBuffer)5596 status_t SurfaceFlinger::captureScreen(uint64_t displayOrLayerStack, Dataspace* outDataspace,
5597 sp<GraphicBuffer>* outBuffer) {
5598 sp<DisplayDevice> display;
5599 uint32_t width;
5600 uint32_t height;
5601 ui::Transform::orientation_flags captureOrientation;
5602 {
5603 Mutex::Autolock _l(mStateLock);
5604 display = getDisplayByIdOrLayerStack(displayOrLayerStack);
5605 if (!display) {
5606 return BAD_VALUE;
5607 }
5608
5609 width = uint32_t(display->getViewport().width());
5610 height = uint32_t(display->getViewport().height());
5611
5612 captureOrientation = fromSurfaceComposerRotation(
5613 static_cast<ISurfaceComposer::Rotation>(display->getOrientation()));
5614 if (captureOrientation == ui::Transform::orientation_flags::ROT_90) {
5615 captureOrientation = ui::Transform::orientation_flags::ROT_270;
5616 } else if (captureOrientation == ui::Transform::orientation_flags::ROT_270) {
5617 captureOrientation = ui::Transform::orientation_flags::ROT_90;
5618 }
5619 *outDataspace =
5620 pickDataspaceFromColorMode(display->getCompositionDisplay()->getState().colorMode);
5621 }
5622
5623 DisplayRenderArea renderArea(display, Rect(), width, height, *outDataspace, captureOrientation,
5624 false /* captureSecureLayers */);
5625
5626 auto traverseLayers = std::bind(&SurfaceFlinger::traverseLayersInDisplay, this, display,
5627 std::placeholders::_1);
5628 bool ignored = false;
5629 return captureScreenCommon(renderArea, traverseLayers, outBuffer, ui::PixelFormat::RGBA_8888,
5630 false /* useIdentityTransform */,
5631 ignored /* outCapturedSecureLayers */);
5632 }
5633
captureLayers(const sp<IBinder> & layerHandleBinder,sp<GraphicBuffer> * outBuffer,const Dataspace reqDataspace,const ui::PixelFormat reqPixelFormat,const Rect & sourceCrop,const std::unordered_set<sp<IBinder>,ISurfaceComposer::SpHash<IBinder>> & excludeHandles,float frameScale,bool childrenOnly)5634 status_t SurfaceFlinger::captureLayers(
5635 const sp<IBinder>& layerHandleBinder, sp<GraphicBuffer>* outBuffer,
5636 const Dataspace reqDataspace, const ui::PixelFormat reqPixelFormat, const Rect& sourceCrop,
5637 const std::unordered_set<sp<IBinder>, ISurfaceComposer::SpHash<IBinder>>& excludeHandles,
5638 float frameScale, bool childrenOnly) {
5639 ATRACE_CALL();
5640
5641 class LayerRenderArea : public RenderArea {
5642 public:
5643 LayerRenderArea(SurfaceFlinger* flinger, const sp<Layer>& layer, const Rect crop,
5644 int32_t reqWidth, int32_t reqHeight, Dataspace reqDataSpace,
5645 bool childrenOnly)
5646 : RenderArea(reqWidth, reqHeight, CaptureFill::CLEAR, reqDataSpace),
5647 mLayer(layer),
5648 mCrop(crop),
5649 mNeedsFiltering(false),
5650 mFlinger(flinger),
5651 mChildrenOnly(childrenOnly) {}
5652 const ui::Transform& getTransform() const override { return mTransform; }
5653 Rect getBounds() const override {
5654 const Layer::State& layerState(mLayer->getDrawingState());
5655 return mLayer->getBufferSize(layerState);
5656 }
5657 int getHeight() const override {
5658 return mLayer->getBufferSize(mLayer->getDrawingState()).getHeight();
5659 }
5660 int getWidth() const override {
5661 return mLayer->getBufferSize(mLayer->getDrawingState()).getWidth();
5662 }
5663 bool isSecure() const override { return false; }
5664 bool needsFiltering() const override { return mNeedsFiltering; }
5665 const sp<const DisplayDevice> getDisplayDevice() const override { return nullptr; }
5666 Rect getSourceCrop() const override {
5667 if (mCrop.isEmpty()) {
5668 return getBounds();
5669 } else {
5670 return mCrop;
5671 }
5672 }
5673 class ReparentForDrawing {
5674 public:
5675 const sp<Layer>& oldParent;
5676 const sp<Layer>& newParent;
5677
5678 ReparentForDrawing(const sp<Layer>& oldParent, const sp<Layer>& newParent,
5679 const Rect& drawingBounds)
5680 : oldParent(oldParent), newParent(newParent) {
5681 // Compute and cache the bounds for the new parent layer.
