• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ELF.cpp - ELF object file implementation ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Object/ELF.h"
11 #include "llvm/BinaryFormat/ELF.h"
12 #include "llvm/Support/LEB128.h"
13 
14 using namespace llvm;
15 using namespace object;
16 
17 #define STRINGIFY_ENUM_CASE(ns, name)                                          \
18   case ns::name:                                                               \
19     return #name;
20 
21 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
22 
getELFRelocationTypeName(uint32_t Machine,uint32_t Type)23 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
24                                                  uint32_t Type) {
25   switch (Machine) {
26   case ELF::EM_X86_64:
27     switch (Type) {
28 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
29     default:
30       break;
31     }
32     break;
33   case ELF::EM_386:
34   case ELF::EM_IAMCU:
35     switch (Type) {
36 #include "llvm/BinaryFormat/ELFRelocs/i386.def"
37     default:
38       break;
39     }
40     break;
41   case ELF::EM_MIPS:
42     switch (Type) {
43 #include "llvm/BinaryFormat/ELFRelocs/Mips.def"
44     default:
45       break;
46     }
47     break;
48   case ELF::EM_AARCH64:
49     switch (Type) {
50 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
51     default:
52       break;
53     }
54     break;
55   case ELF::EM_ARM:
56     switch (Type) {
57 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
58     default:
59       break;
60     }
61     break;
62   case ELF::EM_ARC_COMPACT:
63   case ELF::EM_ARC_COMPACT2:
64     switch (Type) {
65 #include "llvm/BinaryFormat/ELFRelocs/ARC.def"
66     default:
67       break;
68     }
69     break;
70   case ELF::EM_AVR:
71     switch (Type) {
72 #include "llvm/BinaryFormat/ELFRelocs/AVR.def"
73     default:
74       break;
75     }
76     break;
77   case ELF::EM_HEXAGON:
78     switch (Type) {
79 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
80     default:
81       break;
82     }
83     break;
84   case ELF::EM_LANAI:
85     switch (Type) {
86 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
87     default:
88       break;
89     }
90     break;
91   case ELF::EM_PPC:
92     switch (Type) {
93 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
94     default:
95       break;
96     }
97     break;
98   case ELF::EM_PPC64:
99     switch (Type) {
100 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
101     default:
102       break;
103     }
104     break;
105   case ELF::EM_RISCV:
106     switch (Type) {
107 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
108     default:
109       break;
110     }
111     break;
112   case ELF::EM_S390:
113     switch (Type) {
114 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
115     default:
116       break;
117     }
118     break;
119   case ELF::EM_SPARC:
120   case ELF::EM_SPARC32PLUS:
121   case ELF::EM_SPARCV9:
122     switch (Type) {
123 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
124     default:
125       break;
126     }
127     break;
128   case ELF::EM_AMDGPU:
129     switch (Type) {
130 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
131     default:
132       break;
133     }
134     break;
135   case ELF::EM_BPF:
136     switch (Type) {
137 #include "llvm/BinaryFormat/ELFRelocs/BPF.def"
138     default:
139       break;
140     }
141     break;
142   default:
143     break;
144   }
145   return "Unknown";
146 }
147 
148 #undef ELF_RELOC
149 
getELFRelrRelocationType(uint32_t Machine)150 uint32_t llvm::object::getELFRelrRelocationType(uint32_t Machine) {
151   switch (Machine) {
152   case ELF::EM_X86_64:
153     return ELF::R_X86_64_RELATIVE;
154   case ELF::EM_386:
155   case ELF::EM_IAMCU:
156     return ELF::R_386_RELATIVE;
157   case ELF::EM_MIPS:
158     break;
159   case ELF::EM_AARCH64:
160     return ELF::R_AARCH64_RELATIVE;
161   case ELF::EM_ARM:
162     return ELF::R_ARM_RELATIVE;
163   case ELF::EM_ARC_COMPACT:
164   case ELF::EM_ARC_COMPACT2:
165     return ELF::R_ARC_RELATIVE;
166   case ELF::EM_AVR:
167     break;
168   case ELF::EM_HEXAGON:
169     return ELF::R_HEX_RELATIVE;
170   case ELF::EM_LANAI:
171     break;
172   case ELF::EM_PPC:
173     break;
174   case ELF::EM_PPC64:
175     return ELF::R_PPC64_RELATIVE;
176   case ELF::EM_RISCV:
177     return ELF::R_RISCV_RELATIVE;
178   case ELF::EM_S390:
179     return ELF::R_390_RELATIVE;
180   case ELF::EM_SPARC:
181   case ELF::EM_SPARC32PLUS:
182   case ELF::EM_SPARCV9:
183     return ELF::R_SPARC_RELATIVE;
184   case ELF::EM_AMDGPU:
185     break;
186   case ELF::EM_BPF:
187     break;
188   default:
189     break;
190   }
191   return 0;
192 }
193 
getELFSectionTypeName(uint32_t Machine,unsigned Type)194 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
195   switch (Machine) {
196   case ELF::EM_ARM:
197     switch (Type) {
198       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
199       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
200       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
201       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
202       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
203     }
204     break;
205   case ELF::EM_HEXAGON:
206     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
207     break;
208   case ELF::EM_X86_64:
