1 /*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2014, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file implements the Peer State Machine as defined in RFC 4137. The used
9 * states and state transitions match mostly with the RFC. However, there are
10 * couple of additional transitions for working around small issues noticed
11 * during testing. These exceptions are explained in comments within the
12 * functions in this file. The method functions, m.func(), are similar to the
13 * ones used in RFC 4137, but some small changes have used here to optimize
14 * operations and to add functionality needed for fast re-authentication
15 * (session resumption).
16 */
17
18 #include "includes.h"
19
20 #include "common.h"
21 #include "pcsc_funcs.h"
22 #include "state_machine.h"
23 #include "ext_password.h"
24 #include "crypto/crypto.h"
25 #include "crypto/tls.h"
26 #include "crypto/sha256.h"
27 #include "common/wpa_ctrl.h"
28 #include "eap_common/eap_wsc_common.h"
29 #include "eap_i.h"
30 #include "eap_config.h"
31
32 #define STATE_MACHINE_DATA struct eap_sm
33 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
34
35 #define EAP_MAX_AUTH_ROUNDS 50
36 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
37
38
39 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
40 EapType method);
41 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
42 static void eap_sm_processIdentity(struct eap_sm *sm,
43 const struct wpabuf *req);
44 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
45 static struct wpabuf * eap_sm_buildNotify(int id);
46 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
47 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
48 static const char * eap_sm_method_state_txt(EapMethodState state);
49 static const char * eap_sm_decision_txt(EapDecision decision);
50 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
51 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
52 const char *msg, size_t msglen);
53
54
55
eapol_get_bool(struct eap_sm * sm,enum eapol_bool_var var)56 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
57 {
58 return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
59 }
60
61
eapol_set_bool(struct eap_sm * sm,enum eapol_bool_var var,Boolean value)62 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
63 Boolean value)
64 {
65 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
66 }
67
68
eapol_get_int(struct eap_sm * sm,enum eapol_int_var var)69 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
70 {
71 return sm->eapol_cb->get_int(sm->eapol_ctx, var);
72 }
73
74
eapol_set_int(struct eap_sm * sm,enum eapol_int_var var,unsigned int value)75 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
76 unsigned int value)
77 {
78 sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
79 }
80
81
eapol_get_eapReqData(struct eap_sm * sm)82 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
83 {
84 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
85 }
86
87
eap_notify_status(struct eap_sm * sm,const char * status,const char * parameter)88 static void eap_notify_status(struct eap_sm *sm, const char *status,
89 const char *parameter)
90 {
91 wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
92 status, parameter);
93 if (sm->eapol_cb->notify_status)
94 sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
95 }
96
97
eap_report_error(struct eap_sm * sm,int error_code)98 static void eap_report_error(struct eap_sm *sm, int error_code)
99 {
100 wpa_printf(MSG_DEBUG, "EAP: Error notification: %d", error_code);
101 if (sm->eapol_cb->notify_eap_error)
102 sm->eapol_cb->notify_eap_error(sm->eapol_ctx, error_code);
103 }
104
105
eap_sm_free_key(struct eap_sm * sm)106 static void eap_sm_free_key(struct eap_sm *sm)
107 {
108 if (sm->eapKeyData) {
109 bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
110 sm->eapKeyData = NULL;
111 }
112 }
113
114
eap_deinit_prev_method(struct eap_sm * sm,const char * txt)115 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
116 {
117 ext_password_free(sm->ext_pw_buf);
118 sm->ext_pw_buf = NULL;
119
120 if (sm->m == NULL || sm->eap_method_priv == NULL)
121 return;
122
123 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
124 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
125 sm->m->deinit(sm, sm->eap_method_priv);
126 sm->eap_method_priv = NULL;
127 sm->m = NULL;
128 }
129
130
131 /**
132 * eap_config_allowed_method - Check whether EAP method is allowed
133 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
134 * @config: EAP configuration
135 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
136 * @method: EAP type
137 * Returns: 1 = allowed EAP method, 0 = not allowed
138 */
eap_config_allowed_method(struct eap_sm * sm,struct eap_peer_config * config,int vendor,u32 method)139 static int eap_config_allowed_method(struct eap_sm *sm,
140 struct eap_peer_config *config,
141 int vendor, u32 method)
142 {
143 int i;
144 struct eap_method_type *m;
145
146 if (config == NULL || config->eap_methods == NULL)
147 return 1;
148
149 m = config->eap_methods;
150 for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
151 m[i].method != EAP_TYPE_NONE; i++) {
152 if (m[i].vendor == vendor && m[i].method == method)
153 return 1;
154 }
155 return 0;
156 }
157
158
159 /**
160 * eap_allowed_method - Check whether EAP method is allowed
161 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
162 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
163 * @method: EAP type
164 * Returns: 1 = allowed EAP method, 0 = not allowed
165 */
eap_allowed_method(struct eap_sm * sm,int vendor,u32 method)166 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
167 {
168 return eap_config_allowed_method(sm, eap_get_config(sm), vendor,
169 method);
170 }
171
172
173 #if defined(PCSC_FUNCS) || defined(CONFIG_EAP_PROXY)
eap_sm_append_3gpp_realm(struct eap_sm * sm,char * imsi,size_t max_len,size_t * imsi_len,int mnc_len)174 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
175 size_t max_len, size_t *imsi_len,
176 int mnc_len)
177 {
178 char *pos, mnc[4];
179
180 if (*imsi_len + 36 > max_len) {
181 wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
182 return -1;
183 }
184
185 if (mnc_len != 2 && mnc_len != 3)
186 mnc_len = 3;
187
188 if (mnc_len == 2) {
189 mnc[0] = '0';
190 mnc[1] = imsi[3];
191 mnc[2] = imsi[4];
192 } else if (mnc_len == 3) {
193 mnc[0] = imsi[3];
194 mnc[1] = imsi[4];
195 mnc[2] = imsi[5];
196 }
197 mnc[3] = '\0';
198
199 pos = imsi + *imsi_len;
200 pos += os_snprintf(pos, imsi + max_len - pos,
201 "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
202 mnc, imsi[0], imsi[1], imsi[2]);
203 *imsi_len = pos - imsi;
204
205 return 0;
206 }
207 #endif /* PCSC_FUNCS || CONFIG_EAP_PROXY */
208
209
210 /*
211 * This state initializes state machine variables when the machine is
212 * activated (portEnabled = TRUE). This is also used when re-starting
213 * authentication (eapRestart == TRUE).
214 */
SM_STATE(EAP,INITIALIZE)215 SM_STATE(EAP, INITIALIZE)
216 {
217 SM_ENTRY(EAP, INITIALIZE);
218 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
219 sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
220 !sm->prev_failure &&
221 sm->last_config == eap_get_config(sm)) {
222 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
223 "fast reauthentication");
224 sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
225 } else {
226 sm->last_config = eap_get_config(sm);
227 eap_deinit_prev_method(sm, "INITIALIZE");
228 }
229 sm->selectedMethod = EAP_TYPE_NONE;
230 sm->methodState = METHOD_NONE;
231 sm->allowNotifications = TRUE;
232 sm->decision = DECISION_FAIL;
233 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
234 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
235 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
236 eapol_set_bool(sm, EAPOL_eapFail, FALSE);
237 eap_sm_free_key(sm);
238 os_free(sm->eapSessionId);
239 sm->eapSessionId = NULL;
240 sm->eapKeyAvailable = FALSE;
241 eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
242 sm->lastId = -1; /* new session - make sure this does not match with
243 * the first EAP-Packet */
244 /*
245 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
246 * seemed to be able to trigger cases where both were set and if EAPOL
247 * state machine uses eapNoResp first, it may end up not sending a real
248 * reply correctly. This occurred when the workaround in FAIL state set
249 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
250 * something else(?)
251 */
252 eapol_set_bool(sm, EAPOL_eapResp, FALSE);
253 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
254 /*
255 * RFC 4137 does not reset ignore here, but since it is possible for
256 * some method code paths to end up not setting ignore=FALSE, clear the
257 * value here to avoid issues if a previous authentication attempt
258 * failed with ignore=TRUE being left behind in the last
259 * m.check(eapReqData) operation.
260 */
261 sm->ignore = 0;
262 sm->num_rounds = 0;
263 sm->prev_failure = 0;
264 sm->expected_failure = 0;
265 sm->reauthInit = FALSE;
266 sm->erp_seq = (u32) -1;
267 }
268
269
270 /*
271 * This state is reached whenever service from the lower layer is interrupted
272 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
273 * occurs when the port becomes enabled.
274 */
SM_STATE(EAP,DISABLED)275 SM_STATE(EAP, DISABLED)
276 {
277 SM_ENTRY(EAP, DISABLED);
278 sm->num_rounds = 0;
279 /*
280 * RFC 4137 does not describe clearing of idleWhile here, but doing so
281 * allows the timer tick to be stopped more quickly when EAP is not in
282 * use.
283 */
284 eapol_set_int(sm, EAPOL_idleWhile, 0);
285 }
286
287
288 /*
289 * The state machine spends most of its time here, waiting for something to
290 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
291 * SEND_RESPONSE states.
292 */
SM_STATE(EAP,IDLE)293 SM_STATE(EAP, IDLE)
294 {
295 SM_ENTRY(EAP, IDLE);
296 }
297
298
299 /*
300 * This state is entered when an EAP packet is received (eapReq == TRUE) to
301 * parse the packet header.
302 */
SM_STATE(EAP,RECEIVED)303 SM_STATE(EAP, RECEIVED)
304 {
305 const struct wpabuf *eapReqData;
306
307 SM_ENTRY(EAP, RECEIVED);
308 eapReqData = eapol_get_eapReqData(sm);
309 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
310 eap_sm_parseEapReq(sm, eapReqData);
311 sm->num_rounds++;
312 }
313
314
315 /*
316 * This state is entered when a request for a new type comes in. Either the
317 * correct method is started, or a Nak response is built.