5682 newParent->computeBounds(drawingBounds.toFloatRect(), ui::Transform());
5683 oldParent->setChildrenDrawingParent(newParent);
5684 }
5685 ~ReparentForDrawing() { oldParent->setChildrenDrawingParent(oldParent); }
5686 };
5687
5688 void render(std::function<void()> drawLayers) override {
5689 const Rect sourceCrop = getSourceCrop();
5690 // no need to check rotation because there is none
5691 mNeedsFiltering = sourceCrop.width() != getReqWidth() ||
5692 sourceCrop.height() != getReqHeight();
5693
5694 if (!mChildrenOnly) {
5695 mTransform = mLayer->getTransform().inverse();
5696 drawLayers();
5697 } else {
5698 Rect bounds = getBounds();
5699 screenshotParentLayer = mFlinger->getFactory().createContainerLayer(
5700 LayerCreationArgs(mFlinger, nullptr, String8("Screenshot Parent"),
5701 bounds.getWidth(), bounds.getHeight(), 0,
5702 LayerMetadata()));
5703
5704 ReparentForDrawing reparent(mLayer, screenshotParentLayer, sourceCrop);
5705 drawLayers();
5706 }
5707 }
5708
5709 private:
5710 const sp<Layer> mLayer;
5711 const Rect mCrop;
5712
5713 // In the "childrenOnly" case we reparent the children to a screenshot
5714 // layer which has no properties set and which does not draw.
5715 sp<ContainerLayer> screenshotParentLayer;
5716 ui::Transform mTransform;
5717 bool mNeedsFiltering;
5718
5719 SurfaceFlinger* mFlinger;
5720 const bool mChildrenOnly;
5721 };
5722
5723 int reqWidth = 0;
5724 int reqHeight = 0;
5725 sp<Layer> parent;
5726 Rect crop(sourceCrop);
5727 std::unordered_set<sp<Layer>, ISurfaceComposer::SpHash<Layer>> excludeLayers;
5728
5729 {
5730 Mutex::Autolock _l(mStateLock);
5731
5732 parent = fromHandle(layerHandleBinder);
5733 if (parent == nullptr || parent->isRemovedFromCurrentState()) {
5734 ALOGE("captureLayers called with an invalid or removed parent");
5735 return NAME_NOT_FOUND;
5736 }
5737
5738 const int uid = IPCThreadState::self()->getCallingUid();
5739 const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM;
5740 if (!forSystem && parent->getCurrentState().flags & layer_state_t::eLayerSecure) {
5741 ALOGW("Attempting to capture secure layer: PERMISSION_DENIED");
5742 return PERMISSION_DENIED;
5743 }
5744
5745 if (sourceCrop.width() <= 0) {
5746 crop.left = 0;
5747 crop.right = parent->getBufferSize(parent->getCurrentState()).getWidth();
5748 }
5749
5750 if (sourceCrop.height() <= 0) {
5751 crop.top = 0;
5752 crop.bottom = parent->getBufferSize(parent->getCurrentState()).getHeight();
5753 }
5754 reqWidth = crop.width() * frameScale;
5755 reqHeight = crop.height() * frameScale;
5756
5757 for (const auto& handle : excludeHandles) {
5758 sp<Layer> excludeLayer = fromHandle(handle);
5759 if (excludeLayer != nullptr) {
5760 excludeLayers.emplace(excludeLayer);
5761 } else {
5762 ALOGW("Invalid layer handle passed as excludeLayer to captureLayers");
5763 return NAME_NOT_FOUND;
5764 }
5765 }
5766 } // mStateLock
5767
5768 // really small crop or frameScale
5769 if (reqWidth <= 0) {
5770 reqWidth = 1;
5771 }
5772 if (reqHeight <= 0) {
5773 reqHeight = 1;
5774 }
5775
5776 LayerRenderArea renderArea(this, parent, crop, reqWidth, reqHeight, reqDataspace, childrenOnly);
5777 auto traverseLayers = [parent, childrenOnly,
5778 &excludeLayers](const LayerVector::Visitor& visitor) {
5779 parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
5780 if (!layer->isVisible()) {
5781 return;
