1 /**************************************************************************
2 *
3 * Copyright � 2007 Red Hat Inc.
4 * Copyright � 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30 /*
31 * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com>
32 * Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 * Eric Anholt <eric@anholt.net>
34 * Dave Airlie <airlied@linux.ie>
35 */
36
37 #include <xf86drm.h>
38 #include <xf86atomic.h>
39 #include <fcntl.h>
40 #include <stdio.h>
41 #include <stdlib.h>
42 #include <string.h>
43 #include <unistd.h>
44 #include <assert.h>
45 #include <pthread.h>
46 #include <sys/ioctl.h>
47 #include <sys/stat.h>
48 #include <sys/types.h>
49 #include <stdbool.h>
50
51 #include "errno.h"
52 #ifndef ETIME
53 #define ETIME ETIMEDOUT
54 #endif
55 #include "libdrm_macros.h"
56 #include "libdrm_lists.h"
57 #include "intel_bufmgr.h"
58 #include "intel_bufmgr_priv.h"
59 #include "intel_chipset.h"
60 #include "string.h"
61
62 #include "i915_drm.h"
63 #include "uthash.h"
64
65 #if HAVE_VALGRIND
66 #include <valgrind.h>
67 #include <memcheck.h>
68 #define VG(x) x
69 #else
70 #define VG(x)
71 #endif
72
73 #define memclear(s) memset(&s, 0, sizeof(s))
74
75 #define DBG(...) do { \
76 if (bufmgr_gem->bufmgr.debug) \
77 fprintf(stderr, __VA_ARGS__); \
78 } while (0)
79
80 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
81 #define MAX2(A, B) ((A) > (B) ? (A) : (B))
82
83 /**
84 * upper_32_bits - return bits 32-63 of a number
85 * @n: the number we're accessing
86 *
87 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
88 * the "right shift count >= width of type" warning when that quantity is
89 * 32-bits.
90 */
91 #define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16))
92
93 /**
94 * lower_32_bits - return bits 0-31 of a number
95 * @n: the number we're accessing
96 */
97 #define lower_32_bits(n) ((__u32)(n))
98
99 typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
100
101 struct drm_intel_gem_bo_bucket {
102 drmMMListHead head;
103 unsigned long size;
104 };
105
106 typedef struct _drm_intel_bufmgr_gem {
107 drm_intel_bufmgr bufmgr;
108
109 atomic_t refcount;
110
111 int fd;
112
113 int max_relocs;
114
115 pthread_mutex_t lock;
116
117 struct drm_i915_gem_exec_object *exec_objects;
118 struct drm_i915_gem_exec_object2 *exec2_objects;
119 drm_intel_bo **exec_bos;
120 int exec_size;
121 int exec_count;
122
123 /** Array of lists of cached gem objects of power-of-two sizes */
124 struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
125 int num_buckets;
126 time_t time;
127
128 drmMMListHead managers;
129
130 drm_intel_bo_gem *name_table;
131 drm_intel_bo_gem *handle_table;
132
133 drmMMListHead vma_cache;
134 int vma_count, vma_open, vma_max;
135
136 uint64_t gtt_size;
137 int available_fences;
138 int pci_device;
139 int gen;
140 unsigned int has_bsd : 1;
141 unsigned int has_blt : 1;
142 unsigned int has_relaxed_fencing : 1;
143 unsigned int has_llc : 1;
144 unsigned int has_wait_timeout : 1;
145 unsigned int bo_reuse : 1;
146 unsigned int no_exec : 1;
147 unsigned int has_vebox : 1;
148 unsigned int has_exec_async : 1;
149 bool fenced_relocs;
150
151 struct {
152 void *ptr;
153 uint32_t handle;
154 } userptr_active;
155
156 } drm_intel_bufmgr_gem;
157
158 #define DRM_INTEL_RELOC_FENCE (1<<0)
159
160 typedef struct _drm_intel_reloc_target_info {
161 drm_intel_bo *bo;
162 int flags;
163 } drm_intel_reloc_target;
164
165 struct _drm_intel_bo_gem {
166 drm_intel_bo bo;
167
168 atomic_t refcount;
169 uint32_t gem_handle;
170 const char *name;
171
172 /**
173 * Kenel-assigned global name for this object
174 *
175 * List contains both flink named and prime fd'd objects
176 */
177 unsigned int global_name;
178
179 UT_hash_handle handle_hh;
180 UT_hash_handle name_hh;
181
182 /**
183 * Index of the buffer within the validation list while preparing a
184 * batchbuffer execution.
185 */
186 int validate_index;
187
188 /**
189 * Current tiling mode
190 */
191 uint32_t tiling_mode;
192 uint32_t swizzle_mode;
193 unsigned long stride;
194
195 unsigned long kflags;
196
197 time_t free_time;
198
199 /** Array passed to the DRM containing relocation information. */
200 struct drm_i915_gem_relocation_entry *relocs;
201 /**
202 * Array of info structs corresponding to relocs[i].target_handle etc
203 */
204 drm_intel_reloc_target *reloc_target_info;
205 /** Number of entries in relocs */
206 int reloc_count;
207 /** Array of BOs that are referenced by this buffer and will be softpinned */
208 drm_intel_bo **softpin_target;
209 /** Number softpinned BOs that are referenced by this buffer */
210 int softpin_target_count;
211 /** Maximum amount of softpinned BOs that are referenced by this buffer */
212 int softpin_target_size;
213
214 /** Mapped address for the buffer, saved across map/unmap cycles */
215 void *mem_virtual;
216 /** GTT virtual address for the buffer, saved across map/unmap cycles */
217 void *gtt_virtual;
218 /** WC CPU address for the buffer, saved across map/unmap cycles */
219 void *wc_virtual;
220 /**
221 * Virtual address of the buffer allocated by user, used for userptr
222 * objects only.
223 */
224 void *user_virtual;
225 int map_count;
226 drmMMListHead vma_list;
227
228 /** BO cache list */
229 drmMMListHead head;
230
231 /**
232 * Boolean of whether this BO and its children have been included in
233 * the current drm_intel_bufmgr_check_aperture_space() total.
234 */
235 bool included_in_check_aperture;
236
237 /**
238 * Boolean of whether this buffer has been used as a relocation
239 * target and had its size accounted for, and thus can't have any
240 * further relocations added to it.
241 */
242 bool used_as_reloc_target;
243
244 /**
245 * Boolean of whether we have encountered an error whilst building the relocation tree.
246 */
247 bool has_error;
248
249 /**
250 * Boolean of whether this buffer can be re-used
251 */
252 bool reusable;
253
254 /**
255 * Boolean of whether the GPU is definitely not accessing the buffer.
256 *
257 * This is only valid when reusable, since non-reusable
258 * buffers are those that have been shared with other
259 * processes, so we don't know their state.
260 */
261 bool idle;
262
263 /**
264 * Boolean of whether this buffer was allocated with userptr
265 */
266 bool is_userptr;
267
268 /**
269 * Size in bytes of this buffer and its relocation descendents.
270 *
271 * Used to avoid costly tree walking in
272 * drm_intel_bufmgr_check_aperture in the common case.
273 */
274 int reloc_tree_size;
275
276 /**
277 * Number of potential fence registers required by this buffer and its
278 * relocations.
279 */
280 int reloc_tree_fences;
281
282 /** Flags that we may need to do the SW_FINISH ioctl on unmap. */
283 bool mapped_cpu_write;
284 };
285
286 static unsigned int
287 drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
288
289 static unsigned int
290 drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
291
292 static int
293 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
294 uint32_t * swizzle_mode);
295
296 static int
297 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
298 uint32_t tiling_mode,
299 uint32_t stride);
300
301 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
302 time_t time);
303
304 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
305
306 static void drm_intel_gem_bo_free(drm_intel_bo *bo);
307
to_bo_gem(drm_intel_bo * bo)308 static inline drm_intel_bo_gem *to_bo_gem(drm_intel_bo *bo)
309 {
310 return (drm_intel_bo_gem *)bo;
311 }
312
313 static unsigned long
drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long size,uint32_t * tiling_mode)314 drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
315 uint32_t *tiling_mode)
316 {
317 unsigned long min_size, max_size;
318 unsigned long i;
319
320 if (*tiling_mode == I915_TILING_NONE)
321 return size;
322
323 /* 965+ just need multiples of page size for tiling */
324 if (bufmgr_gem->gen >= 4)
325 return ROUND_UP_TO(size, 4096);
326
327 /* Older chips need powers of two, of at least 512k or 1M */
328 if (bufmgr_gem->gen == 3) {
329 min_size = 1024*1024;
330 max_size = 128*1024*1024;
331 } else {
332 min_size = 512*1024;
333 max_size = 64*1024*1024;
334 }
335
336 if (size > max_size) {
337 *tiling_mode = I915_TILING_NONE;
338 return size;
339 }
340
341 /* Do we need to allocate every page for the fence? */
342 if (bufmgr_gem->has_relaxed_fencing)
343 return ROUND_UP_TO(size, 4096);
344
345 for (i = min_size; i < size; i <<= 1)
346 ;
347
348 return i;
349 }
350
351 /*
352 * Round a given pitch up to the minimum required for X tiling on a
353 * given chip. We use 512 as the minimum to allow for a later tiling
354 * change.
355 */
356 static unsigned long
drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long pitch,uint32_t * tiling_mode)357 drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
358 unsigned long pitch, uint32_t *tiling_mode)
359 {
360 unsigned long tile_width;
361 unsigned long i;
362
363 /* If untiled, then just align it so that we can do rendering
364 * to it with the 3D engine.
365 */
366 if (*tiling_mode == I915_TILING_NONE)
367 return ALIGN(pitch, 64);
368
369 if (*tiling_mode == I915_TILING_X
370 || (IS_915(bufmgr_gem->pci_device)
371 && *tiling_mode == I915_TILING_Y))
372 tile_width = 512;
373 else
374 tile_width = 128;
375
376 /* 965 is flexible */
377 if (bufmgr_gem->gen >= 4)
378 return ROUND_UP_TO(pitch, tile_width);
379
380 /* The older hardware has a maximum pitch of 8192 with tiled
381 * surfaces, so fallback to untiled if it's too large.
382 */
383 if (pitch > 8192) {
384 *tiling_mode = I915_TILING_NONE;
385 return ALIGN(pitch, 64);
386 }
387
388 /* Pre-965 needs power of two tile width */
389 for (i = tile_width; i < pitch; i <<= 1)
390 ;
391
392 return i;
393 }
394
395 static struct drm_intel_gem_bo_bucket *
drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long size)396 drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
397 unsigned long size)
398 {
399 int i;
400
401 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
402 struct drm_intel_gem_bo_bucket *bucket =
403 &bufmgr_gem->cache_bucket[i];
404 if (bucket->size >= size) {
405 return bucket;
406 }
407 }
408
409 return NULL;
410 }
411
412 static void
drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem * bufmgr_gem)413 drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
414 {
415 int i, j;
416
417 for (i = 0; i < bufmgr_gem->exec_count; i++) {
418 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
419 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
420
421 if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) {
422 DBG("%2d: %d %s(%s)\n", i, bo_gem->gem_handle,
423 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
424 bo_gem->name);
425 continue;
426 }
427
428 for (j = 0; j < bo_gem->reloc_count; j++) {
429 drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
430 drm_intel_bo_gem *target_gem =
431 (drm_intel_bo_gem *) target_bo;
432
433 DBG("%2d: %d %s(%s)@0x%08x %08x -> "
434 "%d (%s)@0x%08x %08x + 0x%08x\n",
435 i,
436 bo_gem->gem_handle,
437 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
438 bo_gem->name,
439 upper_32_bits(bo_gem->relocs[j].offset),
440 lower_32_bits(bo_gem->relocs[j].offset),
441 target_gem->gem_handle,
442 target_gem->name,
443 upper_32_bits(target_bo->offset64),
444 lower_32_bits(target_bo->offset64),
445 bo_gem->relocs[j].delta);
446 }
447
448 for (j = 0; j < bo_gem->softpin_target_count; j++) {
449 drm_intel_bo *target_bo = bo_gem->softpin_target[j];
450 drm_intel_bo_gem *target_gem =
451 (drm_intel_bo_gem *) target_bo;
452 DBG("%2d: %d %s(%s) -> "
453 "%d *(%s)@0x%08x %08x\n",
454 i,
455 bo_gem->gem_handle,
456 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
457 bo_gem->name,
458 target_gem->gem_handle,
459 target_gem->name,
460 upper_32_bits(target_bo->offset64),
461 lower_32_bits(target_bo->offset64));
462 }
463 }
464 }
465
466 static inline void
drm_intel_gem_bo_reference(drm_intel_bo * bo)467 drm_intel_gem_bo_reference(drm_intel_bo *bo)
468 {
469 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
470
471 atomic_inc(&bo_gem->refcount);
472 }
473
474 /**
475 * Adds the given buffer to the list of buffers to be validated (moved into the
476 * appropriate memory type) with the next batch submission.
477 *
478 * If a buffer is validated multiple times in a batch submission, it ends up
479 * with the intersection of the memory type flags and the union of the
480 * access flags.
481 */
482 static void
drm_intel_add_validate_buffer(drm_intel_bo * bo)483 drm_intel_add_validate_buffer(drm_intel_bo *bo)
484 {
485 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
486 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
487 int index;
488
489 if (bo_gem->validate_index != -1)
490 return;
491
492 /* Extend the array of validation entries as necessary. */
493 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
494 int new_size = bufmgr_gem->exec_size * 2;
495
496 if (new_size == 0)
497 new_size = 5;
498
499 bufmgr_gem->exec_objects =
500 realloc(bufmgr_gem->exec_objects,
501 sizeof(*bufmgr_gem->exec_objects) * new_size);
502 bufmgr_gem->exec_bos =
503 realloc(bufmgr_gem->exec_bos,
504 sizeof(*bufmgr_gem->exec_bos) * new_size);
505 bufmgr_gem->exec_size = new_size;
506 }
507
508 index = bufmgr_gem->exec_count;
509 bo_gem->validate_index = index;
510 /* Fill in array entry */
511 bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
512 bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
513 bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
514 bufmgr_gem->exec_objects[index].alignment = bo->align;
515 bufmgr_gem->exec_objects[index].offset = 0;
516 bufmgr_gem->exec_bos[index] = bo;
517 bufmgr_gem->exec_count++;
518 }
519
520 static void
drm_intel_add_validate_buffer2(drm_intel_bo * bo,int need_fence)521 drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
522 {
523 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
524 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
525 int index;
526 unsigned long flags;
527
528 flags = 0;
529 if (need_fence)
530 flags |= EXEC_OBJECT_NEEDS_FENCE;
531
532 if (bo_gem->validate_index != -1) {
533 bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= flags;
534 return;
535 }
536
537 /* Extend the array of validation entries as necessary. */
538 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
539 int new_size = bufmgr_gem->exec_size * 2;
540
541 if (new_size == 0)
542 new_size = 5;
543
544 bufmgr_gem->exec2_objects =
545 realloc(bufmgr_gem->exec2_objects,
546 sizeof(*bufmgr_gem->exec2_objects) * new_size);
547 bufmgr_gem->exec_bos =
548 realloc(bufmgr_gem->exec_bos,
549 sizeof(*bufmgr_gem->exec_bos) * new_size);
550 bufmgr_gem->exec_size = new_size;
551 }
552
553 index = bufmgr_gem->exec_count;
554 bo_gem->validate_index = index;
555 /* Fill in array entry */
556 bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
557 bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
558 bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
559 bufmgr_gem->exec2_objects[index].alignment = bo->align;
560 bufmgr_gem->exec2_objects[index].offset = bo->offset64;
561 bufmgr_gem->exec2_objects[index].flags = bo_gem->kflags | flags;
562 bufmgr_gem->exec2_objects[index].rsvd1 = 0;
563 bufmgr_gem->exec2_objects[index].rsvd2 = 0;
564 bufmgr_gem->exec_bos[index] = bo;
565 bufmgr_gem->exec_count++;
566 }
567
568 #define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
569 sizeof(uint32_t))
570
571 static void
drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem,unsigned int alignment)572 drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
573 drm_intel_bo_gem *bo_gem,
574 unsigned int alignment)
575 {
576 unsigned int size;
577
578 assert(!bo_gem->used_as_reloc_target);
579
580 /* The older chipsets are far-less flexible in terms of tiling,
581 * and require tiled buffer to be size aligned in the aperture.