318 */
SM_STATE(EAP,GET_METHOD)319 SM_STATE(EAP, GET_METHOD)
320 {
321 int reinit;
322 EapType method;
323 const struct eap_method *eap_method;
324
325 SM_ENTRY(EAP, GET_METHOD);
326
327 if (sm->reqMethod == EAP_TYPE_EXPANDED)
328 method = sm->reqVendorMethod;
329 else
330 method = sm->reqMethod;
331
332 eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
333
334 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
335 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
336 sm->reqVendor, method);
337 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
338 "vendor=%u method=%u -> NAK",
339 sm->reqVendor, method);
340 eap_notify_status(sm, "refuse proposed method",
341 eap_method ? eap_method->name : "unknown");
342 goto nak;
343 }
344
345 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
346 "vendor=%u method=%u", sm->reqVendor, method);
347
348 eap_notify_status(sm, "accept proposed method",
349 eap_method ? eap_method->name : "unknown");
350 /*
351 * RFC 4137 does not define specific operation for fast
352 * re-authentication (session resumption). The design here is to allow
353 * the previously used method data to be maintained for
354 * re-authentication if the method support session resumption.
355 * Otherwise, the previously used method data is freed and a new method
356 * is allocated here.
357 */
358 if (sm->fast_reauth &&
359 sm->m && sm->m->vendor == sm->reqVendor &&
360 sm->m->method == method &&
361 sm->m->has_reauth_data &&
362 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
363 wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
364 " for fast re-authentication");
365 reinit = 1;
366 } else {
367 eap_deinit_prev_method(sm, "GET_METHOD");
368 reinit = 0;
369 }
370
371 sm->selectedMethod = sm->reqMethod;
372 if (sm->m == NULL)
373 sm->m = eap_method;
374 if (!sm->m) {
375 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
376 "vendor %d method %d",
377 sm->reqVendor, method);
378 goto nak;
379 }
380
381 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
382
383 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
384 "vendor %u method %u (%s)",
385 sm->reqVendor, method, sm->m->name);
386 if (reinit) {
387 sm->eap_method_priv = sm->m->init_for_reauth(
388 sm, sm->eap_method_priv);
389 } else {
390 sm->waiting_ext_cert_check = 0;
391 sm->ext_cert_check = 0;
392 sm->eap_method_priv = sm->m->init(sm);
393 }
394
395 if (sm->eap_method_priv == NULL) {
396 struct eap_peer_config *config = eap_get_config(sm);
397 wpa_msg(sm->msg_ctx, MSG_INFO,
398 "EAP: Failed to initialize EAP method: vendor %u "
399 "method %u (%s)",
400 sm->reqVendor, method, sm->m->name);
401 sm->m = NULL;
402 sm->methodState = METHOD_NONE;
403 sm->selectedMethod = EAP_TYPE_NONE;
404 if (sm->reqMethod == EAP_TYPE_TLS && config &&
405 (config->pending_req_pin ||
406 config->pending_req_passphrase)) {
407 /*
408 * Return without generating Nak in order to allow
409 * entering of PIN code or passphrase to retry the
410 * current EAP packet.
411 */
412 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
413 "request - skip Nak");
414 return;
415 }
416
417 goto nak;
418 }
419
420 sm->methodState = METHOD_INIT;
421 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
422 "EAP vendor %u method %u (%s) selected",
423 sm->reqVendor, method, sm->m->name);
424 return;
425
426 nak:
427 wpabuf_free(sm->eapRespData);
428 sm->eapRespData = NULL;
429 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
430 }
431
432
433 #ifdef CONFIG_ERP
434
eap_get_realm(struct eap_sm * sm,struct eap_peer_config * config)435 static char * eap_get_realm(struct eap_sm *sm, struct eap_peer_config *config)
436 {
437 char *realm;
438 size_t i, realm_len;
439
440 if (!config)
441 return NULL;
442
443 if (config->identity) {
444 for (i = 0; i < config->identity_len; i++) {
445 if (config->identity[i] == '@')
446 break;
447 }
448 if (i < config->identity_len) {
449 realm_len = config->identity_len - i - 1;
450 realm = os_malloc(realm_len + 1);
451 if (realm == NULL)
452 return NULL;
453 os_memcpy(realm, &config->identity[i + 1], realm_len);
454 realm[realm_len] = '\0';
455 return realm;
456 }
457 }
458
459 if (config->anonymous_identity) {
460 for (i = 0; i < config->anonymous_identity_len; i++) {
461 if (config->anonymous_identity[i] == '@')
462 break;
463 }
464 if (i < config->anonymous_identity_len) {
465 realm_len = config->anonymous_identity_len - i - 1;
466 realm = os_malloc(realm_len + 1);
467 if (realm == NULL)
468 return NULL;
469 os_memcpy(realm, &config->anonymous_identity[i + 1],
470 realm_len);
471 realm[realm_len] = '\0';
472 return realm;
473 }
474 }
475
476 #ifdef CONFIG_EAP_PROXY
477 /* When identity is not provided in the config, build the realm from
478 * IMSI for eap_proxy based methods.
479 */
480 if (!config->identity && !config->anonymous_identity &&
481 sm->eapol_cb->get_imsi &&
482 (eap_config_allowed_method(sm, config, EAP_VENDOR_IETF,
483 EAP_TYPE_SIM) ||
484 eap_config_allowed_method(sm, config, EAP_VENDOR_IETF,
485 EAP_TYPE_AKA) ||
486 eap_config_allowed_method(sm, config, EAP_VENDOR_IETF,
487 EAP_TYPE_AKA_PRIME))) {
488 char imsi[100];
489 size_t imsi_len;
490 int mnc_len, pos;
491
492 wpa_printf(MSG_DEBUG, "EAP: Build realm from IMSI (eap_proxy)");
493 mnc_len = sm->eapol_cb->get_imsi(sm->eapol_ctx, config->sim_num,
494 imsi, &imsi_len);
495 if (mnc_len < 0)
496 return NULL;
497
498 pos = imsi_len + 1; /* points to the beginning of the realm */
499 if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len,
500 mnc_len) < 0) {
501 wpa_printf(MSG_WARNING, "Could not append realm");
502 return NULL;
503 }
504
505 realm = os_strdup(&imsi[pos]);
506 if (!realm)
507 return NULL;
508
509 wpa_printf(MSG_DEBUG, "EAP: Generated realm '%s'", realm);
510 return realm;
511 }
512 #endif /* CONFIG_EAP_PROXY */
513
514 return NULL;
515 }
516
517
eap_home_realm(struct eap_sm * sm)518 static char * eap_home_realm(struct eap_sm *sm)
519 {
520 return eap_get_realm(sm, eap_get_config(sm));
521 }
522
523
524 static struct eap_erp_key *
eap_erp_get_key(struct eap_sm * sm,const char * realm)525 eap_erp_get_key(struct eap_sm *sm, const char *realm)
526 {
527 struct eap_erp_key *erp;
528
529 dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
530 char *pos;
531
532 pos = os_strchr(erp->keyname_nai, '@');
533 if (!pos)
534 continue;
535 pos++;
536 if (os_strcmp(pos, realm) == 0)
537 return erp;
538 }
539
540 return NULL;
541 }
542
543
544 static struct eap_erp_key *
eap_erp_get_key_nai(struct eap_sm * sm,const char * nai)545 eap_erp_get_key_nai(struct eap_sm *sm, const char *nai)
546 {
547 struct eap_erp_key *erp;
548
549 dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
550 if (os_strcmp(erp->keyname_nai, nai) == 0)
551 return erp;
552 }
553
554 return NULL;
555 }
556
557
eap_peer_erp_free_key(struct eap_erp_key * erp)558 static void eap_peer_erp_free_key(struct eap_erp_key *erp)
559 {
560 dl_list_del(&erp->list);
561 bin_clear_free(erp, sizeof(*erp));
562 }
563
564
eap_erp_remove_keys_realm(struct eap_sm * sm,const char * realm)565 static void eap_erp_remove_keys_realm(struct eap_sm *sm, const char *realm)
566 {
567 struct eap_erp_key *erp;
568
569 while ((erp = eap_erp_get_key(sm, realm)) != NULL) {
570 wpa_printf(MSG_DEBUG, "EAP: Delete old ERP key %s",
571 erp->keyname_nai);
572 eap_peer_erp_free_key(erp);
573 }
574 }
575
576
eap_peer_update_erp_next_seq_num(struct eap_sm * sm,u16 next_seq_num)577 int eap_peer_update_erp_next_seq_num(struct eap_sm *sm, u16 next_seq_num)
578 {
579 struct eap_erp_key *erp;
580 char *home_realm;
581
582 home_realm = eap_home_realm(sm);
583 if (!home_realm || os_strlen(home_realm) == 0) {
584 os_free(home_realm);
585 return -1;
586 }
587
588 erp = eap_erp_get_key(sm, home_realm);
589 if (!erp) {
590 wpa_printf(MSG_DEBUG,
591 "EAP: Failed to find ERP key for realm: %s",
592 home_realm);
593 os_free(home_realm);
594 return -1;
595 }
596
597 if ((u32) next_seq_num < erp->next_seq) {
598 /* Sequence number has wrapped around, clear this ERP
599 * info and do a full auth next time.