5782 } else if (childrenOnly && layer == parent.get()) {
5783 return;
5784 }
5785
5786 sp<Layer> p = layer;
5787 while (p != nullptr) {
5788 if (excludeLayers.count(p) != 0) {
5789 return;
5790 }
5791 p = p->getParent();
5792 }
5793
5794 visitor(layer);
5795 });
5796 };
5797
5798 bool outCapturedSecureLayers = false;
5799 return captureScreenCommon(renderArea, traverseLayers, outBuffer, reqPixelFormat, false,
5800 outCapturedSecureLayers);
5801 }
5802
captureScreenCommon(RenderArea & renderArea,TraverseLayersFunction traverseLayers,sp<GraphicBuffer> * outBuffer,const ui::PixelFormat reqPixelFormat,bool useIdentityTransform,bool & outCapturedSecureLayers)5803 status_t SurfaceFlinger::captureScreenCommon(RenderArea& renderArea,
5804 TraverseLayersFunction traverseLayers,
5805 sp<GraphicBuffer>* outBuffer,
5806 const ui::PixelFormat reqPixelFormat,
5807 bool useIdentityTransform,
5808 bool& outCapturedSecureLayers) {
5809 ATRACE_CALL();
5810
5811 // TODO(b/116112787) Make buffer usage a parameter.
5812 const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN |
5813 GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE;
5814 *outBuffer =
5815 getFactory().createGraphicBuffer(renderArea.getReqWidth(), renderArea.getReqHeight(),
5816 static_cast<android_pixel_format>(reqPixelFormat), 1,
5817 usage, "screenshot");
5818
5819 return captureScreenCommon(renderArea, traverseLayers, *outBuffer, useIdentityTransform,
5820 outCapturedSecureLayers);
5821 }
5822
captureScreenCommon(RenderArea & renderArea,TraverseLayersFunction traverseLayers,const sp<GraphicBuffer> & buffer,bool useIdentityTransform,bool & outCapturedSecureLayers)5823 status_t SurfaceFlinger::captureScreenCommon(RenderArea& renderArea,
5824 TraverseLayersFunction traverseLayers,
5825 const sp<GraphicBuffer>& buffer,
5826 bool useIdentityTransform,
5827 bool& outCapturedSecureLayers) {
5828 // This mutex protects syncFd and captureResult for communication of the return values from the
5829 // main thread back to this Binder thread
5830 std::mutex captureMutex;
5831 std::condition_variable captureCondition;
5832 std::unique_lock<std::mutex> captureLock(captureMutex);
5833 int syncFd = -1;
5834 std::optional<status_t> captureResult;
5835
5836 const int uid = IPCThreadState::self()->getCallingUid();
5837 const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM;
5838
5839 sp<LambdaMessage> message = new LambdaMessage([&] {
5840 // If there is a refresh pending, bug out early and tell the binder thread to try again
5841 // after the refresh.
5842 if (mRefreshPending) {
5843 ATRACE_NAME("Skipping screenshot for now");
5844 std::unique_lock<std::mutex> captureLock(captureMutex);
5845 captureResult = std::make_optional<status_t>(EAGAIN);
5846 captureCondition.notify_one();
5847 return;
5848 }
5849
5850 status_t result = NO_ERROR;
5851 int fd = -1;
5852 {
5853 Mutex::Autolock _l(mStateLock);
5854 renderArea.render([&] {
5855 result = captureScreenImplLocked(renderArea, traverseLayers, buffer.get(),
5856 useIdentityTransform, forSystem, &fd,
5857 outCapturedSecureLayers);
5858 });
5859 }
5860
5861 {
5862 std::unique_lock<std::mutex> captureLock(captureMutex);
5863 syncFd = fd;
5864 captureResult = std::make_optional<status_t>(result);
5865 captureCondition.notify_one();
5866 }
5867 });
5868
5869 status_t result = postMessageAsync(message);
5870 if (result == NO_ERROR) {