582 * This means that in the worst possible case we will need a hole
583 * twice as large as the object in order for it to fit into the
584 * aperture. Optimal packing is for wimps.
585 */
586 size = bo_gem->bo.size;
587 if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
588 unsigned int min_size;
589
590 if (bufmgr_gem->has_relaxed_fencing) {
591 if (bufmgr_gem->gen == 3)
592 min_size = 1024*1024;
593 else
594 min_size = 512*1024;
595
596 while (min_size < size)
597 min_size *= 2;
598 } else
599 min_size = size;
600
601 /* Account for worst-case alignment. */
602 alignment = MAX2(alignment, min_size);
603 }
604
605 bo_gem->reloc_tree_size = size + alignment;
606 }
607
608 static int
drm_intel_setup_reloc_list(drm_intel_bo * bo)609 drm_intel_setup_reloc_list(drm_intel_bo *bo)
610 {
611 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
612 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
613 unsigned int max_relocs = bufmgr_gem->max_relocs;
614
615 if (bo->size / 4 < max_relocs)
616 max_relocs = bo->size / 4;
617
618 bo_gem->relocs = malloc(max_relocs *
619 sizeof(struct drm_i915_gem_relocation_entry));
620 bo_gem->reloc_target_info = malloc(max_relocs *
621 sizeof(drm_intel_reloc_target));
622 if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
623 bo_gem->has_error = true;
624
625 free (bo_gem->relocs);
626 bo_gem->relocs = NULL;
627
628 free (bo_gem->reloc_target_info);
629 bo_gem->reloc_target_info = NULL;
630
631 return 1;
632 }
633
634 return 0;
635 }
636
637 static int
drm_intel_gem_bo_busy(drm_intel_bo * bo)638 drm_intel_gem_bo_busy(drm_intel_bo *bo)
639 {
640 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
641 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
642 struct drm_i915_gem_busy busy;
643 int ret;
644
645 if (bo_gem->reusable && bo_gem->idle)
646 return false;
647
648 memclear(busy);
649 busy.handle = bo_gem->gem_handle;
650
651 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
652 if (ret == 0) {
653 bo_gem->idle = !busy.busy;
654 return busy.busy;
655 } else {
656 return false;
657 }
658 }
659
660 static int
drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem,int state)661 drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
662 drm_intel_bo_gem *bo_gem, int state)
663 {
664 struct drm_i915_gem_madvise madv;
665
666 memclear(madv);
667 madv.handle = bo_gem->gem_handle;
668 madv.madv = state;
669 madv.retained = 1;
670 drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
671
672 return madv.retained;
673 }
674
675 static int
drm_intel_gem_bo_madvise(drm_intel_bo * bo,int madv)676 drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
677 {
678 return drm_intel_gem_bo_madvise_internal
679 ((drm_intel_bufmgr_gem *) bo->bufmgr,
680 (drm_intel_bo_gem *) bo,
681 madv);
682 }
683
684 /* drop the oldest entries that have been purged by the kernel */
685 static void
drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem * bufmgr_gem,struct drm_intel_gem_bo_bucket * bucket)686 drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
687 struct drm_intel_gem_bo_bucket *bucket)
688 {
689 while (!DRMLISTEMPTY(&bucket->head)) {
690 drm_intel_bo_gem *bo_gem;
691
692 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
693 bucket->head.next, head);
694 if (drm_intel_gem_bo_madvise_internal
695 (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
696 break;
697
698 DRMLISTDEL(&bo_gem->head);
699 drm_intel_gem_bo_free(&bo_gem->bo);
700 }
701 }
702
703 static drm_intel_bo *
drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned long flags,uint32_t tiling_mode,unsigned long stride,unsigned int alignment)704 drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
705 const char *name,
706 unsigned long size,
707 unsigned long flags,
708 uint32_t tiling_mode,
709 unsigned long stride,
710 unsigned int alignment)
711 {
712 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
713 drm_intel_bo_gem *bo_gem;
714 unsigned int page_size = getpagesize();
715 int ret;
716 struct drm_intel_gem_bo_bucket *bucket;
717 bool alloc_from_cache;
718 unsigned long bo_size;
719 bool for_render = false;
720
721 if (flags & BO_ALLOC_FOR_RENDER)
722 for_render = true;
723
724 /* Round the allocated size up to a power of two number of pages. */
725 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
726
727 /* If we don't have caching at this size, don't actually round the
728 * allocation up.
729 */
730 if (bucket == NULL) {
731 bo_size = size;
732 if (bo_size < page_size)
733 bo_size = page_size;
734 } else {
735 bo_size = bucket->size;
736 }
737
738 pthread_mutex_lock(&bufmgr_gem->lock);
739 /* Get a buffer out of the cache if available */
740 retry:
741 alloc_from_cache = false;
742 if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
743 if (for_render) {
744 /* Allocate new render-target BOs from the tail (MRU)
745 * of the list, as it will likely be hot in the GPU
746 * cache and in the aperture for us.
747 */
748 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
749 bucket->head.prev, head);
750 DRMLISTDEL(&bo_gem->head);
751 alloc_from_cache = true;
752 bo_gem->bo.align = alignment;
753 } else {
754 assert(alignment == 0);
755 /* For non-render-target BOs (where we're probably
756 * going to map it first thing in order to fill it
757 * with data), check if the last BO in the cache is
758 * unbusy, and only reuse in that case. Otherwise,
759 * allocating a new buffer is probably faster than
760 * waiting for the GPU to finish.
761 */
762 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
763 bucket->head.next, head);
764 if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
765 alloc_from_cache = true;
766 DRMLISTDEL(&bo_gem->head);
767 }
768 }
769
770 if (alloc_from_cache) {
771 if (!drm_intel_gem_bo_madvise_internal
772 (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
773 drm_intel_gem_bo_free(&bo_gem->bo);
774 drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
775 bucket);
776 goto retry;
777 }
778
779 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
780 tiling_mode,
781 stride)) {
782 drm_intel_gem_bo_free(&bo_gem->bo);
783 goto retry;
784 }
785 }
786 }
787
788 if (!alloc_from_cache) {
789 struct drm_i915_gem_create create;
790
791 bo_gem = calloc(1, sizeof(*bo_gem));
792 if (!bo_gem)
793 goto err;
794
795 /* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized
796 list (vma_list), so better set the list head here */
797 DRMINITLISTHEAD(&bo_gem->vma_list);
798
799 bo_gem->bo.size = bo_size;
800
801 memclear(create);
802 create.size = bo_size;
803
804 ret = drmIoctl(bufmgr_gem->fd,
805 DRM_IOCTL_I915_GEM_CREATE,
806 &create);
807 if (ret != 0) {
808 free(bo_gem);
809 goto err;
810 }
811
812 bo_gem->gem_handle = create.handle;
813 HASH_ADD(handle_hh, bufmgr_gem->handle_table,
814 gem_handle, sizeof(bo_gem->gem_handle),
815 bo_gem);
816
817 bo_gem->bo.handle = bo_gem->gem_handle;
818 bo_gem->bo.bufmgr = bufmgr;
819 bo_gem->bo.align = alignment;
820
821 bo_gem->tiling_mode = I915_TILING_NONE;
822 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
823 bo_gem->stride = 0;
824
825 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
826 tiling_mode,
827 stride))
828 goto err_free;
829 }
830
831 bo_gem->name = name;
832 atomic_set(&bo_gem->refcount, 1);
833 bo_gem->validate_index = -1;
834 bo_gem->reloc_tree_fences = 0;
835 bo_gem->used_as_reloc_target = false;
836 bo_gem->has_error = false;
837 bo_gem->reusable = true;
838
839 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, alignment);
840 pthread_mutex_unlock(&bufmgr_gem->lock);
841
842 DBG("bo_create: buf %d (%s) %ldb\n",
843 bo_gem->gem_handle, bo_gem->name, size);
844
845 return &bo_gem->bo;
846
847 err_free:
848 drm_intel_gem_bo_free(&bo_gem->bo);
849 err:
850 pthread_mutex_unlock(&bufmgr_gem->lock);
851 return NULL;
852 }
853
854 static drm_intel_bo *
drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned int alignment)855 drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
856 const char *name,
857 unsigned long size,
858 unsigned int alignment)
859 {
860 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
861 BO_ALLOC_FOR_RENDER,
862 I915_TILING_NONE, 0,
863 alignment);
864 }
865
866 static drm_intel_bo *
drm_intel_gem_bo_alloc(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned int alignment)867 drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
868 const char *name,
869 unsigned long size,
870 unsigned int alignment)
871 {
872 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
873 I915_TILING_NONE, 0, 0);
874 }
875
876 static drm_intel_bo *
drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr * bufmgr,const char * name,int x,int y,int cpp,uint32_t * tiling_mode,unsigned long * pitch,unsigned long flags)877 drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
878 int x, int y, int cpp, uint32_t *tiling_mode,
879 unsigned long *pitch, unsigned long flags)
880 {
881 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
882 unsigned long size, stride;
883 uint32_t tiling;
884
885 do {
886 unsigned long aligned_y, height_alignment;
887
888 tiling = *tiling_mode;
889
890 /* If we're tiled, our allocations are in 8 or 32-row blocks,
891 * so failure to align our height means that we won't allocate
892 * enough pages.
893 *
894 * If we're untiled, we still have to align to 2 rows high
895 * because the data port accesses 2x2 blocks even if the
896 * bottom row isn't to be rendered, so failure to align means
897 * we could walk off the end of the GTT and fault. This is
898 * documented on 965, and may be the case on older chipsets
899 * too so we try to be careful.
900 */
901 aligned_y = y;
902 height_alignment = 2;
903
904 if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
905 height_alignment = 16;
906 else if (tiling == I915_TILING_X
907 || (IS_915(bufmgr_gem->pci_device)
908 && tiling == I915_TILING_Y))
909 height_alignment = 8;
910 else if (tiling == I915_TILING_Y)
911 height_alignment = 32;
912 aligned_y = ALIGN(y, height_alignment);
913
914 stride = x * cpp;
915 stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
916 size = stride * aligned_y;
917 size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
918 } while (*tiling_mode != tiling);
919 *pitch = stride;
920
921 if (tiling == I915_TILING_NONE)
922 stride = 0;
923
924 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
925 tiling, stride, 0);
926 }
927
928 static drm_intel_bo *
drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr * bufmgr,const char * name,void * addr,uint32_t tiling_mode,uint32_t stride,unsigned long size,unsigned long flags)929 drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
930 const char *name,
931 void *addr,
932 uint32_t tiling_mode,
933 uint32_t stride,
934 unsigned long size,
935 unsigned long flags)
936 {
937 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
938 drm_intel_bo_gem *bo_gem;
939 int ret;
940 struct drm_i915_gem_userptr userptr;
941
942 /* Tiling with userptr surfaces is not supported
943 * on all hardware so refuse it for time being.
944 */
945 if (tiling_mode != I915_TILING_NONE)
946 return NULL;
947
948 bo_gem = calloc(1, sizeof(*bo_gem));
949 if (!bo_gem)
950 return NULL;
951
952 atomic_set(&bo_gem->refcount, 1);
953 DRMINITLISTHEAD(&bo_gem->vma_list);
954
955 bo_gem->bo.size = size;
956
957 memclear(userptr);
958 userptr.user_ptr = (__u64)((unsigned long)addr);
959 userptr.user_size = size;
960 userptr.flags = flags;
961
962 ret = drmIoctl(bufmgr_gem->fd,
963 DRM_IOCTL_I915_GEM_USERPTR,
964 &userptr);
965 if (ret != 0) {
966 DBG("bo_create_userptr: "
967 "ioctl failed with user ptr %p size 0x%lx, "
968 "user flags 0x%lx\n", addr, size, flags);
969 free(bo_gem);
970 return NULL;
971 }
972
973 pthread_mutex_lock(&bufmgr_gem->lock);
974
975 bo_gem->gem_handle = userptr.handle;
976 bo_gem->bo.handle = bo_gem->gem_handle;
977 bo_gem->bo.bufmgr = bufmgr;
978 bo_gem->is_userptr = true;
979 bo_gem->bo.virtual = addr;
980 /* Save the address provided by user */
981 bo_gem->user_virtual = addr;
982 bo_gem->tiling_mode = I915_TILING_NONE;
983 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
984 bo_gem->stride = 0;
985
986 HASH_ADD(handle_hh, bufmgr_gem->handle_table,
987 gem_handle, sizeof(bo_gem->gem_handle),
988 bo_gem);
989
990 bo_gem->name = name;
991 bo_gem->validate_index = -1;
992 bo_gem->reloc_tree_fences = 0;
993 bo_gem->used_as_reloc_target = false;
994 bo_gem->has_error = false;
995 bo_gem->reusable = false;
996
997 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
998 pthread_mutex_unlock(&bufmgr_gem->lock);
999
1000 DBG("bo_create_userptr: "
1001 "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n",
1002 addr, bo_gem->gem_handle, bo_gem->name,
1003 size, stride, tiling_mode);
1004
1005 return &bo_gem->bo;
1006 }
1007
1008 static bool
has_userptr(drm_intel_bufmgr_gem * bufmgr_gem)1009 has_userptr(drm_intel_bufmgr_gem *bufmgr_gem)
1010 {
1011 int ret;
1012 void *ptr;
1013 long pgsz;
1014 struct drm_i915_gem_userptr userptr;
1015
1016 pgsz = sysconf(_SC_PAGESIZE);
1017 assert(pgsz > 0);
1018
1019 ret = posix_memalign(&ptr, pgsz, pgsz);
1020 if (ret) {
1021 DBG("Failed to get a page (%ld) for userptr detection!\n",
1022 pgsz);
1023 return false;
1024 }
1025
1026 memclear(userptr);
1027 userptr.user_ptr = (__u64)(unsigned long)ptr;
1028 userptr.user_size = pgsz;
1029
1030 retry:
1031 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
1032 if (ret) {
1033 if (errno == ENODEV && userptr.flags == 0) {
1034 userptr.flags = I915_USERPTR_UNSYNCHRONIZED;
1035 goto retry;
1036 }
1037 free(ptr);
1038 return false;
1039 }
1040
1041 /* We don't release the userptr bo here as we want to keep the
1042 * kernel mm tracking alive for our lifetime. The first time we
1043 * create a userptr object the kernel has to install a mmu_notifer
1044 * which is a heavyweight operation (e.g. it requires taking all
1045 * mm_locks and stop_machine()).