600 */
601 eap_peer_erp_free_key(erp);
602 } else {
603 erp->next_seq = (u32) next_seq_num;
604 }
605
606 os_free(home_realm);
607 return 0;
608 }
609
610
eap_peer_get_erp_info(struct eap_sm * sm,struct eap_peer_config * config,const u8 ** username,size_t * username_len,const u8 ** realm,size_t * realm_len,u16 * erp_next_seq_num,const u8 ** rrk,size_t * rrk_len)611 int eap_peer_get_erp_info(struct eap_sm *sm, struct eap_peer_config *config,
612 const u8 **username, size_t *username_len,
613 const u8 **realm, size_t *realm_len,
614 u16 *erp_next_seq_num, const u8 **rrk,
615 size_t *rrk_len)
616 {
617 struct eap_erp_key *erp;
618 char *home_realm;
619 char *pos;
620
621 if (config)
622 home_realm = eap_get_realm(sm, config);
623 else
624 home_realm = eap_home_realm(sm);
625 if (!home_realm || os_strlen(home_realm) == 0) {
626 os_free(home_realm);
627 return -1;
628 }
629
630 erp = eap_erp_get_key(sm, home_realm);
631 os_free(home_realm);
632 if (!erp)
633 return -1;
634
635 if (erp->next_seq >= 65536)
636 return -1; /* SEQ has range of 0..65535 */
637
638 pos = os_strchr(erp->keyname_nai, '@');
639 if (!pos)
640 return -1; /* this cannot really happen */
641 *username_len = pos - erp->keyname_nai;
642 *username = (u8 *) erp->keyname_nai;
643
644 pos++;
645 *realm_len = os_strlen(pos);
646 *realm = (u8 *) pos;
647
648 *erp_next_seq_num = (u16) erp->next_seq;
649
650 *rrk_len = erp->rRK_len;
651 *rrk = erp->rRK;
652
653 if (*username_len == 0 || *realm_len == 0 || *rrk_len == 0)
654 return -1;
655
656 return 0;
657 }
658
659 #endif /* CONFIG_ERP */
660
661
eap_peer_erp_free_keys(struct eap_sm * sm)662 void eap_peer_erp_free_keys(struct eap_sm *sm)
663 {
664 #ifdef CONFIG_ERP
665 struct eap_erp_key *erp, *tmp;
666
667 dl_list_for_each_safe(erp, tmp, &sm->erp_keys, struct eap_erp_key, list)
668 eap_peer_erp_free_key(erp);
669 #endif /* CONFIG_ERP */
670 }
671
672
673 /* Note: If ext_session and/or ext_emsk are passed to this function, they are
674 * expected to point to allocated memory and those allocations will be freed
675 * unconditionally. */
eap_peer_erp_init(struct eap_sm * sm,u8 * ext_session_id,size_t ext_session_id_len,u8 * ext_emsk,size_t ext_emsk_len)676 void eap_peer_erp_init(struct eap_sm *sm, u8 *ext_session_id,
677 size_t ext_session_id_len, u8 *ext_emsk,
678 size_t ext_emsk_len)
679 {
680 #ifdef CONFIG_ERP
681 u8 *emsk = NULL;
682 size_t emsk_len = 0;
683 u8 *session_id = NULL;
684 size_t session_id_len = 0;
685 u8 EMSKname[EAP_EMSK_NAME_LEN];
686 u8 len[2], ctx[3];
687 char *realm;
688 size_t realm_len, nai_buf_len;
689 struct eap_erp_key *erp = NULL;
690 int pos;
691
692 realm = eap_home_realm(sm);
693 if (!realm)
694 goto fail;
695 realm_len = os_strlen(realm);
696 wpa_printf(MSG_DEBUG, "EAP: Realm for ERP keyName-NAI: %s", realm);
697 eap_erp_remove_keys_realm(sm, realm);
698
699 nai_buf_len = 2 * EAP_EMSK_NAME_LEN + 1 + realm_len;
700 if (nai_buf_len > 253) {
701 /*
702 * keyName-NAI has a maximum length of 253 octet to fit in
703 * RADIUS attributes.
704 */
705 wpa_printf(MSG_DEBUG,
706 "EAP: Too long realm for ERP keyName-NAI maximum length");
707 goto fail;
708 }
709 nai_buf_len++; /* null termination */
710 erp = os_zalloc(sizeof(*erp) + nai_buf_len);
711 if (erp == NULL)
712 goto fail;
713
714 if (ext_emsk) {
715 emsk = ext_emsk;
716 emsk_len = ext_emsk_len;
717 } else {
718 emsk = sm->m->get_emsk(sm, sm->eap_method_priv, &emsk_len);
719 }
720
721 if (!emsk || emsk_len == 0 || emsk_len > ERP_MAX_KEY_LEN) {
722 wpa_printf(MSG_DEBUG,
723 "EAP: No suitable EMSK available for ERP");
724 goto fail;
725 }
726
727 wpa_hexdump_key(MSG_DEBUG, "EAP: EMSK", emsk, emsk_len);
728
729 if (ext_session_id) {
730 session_id = ext_session_id;
731 session_id_len = ext_session_id_len;
732 } else {
733 session_id = sm->eapSessionId;
734 session_id_len = sm->eapSessionIdLen;
735 }
736
737 if (!session_id || session_id_len == 0) {
738 wpa_printf(MSG_DEBUG,
739 "EAP: No suitable session id available for ERP");
740 goto fail;
741 }
742
743 WPA_PUT_BE16(len, EAP_EMSK_NAME_LEN);
744 if (hmac_sha256_kdf(session_id, session_id_len, "EMSK", len,
745 sizeof(len), EMSKname, EAP_EMSK_NAME_LEN) < 0) {
746 wpa_printf(MSG_DEBUG, "EAP: Could not derive EMSKname");
747 goto fail;
748 }
749 wpa_hexdump(MSG_DEBUG, "EAP: EMSKname", EMSKname, EAP_EMSK_NAME_LEN);
750
751 pos = wpa_snprintf_hex(erp->keyname_nai, nai_buf_len,
752 EMSKname, EAP_EMSK_NAME_LEN);
753 erp->keyname_nai[pos] = '@';
754 os_memcpy(&erp->keyname_nai[pos + 1], realm, realm_len);
755
756 WPA_PUT_BE16(len, emsk_len);
757 if (hmac_sha256_kdf(emsk, emsk_len,
758 "EAP Re-authentication Root Key@ietf.org",
759 len, sizeof(len), erp->rRK, emsk_len) < 0) {
760 wpa_printf(MSG_DEBUG, "EAP: Could not derive rRK for ERP");
761 goto fail;
762 }
763 erp->rRK_len = emsk_len;
764 wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rRK", erp->rRK, erp->rRK_len);
765
766 ctx[0] = EAP_ERP_CS_HMAC_SHA256_128;
767 WPA_PUT_BE16(&ctx[1], erp->rRK_len);
768 if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
769 "Re-authentication Integrity Key@ietf.org",
770 ctx, sizeof(ctx), erp->rIK, erp->rRK_len) < 0) {
771 wpa_printf(MSG_DEBUG, "EAP: Could not derive rIK for ERP");
772 goto fail;
773 }
774 erp->rIK_len = erp->rRK_len;
775 wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rIK", erp->rIK, erp->rIK_len);
776
777 wpa_printf(MSG_DEBUG, "EAP: Stored ERP keys %s", erp->keyname_nai);
778 dl_list_add(&sm->erp_keys, &erp->list);
779 erp = NULL;
780 fail:
781 if (ext_emsk)
782 bin_clear_free(ext_emsk, ext_emsk_len);
783 else
784 bin_clear_free(emsk, emsk_len);
785 bin_clear_free(ext_session_id, ext_session_id_len);
786 bin_clear_free(erp, sizeof(*erp));
787 os_free(realm);
788 #endif /* CONFIG_ERP */
789 }
790
791
792 #ifdef CONFIG_ERP
eap_peer_build_erp_reauth_start(struct eap_sm * sm,u8 eap_id)793 struct wpabuf * eap_peer_build_erp_reauth_start(struct eap_sm *sm, u8 eap_id)
794 {
795 char *realm;
796 struct eap_erp_key *erp;
797 struct wpabuf *msg;
798 u8 hash[SHA256_MAC_LEN];
799
800 realm = eap_home_realm(sm);
801 if (!realm)
802 return NULL;
803
804 erp = eap_erp_get_key(sm, realm);
805 os_free(realm);
806 realm = NULL;
807 if (!erp)
808 return NULL;
809
810 if (erp->next_seq >= 65536)
811 return NULL; /* SEQ has range of 0..65535 */
812
813 /* TODO: check rRK lifetime expiration */
814
815 wpa_printf(MSG_DEBUG, "EAP: Valid ERP key found %s (SEQ=%u)",
816 erp->keyname_nai, erp->next_seq);
817
818 msg = eap_msg_alloc(EAP_VENDOR_IETF, (EapType) EAP_ERP_TYPE_REAUTH,
819 1 + 2 + 2 + os_strlen(erp->keyname_nai) + 1 + 16,
820 EAP_CODE_INITIATE, eap_id);
821 if (msg == NULL)
822 return NULL;
823
824 wpabuf_put_u8(msg, 0x20); /* Flags: R=0 B=0 L=1 */
825 wpabuf_put_be16(msg, erp->next_seq);
826
827 wpabuf_put_u8(msg, EAP_ERP_TLV_KEYNAME_NAI);
828 wpabuf_put_u8(msg, os_strlen(erp->keyname_nai));
829 wpabuf_put_str(msg, erp->keyname_nai);
830
831 wpabuf_put_u8(msg, EAP_ERP_CS_HMAC_SHA256_128); /* Cryptosuite */
832
833 if (hmac_sha256(erp->rIK, erp->rIK_len,
834 wpabuf_head(msg), wpabuf_len(msg), hash) < 0) {
835 wpabuf_free(msg);
836 return NULL;
837 }
838 wpabuf_put_data(msg, hash, 16);
839
840 sm->erp_seq = erp->next_seq;
841 erp->next_seq++;
842
843 wpa_hexdump_buf(MSG_DEBUG, "ERP: EAP-Initiate/Re-auth", msg);
844
845 return msg;
846 }
847
848
eap_peer_erp_reauth_start(struct eap_sm * sm,u8 eap_id)849 static int eap_peer_erp_reauth_start(struct eap_sm *sm, u8 eap_id)
850 {
851 struct wpabuf *msg;
852
853 msg = eap_peer_build_erp_reauth_start(sm, eap_id);
854 if (!msg)
855 return -1;
856
857 wpa_printf(MSG_DEBUG, "EAP: Sending EAP-Initiate/Re-auth");
858 wpabuf_free(sm->eapRespData);
859 sm->eapRespData = msg;
860 sm->reauthInit = TRUE;
861 return 0;
862 }
863 #endif /* CONFIG_ERP */
864
865
866 /*
867 * The method processing happens here. The request from the authenticator is
868 * processed, and an appropriate response packet is built.