5871 captureCondition.wait(captureLock, [&] { return captureResult; });
5872 while (*captureResult == EAGAIN) {
5873 captureResult.reset();
5874 result = postMessageAsync(message);
5875 if (result != NO_ERROR) {
5876 return result;
5877 }
5878 captureCondition.wait(captureLock, [&] { return captureResult; });
5879 }
5880 result = *captureResult;
5881 }
5882
5883 if (result == NO_ERROR) {
5884 sync_wait(syncFd, -1);
5885 close(syncFd);
5886 }
5887
5888 return result;
5889 }
5890
renderScreenImplLocked(const RenderArea & renderArea,TraverseLayersFunction traverseLayers,ANativeWindowBuffer * buffer,bool useIdentityTransform,int * outSyncFd)5891 void SurfaceFlinger::renderScreenImplLocked(const RenderArea& renderArea,
5892 TraverseLayersFunction traverseLayers,
5893 ANativeWindowBuffer* buffer, bool useIdentityTransform,
5894 int* outSyncFd) {
5895 ATRACE_CALL();
5896
5897 const auto reqWidth = renderArea.getReqWidth();
5898 const auto reqHeight = renderArea.getReqHeight();
5899 const auto rotation = renderArea.getRotationFlags();
5900 const auto transform = renderArea.getTransform();
5901 const auto sourceCrop = renderArea.getSourceCrop();
5902
5903 renderengine::DisplaySettings clientCompositionDisplay;
5904 std::vector<renderengine::LayerSettings> clientCompositionLayers;
5905
5906 // assume that bounds are never offset, and that they are the same as the
5907 // buffer bounds.
5908 clientCompositionDisplay.physicalDisplay = Rect(reqWidth, reqHeight);
5909 clientCompositionDisplay.clip = sourceCrop;
5910 clientCompositionDisplay.globalTransform = transform.asMatrix4();
5911
5912 // Now take into account the rotation flag. We append a transform that
5913 // rotates the layer stack about the origin, then translate by buffer
5914 // boundaries to be in the right quadrant.
5915 mat4 rotMatrix;
5916 int displacementX = 0;
5917 int displacementY = 0;
5918 float rot90InRadians = 2.0f * static_cast<float>(M_PI) / 4.0f;
5919 switch (rotation) {
5920 case ui::Transform::ROT_90:
5921 rotMatrix = mat4::rotate(rot90InRadians, vec3(0, 0, 1));
5922 displacementX = renderArea.getBounds().getHeight();
5923 break;
5924 case ui::Transform::ROT_180:
5925 rotMatrix = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1));
5926 displacementY = renderArea.getBounds().getWidth();
5927 displacementX = renderArea.getBounds().getHeight();
5928 break;
5929 case ui::Transform::ROT_270:
5930 rotMatrix = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1));
5931 displacementY = renderArea.getBounds().getWidth();
5932 break;
5933 default:
5934 break;
5935 }
5936
5937 // We need to transform the clipping window into the right spot.
5938 // First, rotate the clipping rectangle by the rotation hint to get the
5939 // right orientation
5940 const vec4 clipTL = vec4(sourceCrop.left, sourceCrop.top, 0, 1);
5941 const vec4 clipBR = vec4(sourceCrop.right, sourceCrop.bottom, 0, 1);
5942 const vec4 rotClipTL = rotMatrix * clipTL;
5943 const vec4 rotClipBR = rotMatrix * clipBR;
5944 const int newClipLeft = std::min(rotClipTL[0], rotClipBR[0]);
5945 const int newClipTop = std::min(rotClipTL[1], rotClipBR[1]);
5946 const int newClipRight = std::max(rotClipTL[0], rotClipBR[0]);
5947 const int newClipBottom = std::max(rotClipTL[1], rotClipBR[1]);
5948
5949 // Now reposition the clipping rectangle with the displacement vector
5950 // computed above.