1046 */
1047
1048 bufmgr_gem->userptr_active.ptr = ptr;
1049 bufmgr_gem->userptr_active.handle = userptr.handle;
1050
1051 return true;
1052 }
1053
1054 static drm_intel_bo *
check_bo_alloc_userptr(drm_intel_bufmgr * bufmgr,const char * name,void * addr,uint32_t tiling_mode,uint32_t stride,unsigned long size,unsigned long flags)1055 check_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
1056 const char *name,
1057 void *addr,
1058 uint32_t tiling_mode,
1059 uint32_t stride,
1060 unsigned long size,
1061 unsigned long flags)
1062 {
1063 if (has_userptr((drm_intel_bufmgr_gem *)bufmgr))
1064 bufmgr->bo_alloc_userptr = drm_intel_gem_bo_alloc_userptr;
1065 else
1066 bufmgr->bo_alloc_userptr = NULL;
1067
1068 return drm_intel_bo_alloc_userptr(bufmgr, name, addr,
1069 tiling_mode, stride, size, flags);
1070 }
1071
1072 /**
1073 * Returns a drm_intel_bo wrapping the given buffer object handle.
1074 *
1075 * This can be used when one application needs to pass a buffer object
1076 * to another.
1077 */
1078 drm_intel_bo *
drm_intel_bo_gem_create_from_name(drm_intel_bufmgr * bufmgr,const char * name,unsigned int handle)1079 drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
1080 const char *name,
1081 unsigned int handle)
1082 {
1083 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1084 drm_intel_bo_gem *bo_gem;
1085 int ret;
1086 struct drm_gem_open open_arg;
1087 struct drm_i915_gem_get_tiling get_tiling;
1088
1089 /* At the moment most applications only have a few named bo.
1090 * For instance, in a DRI client only the render buffers passed
1091 * between X and the client are named. And since X returns the
1092 * alternating names for the front/back buffer a linear search
1093 * provides a sufficiently fast match.
1094 */
1095 pthread_mutex_lock(&bufmgr_gem->lock);
1096 HASH_FIND(name_hh, bufmgr_gem->name_table,
1097 &handle, sizeof(handle), bo_gem);
1098 if (bo_gem) {
1099 drm_intel_gem_bo_reference(&bo_gem->bo);
1100 goto out;
1101 }
1102
1103 memclear(open_arg);
1104 open_arg.name = handle;
1105 ret = drmIoctl(bufmgr_gem->fd,
1106 DRM_IOCTL_GEM_OPEN,
1107 &open_arg);
1108 if (ret != 0) {
1109 DBG("Couldn't reference %s handle 0x%08x: %s\n",
1110 name, handle, strerror(errno));
1111 bo_gem = NULL;
1112 goto out;
1113 }
1114 /* Now see if someone has used a prime handle to get this
1115 * object from the kernel before by looking through the list
1116 * again for a matching gem_handle
1117 */
1118 HASH_FIND(handle_hh, bufmgr_gem->handle_table,
1119 &open_arg.handle, sizeof(open_arg.handle), bo_gem);
1120 if (bo_gem) {
1121 drm_intel_gem_bo_reference(&bo_gem->bo);
1122 goto out;
1123 }
1124
1125 bo_gem = calloc(1, sizeof(*bo_gem));
1126 if (!bo_gem)
1127 goto out;
1128
1129 atomic_set(&bo_gem->refcount, 1);
1130 DRMINITLISTHEAD(&bo_gem->vma_list);
1131
1132 bo_gem->bo.size = open_arg.size;
1133 bo_gem->bo.offset = 0;
1134 bo_gem->bo.offset64 = 0;
1135 bo_gem->bo.virtual = NULL;
1136 bo_gem->bo.bufmgr = bufmgr;
1137 bo_gem->name = name;
1138 bo_gem->validate_index = -1;
1139 bo_gem->gem_handle = open_arg.handle;
1140 bo_gem->bo.handle = open_arg.handle;
1141 bo_gem->global_name = handle;
1142 bo_gem->reusable = false;
1143
1144 HASH_ADD(handle_hh, bufmgr_gem->handle_table,
1145 gem_handle, sizeof(bo_gem->gem_handle), bo_gem);
1146 HASH_ADD(name_hh, bufmgr_gem->name_table,
1147 global_name, sizeof(bo_gem->global_name), bo_gem);
1148
1149 memclear(get_tiling);
1150 get_tiling.handle = bo_gem->gem_handle;
1151 ret = drmIoctl(bufmgr_gem->fd,
1152 DRM_IOCTL_I915_GEM_GET_TILING,
1153 &get_tiling);
1154 if (ret != 0)
1155 goto err_unref;
1156
1157 bo_gem->tiling_mode = get_tiling.tiling_mode;
1158 bo_gem->swizzle_mode = get_tiling.swizzle_mode;
1159 /* XXX stride is unknown */
1160 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
1161 DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
1162
1163 out:
1164 pthread_mutex_unlock(&bufmgr_gem->lock);
1165 return &bo_gem->bo;
1166
1167 err_unref:
1168 drm_intel_gem_bo_free(&bo_gem->bo);
1169 pthread_mutex_unlock(&bufmgr_gem->lock);
1170 return NULL;
1171 }
1172
1173 static void
drm_intel_gem_bo_free(drm_intel_bo * bo)1174 drm_intel_gem_bo_free(drm_intel_bo *bo)
1175 {
1176 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1177 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1178 struct drm_gem_close close;
1179 int ret;
1180
1181 DRMLISTDEL(&bo_gem->vma_list);
1182 if (bo_gem->mem_virtual) {
1183 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
1184 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1185 bufmgr_gem->vma_count--;
1186 }
1187 if (bo_gem->wc_virtual) {
1188 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->wc_virtual, 0));
1189 drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size);
1190 bufmgr_gem->vma_count--;
1191 }
1192 if (bo_gem->gtt_virtual) {
1193 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1194 bufmgr_gem->vma_count--;
1195 }
1196
1197 if (bo_gem->global_name)
1198 HASH_DELETE(name_hh, bufmgr_gem->name_table, bo_gem);
1199 HASH_DELETE(handle_hh, bufmgr_gem->handle_table, bo_gem);
1200
1201 /* Close this object */
1202 memclear(close);
1203 close.handle = bo_gem->gem_handle;
1204 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
1205 if (ret != 0) {
1206 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1207 bo_gem->gem_handle, bo_gem->name, strerror(errno));
1208 }
1209 free(bo);
1210 }
1211
1212 static void
drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo * bo)1213 drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
1214 {
1215 #if HAVE_VALGRIND
1216 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1217
1218 if (bo_gem->mem_virtual)
1219 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
1220
1221 if (bo_gem->wc_virtual)
1222 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->wc_virtual, bo->size);
1223
1224 if (bo_gem->gtt_virtual)
1225 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
1226 #endif
1227 }
1228
1229 /** Frees all cached buffers significantly older than @time. */
1230 static void
drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem * bufmgr_gem,time_t time)1231 drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
1232 {
1233 int i;
1234
1235 if (bufmgr_gem->time == time)
1236 return;
1237
1238 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1239 struct drm_intel_gem_bo_bucket *bucket =
1240 &bufmgr_gem->cache_bucket[i];
1241
1242 while (!DRMLISTEMPTY(&bucket->head)) {
1243 drm_intel_bo_gem *bo_gem;
1244
1245 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1246 bucket->head.next, head);
1247 if (time - bo_gem->free_time <= 1)
1248 break;
1249
1250 DRMLISTDEL(&bo_gem->head);
1251
1252 drm_intel_gem_bo_free(&bo_gem->bo);
1253 }
1254 }
1255
1256 bufmgr_gem->time = time;
1257 }
1258
drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem * bufmgr_gem)1259 static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
1260 {
1261 int limit;
1262
1263 DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
1264 bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
1265
1266 if (bufmgr_gem->vma_max < 0)
1267 return;
1268
1269 /* We may need to evict a few entries in order to create new mmaps */
1270 limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1271 if (limit < 0)
1272 limit = 0;
1273
1274 while (bufmgr_gem->vma_count > limit) {
1275 drm_intel_bo_gem *bo_gem;
1276
1277 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1278 bufmgr_gem->vma_cache.next,
1279 vma_list);
1280 assert(bo_gem->map_count == 0);
1281 DRMLISTDELINIT(&bo_gem->vma_list);
1282
1283 if (bo_gem->mem_virtual) {
1284 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1285 bo_gem->mem_virtual = NULL;
1286 bufmgr_gem->vma_count--;
1287 }
1288 if (bo_gem->wc_virtual) {
1289 drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size);
1290 bo_gem->wc_virtual = NULL;
1291 bufmgr_gem->vma_count--;
1292 }
1293 if (bo_gem->gtt_virtual) {
1294 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1295 bo_gem->gtt_virtual = NULL;
1296 bufmgr_gem->vma_count--;
1297 }
1298 }
1299 }
1300
drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem)1301 static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1302 drm_intel_bo_gem *bo_gem)
1303 {
1304 bufmgr_gem->vma_open--;
1305 DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1306 if (bo_gem->mem_virtual)
1307 bufmgr_gem->vma_count++;
1308 if (bo_gem->wc_virtual)
1309 bufmgr_gem->vma_count++;
1310 if (bo_gem->gtt_virtual)
1311 bufmgr_gem->vma_count++;
1312 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1313 }
1314
drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem)1315 static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1316 drm_intel_bo_gem *bo_gem)
1317 {
1318 bufmgr_gem->vma_open++;
1319 DRMLISTDEL(&bo_gem->vma_list);
1320 if (bo_gem->mem_virtual)
1321 bufmgr_gem->vma_count--;
1322 if (bo_gem->wc_virtual)
1323 bufmgr_gem->vma_count--;
1324 if (bo_gem->gtt_virtual)
1325 bufmgr_gem->vma_count--;
1326 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1327 }
1328
1329 static void
drm_intel_gem_bo_unreference_final(drm_intel_bo * bo,time_t time)1330 drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1331 {
1332 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1333 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1334 struct drm_intel_gem_bo_bucket *bucket;
1335 int i;
1336
1337 /* Unreference all the target buffers */
1338 for (i = 0; i < bo_gem->reloc_count; i++) {
1339 if (bo_gem->reloc_target_info[i].bo != bo) {
1340 drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1341 reloc_target_info[i].bo,
1342 time);
1343 }
1344 }
1345 for (i = 0; i < bo_gem->softpin_target_count; i++)
1346 drm_intel_gem_bo_unreference_locked_timed(bo_gem->softpin_target[i],
1347 time);
1348 bo_gem->kflags = 0;
1349 bo_gem->reloc_count = 0;
1350 bo_gem->used_as_reloc_target = false;
1351 bo_gem->softpin_target_count = 0;
1352
1353 DBG("bo_unreference final: %d (%s)\n",
1354 bo_gem->gem_handle, bo_gem->name);
1355
1356 /* release memory associated with this object */
1357 if (bo_gem->reloc_target_info) {
1358 free(bo_gem->reloc_target_info);
1359 bo_gem->reloc_target_info = NULL;
1360 }
1361 if (bo_gem->relocs) {
1362 free(bo_gem->relocs);
1363 bo_gem->relocs = NULL;
1364 }
1365 if (bo_gem->softpin_target) {
1366 free(bo_gem->softpin_target);
1367 bo_gem->softpin_target = NULL;
1368 bo_gem->softpin_target_size = 0;
1369 }
1370
1371 /* Clear any left-over mappings */
1372 if (bo_gem->map_count) {
1373 DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1374 bo_gem->map_count = 0;
1375 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1376 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1377 }
1378
1379 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1380 /* Put the buffer into our internal cache for reuse if we can. */
1381 if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1382 drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1383 I915_MADV_DONTNEED)) {
1384 bo_gem->free_time = time;
1385
1386 bo_gem->name = NULL;
1387 bo_gem->validate_index = -1;
1388
1389 DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1390 } else {
1391 drm_intel_gem_bo_free(bo);
1392 }
1393 }
1394
drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo * bo,time_t time)1395 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1396 time_t time)
1397 {
1398 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1399
1400 assert(atomic_read(&bo_gem->refcount) > 0);
1401 if (atomic_dec_and_test(&bo_gem->refcount))
1402 drm_intel_gem_bo_unreference_final(bo, time);
1403 }
1404
drm_intel_gem_bo_unreference(drm_intel_bo * bo)1405 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1406 {
1407 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1408
1409 assert(atomic_read(&bo_gem->refcount) > 0);
1410
1411 if (atomic_add_unless(&bo_gem->refcount, -1, 1)) {
1412 drm_intel_bufmgr_gem *bufmgr_gem =
1413 (drm_intel_bufmgr_gem *) bo->bufmgr;
1414 struct timespec time;
1415
1416 clock_gettime(CLOCK_MONOTONIC, &time);
1417
1418 pthread_mutex_lock(&bufmgr_gem->lock);
1419
1420 if (atomic_dec_and_test(&bo_gem->refcount)) {
1421 drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1422 drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1423 }
1424
1425 pthread_mutex_unlock(&bufmgr_gem->lock);
1426 }
1427 }
1428
drm_intel_gem_bo_map(drm_intel_bo * bo,int write_enable)1429 static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1430 {
1431 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1432 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1433 struct drm_i915_gem_set_domain set_domain;
1434 int ret;
1435
1436 if (bo_gem->is_userptr) {
1437 /* Return the same user ptr */
1438 bo->virtual = bo_gem->user_virtual;
1439 return 0;
1440 }
1441
1442 pthread_mutex_lock(&bufmgr_gem->lock);
1443
1444 if (bo_gem->map_count++ == 0)
1445 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1446
1447 if (!bo_gem->mem_virtual) {
1448 struct drm_i915_gem_mmap mmap_arg;
1449
1450 DBG("bo_map: %d (%s), map_count=%d\n",
1451 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1452
1453 memclear(mmap_arg);
1454 mmap_arg.handle = bo_gem->gem_handle;
1455 mmap_arg.size = bo->size;
1456 ret = drmIoctl(bufmgr_gem->fd,
1457 DRM_IOCTL_I915_GEM_MMAP,
1458 &mmap_arg);
1459 if (ret != 0) {
1460 ret = -errno;
1461 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1462 __FILE__, __LINE__, bo_gem->gem_handle,
1463 bo_gem->name, strerror(errno));
1464 if (--bo_gem->map_count == 0)
1465 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1466 pthread_mutex_unlock(&bufmgr_gem->lock);
1467 return ret;
1468 }
1469 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1470 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1471 }
1472 DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1473 bo_gem->mem_virtual);
1474 bo->virtual = bo_gem->mem_virtual;
1475
1476 memclear(set_domain);
1477 set_domain.handle = bo_gem->gem_handle;
1478 set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1479 if (write_enable)
1480 set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1481 else
1482 set_domain.write_domain = 0;
1483 ret = drmIoctl(bufmgr_gem->fd,
1484 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1485 &set_domain);
1486 if (ret != 0) {
1487 DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1488 __FILE__, __LINE__, bo_gem->gem_handle,
1489 strerror(errno));
1490 }
1491
1492 if (write_enable)
1493 bo_gem->mapped_cpu_write = true;
1494
1495 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1496 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1497 pthread_mutex_unlock(&bufmgr_gem->lock);
1498
1499 return 0;
1500 }
1501
1502 static int
map_gtt(drm_intel_bo * bo)1503 map_gtt(drm_intel_bo *bo)
1504 {
1505 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1506 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1507 int ret;
1508
1509 if (bo_gem->is_userptr)
1510 return -EINVAL;
1511
1512 if (bo_gem->map_count++ == 0)
1513 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1514
1515 /* Get a mapping of the buffer if we haven't before. */
1516 if (bo_gem->gtt_virtual == NULL) {
1517 struct drm_i915_gem_mmap_gtt mmap_arg;
1518
1519 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1520 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1521
1522 memclear(mmap_arg);
1523 mmap_arg.handle = bo_gem->gem_handle;
1524
1525 /* Get the fake offset back... */
1526 ret = drmIoctl(bufmgr_gem->fd,
1527 DRM_IOCTL_I915_GEM_MMAP_GTT,
1528 &mmap_arg);
1529 if (ret != 0) {
1530 ret = -errno;
1531 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1532 __FILE__, __LINE__,
1533 bo_gem->gem_handle, bo_gem->name,
1534 strerror(errno));
1535 if (--bo_gem->map_count == 0)
1536 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1537 return ret;
1538 }
1539
1540 /* and mmap it */
1541 bo_gem->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
1542 MAP_SHARED, bufmgr_gem->fd,
1543 mmap_arg.offset);
1544 if (bo_gem->gtt_virtual == MAP_FAILED) {
1545 bo_gem->gtt_virtual = NULL;
1546 ret = -errno;
1547 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1548 __FILE__, __LINE__,
1549 bo_gem->gem_handle, bo_gem->name,
1550 strerror(errno));
1551 if (--bo_gem->map_count == 0)
1552 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1553 return ret;
1554 }
1555 }
1556
1557 bo->virtual = bo_gem->gtt_virtual;
1558
1559 DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1560 bo_gem->gtt_virtual);
1561
1562 return 0;
1563 }
1564
1565 int
drm_intel_gem_bo_map_gtt(drm_intel_bo * bo)1566 drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1567 {
1568 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1569 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1570 struct drm_i915_gem_set_domain set_domain;
1571 int ret;
1572
1573 pthread_mutex_lock(&bufmgr_gem->lock);
1574
1575 ret = map_gtt(bo);
1576 if (ret) {
1577 pthread_mutex_unlock(&bufmgr_gem->lock);
1578 return ret;
1579 }
1580
1581 /* Now move it to the GTT domain so that the GPU and CPU
1582 * caches are flushed and the GPU isn't actively using the
1583 * buffer.