209     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
210     break;
211   case ELF::EM_MIPS:
212   case ELF::EM_MIPS_RS3_LE:
213     switch (Type) {
214       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
215       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
216       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
217       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
218     }
219     break;
220   default:
221     break;
222   }
223 
224   switch (Type) {
225     STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
226     STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
227     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
228     STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
229     STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
230     STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
231     STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
232     STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
233     STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
234     STRINGIFY_ENUM_CASE(ELF, SHT_REL);
235     STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
236     STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
237     STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
238     STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
239     STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
240     STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
241     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
242     STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
243     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
244     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
245     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
246     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
247     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
248     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
249     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
250     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
251     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
252     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
253     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
254     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
255   default:
256     return "Unknown";
257   }
258 }
259 
260 template <class ELFT>
261 Expected<std::vector<typename ELFT::Rela>>
decode_relrs(Elf_Relr_Range relrs) const262 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
263   // This function decodes the contents of an SHT_RELR packed relocation
264   // section.
265   //
266   // Proposal for adding SHT_RELR sections to generic-abi is here:
267   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
268   //
269   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
270   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
271   //
272   // i.e. start with an address, followed by any number of bitmaps. The address
273   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
274   // relocations each, at subsequent offsets following the last address entry.
275   //
276   // The bitmap entries must have 1 in the least significant bit. The assumption
277   // here is that an address cannot have 1 in lsb. Odd addresses are not
278   // supported.
279   //
280   // Excluding the least significant bit in the bitmap, each non-zero bit in
281   // the bitmap represents a relocation to be applied to a corresponding machine
282   // word that follows the base address word. The second least significant bit
283   // represents the machine word immediately following the initial address, and
284   // each bit that follows represents the next word, in linear order. As such,
285   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
286   // 63 relocations in a 64-bit object.
287   //
288   // This encoding has a couple of interesting properties:
289   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
290   //    even means address, odd means bitmap.
291   // 2. Just a simple list of addresses is a valid encoding.
292 
293   Elf_Rela Rela;
294   Rela.r_info = 0;
295   Rela.r_addend = 0;
296   Rela.setType(getRelrRelocationType(), false);
297   std::vector<Elf_Rela> Relocs;
298 
299   // Word type: uint32_t for Elf32, and uint64_t for Elf64.
300   typedef typename ELFT::uint Word;
301 
302   // Word size in number of bytes.
303   const size_t WordSize = sizeof(Word);
304 
305   // Number of bits used for the relocation offsets bitmap.
306   // These many relative relocations can be encoded in a single entry.
307   const size_t NBits = 8*WordSize - 1;
308 
309   Word Base = 0;
310   for (const Elf_Relr &R : relrs) {
311     Word Entry = R;
312     if ((Entry&1) == 0) {
313       // Even entry: encodes the offset for next relocation.
314       Rela.r_offset = Entry;
315       Relocs.push_back(Rela);
316       // Set base offset for subsequent bitmap entries.
317       Base = Entry + WordSize;
318       continue;
319     }
320 
321     // Odd entry: encodes bitmap for relocations starting at base.
322     Word Offset = Base;
323     while (Entry != 0) {
324       Entry >>= 1;
325       if ((Entry&1) != 0) {
326         Rela.r_offset = Offset;
327         Relocs.push_back(Rela);
328       }
329       Offset += WordSize;
330     }
331 
332     // Advance base offset by NBits words.