869 */
SM_STATE(EAP,METHOD)870 SM_STATE(EAP, METHOD)
871 {
872 struct wpabuf *eapReqData;
873 struct eap_method_ret ret;
874 int min_len = 1;
875
876 SM_ENTRY(EAP, METHOD);
877 if (sm->m == NULL) {
878 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
879 return;
880 }
881
882 eapReqData = eapol_get_eapReqData(sm);
883 if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
884 min_len = 0; /* LEAP uses EAP-Success without payload */
885 if (!eap_hdr_len_valid(eapReqData, min_len))
886 return;
887
888 /*
889 * Get ignore, methodState, decision, allowNotifications, and
890 * eapRespData. RFC 4137 uses three separate method procedure (check,
891 * process, and buildResp) in this state. These have been combined into
892 * a single function call to m->process() in order to optimize EAP
893 * method implementation interface a bit. These procedures are only
894 * used from within this METHOD state, so there is no need to keep
895 * these as separate C functions.
896 *
897 * The RFC 4137 procedures return values as follows:
898 * ignore = m.check(eapReqData)
899 * (methodState, decision, allowNotifications) = m.process(eapReqData)
900 * eapRespData = m.buildResp(reqId)
901 */
902 os_memset(&ret, 0, sizeof(ret));
903 ret.ignore = sm->ignore;
904 ret.methodState = sm->methodState;
905 ret.decision = sm->decision;
906 ret.allowNotifications = sm->allowNotifications;
907 wpabuf_free(sm->eapRespData);
908 sm->eapRespData = NULL;
909 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
910 eapReqData);
911 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
912 "methodState=%s decision=%s eapRespData=%p",
913 ret.ignore ? "TRUE" : "FALSE",
914 eap_sm_method_state_txt(ret.methodState),
915 eap_sm_decision_txt(ret.decision),
916 sm->eapRespData);
917
918 sm->ignore = ret.ignore;
919 if (sm->ignore)
920 return;
921 sm->methodState = ret.methodState;
922 sm->decision = ret.decision;
923 sm->allowNotifications = ret.allowNotifications;
924
925 if (sm->m->isKeyAvailable && sm->m->getKey &&
926 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
927 eap_sm_free_key(sm);
928 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
929 &sm->eapKeyDataLen);
930 os_free(sm->eapSessionId);
931 sm->eapSessionId = NULL;
932 if (sm->m->getSessionId) {
933 sm->eapSessionId = sm->m->getSessionId(
934 sm, sm->eap_method_priv,
935 &sm->eapSessionIdLen);
936 wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
937 sm->eapSessionId, sm->eapSessionIdLen);
938 }
939 }
940 }
941
942
943 /*
944 * This state signals the lower layer that a response packet is ready to be
945 * sent.
946 */
SM_STATE(EAP,SEND_RESPONSE)947 SM_STATE(EAP, SEND_RESPONSE)
948 {
949 SM_ENTRY(EAP, SEND_RESPONSE);
950 wpabuf_free(sm->lastRespData);
951 if (sm->eapRespData) {
952 if (sm->workaround)
953 os_memcpy(sm->last_sha1, sm->req_sha1, 20);
954 sm->lastId = sm->reqId;
955 sm->lastRespData = wpabuf_dup(sm->eapRespData);
956 eapol_set_bool(sm, EAPOL_eapResp, TRUE);
957 } else {
958 wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
959 sm->lastRespData = NULL;
960 }
961 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
962 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
963 sm->reauthInit = FALSE;
964 }
965
966
967 /*
968 * This state signals the lower layer that the request was discarded, and no
969 * response packet will be sent at this time.
970 */
SM_STATE(EAP,DISCARD)971 SM_STATE(EAP, DISCARD)
972 {
973 SM_ENTRY(EAP, DISCARD);
974 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
975 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
976 }
977
978
979 /*
980 * Handles requests for Identity method and builds a response.
981 */
SM_STATE(EAP,IDENTITY)982 SM_STATE(EAP, IDENTITY)
983 {
984 const struct wpabuf *eapReqData;
985
986 SM_ENTRY(EAP, IDENTITY);
987 eapReqData = eapol_get_eapReqData(sm);
988 if (!eap_hdr_len_valid(eapReqData, 1))
989 return;
990 eap_sm_processIdentity(sm, eapReqData);
991 wpabuf_free(sm->eapRespData);
992 sm->eapRespData = NULL;
993 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
994 }
995
996
997 /*
998 * Handles requests for Notification method and builds a response.
999 */
SM_STATE(EAP,NOTIFICATION)1000 SM_STATE(EAP, NOTIFICATION)
1001 {
1002 const struct wpabuf *eapReqData;
1003
1004 SM_ENTRY(EAP, NOTIFICATION);
1005 eapReqData = eapol_get_eapReqData(sm);
1006 if (!eap_hdr_len_valid(eapReqData, 1))
1007 return;
1008 eap_sm_processNotify(sm, eapReqData);
1009 wpabuf_free(sm->eapRespData);
1010 sm->eapRespData = NULL;
1011 sm->eapRespData = eap_sm_buildNotify(sm->reqId);
1012 }
1013
1014
1015 /*
1016 * This state retransmits the previous response packet.
1017 */
SM_STATE(EAP,RETRANSMIT)1018 SM_STATE(EAP, RETRANSMIT)
1019 {
1020 SM_ENTRY(EAP, RETRANSMIT);
1021 wpabuf_free(sm->eapRespData);
1022 if (sm->lastRespData)
1023 sm->eapRespData = wpabuf_dup(sm->lastRespData);
1024 else
1025 sm->eapRespData = NULL;
1026 }
1027
1028
1029 /*
1030 * This state is entered in case of a successful completion of authentication
1031 * and state machine waits here until port is disabled or EAP authentication is
1032 * restarted.
1033 */
SM_STATE(EAP,SUCCESS)1034 SM_STATE(EAP, SUCCESS)
1035 {
1036 struct eap_peer_config *config = eap_get_config(sm);
1037
1038 SM_ENTRY(EAP, SUCCESS);
1039 if (sm->eapKeyData != NULL)
1040 sm->eapKeyAvailable = TRUE;
1041 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1042
1043 /*
1044 * RFC 4137 does not clear eapReq here, but this seems to be required
1045 * to avoid processing the same request twice when state machine is
1046 * initialized.
1047 */
1048 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1049
1050 /*
1051 * RFC 4137 does not set eapNoResp here, but this seems to be required
1052 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
1053 * addition, either eapResp or eapNoResp is required to be set after
1054 * processing the received EAP frame.
1055 */
1056 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1057
1058 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1059 "EAP authentication completed successfully");
1060
1061 if (config->erp && sm->m->get_emsk && sm->eapSessionId &&
1062 sm->m->isKeyAvailable &&
1063 sm->m->isKeyAvailable(sm, sm->eap_method_priv))
1064 eap_peer_erp_init(sm, NULL, 0, NULL, 0);
1065 }
1066
1067
1068 /*
1069 * This state is entered in case of a failure and state machine waits here
1070 * until port is disabled or EAP authentication is restarted.
1071 */
SM_STATE(EAP,FAILURE)1072 SM_STATE(EAP, FAILURE)
1073 {
1074 SM_ENTRY(EAP, FAILURE);
1075 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
1076
1077 /*
1078 * RFC 4137 does not clear eapReq here, but this seems to be required
1079 * to avoid processing the same request twice when state machine is
1080 * initialized.
1081 */
1082 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1083
1084 /*
1085 * RFC 4137 does not set eapNoResp here. However, either eapResp or
1086 * eapNoResp is required to be set after processing the received EAP
1087 * frame.
1088 */
1089 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1090
1091 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
1092 "EAP authentication failed");
1093
1094 sm->prev_failure = 1;
1095 }
1096
1097
eap_success_workaround(struct eap_sm * sm,int reqId,int lastId)1098 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
1099 {
1100 /*
1101 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
1102 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
1103 * RFC 4137 require that reqId == lastId. In addition, it looks like
1104 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
1105 *
1106 * Accept this kind of Id if EAP workarounds are enabled. These are
1107 * unauthenticated plaintext messages, so this should have minimal
1108 * security implications (bit easier to fake EAP-Success/Failure).
1109 */
1110 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
1111 reqId == ((lastId + 2) & 0xff))) {
1112 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
1113 "identifier field in EAP Success: "
1114 "reqId=%d lastId=%d (these are supposed to be "
1115 "same)", reqId, lastId);
1116 return 1;
1117 }
1118 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
1119 "lastId=%d", reqId, lastId);
1120 return 0;
1121 }
1122
1123
1124 /*
1125 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
1126 */
1127
eap_peer_sm_step_idle(struct eap_sm * sm)1128 static void eap_peer_sm_step_idle(struct eap_sm *sm)
1129 {
1130 /*
1131 * The first three transitions are from RFC 4137. The last two are
1132 * local additions to handle special cases with LEAP and PEAP server
1133 * not sending EAP-Success in some cases.
1134 */
1135 if (eapol_get_bool(sm, EAPOL_eapReq))
1136 SM_ENTER(EAP, RECEIVED);
1137 else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
1138 sm->decision != DECISION_FAIL) ||
1139 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
1140 sm->decision == DECISION_UNCOND_SUCC))
1141 SM_ENTER(EAP, SUCCESS);
1142 else if (eapol_get_bool(sm, EAPOL_altReject) ||
1143 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
1144 sm->decision != DECISION_UNCOND_SUCC) ||
1145 (eapol_get_bool(sm, EAPOL_altAccept) &&
1146 sm->methodState != METHOD_CONT &&
1147 sm->decision == DECISION_FAIL))
1148 SM_ENTER(EAP, FAILURE);
1149 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
1150 sm->leap_done && sm->decision != DECISION_FAIL &&
1151 sm->methodState == METHOD_DONE)
1152 SM_ENTER(EAP, SUCCESS);
1153 else if (sm->selectedMethod == EAP_TYPE_PEAP &&
1154 sm->peap_done && sm->decision != DECISION_FAIL &&
1155 sm->methodState == METHOD_DONE)
1156 SM_ENTER(EAP, SUCCESS);
1157 }
1158
1159
eap_peer_req_is_duplicate(struct eap_sm * sm)1160 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
1161 {
1162 int duplicate;
1163
1164 duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
1165 if (sm->workaround && duplicate &&
1166 os_memcmp(sm->req_sha1, sm->last_sha1, 20) != 0) {
1167 /*
1168 * RFC 4137 uses (reqId == lastId) as the only verification for
1169 * duplicate EAP requests. However, this misses cases where the
1170 * AS is incorrectly using the same id again; and
1171 * unfortunately, such implementations exist. Use SHA1 hash as
1172 * an extra verification for the packets being duplicate to
1173 * workaround these issues.