1584 *
1585 * The pagefault handler does this domain change for us when
1586 * it has unbound the BO from the GTT, but it's up to us to
1587 * tell it when we're about to use things if we had done
1588 * rendering and it still happens to be bound to the GTT.
1589 */
1590 memclear(set_domain);
1591 set_domain.handle = bo_gem->gem_handle;
1592 set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1593 set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1594 ret = drmIoctl(bufmgr_gem->fd,
1595 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1596 &set_domain);
1597 if (ret != 0) {
1598 DBG("%s:%d: Error setting domain %d: %s\n",
1599 __FILE__, __LINE__, bo_gem->gem_handle,
1600 strerror(errno));
1601 }
1602
1603 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1604 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1605 pthread_mutex_unlock(&bufmgr_gem->lock);
1606
1607 return 0;
1608 }
1609
1610 /**
1611 * Performs a mapping of the buffer object like the normal GTT
1612 * mapping, but avoids waiting for the GPU to be done reading from or
1613 * rendering to the buffer.
1614 *
1615 * This is used in the implementation of GL_ARB_map_buffer_range: The
1616 * user asks to create a buffer, then does a mapping, fills some
1617 * space, runs a drawing command, then asks to map it again without
1618 * synchronizing because it guarantees that it won't write over the
1619 * data that the GPU is busy using (or, more specifically, that if it
1620 * does write over the data, it acknowledges that rendering is
1621 * undefined).
1622 */
1623
1624 int
drm_intel_gem_bo_map_unsynchronized(drm_intel_bo * bo)1625 drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1626 {
1627 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1628 #if HAVE_VALGRIND
1629 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1630 #endif
1631 int ret;
1632
1633 /* If the CPU cache isn't coherent with the GTT, then use a
1634 * regular synchronized mapping. The problem is that we don't
1635 * track where the buffer was last used on the CPU side in
1636 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1637 * we would potentially corrupt the buffer even when the user
1638 * does reasonable things.
1639 */
1640 if (!bufmgr_gem->has_llc)
1641 return drm_intel_gem_bo_map_gtt(bo);
1642
1643 pthread_mutex_lock(&bufmgr_gem->lock);
1644
1645 ret = map_gtt(bo);
1646 if (ret == 0) {
1647 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1648 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1649 }
1650
1651 pthread_mutex_unlock(&bufmgr_gem->lock);
1652
1653 return ret;
1654 }
1655
drm_intel_gem_bo_unmap(drm_intel_bo * bo)1656 static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1657 {
1658 drm_intel_bufmgr_gem *bufmgr_gem;
1659 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1660 int ret = 0;
1661
1662 if (bo == NULL)
1663 return 0;
1664
1665 if (bo_gem->is_userptr)
1666 return 0;
1667
1668 bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1669
1670 pthread_mutex_lock(&bufmgr_gem->lock);
1671
1672 if (bo_gem->map_count <= 0) {
1673 DBG("attempted to unmap an unmapped bo\n");
1674 pthread_mutex_unlock(&bufmgr_gem->lock);
1675 /* Preserve the old behaviour of just treating this as a
1676 * no-op rather than reporting the error.
1677 */
1678 return 0;
1679 }
1680
1681 if (bo_gem->mapped_cpu_write) {
1682 struct drm_i915_gem_sw_finish sw_finish;
1683
1684 /* Cause a flush to happen if the buffer's pinned for
1685 * scanout, so the results show up in a timely manner.
1686 * Unlike GTT set domains, this only does work if the
1687 * buffer should be scanout-related.
1688 */
1689 memclear(sw_finish);
1690 sw_finish.handle = bo_gem->gem_handle;
1691 ret = drmIoctl(bufmgr_gem->fd,
1692 DRM_IOCTL_I915_GEM_SW_FINISH,
1693 &sw_finish);
1694 ret = ret == -1 ? -errno : 0;
1695
1696 bo_gem->mapped_cpu_write = false;
1697 }
1698
1699 /* We need to unmap after every innovation as we cannot track
1700 * an open vma for every bo as that will exhaust the system
1701 * limits and cause later failures.
1702 */
1703 if (--bo_gem->map_count == 0) {
1704 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1705 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1706 bo->virtual = NULL;
1707 }
1708 pthread_mutex_unlock(&bufmgr_gem->lock);
1709
1710 return ret;
1711 }
1712
1713 int
drm_intel_gem_bo_unmap_gtt(drm_intel_bo * bo)1714 drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1715 {
1716 return drm_intel_gem_bo_unmap(bo);
1717 }
1718
1719 static int
drm_intel_gem_bo_subdata(drm_intel_bo * bo,unsigned long offset,unsigned long size,const void * data)1720 drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1721 unsigned long size, const void *data)
1722 {
1723 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1724 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1725 struct drm_i915_gem_pwrite pwrite;
1726 int ret;
1727
1728 if (bo_gem->is_userptr)
1729 return -EINVAL;
1730
1731 memclear(pwrite);
1732 pwrite.handle = bo_gem->gem_handle;
1733 pwrite.offset = offset;
1734 pwrite.size = size;
1735 pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1736 ret = drmIoctl(bufmgr_gem->fd,
1737 DRM_IOCTL_I915_GEM_PWRITE,
1738 &pwrite);
1739 if (ret != 0) {
1740 ret = -errno;
1741 DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1742 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1743 (int)size, strerror(errno));
1744 }
1745
1746 return ret;
1747 }
1748
1749 static int
drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr * bufmgr,int crtc_id)1750 drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1751 {
1752 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1753 struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1754 int ret;
1755
1756 memclear(get_pipe_from_crtc_id);
1757 get_pipe_from_crtc_id.crtc_id = crtc_id;
1758 ret = drmIoctl(bufmgr_gem->fd,
1759 DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1760 &get_pipe_from_crtc_id);
1761 if (ret != 0) {
1762 /* We return -1 here to signal that we don't
1763 * know which pipe is associated with this crtc.
1764 * This lets the caller know that this information
1765 * isn't available; using the wrong pipe for
1766 * vblank waiting can cause the chipset to lock up
1767 */
1768 return -1;
1769 }
1770
1771 return get_pipe_from_crtc_id.pipe;
1772 }
1773
1774 static int
drm_intel_gem_bo_get_subdata(drm_intel_bo * bo,unsigned long offset,unsigned long size,void * data)1775 drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1776 unsigned long size, void *data)
1777 {
1778 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1779 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1780 struct drm_i915_gem_pread pread;
1781 int ret;
1782
1783 if (bo_gem->is_userptr)
1784 return -EINVAL;
1785
1786 memclear(pread);
1787 pread.handle = bo_gem->gem_handle;
1788 pread.offset = offset;
1789 pread.size = size;
1790 pread.data_ptr = (uint64_t) (uintptr_t) data;
1791 ret = drmIoctl(bufmgr_gem->fd,
1792 DRM_IOCTL_I915_GEM_PREAD,
1793 &pread);
1794 if (ret != 0) {
1795 ret = -errno;
1796 DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1797 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1798 (int)size, strerror(errno));
1799 }
1800
1801 return ret;
1802 }
1803
1804 /** Waits for all GPU rendering with the object to have completed. */
1805 static void
drm_intel_gem_bo_wait_rendering(drm_intel_bo * bo)1806 drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1807 {
1808 drm_intel_gem_bo_start_gtt_access(bo, 1);
1809 }
1810
1811 /**
1812 * Waits on a BO for the given amount of time.
1813 *
1814 * @bo: buffer object to wait for
1815 * @timeout_ns: amount of time to wait in nanoseconds.
1816 * If value is less than 0, an infinite wait will occur.
1817 *
1818 * Returns 0 if the wait was successful ie. the last batch referencing the
1819 * object has completed within the allotted time. Otherwise some negative return
1820 * value describes the error. Of particular interest is -ETIME when the wait has
1821 * failed to yield the desired result.
1822 *
1823 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1824 * the operation to give up after a certain amount of time. Another subtle
1825 * difference is the internal locking semantics are different (this variant does
1826 * not hold the lock for the duration of the wait). This makes the wait subject
1827 * to a larger userspace race window.
1828 *
1829 * The implementation shall wait until the object is no longer actively
1830 * referenced within a batch buffer at the time of the call. The wait will
1831 * not guarantee that the buffer is re-issued via another thread, or an flinked
1832 * handle. Userspace must make sure this race does not occur if such precision
1833 * is important.
1834 *
1835 * Note that some kernels have broken the inifite wait for negative values
1836 * promise, upgrade to latest stable kernels if this is the case.
1837 */
1838 int
drm_intel_gem_bo_wait(drm_intel_bo * bo,int64_t timeout_ns)1839 drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1840 {
1841 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1842 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1843 struct drm_i915_gem_wait wait;
1844 int ret;
1845
1846 if (!bufmgr_gem->has_wait_timeout) {
1847 DBG("%s:%d: Timed wait is not supported. Falling back to "
1848 "infinite wait\n", __FILE__, __LINE__);
1849 if (timeout_ns) {
1850 drm_intel_gem_bo_wait_rendering(bo);
1851 return 0;
1852 } else {
1853 return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1854 }
1855 }
1856
1857 memclear(wait);
1858 wait.bo_handle = bo_gem->gem_handle;
1859 wait.timeout_ns = timeout_ns;
1860 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1861 if (ret == -1)
1862 return -errno;
1863
1864 return ret;
1865 }
1866
1867 /**
1868 * Sets the object to the GTT read and possibly write domain, used by the X
1869 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1870 *
1871 * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1872 * can do tiled pixmaps this way.
1873 */
1874 void
drm_intel_gem_bo_start_gtt_access(drm_intel_bo * bo,int write_enable)1875 drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1876 {
1877 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1878 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1879 struct drm_i915_gem_set_domain set_domain;
1880 int ret;
1881
1882 memclear(set_domain);
1883 set_domain.handle = bo_gem->gem_handle;
1884 set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1885 set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1886 ret = drmIoctl(bufmgr_gem->fd,
1887 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1888 &set_domain);
1889 if (ret != 0) {
1890 DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1891 __FILE__, __LINE__, bo_gem->gem_handle,
1892 set_domain.read_domains, set_domain.write_domain,
1893 strerror(errno));
1894 }
1895 }
1896
1897 static void
drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr * bufmgr)1898 drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1899 {
1900 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1901 struct drm_gem_close close_bo;
1902 int i, ret;
1903
1904 free(bufmgr_gem->exec2_objects);
1905 free(bufmgr_gem->exec_objects);
1906 free(bufmgr_gem->exec_bos);
1907
1908 pthread_mutex_destroy(&bufmgr_gem->lock);
1909
1910 /* Free any cached buffer objects we were going to reuse */
1911 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1912 struct drm_intel_gem_bo_bucket *bucket =
1913 &bufmgr_gem->cache_bucket[i];
1914 drm_intel_bo_gem *bo_gem;
1915
1916 while (!DRMLISTEMPTY(&bucket->head)) {
1917 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1918 bucket->head.next, head);
1919 DRMLISTDEL(&bo_gem->head);
1920
1921 drm_intel_gem_bo_free(&bo_gem->bo);
1922 }
1923 }
1924
1925 /* Release userptr bo kept hanging around for optimisation. */
1926 if (bufmgr_gem->userptr_active.ptr) {
1927 memclear(close_bo);
1928 close_bo.handle = bufmgr_gem->userptr_active.handle;
1929 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
1930 free(bufmgr_gem->userptr_active.ptr);
1931 if (ret)
1932 fprintf(stderr,
1933 "Failed to release test userptr object! (%d) "
1934 "i915 kernel driver may not be sane!\n", errno);
1935 }
1936
1937 free(bufmgr);
1938 }
1939
1940 /**
1941 * Adds the target buffer to the validation list and adds the relocation
1942 * to the reloc_buffer's relocation list.
1943 *
1944 * The relocation entry at the given offset must already contain the
1945 * precomputed relocation value, because the kernel will optimize out
1946 * the relocation entry write when the buffer hasn't moved from the
1947 * last known offset in target_bo.