5951 const mat4 displacementMat = mat4::translate(vec4(displacementX, displacementY, 0, 1));
5952 clientCompositionDisplay.clip =
5953 Rect(newClipLeft + displacementX, newClipTop + displacementY,
5954 newClipRight + displacementX, newClipBottom + displacementY);
5955
5956 mat4 clipTransform = displacementMat * rotMatrix;
5957 clientCompositionDisplay.globalTransform =
5958 clipTransform * clientCompositionDisplay.globalTransform;
5959
5960 clientCompositionDisplay.outputDataspace = renderArea.getReqDataSpace();
5961 clientCompositionDisplay.maxLuminance = DisplayDevice::sDefaultMaxLumiance;
5962
5963 const float alpha = RenderArea::getCaptureFillValue(renderArea.getCaptureFill());
5964
5965 renderengine::LayerSettings fillLayer;
5966 fillLayer.source.buffer.buffer = nullptr;
5967 fillLayer.source.solidColor = half3(0.0, 0.0, 0.0);
5968 fillLayer.geometry.boundaries = FloatRect(0.0, 0.0, 1.0, 1.0);
5969 fillLayer.alpha = half(alpha);
5970 clientCompositionLayers.push_back(fillLayer);
5971
5972 Region clearRegion = Region::INVALID_REGION;
5973 traverseLayers([&](Layer* layer) {
5974 renderengine::LayerSettings layerSettings;
5975 bool prepared = layer->prepareClientLayer(renderArea, useIdentityTransform, clearRegion,
5976 false, layerSettings);
5977 if (prepared) {
5978 clientCompositionLayers.push_back(layerSettings);
5979 }
5980 });
5981
5982 clientCompositionDisplay.clearRegion = clearRegion;
5983 // Use an empty fence for the buffer fence, since we just created the buffer so
5984 // there is no need for synchronization with the GPU.
5985 base::unique_fd bufferFence;
5986 base::unique_fd drawFence;
5987 getRenderEngine().useProtectedContext(false);
5988 getRenderEngine().drawLayers(clientCompositionDisplay, clientCompositionLayers, buffer,
5989 /*useFramebufferCache=*/false, std::move(bufferFence), &drawFence);
5990
5991 *outSyncFd = drawFence.release();
5992 }
5993
captureScreenImplLocked(const RenderArea & renderArea,TraverseLayersFunction traverseLayers,ANativeWindowBuffer * buffer,bool useIdentityTransform,bool forSystem,int * outSyncFd,bool & outCapturedSecureLayers)5994 status_t SurfaceFlinger::captureScreenImplLocked(const RenderArea& renderArea,
5995 TraverseLayersFunction traverseLayers,
5996 ANativeWindowBuffer* buffer,
5997 bool useIdentityTransform, bool forSystem,
5998 int* outSyncFd, bool& outCapturedSecureLayers) {
5999 ATRACE_CALL();
6000
6001 traverseLayers([&](Layer* layer) {
6002 outCapturedSecureLayers =
6003 outCapturedSecureLayers || (layer->isVisible() && layer->isSecure());
6004 });
6005
6006 // We allow the system server to take screenshots of secure layers for
6007 // use in situations like the Screen-rotation animation and place
6008 // the impetus on WindowManager to not persist them.
6009 if (outCapturedSecureLayers && !forSystem) {
6010 ALOGW("FB is protected: PERMISSION_DENIED");
6011 return PERMISSION_DENIED;
6012 }
6013 renderScreenImplLocked(renderArea, traverseLayers, buffer, useIdentityTransform, outSyncFd);
6014 return NO_ERROR;
6015 }
6016
setInputWindowsFinished()6017 void SurfaceFlinger::setInputWindowsFinished() {
6018 Mutex::Autolock _l(mStateLock);
6019
6020 mPendingSyncInputWindows = false;
6021 mTransactionCV.broadcast();
6022 }
6023
6024 // ---------------------------------------------------------------------------
6025
traverseInZOrder(const LayerVector::Visitor & visitor) const6026 void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const {
6027 layersSortedByZ.traverseInZOrder(stateSet, visitor);
6028 }
6029
traverseInReverseZOrder(const LayerVector::Visitor & visitor) const6030 void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const {
6031 layersSortedByZ.traverseInReverseZOrder(stateSet, visitor);
6032 }
6033
traverseLayersInDisplay(const sp<const DisplayDevice> & display,const LayerVector::Visitor & visitor)6034 void SurfaceFlinger::traverseLayersInDisplay(const sp<const DisplayDevice>& display,
6035 const LayerVector::Visitor& visitor) {
6036 // We loop through the first level of layers without traversing,
6037 // as we need to determine which layers belong to the requested display.