1174 */
1175 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
1176 "EAP packets were not identical");
1177 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
1178 "duplicate packet");
1179 duplicate = 0;
1180 }
1181
1182 return duplicate;
1183 }
1184
1185
eap_peer_sm_allow_canned(struct eap_sm * sm)1186 static int eap_peer_sm_allow_canned(struct eap_sm *sm)
1187 {
1188 struct eap_peer_config *config = eap_get_config(sm);
1189
1190 return config && config->phase1 &&
1191 os_strstr(config->phase1, "allow_canned_success=1");
1192 }
1193
1194
eap_peer_sm_step_received(struct eap_sm * sm)1195 static void eap_peer_sm_step_received(struct eap_sm *sm)
1196 {
1197 int duplicate = eap_peer_req_is_duplicate(sm);
1198
1199 /*
1200 * Two special cases below for LEAP are local additions to work around
1201 * odd LEAP behavior (EAP-Success in the middle of authentication and
1202 * then swapped roles). Other transitions are based on RFC 4137.
1203 */
1204 if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
1205 (sm->reqId == sm->lastId ||
1206 eap_success_workaround(sm, sm->reqId, sm->lastId)))
1207 SM_ENTER(EAP, SUCCESS);
1208 else if (sm->workaround && sm->lastId == -1 && sm->rxSuccess &&
1209 !sm->rxFailure && !sm->rxReq && eap_peer_sm_allow_canned(sm))
1210 SM_ENTER(EAP, SUCCESS); /* EAP-Success prior any EAP method */
1211 else if (sm->workaround && sm->lastId == -1 && sm->rxFailure &&
1212 !sm->rxReq && sm->methodState != METHOD_CONT &&
1213 eap_peer_sm_allow_canned(sm))
1214 SM_ENTER(EAP, FAILURE); /* EAP-Failure prior any EAP method */
1215 else if (sm->workaround && sm->rxSuccess && !sm->rxFailure &&
1216 !sm->rxReq && sm->methodState != METHOD_CONT &&
1217 eap_peer_sm_allow_canned(sm))
1218 SM_ENTER(EAP, SUCCESS); /* EAP-Success after Identity */
1219 else if (sm->methodState != METHOD_CONT &&
1220 ((sm->rxFailure &&
1221 sm->decision != DECISION_UNCOND_SUCC) ||
1222 (sm->rxSuccess && sm->decision == DECISION_FAIL &&
1223 (sm->selectedMethod != EAP_TYPE_LEAP ||
1224 sm->methodState != METHOD_MAY_CONT))) &&
1225 (sm->reqId == sm->lastId ||
1226 eap_success_workaround(sm, sm->reqId, sm->lastId)))
1227 SM_ENTER(EAP, FAILURE);
1228 else if (sm->rxReq && duplicate)
1229 SM_ENTER(EAP, RETRANSMIT);
1230 else if (sm->rxReq && !duplicate &&
1231 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
1232 sm->allowNotifications)
1233 SM_ENTER(EAP, NOTIFICATION);
1234 else if (sm->rxReq && !duplicate &&
1235 sm->selectedMethod == EAP_TYPE_NONE &&
1236 sm->reqMethod == EAP_TYPE_IDENTITY)
1237 SM_ENTER(EAP, IDENTITY);
1238 else if (sm->rxReq && !duplicate &&
1239 sm->selectedMethod == EAP_TYPE_NONE &&
1240 sm->reqMethod != EAP_TYPE_IDENTITY &&
1241 sm->reqMethod != EAP_TYPE_NOTIFICATION)
1242 SM_ENTER(EAP, GET_METHOD);
1243 else if (sm->rxReq && !duplicate &&
1244 sm->reqMethod == sm->selectedMethod &&
1245 sm->methodState != METHOD_DONE)
1246 SM_ENTER(EAP, METHOD);
1247 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
1248 (sm->rxSuccess || sm->rxResp))
1249 SM_ENTER(EAP, METHOD);
1250 else if (sm->reauthInit)
1251 SM_ENTER(EAP, SEND_RESPONSE);
1252 else
1253 SM_ENTER(EAP, DISCARD);
1254 }
1255
1256
eap_peer_sm_step_local(struct eap_sm * sm)1257 static void eap_peer_sm_step_local(struct eap_sm *sm)
1258 {
1259 switch (sm->EAP_state) {
1260 case EAP_INITIALIZE:
1261 SM_ENTER(EAP, IDLE);
1262 break;
1263 case EAP_DISABLED:
1264 if (eapol_get_bool(sm, EAPOL_portEnabled) &&
1265 !sm->force_disabled)
1266 SM_ENTER(EAP, INITIALIZE);
1267 break;
1268 case EAP_IDLE:
1269 eap_peer_sm_step_idle(sm);
1270 break;
1271 case EAP_RECEIVED:
1272 eap_peer_sm_step_received(sm);
1273 break;
1274 case EAP_GET_METHOD:
1275 if (sm->selectedMethod == sm->reqMethod)
1276 SM_ENTER(EAP, METHOD);
1277 else
1278 SM_ENTER(EAP, SEND_RESPONSE);
1279 break;
1280 case EAP_METHOD:
1281 /*
1282 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
1283 * as the condition. eapRespData == NULL here is used to allow
1284 * final EAP method response to be sent without having to change
1285 * all methods to either use methodState MAY_CONT or leaving
1286 * decision to something else than FAIL in cases where the only
1287 * expected response is EAP-Failure.
1288 */
1289 if (sm->ignore)
1290 SM_ENTER(EAP, DISCARD);
1291 else if (sm->methodState == METHOD_DONE &&
1292 sm->decision == DECISION_FAIL && !sm->eapRespData)
1293 SM_ENTER(EAP, FAILURE);
1294 else
1295 SM_ENTER(EAP, SEND_RESPONSE);
1296 break;
1297 case EAP_SEND_RESPONSE:
1298 SM_ENTER(EAP, IDLE);
1299 break;
1300 case EAP_DISCARD:
1301 SM_ENTER(EAP, IDLE);
1302 break;
1303 case EAP_IDENTITY:
1304 SM_ENTER(EAP, SEND_RESPONSE);
1305 break;
1306 case EAP_NOTIFICATION:
1307 SM_ENTER(EAP, SEND_RESPONSE);
1308 break;
1309 case EAP_RETRANSMIT:
1310 SM_ENTER(EAP, SEND_RESPONSE);
1311 break;
1312 case EAP_SUCCESS:
1313 break;
1314 case EAP_FAILURE:
1315 break;
1316 }
1317 }
1318
1319
SM_STEP(EAP)1320 SM_STEP(EAP)
1321 {
1322 /* Global transitions */
1323 if (eapol_get_bool(sm, EAPOL_eapRestart) &&
1324 eapol_get_bool(sm, EAPOL_portEnabled))
1325 SM_ENTER_GLOBAL(EAP, INITIALIZE);
1326 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
1327 SM_ENTER_GLOBAL(EAP, DISABLED);
1328 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
1329 /* RFC 4137 does not place any limit on number of EAP messages
1330 * in an authentication session. However, some error cases have
1331 * ended up in a state were EAP messages were sent between the
1332 * peer and server in a loop (e.g., TLS ACK frame in both
1333 * direction). Since this is quite undesired outcome, limit the
1334 * total number of EAP round-trips and abort authentication if
1335 * this limit is exceeded.