333     Base += NBits * WordSize;
334   }
335 
336   return Relocs;
337 }
338 
339 template <class ELFT>
340 Expected<std::vector<typename ELFT::Rela>>
android_relas(const Elf_Shdr * Sec) const341 ELFFile<ELFT>::android_relas(const Elf_Shdr *Sec) const {
342   // This function reads relocations in Android's packed relocation format,
343   // which is based on SLEB128 and delta encoding.
344   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
345   if (!ContentsOrErr)
346     return ContentsOrErr.takeError();
347   const uint8_t *Cur = ContentsOrErr->begin();
348   const uint8_t *End = ContentsOrErr->end();
349   if (ContentsOrErr->size() < 4 || Cur[0] != 'A' || Cur[1] != 'P' ||
350       Cur[2] != 'S' || Cur[3] != '2')
351     return createError("invalid packed relocation header");
352   Cur += 4;
353 
354   const char *ErrStr = nullptr;
355   auto ReadSLEB = [&]() -> int64_t {
356     if (ErrStr)
357       return 0;
358     unsigned Len;
359     int64_t Result = decodeSLEB128(Cur, &Len, End, &ErrStr);
360     Cur += Len;
361     return Result;
362   };
363 
364   uint64_t NumRelocs = ReadSLEB();
365   uint64_t Offset = ReadSLEB();
366   uint64_t Addend = 0;
367 
368   if (ErrStr)
369     return createError(ErrStr);
370 
371   std::vector<Elf_Rela> Relocs;
372   Relocs.reserve(NumRelocs);
373   while (NumRelocs) {
374     uint64_t NumRelocsInGroup = ReadSLEB();
375     if (NumRelocsInGroup > NumRelocs)
376       return createError("relocation group unexpectedly large");
377     NumRelocs -= NumRelocsInGroup;
378 
379     uint64_t GroupFlags = ReadSLEB();
380     bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
381     bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
382     bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
383     bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
384 
385     uint64_t GroupOffsetDelta;
386     if (GroupedByOffsetDelta)
387       GroupOffsetDelta = ReadSLEB();
388 
389     uint64_t GroupRInfo;
390     if (GroupedByInfo)
391       GroupRInfo = ReadSLEB();
392 
393     if (GroupedByAddend && GroupHasAddend)
394       Addend += ReadSLEB();
395 
396     for (uint64_t I = 0; I != NumRelocsInGroup; ++I) {
397       Elf_Rela R;
398       Offset += GroupedByOffsetDelta ? GroupOffsetDelta : ReadSLEB();
399       R.r_offset = Offset;
400       R.r_info = GroupedByInfo ? GroupRInfo : ReadSLEB();
401 
402       if (GroupHasAddend) {
403         if (!GroupedByAddend)
404           Addend += ReadSLEB();
405         R.r_addend = Addend;
406       } else {
407         R.r_addend = 0;
408       }
409 
410       Relocs.push_back(R);
411 
412       if (ErrStr)
413         return createError(ErrStr);
414     }
415 
416     if (ErrStr)
417       return createError(ErrStr);
418   }
419 
420   return Relocs;
421 }
422 
423 template <class ELFT>
getDynamicTagAsString(unsigned Arch,uint64_t Type) const424 const char *ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
425                                                  uint64_t Type) const {
426 #define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \
427   case value:                                                                  \
428     return #tag;
429 
430 #define DYNAMIC_TAG(n, v)
431   switch (Arch) {
432   case ELF::EM_HEXAGON:
433     switch (Type) {
434 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
435 #include "llvm/BinaryFormat/DynamicTags.def"
436 #undef HEXAGON_DYNAMIC_TAG
437     }
438 
439   case ELF::EM_MIPS:
440     switch (Type) {
441 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
442 #include "llvm/BinaryFormat/DynamicTags.def"
443 #undef MIPS_DYNAMIC_TAG
444     }
445 
446   case ELF::EM_PPC64:
447     switch (Type) {
448 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
449 #include "llvm/BinaryFormat/DynamicTags.def"
450 #undef PPC64_DYNAMIC_TAG
451     }
452   }
453 #undef DYNAMIC_TAG
454   switch (Type) {