6038 for (const auto& layer : mDrawingState.layersSortedByZ) {
6039 if (!layer->belongsToDisplay(display->getLayerStack(), false)) {
6040 continue;
6041 }
6042 // relative layers are traversed in Layer::traverseInZOrder
6043 layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
6044 if (!layer->belongsToDisplay(display->getLayerStack(), false)) {
6045 return;
6046 }
6047 if (!layer->isVisible()) {
6048 return;
6049 }
6050 visitor(layer);
6051 });
6052 }
6053 }
6054
setAllowedDisplayConfigsInternal(const sp<DisplayDevice> & display,const std::vector<int32_t> & allowedConfigs)6055 void SurfaceFlinger::setAllowedDisplayConfigsInternal(const sp<DisplayDevice>& display,
6056 const std::vector<int32_t>& allowedConfigs) {
6057 if (!display->isPrimary()) {
6058 return;
6059 }
6060
6061 ALOGV("Updating allowed configs");
6062 mAllowedDisplayConfigs = DisplayConfigs(allowedConfigs.begin(), allowedConfigs.end());
6063
6064 // Set the highest allowed config by iterating backwards on available refresh rates
6065 const auto& refreshRates = mRefreshRateConfigs.getRefreshRates();
6066 for (auto iter = refreshRates.crbegin(); iter != refreshRates.crend(); ++iter) {
6067 if (iter->second && isDisplayConfigAllowed(iter->second->configId)) {
6068 ALOGV("switching to config %d", iter->second->configId);
6069 setDesiredActiveConfig(
6070 {iter->first, iter->second->configId, Scheduler::ConfigEvent::Changed});
6071 break;
6072 }
6073 }
6074 }
6075
setAllowedDisplayConfigs(const sp<IBinder> & displayToken,const std::vector<int32_t> & allowedConfigs)6076 status_t SurfaceFlinger::setAllowedDisplayConfigs(const sp<IBinder>& displayToken,
6077 const std::vector<int32_t>& allowedConfigs) {
6078 ATRACE_CALL();
6079
6080 if (!displayToken || allowedConfigs.empty()) {
6081 return BAD_VALUE;
6082 }
6083
6084 if (mDebugDisplayConfigSetByBackdoor) {
6085 // ignore this request as config is overridden by backdoor
6086 return NO_ERROR;
6087 }
6088
6089 postMessageSync(new LambdaMessage([&]() NO_THREAD_SAFETY_ANALYSIS {
6090 const auto display = getDisplayDeviceLocked(displayToken);
6091 if (!display) {
6092 ALOGE("Attempt to set allowed display configs for invalid display token %p",
6093 displayToken.get());
6094 } else if (display->isVirtual()) {
6095 ALOGW("Attempt to set allowed display configs for virtual display");
6096 } else {
6097 setAllowedDisplayConfigsInternal(display, allowedConfigs);
6098 }
6099 }));
6100
6101 return NO_ERROR;
6102 }
6103
getAllowedDisplayConfigs(const sp<IBinder> & displayToken,std::vector<int32_t> * outAllowedConfigs)6104 status_t SurfaceFlinger::getAllowedDisplayConfigs(const sp<IBinder>& displayToken,
6105 std::vector<int32_t>* outAllowedConfigs) {
6106 ATRACE_CALL();
6107
6108 if (!displayToken || !outAllowedConfigs) {
6109 return BAD_VALUE;
6110 }
6111
6112 Mutex::Autolock lock(mStateLock);
6113
6114 const auto display = getDisplayDeviceLocked(displayToken);
6115 if (!display) {
6116 return NAME_NOT_FOUND;
6117 }
6118
6119 if (display->isPrimary()) {
6120 outAllowedConfigs->assign(mAllowedDisplayConfigs.begin(), mAllowedDisplayConfigs.end());
6121 }
6122
6123 return NO_ERROR;
6124 }
6125
onSetInputWindowsFinished()6126 void SurfaceFlinger::SetInputWindowsListener::onSetInputWindowsFinished() {
6127 mFlinger->setInputWindowsFinished();
6128 }
6129
fromHandle(const sp<IBinder> & handle)6130 sp<Layer> SurfaceFlinger::fromHandle(const sp<IBinder>& handle) {
6131 BBinder *b = handle->localBinder();
6132 if (b == nullptr) {
6133 return nullptr;
6134 }
6135 auto it = mLayersByLocalBinderToken.find(b);
6136 if (it != mLayersByLocalBinderToken.end()) {
6137 return it->second.promote();
6138 }
6139 return nullptr;
6140 }
6141
6142 } // namespace android
6143
6144 #if defined(__gl_h_)
6145 #error "don't include gl/gl.h in this file"
6146 #endif
6147
6148 #if defined(__gl2_h_)
6149 #error "don't include gl2/gl2.h in this file"
6150 #endif
6151