1336 */
1337 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
1338 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
1339 "authentication rounds - abort",
1340 EAP_MAX_AUTH_ROUNDS);
1341 sm->num_rounds++;
1342 SM_ENTER_GLOBAL(EAP, FAILURE);
1343 }
1344 } else {
1345 /* Local transitions */
1346 eap_peer_sm_step_local(sm);
1347 }
1348 }
1349
1350
eap_sm_allowMethod(struct eap_sm * sm,int vendor,EapType method)1351 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
1352 EapType method)
1353 {
1354 if (!eap_allowed_method(sm, vendor, method)) {
1355 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
1356 "vendor %u method %u", vendor, method);
1357 return FALSE;
1358 }
1359 if (eap_peer_get_eap_method(vendor, method))
1360 return TRUE;
1361 wpa_printf(MSG_DEBUG, "EAP: not included in build: "
1362 "vendor %u method %u", vendor, method);
1363 return FALSE;
1364 }
1365
1366
eap_sm_build_expanded_nak(struct eap_sm * sm,int id,const struct eap_method * methods,size_t count)1367 static struct wpabuf * eap_sm_build_expanded_nak(
1368 struct eap_sm *sm, int id, const struct eap_method *methods,
1369 size_t count)
1370 {
1371 struct wpabuf *resp;
1372 int found = 0;
1373 const struct eap_method *m;
1374
1375 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
1376
1377 /* RFC 3748 - 5.3.2: Expanded Nak */
1378 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
1379 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
1380 if (resp == NULL)
1381 return NULL;
1382
1383 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1384 wpabuf_put_be32(resp, EAP_TYPE_NAK);
1385
1386 for (m = methods; m; m = m->next) {
1387 if (sm->reqVendor == m->vendor &&
1388 sm->reqVendorMethod == m->method)
1389 continue; /* do not allow the current method again */
1390 if (eap_allowed_method(sm, m->vendor, m->method)) {
1391 wpa_printf(MSG_DEBUG, "EAP: allowed type: "
1392 "vendor=%u method=%u",
1393 m->vendor, m->method);
1394 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1395 wpabuf_put_be24(resp, m->vendor);
1396 wpabuf_put_be32(resp, m->method);
1397
1398 found++;
1399 }
1400 }
1401 if (!found) {
1402 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
1403 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1404 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1405 wpabuf_put_be32(resp, EAP_TYPE_NONE);
1406 }
1407
1408 eap_update_len(resp);
1409
1410 return resp;
1411 }
1412
1413
eap_sm_buildNak(struct eap_sm * sm,int id)1414 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
1415 {
1416 struct wpabuf *resp;
1417 u8 *start;
1418 int found = 0, expanded_found = 0;
1419 size_t count;
1420 const struct eap_method *methods, *m;
1421
1422 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
1423 "vendor=%u method=%u not allowed)", sm->reqMethod,
1424 sm->reqVendor, sm->reqVendorMethod);
1425 methods = eap_peer_get_methods(&count);
1426 if (methods == NULL)
1427 return NULL;
1428 if (sm->reqMethod == EAP_TYPE_EXPANDED)
1429 return eap_sm_build_expanded_nak(sm, id, methods, count);
1430
1431 /* RFC 3748 - 5.3.1: Legacy Nak */
1432 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
1433 sizeof(struct eap_hdr) + 1 + count + 1,
1434 EAP_CODE_RESPONSE, id);
1435 if (resp == NULL)
1436 return NULL;
1437
1438 start = wpabuf_put(resp, 0);
1439 for (m = methods; m; m = m->next) {
1440 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
1441 continue; /* do not allow the current method again */
1442 if (eap_allowed_method(sm, m->vendor, m->method)) {
1443 if (m->vendor != EAP_VENDOR_IETF) {
1444 if (expanded_found)
1445 continue;
1446 expanded_found = 1;
1447 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1448 } else
1449 wpabuf_put_u8(resp, m->method);
1450 found++;
1451 }
1452 }
1453 if (!found)
1454 wpabuf_put_u8(resp, EAP_TYPE_NONE);
1455 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
1456
1457 eap_update_len(resp);
1458
1459 return resp;
1460 }
1461
1462
eap_sm_processIdentity(struct eap_sm * sm,const struct wpabuf * req)1463 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
1464 {
1465 const u8 *pos;
1466 size_t msg_len;
1467
1468 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
1469 "EAP authentication started");
1470 eap_notify_status(sm, "started", "");
1471
1472 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
1473 &msg_len);
1474 if (pos == NULL)
1475 return;
1476
1477 /*
1478 * RFC 3748 - 5.1: Identity
1479 * Data field may contain a displayable message in UTF-8. If this
1480 * includes NUL-character, only the data before that should be
1481 * displayed. Some EAP implementasitons may piggy-back additional
1482 * options after the NUL.
1483 */
1484 /* TODO: could save displayable message so that it can be shown to the
1485 * user in case of interaction is required */
1486 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
1487 pos, msg_len);
1488 }
1489
1490
1491 #ifdef PCSC_FUNCS
1492
1493 /*
1494 * Rules for figuring out MNC length based on IMSI for SIM cards that do not
1495 * include MNC length field.
1496 */
mnc_len_from_imsi(const char * imsi)1497 static int mnc_len_from_imsi(const char *imsi)
1498 {
1499 char mcc_str[4];
1500 unsigned int mcc;
1501
1502 os_memcpy(mcc_str, imsi, 3);
1503 mcc_str[3] = '\0';
1504 mcc = atoi(mcc_str);
1505
1506 if (mcc == 228)
1507 return 2; /* Networks in Switzerland use 2-digit MNC */
1508 if (mcc == 244)
1509 return 2; /* Networks in Finland use 2-digit MNC */
1510
1511 return -1;
1512 }
1513
1514
eap_sm_imsi_identity(struct eap_sm * sm,struct eap_peer_config * conf)1515 static int eap_sm_imsi_identity(struct eap_sm *sm,
1516 struct eap_peer_config *conf)
1517 {
1518 enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
1519 char imsi[100];
1520 size_t imsi_len;
1521 struct eap_method_type *m = conf->eap_methods;
1522 int i, mnc_len;
1523
1524 imsi_len = sizeof(imsi);
1525 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1526 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1527 return -1;
1528 }
1529
1530 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1531
1532 if (imsi_len < 7) {
1533 wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1534 return -1;
1535 }
1536
1537 /* MNC (2 or 3 digits) */
1538 mnc_len = scard_get_mnc_len(sm->scard_ctx);
1539 if (mnc_len < 0)
1540 mnc_len = mnc_len_from_imsi(imsi);
1541 if (mnc_len < 0) {
1542 wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
1543 "assuming 3");
1544 mnc_len = 3;
1545 }
1546
1547 if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len,
1548 mnc_len) < 0) {
1549 wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1550 return -1;
1551 }
1552 wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1553
1554 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1555 m[i].method != EAP_TYPE_NONE); i++) {
1556 if (m[i].vendor == EAP_VENDOR_IETF &&
1557 m[i].method == EAP_TYPE_AKA_PRIME) {
1558 method = EAP_SM_AKA_PRIME;
1559 break;
1560 }
1561
1562 if (m[i].vendor == EAP_VENDOR_IETF &&
1563 m[i].method == EAP_TYPE_AKA) {
1564 method = EAP_SM_AKA;
1565 break;
1566 }
1567 }
1568
1569 os_free(conf->identity);
1570 conf->identity = os_malloc(1 + imsi_len);
1571 if (conf->identity == NULL) {
1572 wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1573 "IMSI-based identity");
1574 return -1;
1575 }
1576
1577 switch (method) {
1578 case EAP_SM_SIM:
1579 conf->identity[0] = '1';
1580 break;
1581 case EAP_SM_AKA:
1582 conf->identity[0] = '0';
1583 break;
1584 case EAP_SM_AKA_PRIME:
1585 conf->identity[0] = '6';
1586 break;
1587 }
1588 os_memcpy(conf->identity + 1, imsi, imsi_len);
1589 conf->identity_len = 1 + imsi_len;
1590
1591 return 0;
1592 }
1593
1594
eap_sm_set_scard_pin(struct eap_sm * sm,struct eap_peer_config * conf)1595 static int eap_sm_set_scard_pin(struct eap_sm *sm,
1596 struct eap_peer_config *conf)
1597 {
1598 if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1599 /*
1600 * Make sure the same PIN is not tried again in order to avoid
1601 * blocking SIM.
1602 */
1603 os_free(conf->pin);
1604 conf->pin = NULL;
1605
1606 wpa_printf(MSG_WARNING, "PIN validation failed");
1607 eap_sm_request_pin(sm);
1608 return -1;
1609 }
1610 return 0;
1611 }
1612
1613
eap_sm_get_scard_identity(struct eap_sm * sm,struct eap_peer_config * conf)1614 static int eap_sm_get_scard_identity(struct eap_sm *sm,
1615 struct eap_peer_config *conf)
1616 {
1617 if (eap_sm_set_scard_pin(sm, conf))
1618 return -1;
1619
1620 return eap_sm_imsi_identity(sm, conf);
1621 }
1622
1623 #endif /* PCSC_FUNCS */
1624
1625
1626 /**
1627 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1628 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1629 * @id: EAP identifier for the packet
1630 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1631 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1632 * failure
1633 *
1634 * This function allocates and builds an EAP-Identity/Response packet for the
1635 * current network. The caller is responsible for freeing the returned data.