455 // Now handle all dynamic tags except the architecture specific ones
456 #define MIPS_DYNAMIC_TAG(name, value)
457 #define HEXAGON_DYNAMIC_TAG(name, value)
458 #define PPC64_DYNAMIC_TAG(name, value)
459 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
460 #define DYNAMIC_TAG_MARKER(name, value)
461 #define DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
462 #include "llvm/BinaryFormat/DynamicTags.def"
463 #undef DYNAMIC_TAG
464 #undef MIPS_DYNAMIC_TAG
465 #undef HEXAGON_DYNAMIC_TAG
466 #undef PPC64_DYNAMIC_TAG
467 #undef DYNAMIC_TAG_MARKER
468 #undef DYNAMIC_STRINGIFY_ENUM
469   default:
470     return "unknown";
471   }
472 }
473 
474 template <class ELFT>
getDynamicTagAsString(uint64_t Type) const475 const char *ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
476   return getDynamicTagAsString(getHeader()->e_machine, Type);
477 }
478 
479 template <class ELFT>
dynamicEntries() const480 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
481   ArrayRef<Elf_Dyn> Dyn;
482   size_t DynSecSize = 0;
483 
484   auto ProgramHeadersOrError = program_headers();
485   if (!ProgramHeadersOrError)
486     return ProgramHeadersOrError.takeError();
487 
488   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
489     if (Phdr.p_type == ELF::PT_DYNAMIC) {
490       Dyn = makeArrayRef(
491           reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
492           Phdr.p_filesz / sizeof(Elf_Dyn));
493       DynSecSize = Phdr.p_filesz;
494       break;
495     }
496   }
497 
498   // If we can't find the dynamic section in the program headers, we just fall
499   // back on the sections.
500   if (Dyn.empty()) {
501     auto SectionsOrError = sections();
502     if (!SectionsOrError)
503       return SectionsOrError.takeError();
504 
505     for (const Elf_Shdr &Sec : *SectionsOrError) {
506       if (Sec.sh_type == ELF::SHT_DYNAMIC) {
507         Expected<ArrayRef<Elf_Dyn>> DynOrError =
508             getSectionContentsAsArray<Elf_Dyn>(&Sec);
509         if (!DynOrError)
510           return DynOrError.takeError();
511         Dyn = *DynOrError;
512         DynSecSize = Sec.sh_size;
513         break;
514       }
515     }
516 
517     if (!Dyn.data())
518       return ArrayRef<Elf_Dyn>();
519   }
520 
521   if (Dyn.empty())
522     return createError("invalid empty dynamic section");
523 
524   if (DynSecSize % sizeof(Elf_Dyn) != 0)
525     return createError("malformed dynamic section");
526 
527   if (Dyn.back().d_tag != ELF::DT_NULL)
528     return createError("dynamic sections must be DT_NULL terminated");
529 
530   return Dyn;
531 }
532 
533 template <class ELFT>
toMappedAddr(uint64_t VAddr) const534 Expected<const uint8_t *> ELFFile<ELFT>::toMappedAddr(uint64_t VAddr) const {
535   auto ProgramHeadersOrError = program_headers();
536   if (!ProgramHeadersOrError)
537     return ProgramHeadersOrError.takeError();
538 
539   llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
540 
541   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
542     if (Phdr.p_type == ELF::PT_LOAD)
543       LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
544 
545   const Elf_Phdr *const *I =
546       std::upper_bound(LoadSegments.begin(), LoadSegments.end(), VAddr,
547                        [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
548                          return VAddr < Phdr->p_vaddr;
549                        });
550 
551   if (I == LoadSegments.begin())
552     return createError("Virtual address is not in any segment");
553   --I;
554   const Elf_Phdr &Phdr = **I;
555   uint64_t Delta = VAddr - Phdr.p_vaddr;
556   if (Delta >= Phdr.p_filesz)
557     return createError("Virtual address is not in any segment");
558   return base() + Phdr.p_offset + Delta;
559 }
560 
561 template class llvm::object::ELFFile<ELF32LE>;
562 template class llvm::object::ELFFile<ELF32BE>;
563 template class llvm::object::ELFFile<ELF64LE>;
564 template class llvm::object::ELFFile<ELF64BE>;
565