1948 */
1949 static int
do_bo_emit_reloc(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain,bool need_fence)1950 do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1951 drm_intel_bo *target_bo, uint32_t target_offset,
1952 uint32_t read_domains, uint32_t write_domain,
1953 bool need_fence)
1954 {
1955 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1956 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1957 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1958 bool fenced_command;
1959
1960 if (bo_gem->has_error)
1961 return -ENOMEM;
1962
1963 if (target_bo_gem->has_error) {
1964 bo_gem->has_error = true;
1965 return -ENOMEM;
1966 }
1967
1968 /* We never use HW fences for rendering on 965+ */
1969 if (bufmgr_gem->gen >= 4)
1970 need_fence = false;
1971
1972 fenced_command = need_fence;
1973 if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1974 need_fence = false;
1975
1976 /* Create a new relocation list if needed */
1977 if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1978 return -ENOMEM;
1979
1980 /* Check overflow */
1981 assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1982
1983 /* Check args */
1984 assert(offset <= bo->size - 4);
1985 assert((write_domain & (write_domain - 1)) == 0);
1986
1987 /* An object needing a fence is a tiled buffer, so it won't have
1988 * relocs to other buffers.
1989 */
1990 if (need_fence) {
1991 assert(target_bo_gem->reloc_count == 0);
1992 target_bo_gem->reloc_tree_fences = 1;
1993 }
1994
1995 /* Make sure that we're not adding a reloc to something whose size has
1996 * already been accounted for.
1997 */
1998 assert(!bo_gem->used_as_reloc_target);
1999 if (target_bo_gem != bo_gem) {
2000 target_bo_gem->used_as_reloc_target = true;
2001 bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
2002 bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
2003 }
2004
2005 bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
2006 if (target_bo != bo)
2007 drm_intel_gem_bo_reference(target_bo);
2008 if (fenced_command)
2009 bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
2010 DRM_INTEL_RELOC_FENCE;
2011 else
2012 bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
2013
2014 bo_gem->relocs[bo_gem->reloc_count].offset = offset;
2015 bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
2016 bo_gem->relocs[bo_gem->reloc_count].target_handle =
2017 target_bo_gem->gem_handle;
2018 bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
2019 bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
2020 bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
2021 bo_gem->reloc_count++;
2022
2023 return 0;
2024 }
2025
2026 static void
drm_intel_gem_bo_use_48b_address_range(drm_intel_bo * bo,uint32_t enable)2027 drm_intel_gem_bo_use_48b_address_range(drm_intel_bo *bo, uint32_t enable)
2028 {
2029 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2030
2031 if (enable)
2032 bo_gem->kflags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2033 else
2034 bo_gem->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2035 }
2036
2037 static int
drm_intel_gem_bo_add_softpin_target(drm_intel_bo * bo,drm_intel_bo * target_bo)2038 drm_intel_gem_bo_add_softpin_target(drm_intel_bo *bo, drm_intel_bo *target_bo)
2039 {
2040 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2041 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2042 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2043 if (bo_gem->has_error)
2044 return -ENOMEM;
2045
2046 if (target_bo_gem->has_error) {
2047 bo_gem->has_error = true;
2048 return -ENOMEM;
2049 }
2050
2051 if (!(target_bo_gem->kflags & EXEC_OBJECT_PINNED))
2052 return -EINVAL;
2053 if (target_bo_gem == bo_gem)
2054 return -EINVAL;
2055
2056 if (bo_gem->softpin_target_count == bo_gem->softpin_target_size) {
2057 int new_size = bo_gem->softpin_target_size * 2;
2058 if (new_size == 0)
2059 new_size = bufmgr_gem->max_relocs;
2060
2061 bo_gem->softpin_target = realloc(bo_gem->softpin_target, new_size *
2062 sizeof(drm_intel_bo *));
2063 if (!bo_gem->softpin_target)
2064 return -ENOMEM;
2065
2066 bo_gem->softpin_target_size = new_size;
2067 }
2068 bo_gem->softpin_target[bo_gem->softpin_target_count] = target_bo;
2069 drm_intel_gem_bo_reference(target_bo);
2070 bo_gem->softpin_target_count++;
2071
2072 return 0;
2073 }
2074
2075 static int
drm_intel_gem_bo_emit_reloc(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain)2076 drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
2077 drm_intel_bo *target_bo, uint32_t target_offset,
2078 uint32_t read_domains, uint32_t write_domain)
2079 {
2080 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2081 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *)target_bo;
2082
2083 if (target_bo_gem->kflags & EXEC_OBJECT_PINNED)
2084 return drm_intel_gem_bo_add_softpin_target(bo, target_bo);
2085 else
2086 return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2087 read_domains, write_domain,
2088 !bufmgr_gem->fenced_relocs);
2089 }
2090
2091 static int
drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain)2092 drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
2093 drm_intel_bo *target_bo,
2094 uint32_t target_offset,
2095 uint32_t read_domains, uint32_t write_domain)
2096 {
2097 return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2098 read_domains, write_domain, true);
2099 }
2100
2101 int
drm_intel_gem_bo_get_reloc_count(drm_intel_bo * bo)2102 drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
2103 {
2104 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2105
2106 return bo_gem->reloc_count;
2107 }
2108
2109 /**
2110 * Removes existing relocation entries in the BO after "start".
2111 *
2112 * This allows a user to avoid a two-step process for state setup with
2113 * counting up all the buffer objects and doing a
2114 * drm_intel_bufmgr_check_aperture_space() before emitting any of the
2115 * relocations for the state setup. Instead, save the state of the
2116 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
2117 * state, and then check if it still fits in the aperture.
2118 *
2119 * Any further drm_intel_bufmgr_check_aperture_space() queries
2120 * involving this buffer in the tree are undefined after this call.
2121 *
2122 * This also removes all softpinned targets being referenced by the BO.
2123 */
2124 void
drm_intel_gem_bo_clear_relocs(drm_intel_bo * bo,int start)2125 drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
2126 {
2127 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2128 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2129 int i;
2130 struct timespec time;
2131
2132 clock_gettime(CLOCK_MONOTONIC, &time);
2133
2134 assert(bo_gem->reloc_count >= start);
2135
2136 /* Unreference the cleared target buffers */
2137 pthread_mutex_lock(&bufmgr_gem->lock);
2138
2139 for (i = start; i < bo_gem->reloc_count; i++) {
2140 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
2141 if (&target_bo_gem->bo != bo) {
2142 bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
2143 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
2144 time.tv_sec);
2145 }
2146 }
2147 bo_gem->reloc_count = start;
2148
2149 for (i = 0; i < bo_gem->softpin_target_count; i++) {
2150 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->softpin_target[i];
2151 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, time.tv_sec);
2152 }
2153 bo_gem->softpin_target_count = 0;
2154
2155 pthread_mutex_unlock(&bufmgr_gem->lock);
2156
2157 }
2158
2159 /**
2160 * Walk the tree of relocations rooted at BO and accumulate the list of
2161 * validations to be performed and update the relocation buffers with
2162 * index values into the validation list.
2163 */
2164 static void
drm_intel_gem_bo_process_reloc(drm_intel_bo * bo)2165 drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
2166 {
2167 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2168 int i;
2169
2170 if (bo_gem->relocs == NULL)
2171 return;
2172
2173 for (i = 0; i < bo_gem->reloc_count; i++) {
2174 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2175
2176 if (target_bo == bo)
2177 continue;
2178
2179 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2180
2181 /* Continue walking the tree depth-first. */
2182 drm_intel_gem_bo_process_reloc(target_bo);
2183
2184 /* Add the target to the validate list */
2185 drm_intel_add_validate_buffer(target_bo);
2186 }
2187 }
2188
2189 static void
drm_intel_gem_bo_process_reloc2(drm_intel_bo * bo)2190 drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
2191 {
2192 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2193 int i;
2194
2195 if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL)
2196 return;
2197
2198 for (i = 0; i < bo_gem->reloc_count; i++) {
2199 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2200 int need_fence;
2201
2202 if (target_bo == bo)
2203 continue;
2204
2205 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2206
2207 /* Continue walking the tree depth-first. */
2208 drm_intel_gem_bo_process_reloc2(target_bo);
2209
2210 need_fence = (bo_gem->reloc_target_info[i].flags &
2211 DRM_INTEL_RELOC_FENCE);
2212
2213 /* Add the target to the validate list */
2214 drm_intel_add_validate_buffer2(target_bo, need_fence);
2215 }
2216
2217 for (i = 0; i < bo_gem->softpin_target_count; i++) {
2218 drm_intel_bo *target_bo = bo_gem->softpin_target[i];
2219
2220 if (target_bo == bo)
2221 continue;
2222
2223 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2224 drm_intel_gem_bo_process_reloc2(target_bo);
2225 drm_intel_add_validate_buffer2(target_bo, false);
2226 }
2227 }
2228
2229
2230 static void
drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem * bufmgr_gem)2231 drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
2232 {
2233 int i;
2234
2235 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2236 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2237 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2238
2239 /* Update the buffer offset */
2240 if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
2241 DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2242 bo_gem->gem_handle, bo_gem->name,
2243 upper_32_bits(bo->offset64),
2244 lower_32_bits(bo->offset64),
2245 upper_32_bits(bufmgr_gem->exec_objects[i].offset),
2246 lower_32_bits(bufmgr_gem->exec_objects[i].offset));
2247 bo->offset64 = bufmgr_gem->exec_objects[i].offset;
2248 bo->offset = bufmgr_gem->exec_objects[i].offset;
2249 }
2250 }
2251 }
2252
2253 static void
drm_intel_update_buffer_offsets2(drm_intel_bufmgr_gem * bufmgr_gem)2254 drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
2255 {
2256 int i;
2257
2258 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2259 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2260 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2261
2262 /* Update the buffer offset */
2263 if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
2264 /* If we're seeing softpinned object here it means that the kernel
2265 * has relocated our object... Indicating a programming error
2266 */
2267 assert(!(bo_gem->kflags & EXEC_OBJECT_PINNED));
2268 DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2269 bo_gem->gem_handle, bo_gem->name,
2270 upper_32_bits(bo->offset64),
2271 lower_32_bits(bo->offset64),
2272 upper_32_bits(bufmgr_gem->exec2_objects[i].offset),
2273 lower_32_bits(bufmgr_gem->exec2_objects[i].offset));
2274 bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
2275 bo->offset = bufmgr_gem->exec2_objects[i].offset;
2276 }
2277 }
2278 }
2279
2280 void
drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo * bo,int x1,int y1,int width,int height,enum aub_dump_bmp_format format,int pitch,int offset)2281 drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2282 int x1, int y1, int width, int height,
2283 enum aub_dump_bmp_format format,
2284 int pitch, int offset)
2285 {
2286 }
2287
2288 static int
drm_intel_gem_bo_exec(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4)2289 drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2290 drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2291 {
2292 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2293 struct drm_i915_gem_execbuffer execbuf;
2294 int ret, i;
2295
2296 if (to_bo_gem(bo)->has_error)
2297 return -ENOMEM;
2298
2299 pthread_mutex_lock(&bufmgr_gem->lock);
2300 /* Update indices and set up the validate list. */
2301 drm_intel_gem_bo_process_reloc(bo);
2302
2303 /* Add the batch buffer to the validation list. There are no
2304 * relocations pointing to it.
2305 */
2306 drm_intel_add_validate_buffer(bo);
2307
2308 memclear(execbuf);
2309 execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2310 execbuf.buffer_count = bufmgr_gem->exec_count;
2311 execbuf.batch_start_offset = 0;
2312 execbuf.batch_len = used;
2313 execbuf.cliprects_ptr = (uintptr_t) cliprects;
2314 execbuf.num_cliprects = num_cliprects;
2315 execbuf.DR1 = 0;
2316 execbuf.DR4 = DR4;
2317
2318 ret = drmIoctl(bufmgr_gem->fd,
2319 DRM_IOCTL_I915_GEM_EXECBUFFER,
2320 &execbuf);
2321 if (ret != 0) {
2322 ret = -errno;
2323 if (errno == ENOSPC) {
2324 DBG("Execbuffer fails to pin. "
2325 "Estimate: %u. Actual: %u. Available: %u\n",
2326 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2327 bufmgr_gem->
2328 exec_count),
2329 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2330 bufmgr_gem->
2331 exec_count),
2332 (unsigned int)bufmgr_gem->gtt_size);
2333 }
2334 }
2335 drm_intel_update_buffer_offsets(bufmgr_gem);
2336
2337 if (bufmgr_gem->bufmgr.debug)
2338 drm_intel_gem_dump_validation_list(bufmgr_gem);
2339
2340 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2341 drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2342
2343 bo_gem->idle = false;
2344
2345 /* Disconnect the buffer from the validate list */
2346 bo_gem->validate_index = -1;
2347 bufmgr_gem->exec_bos[i] = NULL;
2348 }
2349 bufmgr_gem->exec_count = 0;
2350 pthread_mutex_unlock(&bufmgr_gem->lock);
2351
2352 return ret;
2353 }
2354
2355 static int
do_exec2(drm_intel_bo * bo,int used,drm_intel_context * ctx,drm_clip_rect_t * cliprects,int num_cliprects,int DR4,int in_fence,int * out_fence,unsigned int flags)2356 do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2357 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2358 int in_fence, int *out_fence,
2359 unsigned int flags)
2360 {
2361 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2362 struct drm_i915_gem_execbuffer2 execbuf;
2363 int ret = 0;
2364 int i;
2365
2366 if (to_bo_gem(bo)->has_error)
2367 return -ENOMEM;
2368
2369 switch (flags & 0x7) {
2370 default:
2371 return -EINVAL;
2372 case I915_EXEC_BLT:
2373 if (!bufmgr_gem->has_blt)
2374 return -EINVAL;
2375 break;
2376 case I915_EXEC_BSD:
2377 if (!bufmgr_gem->has_bsd)
2378 return -EINVAL;
2379 break;
2380 case I915_EXEC_VEBOX:
2381 if (!bufmgr_gem->has_vebox)
2382 return -EINVAL;
2383 break;
2384 case I915_EXEC_RENDER:
2385 case I915_EXEC_DEFAULT:
2386 break;
2387 }
2388
2389 pthread_mutex_lock(&bufmgr_gem->lock);
2390 /* Update indices and set up the validate list. */
2391 drm_intel_gem_bo_process_reloc2(bo);
2392
2393 /* Add the batch buffer to the validation list. There are no relocations
2394 * pointing to it.