1636 */
eap_sm_buildIdentity(struct eap_sm * sm,int id,int encrypted)1637 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1638 {
1639 struct eap_peer_config *config = eap_get_config(sm);
1640 struct wpabuf *resp;
1641 const u8 *identity;
1642 size_t identity_len;
1643
1644 if (config == NULL) {
1645 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1646 "was not available");
1647 return NULL;
1648 }
1649
1650 if (sm->m && sm->m->get_identity &&
1651 (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1652 &identity_len)) != NULL) {
1653 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1654 "identity", identity, identity_len);
1655 } else if (!encrypted && config->anonymous_identity) {
1656 identity = config->anonymous_identity;
1657 identity_len = config->anonymous_identity_len;
1658 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1659 identity, identity_len);
1660 } else {
1661 identity = config->identity;
1662 identity_len = config->identity_len;
1663 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1664 identity, identity_len);
1665 }
1666
1667 if (config->pcsc) {
1668 #ifdef PCSC_FUNCS
1669 if (!identity) {
1670 if (eap_sm_get_scard_identity(sm, config) < 0)
1671 return NULL;
1672 identity = config->identity;
1673 identity_len = config->identity_len;
1674 wpa_hexdump_ascii(MSG_DEBUG,
1675 "permanent identity from IMSI",
1676 identity, identity_len);
1677 } else if (eap_sm_set_scard_pin(sm, config) < 0) {
1678 return NULL;
1679 }
1680 #else /* PCSC_FUNCS */
1681 return NULL;
1682 #endif /* PCSC_FUNCS */
1683 } else if (!identity) {
1684 wpa_printf(MSG_WARNING,
1685 "EAP: buildIdentity: identity configuration was not available");
1686 eap_sm_request_identity(sm);
1687 return NULL;
1688 }
1689
1690 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1691 EAP_CODE_RESPONSE, id);
1692 if (resp == NULL)
1693 return NULL;
1694
1695 wpabuf_put_data(resp, identity, identity_len);
1696
1697 return resp;
1698 }
1699
1700
eap_sm_processNotify(struct eap_sm * sm,const struct wpabuf * req)1701 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1702 {
1703 const u8 *pos;
1704 char *msg;
1705 size_t i, msg_len;
1706
1707 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1708 &msg_len);
1709 if (pos == NULL)
1710 return;
1711 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1712 pos, msg_len);
1713
1714 msg = os_malloc(msg_len + 1);
1715 if (msg == NULL)
1716 return;
1717 for (i = 0; i < msg_len; i++)
1718 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1719 msg[msg_len] = '\0';
1720 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1721 WPA_EVENT_EAP_NOTIFICATION, msg);
1722 os_free(msg);
1723 }
1724
1725
eap_sm_buildNotify(int id)1726 static struct wpabuf * eap_sm_buildNotify(int id)
1727 {
1728 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1729 return eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1730 EAP_CODE_RESPONSE, id);
1731 }
1732
1733
eap_peer_initiate(struct eap_sm * sm,const struct eap_hdr * hdr,size_t len)1734 static void eap_peer_initiate(struct eap_sm *sm, const struct eap_hdr *hdr,
1735 size_t len)
1736 {
1737 #ifdef CONFIG_ERP
1738 const u8 *pos = (const u8 *) (hdr + 1);
1739 const u8 *end = ((const u8 *) hdr) + len;
1740 struct erp_tlvs parse;
1741
1742 if (len < sizeof(*hdr) + 1) {
1743 wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Initiate");
1744 return;
1745 }
1746
1747 if (*pos != EAP_ERP_TYPE_REAUTH_START) {
1748 wpa_printf(MSG_DEBUG,
1749 "EAP: Ignored unexpected EAP-Initiate Type=%u",
1750 *pos);
1751 return;
1752 }
1753
1754 pos++;
1755 if (pos >= end) {
1756 wpa_printf(MSG_DEBUG,
1757 "EAP: Too short EAP-Initiate/Re-auth-Start");
1758 return;
1759 }
1760 pos++; /* Reserved */
1761 wpa_hexdump(MSG_DEBUG, "EAP: EAP-Initiate/Re-auth-Start TVs/TLVs",
1762 pos, end - pos);
1763
1764 if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1765 goto invalid;
1766
1767 if (parse.domain) {
1768 wpa_hexdump_ascii(MSG_DEBUG,
1769 "EAP: EAP-Initiate/Re-auth-Start - Domain name",
1770 parse.domain, parse.domain_len);
1771 /* TODO: Derivation of domain specific keys for local ER */
1772 }
1773
1774 if (eap_peer_erp_reauth_start(sm, hdr->identifier) == 0)
1775 return;
1776
1777 invalid:
1778 #endif /* CONFIG_ERP */
1779 wpa_printf(MSG_DEBUG,
1780 "EAP: EAP-Initiate/Re-auth-Start - No suitable ERP keys available - try to start full EAP authentication");
1781 eapol_set_bool(sm, EAPOL_eapTriggerStart, TRUE);
1782 }
1783
1784
eap_peer_finish(struct eap_sm * sm,const struct eap_hdr * hdr,size_t len)1785 void eap_peer_finish(struct eap_sm *sm, const struct eap_hdr *hdr, size_t len)
1786 {
1787 #ifdef CONFIG_ERP
1788 const u8 *pos = (const u8 *) (hdr + 1);
1789 const u8 *end = ((const u8 *) hdr) + len;
1790 const u8 *start;
1791 struct erp_tlvs parse;
1792 u8 flags;
1793 u16 seq;
1794 u8 hash[SHA256_MAC_LEN];
1795 size_t hash_len;
1796 struct eap_erp_key *erp;
1797 int max_len;
1798 char nai[254];
1799 u8 seed[4];
1800 int auth_tag_ok = 0;
1801
1802 if (len < sizeof(*hdr) + 1) {
1803 wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Finish");
1804 return;
1805 }
1806
1807 if (*pos != EAP_ERP_TYPE_REAUTH) {
1808 wpa_printf(MSG_DEBUG,
1809 "EAP: Ignored unexpected EAP-Finish Type=%u", *pos);
1810 return;
1811 }
1812
1813 if (len < sizeof(*hdr) + 4) {
1814 wpa_printf(MSG_DEBUG,
1815 "EAP: Ignored too short EAP-Finish/Re-auth");
1816 return;
1817 }
1818
1819 pos++;
1820 flags = *pos++;
1821 seq = WPA_GET_BE16(pos);
1822 pos += 2;
1823 wpa_printf(MSG_DEBUG, "EAP: Flags=0x%x SEQ=%u", flags, seq);
1824
1825 if (seq != sm->erp_seq) {
1826 wpa_printf(MSG_DEBUG,
1827 "EAP: Unexpected EAP-Finish/Re-auth SEQ=%u", seq);
1828 return;
1829 }
1830
1831 /*
1832 * Parse TVs/TLVs. Since we do not yet know the length of the
1833 * Authentication Tag, stop parsing if an unknown TV/TLV is seen and
1834 * just try to find the keyName-NAI first so that we can check the
1835 * Authentication Tag.
1836 */
1837 if (erp_parse_tlvs(pos, end, &parse, 1) < 0)
1838 return;
1839
1840 if (!parse.keyname) {
1841 wpa_printf(MSG_DEBUG,
1842 "EAP: No keyName-NAI in EAP-Finish/Re-auth Packet");
1843 return;
1844 }
1845
1846 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Finish/Re-auth - keyName-NAI",
1847 parse.keyname, parse.keyname_len);
1848 if (parse.keyname_len > 253) {
1849 wpa_printf(MSG_DEBUG,
1850 "EAP: Too long keyName-NAI in EAP-Finish/Re-auth");
1851 return;
1852 }
1853 os_memcpy(nai, parse.keyname, parse.keyname_len);
1854 nai[parse.keyname_len] = '\0';
1855
1856 erp = eap_erp_get_key_nai(sm, nai);
1857 if (!erp) {
1858 wpa_printf(MSG_DEBUG, "EAP: No matching ERP key found for %s",
1859 nai);
1860 return;
1861 }
1862
1863 /* Is there enough room for Cryptosuite and Authentication Tag? */
1864 start = parse.keyname + parse.keyname_len;
1865 max_len = end - start;
1866 hash_len = 16;
1867 if (max_len < 1 + (int) hash_len) {
1868 wpa_printf(MSG_DEBUG,
1869 "EAP: Not enough room for Authentication Tag");
1870 if (flags & 0x80)
1871 goto no_auth_tag;
1872 return;
1873 }
1874 if (end[-17] != EAP_ERP_CS_HMAC_SHA256_128) {
1875 wpa_printf(MSG_DEBUG, "EAP: Different Cryptosuite used");
1876 if (flags & 0x80)
1877 goto no_auth_tag;
1878 return;
1879 }
1880
1881 if (hmac_sha256(erp->rIK, erp->rIK_len, (const u8 *) hdr,
1882 end - ((const u8 *) hdr) - hash_len, hash) < 0)
1883 return;
1884 if (os_memcmp(end - hash_len, hash, hash_len) != 0) {
1885 wpa_printf(MSG_DEBUG,
1886 "EAP: Authentication Tag mismatch");
1887 return;
1888 }
1889 auth_tag_ok = 1;
1890 end -= 1 + hash_len;
1891
1892 no_auth_tag:
1893 /*
1894 * Parse TVs/TLVs again now that we know the exact part of the buffer
1895 * that contains them.
1896 */
1897 wpa_hexdump(MSG_DEBUG, "EAP: EAP-Finish/Re-Auth TVs/TLVs",
1898 pos, end - pos);
1899 if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1900 return;
1901
1902 if (flags & 0x80 || !auth_tag_ok) {
1903 wpa_printf(MSG_DEBUG,
1904 "EAP: EAP-Finish/Re-auth indicated failure");
1905 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
1906 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1907 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1908 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
1909 "EAP authentication failed");
1910 sm->prev_failure = 1;
1911 wpa_printf(MSG_DEBUG,
1912 "EAP: Drop ERP key to try full authentication on next attempt");
1913 eap_peer_erp_free_key(erp);
1914 return;
1915 }
1916
1917 eap_sm_free_key(sm);
1918 sm->eapKeyDataLen = 0;
1919 sm->eapKeyData = os_malloc(erp->rRK_len);
1920 if (!sm->eapKeyData)
1921 return;
1922 sm->eapKeyDataLen = erp->rRK_len;
1923
1924 WPA_PUT_BE16(seed, seq);
1925 WPA_PUT_BE16(&seed[2], erp->rRK_len);
1926 if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
1927 "Re-authentication Master Session Key@ietf.org",
1928 seed, sizeof(seed),
1929 sm->eapKeyData, erp->rRK_len) < 0) {
1930 wpa_printf(MSG_DEBUG, "EAP: Could not derive rMSK for ERP");
1931 eap_sm_free_key(sm);
1932 return;
1933 }
1934 wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rMSK",
1935 sm->eapKeyData, sm->eapKeyDataLen);
1936 sm->eapKeyAvailable = TRUE;
1937 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1938 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1939 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1940 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1941 "EAP re-authentication completed successfully");
1942 #endif /* CONFIG_ERP */
1943 }
1944
1945
eap_sm_parseEapReq(struct eap_sm * sm,const struct wpabuf * req)1946 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1947 {
1948 const struct eap_hdr *hdr;
1949 size_t plen;
1950 const u8 *pos;
1951
1952 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1953 sm->reqId = 0;
1954 sm->reqMethod = EAP_TYPE_NONE;
1955 sm->reqVendor = EAP_VENDOR_IETF;
1956 sm->reqVendorMethod = EAP_TYPE_NONE;
1957
1958 if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1959 return;
1960
1961 hdr = wpabuf_head(req);
1962 plen = be_to_host16(hdr->length);
1963 if (plen > wpabuf_len(req)) {
1964 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1965 "(len=%lu plen=%lu)",
1966 (unsigned long) wpabuf_len(req),
1967 (unsigned long) plen);
1968 return;
1969 }
1970
1971 sm->reqId = hdr->identifier;
1972
1973 if (sm->workaround) {
1974 const u8 *addr[1];
1975 addr[0] = wpabuf_head(req);
1976 sha1_vector(1, addr, &plen, sm->req_sha1);
1977 }
1978
1979 switch (hdr->code) {
1980 case EAP_CODE_REQUEST:
1981 if (plen < sizeof(*hdr) + 1) {
1982 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1983 "no Type field");
1984 return;
1985 }
1986 sm->rxReq = TRUE;
1987 pos = (const u8 *) (hdr + 1);
1988 sm->reqMethod = *pos++;
1989 if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1990 if (plen < sizeof(*hdr) + 8) {
1991 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1992 "expanded EAP-Packet (plen=%lu)",
1993 (unsigned long) plen);
1994 return;
1995 }
1996 sm->reqVendor = WPA_GET_BE24(pos);
1997 pos += 3;
1998 sm->reqVendorMethod = WPA_GET_BE32(pos);
1999 }
2000 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
2001 "method=%u vendor=%u vendorMethod=%u",
2002 sm->reqId, sm->reqMethod, sm->reqVendor,
2003 sm->reqVendorMethod);
2004 break;
2005 case EAP_CODE_RESPONSE:
2006 if (sm->selectedMethod == EAP_TYPE_LEAP) {
2007 /*
2008 * LEAP differs from RFC 4137 by using reversed roles
2009 * for mutual authentication and because of this, we
2010 * need to accept EAP-Response frames if LEAP is used.