2395 */
2396 drm_intel_add_validate_buffer2(bo, 0);
2397
2398 memclear(execbuf);
2399 execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2400 execbuf.buffer_count = bufmgr_gem->exec_count;
2401 execbuf.batch_start_offset = 0;
2402 execbuf.batch_len = used;
2403 execbuf.cliprects_ptr = (uintptr_t)cliprects;
2404 execbuf.num_cliprects = num_cliprects;
2405 execbuf.DR1 = 0;
2406 execbuf.DR4 = DR4;
2407 execbuf.flags = flags;
2408 if (ctx == NULL)
2409 i915_execbuffer2_set_context_id(execbuf, 0);
2410 else
2411 i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2412 execbuf.rsvd2 = 0;
2413 if (in_fence != -1) {
2414 execbuf.rsvd2 = in_fence;
2415 execbuf.flags |= I915_EXEC_FENCE_IN;
2416 }
2417 if (out_fence != NULL) {
2418 *out_fence = -1;
2419 execbuf.flags |= I915_EXEC_FENCE_OUT;
2420 }
2421
2422 if (bufmgr_gem->no_exec)
2423 goto skip_execution;
2424
2425 ret = drmIoctl(bufmgr_gem->fd,
2426 DRM_IOCTL_I915_GEM_EXECBUFFER2_WR,
2427 &execbuf);
2428 if (ret != 0) {
2429 ret = -errno;
2430 if (ret == -ENOSPC) {
2431 DBG("Execbuffer fails to pin. "
2432 "Estimate: %u. Actual: %u. Available: %u\n",
2433 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2434 bufmgr_gem->exec_count),
2435 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2436 bufmgr_gem->exec_count),
2437 (unsigned int) bufmgr_gem->gtt_size);
2438 }
2439 }
2440 drm_intel_update_buffer_offsets2(bufmgr_gem);
2441
2442 if (ret == 0 && out_fence != NULL)
2443 *out_fence = execbuf.rsvd2 >> 32;
2444
2445 skip_execution:
2446 if (bufmgr_gem->bufmgr.debug)
2447 drm_intel_gem_dump_validation_list(bufmgr_gem);
2448
2449 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2450 drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2451
2452 bo_gem->idle = false;
2453
2454 /* Disconnect the buffer from the validate list */
2455 bo_gem->validate_index = -1;
2456 bufmgr_gem->exec_bos[i] = NULL;
2457 }
2458 bufmgr_gem->exec_count = 0;
2459 pthread_mutex_unlock(&bufmgr_gem->lock);
2460
2461 return ret;
2462 }
2463
2464 static int
drm_intel_gem_bo_exec2(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4)2465 drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2466 drm_clip_rect_t *cliprects, int num_cliprects,
2467 int DR4)
2468 {
2469 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2470 -1, NULL, I915_EXEC_RENDER);
2471 }
2472
2473 static int
drm_intel_gem_bo_mrb_exec2(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4,unsigned int flags)2474 drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2475 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2476 unsigned int flags)
2477 {
2478 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2479 -1, NULL, flags);
2480 }
2481
2482 int
drm_intel_gem_bo_context_exec(drm_intel_bo * bo,drm_intel_context * ctx,int used,unsigned int flags)2483 drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2484 int used, unsigned int flags)
2485 {
2486 return do_exec2(bo, used, ctx, NULL, 0, 0, -1, NULL, flags);
2487 }
2488
2489 int
drm_intel_gem_bo_fence_exec(drm_intel_bo * bo,drm_intel_context * ctx,int used,int in_fence,int * out_fence,unsigned int flags)2490 drm_intel_gem_bo_fence_exec(drm_intel_bo *bo,
2491 drm_intel_context *ctx,
2492 int used,
2493 int in_fence,
2494 int *out_fence,
2495 unsigned int flags)
2496 {
2497 return do_exec2(bo, used, ctx, NULL, 0, 0, in_fence, out_fence, flags);
2498 }
2499
2500 static int
drm_intel_gem_bo_pin(drm_intel_bo * bo,uint32_t alignment)2501 drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2502 {
2503 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2504 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2505 struct drm_i915_gem_pin pin;
2506 int ret;
2507
2508 memclear(pin);
2509 pin.handle = bo_gem->gem_handle;
2510 pin.alignment = alignment;
2511
2512 ret = drmIoctl(bufmgr_gem->fd,
2513 DRM_IOCTL_I915_GEM_PIN,
2514 &pin);
2515 if (ret != 0)
2516 return -errno;
2517
2518 bo->offset64 = pin.offset;
2519 bo->offset = pin.offset;
2520 return 0;
2521 }
2522
2523 static int
drm_intel_gem_bo_unpin(drm_intel_bo * bo)2524 drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2525 {
2526 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2527 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2528 struct drm_i915_gem_unpin unpin;
2529 int ret;
2530
2531 memclear(unpin);
2532 unpin.handle = bo_gem->gem_handle;
2533
2534 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2535 if (ret != 0)
2536 return -errno;
2537
2538 return 0;
2539 }
2540
2541 static int
drm_intel_gem_bo_set_tiling_internal(drm_intel_bo * bo,uint32_t tiling_mode,uint32_t stride)2542 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2543 uint32_t tiling_mode,
2544 uint32_t stride)
2545 {
2546 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2547 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2548 struct drm_i915_gem_set_tiling set_tiling;
2549 int ret;
2550
2551 if (bo_gem->global_name == 0 &&
2552 tiling_mode == bo_gem->tiling_mode &&
2553 stride == bo_gem->stride)
2554 return 0;
2555
2556 memset(&set_tiling, 0, sizeof(set_tiling));
2557 do {
2558 /* set_tiling is slightly broken and overwrites the
2559 * input on the error path, so we have to open code
2560 * rmIoctl.
2561 */
2562 set_tiling.handle = bo_gem->gem_handle;
2563 set_tiling.tiling_mode = tiling_mode;
2564 set_tiling.stride = stride;
2565
2566 ret = ioctl(bufmgr_gem->fd,
2567 DRM_IOCTL_I915_GEM_SET_TILING,
2568 &set_tiling);
2569 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2570 if (ret == -1)
2571 return -errno;
2572
2573 bo_gem->tiling_mode = set_tiling.tiling_mode;
2574 bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2575 bo_gem->stride = set_tiling.stride;
2576 return 0;
2577 }
2578
2579 static int
drm_intel_gem_bo_set_tiling(drm_intel_bo * bo,uint32_t * tiling_mode,uint32_t stride)2580 drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2581 uint32_t stride)
2582 {
2583 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2584 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2585 int ret;
2586
2587 /* Tiling with userptr surfaces is not supported
2588 * on all hardware so refuse it for time being.
2589 */
2590 if (bo_gem->is_userptr)
2591 return -EINVAL;
2592
2593 /* Linear buffers have no stride. By ensuring that we only ever use
2594 * stride 0 with linear buffers, we simplify our code.
2595 */
2596 if (*tiling_mode == I915_TILING_NONE)
2597 stride = 0;
2598
2599 ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2600 if (ret == 0)
2601 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2602
2603 *tiling_mode = bo_gem->tiling_mode;
2604 return ret;
2605 }
2606
2607 static int
drm_intel_gem_bo_get_tiling(drm_intel_bo * bo,uint32_t * tiling_mode,uint32_t * swizzle_mode)2608 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2609 uint32_t * swizzle_mode)
2610 {
2611 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2612
2613 *tiling_mode = bo_gem->tiling_mode;
2614 *swizzle_mode = bo_gem->swizzle_mode;
2615 return 0;
2616 }
2617
2618 static int
drm_intel_gem_bo_set_softpin_offset(drm_intel_bo * bo,uint64_t offset)2619 drm_intel_gem_bo_set_softpin_offset(drm_intel_bo *bo, uint64_t offset)
2620 {
2621 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2622
2623 bo->offset64 = offset;
2624 bo->offset = offset;
2625 bo_gem->kflags |= EXEC_OBJECT_PINNED;
2626
2627 return 0;
2628 }
2629
2630 drm_intel_bo *
drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr * bufmgr,int prime_fd,int size)2631 drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2632 {
2633 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2634 int ret;
2635 uint32_t handle;
2636 drm_intel_bo_gem *bo_gem;
2637 struct drm_i915_gem_get_tiling get_tiling;
2638
2639 pthread_mutex_lock(&bufmgr_gem->lock);
2640 ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2641 if (ret) {
2642 DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno));
2643 pthread_mutex_unlock(&bufmgr_gem->lock);
2644 return NULL;
2645 }
2646
2647 /*
2648 * See if the kernel has already returned this buffer to us. Just as
2649 * for named buffers, we must not create two bo's pointing at the same
2650 * kernel object
2651 */
2652 HASH_FIND(handle_hh, bufmgr_gem->handle_table,
2653 &handle, sizeof(handle), bo_gem);
2654 if (bo_gem) {
2655 drm_intel_gem_bo_reference(&bo_gem->bo);
2656 goto out;
2657 }
2658
2659 bo_gem = calloc(1, sizeof(*bo_gem));
2660 if (!bo_gem)
2661 goto out;
2662
2663 atomic_set(&bo_gem->refcount, 1);
2664 DRMINITLISTHEAD(&bo_gem->vma_list);
2665
2666 /* Determine size of bo. The fd-to-handle ioctl really should
2667 * return the size, but it doesn't. If we have kernel 3.12 or
2668 * later, we can lseek on the prime fd to get the size. Older
2669 * kernels will just fail, in which case we fall back to the
2670 * provided (estimated or guess size). */
2671 ret = lseek(prime_fd, 0, SEEK_END);
2672 if (ret != -1)
2673 bo_gem->bo.size = ret;
2674 else
2675 bo_gem->bo.size = size;
2676
2677 bo_gem->bo.handle = handle;
2678 bo_gem->bo.bufmgr = bufmgr;
2679
2680 bo_gem->gem_handle = handle;
2681 HASH_ADD(handle_hh, bufmgr_gem->handle_table,
2682 gem_handle, sizeof(bo_gem->gem_handle), bo_gem);
2683
2684 bo_gem->name = "prime";
2685 bo_gem->validate_index = -1;
2686 bo_gem->reloc_tree_fences = 0;
2687 bo_gem->used_as_reloc_target = false;
2688 bo_gem->has_error = false;
2689 bo_gem->reusable = false;
2690
2691 memclear(get_tiling);
2692 get_tiling.handle = bo_gem->gem_handle;
2693 if (drmIoctl(bufmgr_gem->fd,
2694 DRM_IOCTL_I915_GEM_GET_TILING,
2695 &get_tiling))
2696 goto err;
2697
2698 bo_gem->tiling_mode = get_tiling.tiling_mode;
2699 bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2700 /* XXX stride is unknown */
2701 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2702
2703 out:
2704 pthread_mutex_unlock(&bufmgr_gem->lock);
2705 return &bo_gem->bo;
2706
2707 err:
2708 drm_intel_gem_bo_free(&bo_gem->bo);
2709 pthread_mutex_unlock(&bufmgr_gem->lock);
2710 return NULL;
2711 }
2712
2713 int
drm_intel_bo_gem_export_to_prime(drm_intel_bo * bo,int * prime_fd)2714 drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2715 {
2716 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2717 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2718
2719 if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2720 DRM_CLOEXEC, prime_fd) != 0)
2721 return -errno;
2722
2723 bo_gem->reusable = false;
2724
2725 return 0;
2726 }
2727
2728 static int
drm_intel_gem_bo_flink(drm_intel_bo * bo,uint32_t * name)2729 drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2730 {
2731 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2732 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2733
2734 if (!bo_gem->global_name) {
2735 struct drm_gem_flink flink;
2736
2737 memclear(flink);
2738 flink.handle = bo_gem->gem_handle;
2739 if (drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink))
2740 return -errno;
2741
2742 pthread_mutex_lock(&bufmgr_gem->lock);
2743 if (!bo_gem->global_name) {
2744 bo_gem->global_name = flink.name;
2745 bo_gem->reusable = false;
2746
2747 HASH_ADD(name_hh, bufmgr_gem->name_table,
2748 global_name, sizeof(bo_gem->global_name),
2749 bo_gem);
2750 }
2751 pthread_mutex_unlock(&bufmgr_gem->lock);
2752 }
2753
2754 *name = bo_gem->global_name;
2755 return 0;
2756 }
2757
2758 /**
2759 * Enables unlimited caching of buffer objects for reuse.
2760 *
2761 * This is potentially very memory expensive, as the cache at each bucket
2762 * size is only bounded by how many buffers of that size we've managed to have
2763 * in flight at once.
2764 */
2765 void
drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr * bufmgr)2766 drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2767 {
2768 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2769
2770 bufmgr_gem->bo_reuse = true;
2771 }
2772
2773 /**
2774 * Disables implicit synchronisation before executing the bo
2775 *
2776 * This will cause rendering corruption unless you correctly manage explicit
2777 * fences for all rendering involving this buffer - including use by others.
2778 * Disabling the implicit serialisation is only required if that serialisation
2779 * is too coarse (for example, you have split the buffer into many
2780 * non-overlapping regions and are sharing the whole buffer between concurrent
2781 * independent command streams).
2782 *
2783 * Note the kernel must advertise support via I915_PARAM_HAS_EXEC_ASYNC,
2784 * which can be checked using drm_intel_bufmgr_can_disable_implicit_sync,
2785 * or subsequent execbufs involving the bo will generate EINVAL.
2786 */
2787 void
drm_intel_gem_bo_disable_implicit_sync(drm_intel_bo * bo)2788 drm_intel_gem_bo_disable_implicit_sync(drm_intel_bo *bo)
2789 {
2790 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2791
2792 bo_gem->kflags |= EXEC_OBJECT_ASYNC;
2793 }
2794
2795 /**
2796 * Enables implicit synchronisation before executing the bo
2797 *
2798 * This is the default behaviour of the kernel, to wait upon prior writes
2799 * completing on the object before rendering with it, or to wait for prior
2800 * reads to complete before writing into the object.
2801 * drm_intel_gem_bo_disable_implicit_sync() can stop this behaviour, telling
2802 * the kernel never to insert a stall before using the object. Then this
2803 * function can be used to restore the implicit sync before subsequent
2804 * rendering.
2805 */
2806 void
drm_intel_gem_bo_enable_implicit_sync(drm_intel_bo * bo)2807 drm_intel_gem_bo_enable_implicit_sync(drm_intel_bo *bo)
2808 {
2809 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2810
2811 bo_gem->kflags &= ~EXEC_OBJECT_ASYNC;
2812 }
2813
2814 /**
2815 * Query whether the kernel supports disabling of its implicit synchronisation
2816 * before execbuf. See drm_intel_gem_bo_disable_implicit_sync()
2817 */
2818 int
drm_intel_bufmgr_gem_can_disable_implicit_sync(drm_intel_bufmgr * bufmgr)2819 drm_intel_bufmgr_gem_can_disable_implicit_sync(drm_intel_bufmgr *bufmgr)
2820 {
2821 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2822
2823 return bufmgr_gem->has_exec_async;
2824 }
2825
2826 /**
2827 * Enable use of fenced reloc type.
2828 *
2829 * New code should enable this to avoid unnecessary fence register
2830 * allocation. If this option is not enabled, all relocs will have fence
2831 * register allocated.
2832 */
2833 void
drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr * bufmgr)2834 drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2835 {
2836 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2837
2838 if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2839 bufmgr_gem->fenced_relocs = true;
2840 }
2841
2842 /**
2843 * Return the additional aperture space required by the tree of buffer objects
2844 * rooted at bo.
2845 */
2846 static int
drm_intel_gem_bo_get_aperture_space(drm_intel_bo * bo)2847 drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2848 {
2849 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2850 int i;
2851 int total = 0;
2852
2853 if (bo == NULL || bo_gem->included_in_check_aperture)
2854 return 0;
2855
2856 total += bo->size;
2857 bo_gem->included_in_check_aperture = true;
2858
2859 for (i = 0; i < bo_gem->reloc_count; i++)
2860 total +=
2861 drm_intel_gem_bo_get_aperture_space(bo_gem->
2862 reloc_target_info[i].bo);
2863
2864 return total;
2865 }
2866
2867 /**
2868 * Count the number of buffers in this list that need a fence reg
2869 *
2870 * If the count is greater than the number of available regs, we'll have
2871 * to ask the caller to resubmit a batch with fewer tiled buffers.
2872 *
2873 * This function over-counts if the same buffer is used multiple times.
2874 */
2875 static unsigned int
drm_intel_gem_total_fences(drm_intel_bo ** bo_array,int count)2876 drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2877 {
2878 int i;
2879 unsigned int total = 0;
2880
2881 for (i = 0; i < count; i++) {
2882 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2883
2884 if (bo_gem == NULL)
2885 continue;
2886
2887 total += bo_gem->reloc_tree_fences;
2888 }
2889 return total;
2890 }
2891
2892 /**
2893 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2894 * for the next drm_intel_bufmgr_check_aperture_space() call.
2895 */
2896 static void
drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo * bo)2897 drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2898 {
2899 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2900 int i;
2901
2902 if (bo == NULL || !bo_gem->included_in_check_aperture)
2903 return;
2904
2905 bo_gem->included_in_check_aperture = false;
2906
2907 for (i = 0; i < bo_gem->reloc_count; i++)
2908 drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2909 reloc_target_info[i].bo);
2910 }
2911
2912 /**
2913 * Return a conservative estimate for the amount of aperture required
2914 * for a collection of buffers. This may double-count some buffers.
2915 */
2916 static unsigned int
drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array,int count)2917 drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2918 {
2919 int i;
2920 unsigned int total = 0;
2921
2922 for (i = 0; i < count; i++) {
2923 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2924 if (bo_gem != NULL)
2925 total += bo_gem->reloc_tree_size;
2926 }
2927 return total;
2928 }
2929
2930 /**
2931 * Return the amount of aperture needed for a collection of buffers.
2932 * This avoids double counting any buffers, at the cost of looking
2933 * at every buffer in the set.
2934 */
2935 static unsigned int
drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array,int count)2936 drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2937 {
2938 int i;
2939 unsigned int total = 0;
2940
2941 for (i = 0; i < count; i++) {
2942 total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2943 /* For the first buffer object in the array, we get an
2944 * accurate count back for its reloc_tree size (since nothing
2945 * had been flagged as being counted yet). We can save that
2946 * value out as a more conservative reloc_tree_size that
2947 * avoids double-counting target buffers. Since the first
2948 * buffer happens to usually be the batch buffer in our
2949 * callers, this can pull us back from doing the tree
2950 * walk on every new batch emit.
2951 */
2952 if (i == 0) {
2953 drm_intel_bo_gem *bo_gem =
2954 (drm_intel_bo_gem *) bo_array[i];
2955 bo_gem->reloc_tree_size = total;
2956 }
2957 }
2958
2959 for (i = 0; i < count; i++)
2960 drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2961 return total;
2962 }
2963
2964 /**
2965 * Return -1 if the batchbuffer should be flushed before attempting to
2966 * emit rendering referencing the buffers pointed to by bo_array.
2967 *
2968 * This is required because if we try to emit a batchbuffer with relocations
2969 * to a tree of buffers that won't simultaneously fit in the aperture,
2970 * the rendering will return an error at a point where the software is not
2971 * prepared to recover from it.
2972 *
2973 * However, we also want to emit the batchbuffer significantly before we reach
2974 * the limit, as a series of batchbuffers each of which references buffers
2975 * covering almost all of the aperture means that at each emit we end up
2976 * waiting to evict a buffer from the last rendering, and we get synchronous
2977 * performance. By emitting smaller batchbuffers, we eat some CPU overhead to
2978 * get better parallelism.
2979 */
2980 static int
drm_intel_gem_check_aperture_space(drm_intel_bo ** bo_array,int count)2981 drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2982 {
2983 drm_intel_bufmgr_gem *bufmgr_gem =
2984 (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2985 unsigned int total = 0;
2986 unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2987 int total_fences;
2988
2989 /* Check for fence reg constraints if necessary */
2990 if (bufmgr_gem->available_fences) {
2991 total_fences = drm_intel_gem_total_fences(bo_array, count);
2992 if (total_fences > bufmgr_gem->available_fences)
2993 return -ENOSPC;
2994 }
2995
2996 total = drm_intel_gem_estimate_batch_space(bo_array, count);
2997
2998 if (total > threshold)
2999 total = drm_intel_gem_compute_batch_space(bo_array, count);
3000
3001 if (total > threshold) {
3002 DBG("check_space: overflowed available aperture, "
3003 "%dkb vs %dkb\n",
3004 total / 1024, (int)bufmgr_gem->gtt_size / 1024);
3005 return -ENOSPC;
3006 } else {
3007 DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
3008 (int)bufmgr_gem->gtt_size / 1024);
3009 return 0;
3010 }
3011 }
3012
3013 /*
3014 * Disable buffer reuse for objects which are shared with the kernel
3015 * as scanout buffers
3016 */
3017 static int
drm_intel_gem_bo_disable_reuse(drm_intel_bo * bo)3018 drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
3019 {
3020 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3021
3022 bo_gem->reusable = false;
3023 return 0;
3024 }
3025
3026 static int
drm_intel_gem_bo_is_reusable(drm_intel_bo * bo)3027 drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
3028 {
3029 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3030
3031 return bo_gem->reusable;
3032 }
3033
3034 static int
_drm_intel_gem_bo_references(drm_intel_bo * bo,drm_intel_bo * target_bo)3035 _drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3036 {
3037 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3038 int i;
3039
3040 for (i = 0; i < bo_gem->reloc_count; i++) {
3041 if (bo_gem->reloc_target_info[i].bo == target_bo)
3042 return 1;
3043 if (bo == bo_gem->reloc_target_info[i].bo)
3044 continue;
3045 if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
3046 target_bo))
3047 return 1;
3048 }
3049
3050 for (i = 0; i< bo_gem->softpin_target_count; i++) {
3051 if (bo_gem->softpin_target[i] == target_bo)
3052 return 1;
3053 if (_drm_intel_gem_bo_references(bo_gem->softpin_target[i], target_bo))
3054 return 1;
3055 }
3056
3057 return 0;
3058 }
3059
3060 /** Return true if target_bo is referenced by bo's relocation tree. */
3061 static int
drm_intel_gem_bo_references(drm_intel_bo * bo,drm_intel_bo * target_bo)3062 drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3063 {
3064 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
3065
3066 if (bo == NULL || target_bo == NULL)
3067 return 0;
3068 if (target_bo_gem->used_as_reloc_target)
3069 return _drm_intel_gem_bo_references(bo, target_bo);
3070 return 0;
3071 }
3072
3073 static void
add_bucket(drm_intel_bufmgr_gem * bufmgr_gem,int size)3074 add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
3075 {
3076 unsigned int i = bufmgr_gem->num_buckets;
3077
3078 assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
3079
3080 DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
3081 bufmgr_gem->cache_bucket[i].size = size;
3082 bufmgr_gem->num_buckets++;
3083 }
3084
3085 static void
init_cache_buckets(drm_intel_bufmgr_gem * bufmgr_gem)3086 init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
3087 {
3088 unsigned long size, cache_max_size = 64 * 1024 * 1024;
3089
3090 /* OK, so power of two buckets was too wasteful of memory.
3091 * Give 3 other sizes between each power of two, to hopefully
3092 * cover things accurately enough. (The alternative is
3093 * probably to just go for exact matching of sizes, and assume
3094 * that for things like composited window resize the tiled
3095 * width/height alignment and rounding of sizes to pages will
3096 * get us useful cache hit rates anyway)
3097 */
3098 add_bucket(bufmgr_gem, 4096);
3099 add_bucket(bufmgr_gem, 4096 * 2);
3100 add_bucket(bufmgr_gem, 4096 * 3);
3101
3102 /* Initialize the linked lists for BO reuse cache. */
3103 for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
3104 add_bucket(bufmgr_gem, size);
3105
3106 add_bucket(bufmgr_gem, size + size * 1 / 4);
3107 add_bucket(bufmgr_gem, size + size * 2 / 4);
3108 add_bucket(bufmgr_gem, size + size * 3 / 4);
3109 }
3110 }
3111
3112 void
drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr * bufmgr,int limit)3113 drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
3114 {
3115 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3116
3117 bufmgr_gem->vma_max = limit;
3118
3119 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
3120 }
3121
3122 static int
parse_devid_override(const char * devid_override)3123 parse_devid_override(const char *devid_override)
3124 {
3125 static const struct {
3126 const char *name;
3127 int pci_id;
3128 } name_map[] = {
3129 { "brw", PCI_CHIP_I965_GM },
3130 { "g4x", PCI_CHIP_GM45_GM },
3131 { "ilk", PCI_CHIP_ILD_G },
3132 { "snb", PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS },
3133 { "ivb", PCI_CHIP_IVYBRIDGE_S_GT2 },
3134 { "hsw", PCI_CHIP_HASWELL_CRW_E_GT3 },
3135 { "byt", PCI_CHIP_VALLEYVIEW_3 },
3136 { "bdw", 0x1620 | BDW_ULX },
3137 { "skl", PCI_CHIP_SKYLAKE_DT_GT2 },
3138 { "kbl", PCI_CHIP_KABYLAKE_DT_GT2 },
3139 };
3140 unsigned int i;
3141
3142 for (i = 0; i < ARRAY_SIZE(name_map); i++) {
3143 if (!strcmp(name_map[i].name, devid_override))
3144 return name_map[i].pci_id;
3145 }
3146
3147 return strtod(devid_override, NULL);
3148 }
3149
3150 /**
3151 * Get the PCI ID for the device. This can be overridden by setting the
3152 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
3153 */
3154 static int
get_pci_device_id(drm_intel_bufmgr_gem * bufmgr_gem)3155 get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
3156 {
3157 char *devid_override;
3158 int devid = 0;
3159 int ret;
3160 drm_i915_getparam_t gp;
3161
3162 if (geteuid() == getuid()) {
3163 devid_override = getenv("INTEL_DEVID_OVERRIDE");
3164 if (devid_override) {
3165 bufmgr_gem->no_exec = true;
3166 return parse_devid_override(devid_override);
3167 }
3168 }
3169
3170 memclear(gp);
3171 gp.param = I915_PARAM_CHIPSET_ID;
3172 gp.value = &devid;
3173 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3174 if (ret) {
3175 fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
3176 fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
3177 }
3178 return devid;
3179 }
3180
3181 int
drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr * bufmgr)3182 drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
3183 {
3184 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3185
3186 return bufmgr_gem->pci_device;
3187 }
3188
3189 /**
3190 * Sets the AUB filename.
3191 *
3192 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
3193 * for it to have any effect.
3194 */
3195 void
drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr * bufmgr,const char * filename)3196 drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
3197 const char *filename)
3198 {
3199 }
3200
3201 /**
3202 * Sets up AUB dumping.
3203 *
3204 * This is a trace file format that can be used with the simulator.
3205 * Packets are emitted in a format somewhat like GPU command packets.
3206 * You can set up a GTT and upload your objects into the referenced
3207 * space, then send off batchbuffers and get BMPs out the other end.
3208 */
3209 void
drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr * bufmgr,int enable)3210 drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
3211 {
3212 fprintf(stderr, "libdrm aub dumping is deprecated.\n\n"
3213 "Use intel_aubdump from intel-gpu-tools instead. Install intel-gpu-tools,\n"
3214 "then run (for example)\n\n"
3215 "\t$ intel_aubdump --output=trace.aub glxgears -geometry 500x500\n\n"
3216 "See the intel_aubdump man page for more details.\n");
3217 }
3218
3219 drm_intel_context *
drm_intel_gem_context_create(drm_intel_bufmgr * bufmgr)3220 drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
3221 {
3222 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3223 struct drm_i915_gem_context_create create;
3224 drm_intel_context *context = NULL;
3225 int ret;
3226
3227 context = calloc(1, sizeof(*context));
3228 if (!context)
3229 return NULL;
3230
3231 memclear(create);
3232 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
3233 if (ret != 0) {
3234 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
3235 strerror(errno));
3236 free(context);
3237 return NULL;
3238 }
3239
3240 context->ctx_id = create.ctx_id;
3241 context->bufmgr = bufmgr;
3242
3243 return context;
3244 }
3245
3246 int
drm_intel_gem_context_get_id(drm_intel_context * ctx,uint32_t * ctx_id)3247 drm_intel_gem_context_get_id(drm_intel_context *ctx, uint32_t *ctx_id)
3248 {
3249 if (ctx == NULL)
3250 return -EINVAL;
3251
3252 *ctx_id = ctx->ctx_id;
3253
3254 return 0;
3255 }
3256
3257 void
drm_intel_gem_context_destroy(drm_intel_context * ctx)3258 drm_intel_gem_context_destroy(drm_intel_context *ctx)
3259 {
3260 drm_intel_bufmgr_gem *bufmgr_gem;
3261 struct drm_i915_gem_context_destroy destroy;
3262 int ret;
3263
3264 if (ctx == NULL)
3265 return;
3266
3267 memclear(destroy);
3268
3269 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3270 destroy.ctx_id = ctx->ctx_id;
3271 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3272 &destroy);
3273 if (ret != 0)
3274 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3275 strerror(errno));
3276
3277 free(ctx);
3278 }
3279
3280 int
drm_intel_get_reset_stats(drm_intel_context * ctx,uint32_t * reset_count,uint32_t * active,uint32_t * pending)3281 drm_intel_get_reset_stats(drm_intel_context *ctx,
3282 uint32_t *reset_count,
3283 uint32_t *active,
3284 uint32_t *pending)
3285 {
3286 drm_intel_bufmgr_gem *bufmgr_gem;
3287 struct drm_i915_reset_stats stats;
3288 int ret;
3289
3290 if (ctx == NULL)
3291 return -EINVAL;
3292
3293 memclear(stats);
3294
3295 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3296 stats.ctx_id = ctx->ctx_id;
3297 ret = drmIoctl(bufmgr_gem->fd,
3298 DRM_IOCTL_I915_GET_RESET_STATS,
3299 &stats);
3300 if (ret == 0) {
3301 if (reset_count != NULL)
3302 *reset_count = stats.reset_count;
3303
3304 if (active != NULL)
3305 *active = stats.batch_active;
3306
3307 if (pending != NULL)
3308 *pending = stats.batch_pending;
3309 }
3310
3311 return ret;
3312 }
3313
3314 int
drm_intel_reg_read(drm_intel_bufmgr * bufmgr,uint32_t offset,uint64_t * result)3315 drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3316 uint32_t offset,
3317 uint64_t *result)
3318 {
3319 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3320 struct drm_i915_reg_read reg_read;
3321 int ret;
3322
3323 memclear(reg_read);
3324 reg_read.offset = offset;
3325
3326 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, ®_read);
3327
3328 *result = reg_read.val;
3329 return ret;
3330 }
3331
3332 int
drm_intel_get_subslice_total(int fd,unsigned int * subslice_total)3333 drm_intel_get_subslice_total(int fd, unsigned int *subslice_total)
3334 {
3335 drm_i915_getparam_t gp;
3336 int ret;
3337
3338 memclear(gp);
3339 gp.value = (int*)subslice_total;
3340 gp.param = I915_PARAM_SUBSLICE_TOTAL;
3341 ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3342 if (ret)
3343 return -errno;
3344
3345 return 0;
3346 }
3347
3348 int
drm_intel_get_eu_total(int fd,unsigned int * eu_total)3349 drm_intel_get_eu_total(int fd, unsigned int *eu_total)
3350 {
3351 drm_i915_getparam_t gp;
3352 int ret;
3353
3354 memclear(gp);
3355 gp.value = (int*)eu_total;
3356 gp.param = I915_PARAM_EU_TOTAL;
3357 ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3358 if (ret)
3359 return -errno;
3360
3361 return 0;
3362 }
3363
3364 int
drm_intel_get_pooled_eu(int fd)3365 drm_intel_get_pooled_eu(int fd)
3366 {
3367 drm_i915_getparam_t gp;
3368 int ret = -1;
3369
3370 memclear(gp);
3371 gp.param = I915_PARAM_HAS_POOLED_EU;
3372 gp.value = &ret;
3373 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
3374 return -errno;
3375
3376 return ret;
3377 }
3378
3379 int
drm_intel_get_min_eu_in_pool(int fd)3380 drm_intel_get_min_eu_in_pool(int fd)
3381 {
3382 drm_i915_getparam_t gp;
3383 int ret = -1;
3384
3385 memclear(gp);
3386 gp.param = I915_PARAM_MIN_EU_IN_POOL;
3387 gp.value = &ret;
3388 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
3389 return -errno;
3390
3391 return ret;
3392 }
3393
3394 /**
3395 * Annotate the given bo for use in aub dumping.
3396 *
3397 * \param annotations is an array of drm_intel_aub_annotation objects
3398 * describing the type of data in various sections of the bo. Each
3399 * element of the array specifies the type and subtype of a section of
3400 * the bo, and the past-the-end offset of that section. The elements
3401 * of \c annotations must be sorted so that ending_offset is
3402 * increasing.
3403 *
3404 * \param count is the number of elements in the \c annotations array.
3405 * If \c count is zero, then \c annotations will not be dereferenced.
3406 *
3407 * Annotations are copied into a private data structure, so caller may
3408 * re-use the memory pointed to by \c annotations after the call
3409 * returns.
3410 *
3411 * Annotations are stored for the lifetime of the bo; to reset to the
3412 * default state (no annotations), call this function with a \c count
3413 * of zero.
3414 */
3415 void
drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo * bo,drm_intel_aub_annotation * annotations,unsigned count)3416 drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3417 drm_intel_aub_annotation *annotations,
3418 unsigned count)
3419 {
3420 }
3421
3422 static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER;
3423 static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list };
3424
3425 static drm_intel_bufmgr_gem *
drm_intel_bufmgr_gem_find(int fd)3426 drm_intel_bufmgr_gem_find(int fd)
3427 {
3428 drm_intel_bufmgr_gem *bufmgr_gem;
3429
3430 DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) {
3431 if (bufmgr_gem->fd == fd) {
3432 atomic_inc(&bufmgr_gem->refcount);
3433 return bufmgr_gem;
3434 }
3435 }
3436
3437 return NULL;
3438 }
3439
3440 static void
drm_intel_bufmgr_gem_unref(drm_intel_bufmgr * bufmgr)3441 drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr)
3442 {
3443 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3444
3445 if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) {
3446 pthread_mutex_lock(&bufmgr_list_mutex);
3447
3448 if (atomic_dec_and_test(&bufmgr_gem->refcount)) {
3449 DRMLISTDEL(&bufmgr_gem->managers);
3450 drm_intel_bufmgr_gem_destroy(bufmgr);
3451 }
3452
3453 pthread_mutex_unlock(&bufmgr_list_mutex);
3454 }
3455 }
3456
drm_intel_gem_bo_map__gtt(drm_intel_bo * bo)3457 void *drm_intel_gem_bo_map__gtt(drm_intel_bo *bo)
3458 {
3459 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3460 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3461
3462 if (bo_gem->gtt_virtual)
3463 return bo_gem->gtt_virtual;
3464
3465 if (bo_gem->is_userptr)
3466 return NULL;
3467
3468 pthread_mutex_lock(&bufmgr_gem->lock);
3469 if (bo_gem->gtt_virtual == NULL) {
3470 struct drm_i915_gem_mmap_gtt mmap_arg;
3471 void *ptr;
3472
3473 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
3474 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3475
3476 if (bo_gem->map_count++ == 0)
3477 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3478
3479 memclear(mmap_arg);
3480 mmap_arg.handle = bo_gem->gem_handle;
3481
3482 /* Get the fake offset back... */
3483 ptr = MAP_FAILED;
3484 if (drmIoctl(bufmgr_gem->fd,
3485 DRM_IOCTL_I915_GEM_MMAP_GTT,
3486 &mmap_arg) == 0) {
3487 /* and mmap it */
3488 ptr = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
3489 MAP_SHARED, bufmgr_gem->fd,
3490 mmap_arg.offset);
3491 }
3492 if (ptr == MAP_FAILED) {
3493 if (--bo_gem->map_count == 0)
3494 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3495 ptr = NULL;
3496 }
3497
3498 bo_gem->gtt_virtual = ptr;
3499 }
3500 pthread_mutex_unlock(&bufmgr_gem->lock);
3501
3502 return bo_gem->gtt_virtual;
3503 }
3504
drm_intel_gem_bo_map__cpu(drm_intel_bo * bo)3505 void *drm_intel_gem_bo_map__cpu(drm_intel_bo *bo)
3506 {
3507 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3508 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3509
3510 if (bo_gem->mem_virtual)
3511 return bo_gem->mem_virtual;
3512
3513 if (bo_gem->is_userptr) {
3514 /* Return the same user ptr */
3515 return bo_gem->user_virtual;
3516 }
3517
3518 pthread_mutex_lock(&bufmgr_gem->lock);
3519 if (!bo_gem->mem_virtual) {
3520 struct drm_i915_gem_mmap mmap_arg;
3521
3522 if (bo_gem->map_count++ == 0)
3523 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3524
3525 DBG("bo_map: %d (%s), map_count=%d\n",
3526 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3527
3528 memclear(mmap_arg);
3529 mmap_arg.handle = bo_gem->gem_handle;
3530 mmap_arg.size = bo->size;
3531 if (drmIoctl(bufmgr_gem->fd,
3532 DRM_IOCTL_I915_GEM_MMAP,
3533 &mmap_arg)) {
3534 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
3535 __FILE__, __LINE__, bo_gem->gem_handle,
3536 bo_gem->name, strerror(errno));
3537 if (--bo_gem->map_count == 0)
3538 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3539 } else {
3540 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
3541 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
3542 }
3543 }
3544 pthread_mutex_unlock(&bufmgr_gem->lock);
3545
3546 return bo_gem->mem_virtual;
3547 }
3548
drm_intel_gem_bo_map__wc(drm_intel_bo * bo)3549 void *drm_intel_gem_bo_map__wc(drm_intel_bo *bo)
3550 {
3551 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3552 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3553
3554 if (bo_gem->wc_virtual)
3555 return bo_gem->wc_virtual;
3556
3557 if (bo_gem->is_userptr)
3558 return NULL;
3559
3560 pthread_mutex_lock(&bufmgr_gem->lock);
3561 if (!bo_gem->wc_virtual) {
3562 struct drm_i915_gem_mmap mmap_arg;
3563
3564 if (bo_gem->map_count++ == 0)
3565 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3566
3567 DBG("bo_map: %d (%s), map_count=%d\n",
3568 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3569
3570 memclear(mmap_arg);
3571 mmap_arg.handle = bo_gem->gem_handle;
3572 mmap_arg.size = bo->size;
3573 mmap_arg.flags = I915_MMAP_WC;
3574 if (drmIoctl(bufmgr_gem->fd,
3575 DRM_IOCTL_I915_GEM_MMAP,
3576 &mmap_arg)) {
3577 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
3578 __FILE__, __LINE__, bo_gem->gem_handle,
3579 bo_gem->name, strerror(errno));
3580 if (--bo_gem->map_count == 0)
3581 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3582 } else {
3583 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
3584 bo_gem->wc_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
3585 }
3586 }
3587 pthread_mutex_unlock(&bufmgr_gem->lock);
3588
3589 return bo_gem->wc_virtual;
3590 }
3591
3592 /**
3593 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3594 * and manage map buffer objections.
3595 *
3596 * \param fd File descriptor of the opened DRM device.
3597 */
3598 drm_intel_bufmgr *
drm_intel_bufmgr_gem_init(int fd,int batch_size)3599 drm_intel_bufmgr_gem_init(int fd, int batch_size)
3600 {
3601 drm_intel_bufmgr_gem *bufmgr_gem;
3602 struct drm_i915_gem_get_aperture aperture;
3603 drm_i915_getparam_t gp;
3604 int ret, tmp;
3605 bool exec2 = false;
3606
3607 pthread_mutex_lock(&bufmgr_list_mutex);
3608
3609 bufmgr_gem = drm_intel_bufmgr_gem_find(fd);
3610 if (bufmgr_gem)
3611 goto exit;
3612
3613 bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3614 if (bufmgr_gem == NULL)
3615 goto exit;
3616
3617 bufmgr_gem->fd = fd;
3618 atomic_set(&bufmgr_gem->refcount, 1);
3619
3620 if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3621 free(bufmgr_gem);
3622 bufmgr_gem = NULL;
3623 goto exit;
3624 }
3625
3626 memclear(aperture);
3627 ret = drmIoctl(bufmgr_gem->fd,
3628 DRM_IOCTL_I915_GEM_GET_APERTURE,
3629 &aperture);
3630
3631 if (ret == 0)
3632 bufmgr_gem->gtt_size = aperture.aper_available_size;
3633 else {
3634 fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3635 strerror(errno));
3636 bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3637 fprintf(stderr, "Assuming %dkB available aperture size.\n"
3638 "May lead to reduced performance or incorrect "
3639 "rendering.\n",
3640 (int)bufmgr_gem->gtt_size / 1024);
3641 }
3642
3643 bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3644
3645 if (IS_GEN2(bufmgr_gem->pci_device))
3646 bufmgr_gem->gen = 2;
3647 else if (IS_GEN3(bufmgr_gem->pci_device))
3648 bufmgr_gem->gen = 3;
3649 else if (IS_GEN4(bufmgr_gem->pci_device))
3650 bufmgr_gem->gen = 4;
3651 else if (IS_GEN5(bufmgr_gem->pci_device))
3652 bufmgr_gem->gen = 5;
3653 else if (IS_GEN6(bufmgr_gem->pci_device))
3654 bufmgr_gem->gen = 6;
3655 else if (IS_GEN7(bufmgr_gem->pci_device))
3656 bufmgr_gem->gen = 7;
3657 else if (IS_GEN8(bufmgr_gem->pci_device))
3658 bufmgr_gem->gen = 8;
3659 else if (IS_GEN9(bufmgr_gem->pci_device))
3660 bufmgr_gem->gen = 9;
3661 else if (IS_GEN10(bufmgr_gem->pci_device))
3662 bufmgr_gem->gen = 10;
3663 else {
3664 free(bufmgr_gem);
3665 bufmgr_gem = NULL;
3666 goto exit;
3667 }
3668
3669 if (IS_GEN3(bufmgr_gem->pci_device) &&
3670 bufmgr_gem->gtt_size > 256*1024*1024) {
3671 /* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3672 * be used for tiled blits. To simplify the accounting, just
3673 * subtract the unmappable part (fixed to 256MB on all known
3674 * gen3 devices) if the kernel advertises it. */
3675 bufmgr_gem->gtt_size -= 256*1024*1024;
3676 }
3677
3678 memclear(gp);
3679 gp.value = &tmp;
3680
3681 gp.param = I915_PARAM_HAS_EXECBUF2;
3682 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3683 if (!ret)
3684 exec2 = true;
3685
3686 gp.param = I915_PARAM_HAS_BSD;
3687 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3688 bufmgr_gem->has_bsd = ret == 0;
3689
3690 gp.param = I915_PARAM_HAS_BLT;
3691 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3692 bufmgr_gem->has_blt = ret == 0;
3693
3694 gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3695 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3696 bufmgr_gem->has_relaxed_fencing = ret == 0;
3697
3698 gp.param = I915_PARAM_HAS_EXEC_ASYNC;
3699 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3700 bufmgr_gem->has_exec_async = ret == 0;
3701
3702 bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr;
3703
3704 gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3705 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3706 bufmgr_gem->has_wait_timeout = ret == 0;
3707
3708 gp.param = I915_PARAM_HAS_LLC;
3709 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3710 if (ret != 0) {
3711 /* Kernel does not supports HAS_LLC query, fallback to GPU
3712 * generation detection and assume that we have LLC on GEN6/7
3713 */
3714 bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3715 IS_GEN7(bufmgr_gem->pci_device));
3716 } else
3717 bufmgr_gem->has_llc = *gp.value;
3718
3719 gp.param = I915_PARAM_HAS_VEBOX;
3720 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3721 bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3722
3723 gp.param = I915_PARAM_HAS_EXEC_SOFTPIN;
3724 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3725 if (ret == 0 && *gp.value > 0)
3726 bufmgr_gem->bufmgr.bo_set_softpin_offset = drm_intel_gem_bo_set_softpin_offset;
3727
3728 if (bufmgr_gem->gen < 4) {
3729 gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3730 gp.value = &bufmgr_gem->available_fences;
3731 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3732 if (ret) {
3733 fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3734 errno);
3735 fprintf(stderr, "param: %d, val: %d\n", gp.param,
3736 *gp.value);
3737 bufmgr_gem->available_fences = 0;
3738 } else {
3739 /* XXX The kernel reports the total number of fences,
3740 * including any that may be pinned.
3741 *
3742 * We presume that there will be at least one pinned
3743 * fence for the scanout buffer, but there may be more
3744 * than one scanout and the user may be manually
3745 * pinning buffers. Let's move to execbuffer2 and
3746 * thereby forget the insanity of using fences...
3747 */
3748 bufmgr_gem->available_fences -= 2;
3749 if (bufmgr_gem->available_fences < 0)
3750 bufmgr_gem->available_fences = 0;
3751 }
3752 }
3753
3754 if (bufmgr_gem->gen >= 8) {
3755 gp.param = I915_PARAM_HAS_ALIASING_PPGTT;
3756 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3757 if (ret == 0 && *gp.value == 3)
3758 bufmgr_gem->bufmgr.bo_use_48b_address_range = drm_intel_gem_bo_use_48b_address_range;
3759 }
3760
3761 /* Let's go with one relocation per every 2 dwords (but round down a bit
3762 * since a power of two will mean an extra page allocation for the reloc
3763 * buffer).
3764 *
3765 * Every 4 was too few for the blender benchmark.
3766 */
3767 bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3768
3769 bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3770 bufmgr_gem->bufmgr.bo_alloc_for_render =
3771 drm_intel_gem_bo_alloc_for_render;
3772 bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3773 bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3774 bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3775 bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3776 bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3777 bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3778 bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3779 bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3780 bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3781 bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3782 bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3783 bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3784 bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3785 bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3786 bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3787 /* Use the new one if available */
3788 if (exec2) {
3789 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3790 bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3791 } else
3792 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3793 bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3794 bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3795 bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref;
3796 bufmgr_gem->bufmgr.debug = 0;
3797 bufmgr_gem->bufmgr.check_aperture_space =
3798 drm_intel_gem_check_aperture_space;
3799 bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3800 bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3801 bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3802 drm_intel_gem_get_pipe_from_crtc_id;
3803 bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3804
3805 init_cache_buckets(bufmgr_gem);
3806
3807 DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3808 bufmgr_gem->vma_max = -1; /* unlimited by default */
3809
3810 DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list);
3811
3812 exit:
3813 pthread_mutex_unlock(&bufmgr_list_mutex);
3814
3815 return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL;
3816 }
3817