2011 */
2012 if (plen < sizeof(*hdr) + 1) {
2013 wpa_printf(MSG_DEBUG, "EAP: Too short "
2014 "EAP-Response - no Type field");
2015 return;
2016 }
2017 sm->rxResp = TRUE;
2018 pos = (const u8 *) (hdr + 1);
2019 sm->reqMethod = *pos;
2020 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
2021 "LEAP method=%d id=%d",
2022 sm->reqMethod, sm->reqId);
2023 break;
2024 }
2025 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
2026 break;
2027 case EAP_CODE_SUCCESS:
2028 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
2029 eap_notify_status(sm, "completion", "success");
2030 sm->rxSuccess = TRUE;
2031 break;
2032 case EAP_CODE_FAILURE:
2033 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
2034 eap_notify_status(sm, "completion", "failure");
2035
2036 /* Get the error code from method */
2037 if (sm->m && sm->m->get_error_code) {
2038 int error_code;
2039
2040 error_code = sm->m->get_error_code(sm->eap_method_priv);
2041 if (error_code != NO_EAP_METHOD_ERROR)
2042 eap_report_error(sm, error_code);
2043 }
2044 sm->rxFailure = TRUE;
2045 break;
2046 case EAP_CODE_INITIATE:
2047 eap_peer_initiate(sm, hdr, plen);
2048 break;
2049 case EAP_CODE_FINISH:
2050 eap_peer_finish(sm, hdr, plen);
2051 break;
2052 default:
2053 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
2054 "code %d", hdr->code);
2055 break;
2056 }
2057 }
2058
2059
eap_peer_sm_tls_event(void * ctx,enum tls_event ev,union tls_event_data * data)2060 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
2061 union tls_event_data *data)
2062 {
2063 struct eap_sm *sm = ctx;
2064 char *hash_hex = NULL;
2065
2066 switch (ev) {
2067 case TLS_CERT_CHAIN_SUCCESS:
2068 eap_notify_status(sm, "remote certificate verification",
2069 "success");
2070 if (sm->ext_cert_check) {
2071 sm->waiting_ext_cert_check = 1;
2072 eap_sm_request(sm, WPA_CTRL_REQ_EXT_CERT_CHECK,
2073 NULL, 0);
2074 }
2075 break;
2076 case TLS_CERT_CHAIN_FAILURE:
2077 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
2078 "reason=%d depth=%d subject='%s' err='%s'",
2079 data->cert_fail.reason,
2080 data->cert_fail.depth,
2081 data->cert_fail.subject,
2082 data->cert_fail.reason_txt);
2083 eap_notify_status(sm, "remote certificate verification",
2084 data->cert_fail.reason_txt);
2085 break;
2086 case TLS_PEER_CERTIFICATE:
2087 if (!sm->eapol_cb->notify_cert)
2088 break;
2089
2090 if (data->peer_cert.hash) {
2091 size_t len = data->peer_cert.hash_len * 2 + 1;
2092 hash_hex = os_malloc(len);
2093 if (hash_hex) {
2094 wpa_snprintf_hex(hash_hex, len,
2095 data->peer_cert.hash,
2096 data->peer_cert.hash_len);
2097 }
2098 }
2099
2100 sm->eapol_cb->notify_cert(sm->eapol_ctx,
2101 data->peer_cert.depth,
2102 data->peer_cert.subject,
2103 data->peer_cert.altsubject,
2104 data->peer_cert.num_altsubject,
2105 hash_hex, data->peer_cert.cert);
2106 break;
2107 case TLS_ALERT:
2108 if (data->alert.is_local)
2109 eap_notify_status(sm, "local TLS alert",
2110 data->alert.description);
2111 else
2112 eap_notify_status(sm, "remote TLS alert",
2113 data->alert.description);
2114 break;
2115 }
2116
2117 os_free(hash_hex);
2118 }
2119
2120
2121 /**
2122 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
2123 * @eapol_ctx: Context data to be used with eapol_cb calls
2124 * @eapol_cb: Pointer to EAPOL callback functions
2125 * @msg_ctx: Context data for wpa_msg() calls
2126 * @conf: EAP configuration
2127 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
2128 *
2129 * This function allocates and initializes an EAP state machine. In addition,
2130 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
2131 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
2132 * state machine. Consequently, the caller must make sure that this data
2133 * structure remains alive while the EAP state machine is active.
2134 */
eap_peer_sm_init(void * eapol_ctx,const struct eapol_callbacks * eapol_cb,void * msg_ctx,struct eap_config * conf)2135 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
2136 const struct eapol_callbacks *eapol_cb,
2137 void *msg_ctx, struct eap_config *conf)
2138 {
2139 struct eap_sm *sm;
2140 struct tls_config tlsconf;
2141
2142 sm = os_zalloc(sizeof(*sm));
2143 if (sm == NULL)
2144 return NULL;
2145 sm->eapol_ctx = eapol_ctx;
2146 sm->eapol_cb = eapol_cb;
2147 sm->msg_ctx = msg_ctx;
2148 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
2149 sm->wps = conf->wps;
2150 dl_list_init(&sm->erp_keys);
2151
2152 os_memset(&tlsconf, 0, sizeof(tlsconf));
2153 tlsconf.opensc_engine_path = conf->opensc_engine_path;
2154 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
2155 tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
2156 tlsconf.openssl_ciphers = conf->openssl_ciphers;
2157 #ifdef CONFIG_FIPS
2158 tlsconf.fips_mode = 1;
2159 #endif /* CONFIG_FIPS */
2160 tlsconf.event_cb = eap_peer_sm_tls_event;
2161 tlsconf.cb_ctx = sm;
2162 tlsconf.cert_in_cb = conf->cert_in_cb;
2163 sm->ssl_ctx = tls_init(&tlsconf);
2164 if (sm->ssl_ctx == NULL) {
2165 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
2166 "context.");
2167 os_free(sm);
2168 return NULL;
2169 }
2170
2171 sm->ssl_ctx2 = tls_init(&tlsconf);
2172 if (sm->ssl_ctx2 == NULL) {
2173 wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
2174 "context (2).");
2175 /* Run without separate TLS context within TLS tunnel */
2176 }
2177
2178 return sm;
2179 }
2180
2181
2182 /**
2183 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
2184 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2185 *
2186 * This function deinitializes EAP state machine and frees all allocated
2187 * resources.
2188 */
eap_peer_sm_deinit(struct eap_sm * sm)2189 void eap_peer_sm_deinit(struct eap_sm *sm)
2190 {
2191 if (sm == NULL)
2192 return;
2193 eap_deinit_prev_method(sm, "EAP deinit");
2194 eap_sm_abort(sm);
2195 if (sm->ssl_ctx2)
2196 tls_deinit(sm->ssl_ctx2);
2197 tls_deinit(sm->ssl_ctx);
2198 eap_peer_erp_free_keys(sm);
2199 os_free(sm);
2200 }
2201
2202
2203 /**
2204 * eap_peer_sm_step - Step EAP peer state machine
2205 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2206 * Returns: 1 if EAP state was changed or 0 if not
2207 *
2208 * This function advances EAP state machine to a new state to match with the
2209 * current variables. This should be called whenever variables used by the EAP
2210 * state machine have changed.
2211 */
eap_peer_sm_step(struct eap_sm * sm)2212 int eap_peer_sm_step(struct eap_sm *sm)
2213 {
2214 int res = 0;
2215 do {
2216 sm->changed = FALSE;
2217 SM_STEP_RUN(EAP);
2218 if (sm->changed)
2219 res = 1;
2220 } while (sm->changed);
2221 return res;
2222 }
2223
2224
2225 /**
2226 * eap_sm_abort - Abort EAP authentication
2227 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2228 *
2229 * Release system resources that have been allocated for the authentication
2230 * session without fully deinitializing the EAP state machine.
2231 */
eap_sm_abort(struct eap_sm * sm)2232 void eap_sm_abort(struct eap_sm *sm)
2233 {
2234 wpabuf_free(sm->lastRespData);
2235 sm->lastRespData = NULL;
2236 wpabuf_free(sm->eapRespData);
2237 sm->eapRespData = NULL;
2238 eap_sm_free_key(sm);
2239 os_free(sm->eapSessionId);
2240 sm->eapSessionId = NULL;
2241
2242 /* This is not clearly specified in the EAP statemachines draft, but
2243 * it seems necessary to make sure that some of the EAPOL variables get
2244 * cleared for the next authentication. */
2245 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
2246 }
2247
2248
2249 #ifdef CONFIG_CTRL_IFACE
eap_sm_state_txt(int state)2250 static const char * eap_sm_state_txt(int state)
2251 {
2252 switch (state) {
2253 case EAP_INITIALIZE:
2254 return "INITIALIZE";
2255 case EAP_DISABLED:
2256 return "DISABLED";
2257 case EAP_IDLE:
2258 return "IDLE";
2259 case EAP_RECEIVED:
2260 return "RECEIVED";
2261 case EAP_GET_METHOD:
2262 return "GET_METHOD";
2263 case EAP_METHOD:
2264 return "METHOD";
2265 case EAP_SEND_RESPONSE:
2266 return "SEND_RESPONSE";
2267 case EAP_DISCARD:
2268 return "DISCARD";
2269 case EAP_IDENTITY:
2270 return "IDENTITY";
2271 case EAP_NOTIFICATION:
2272 return "NOTIFICATION";
2273 case EAP_RETRANSMIT:
2274 return "RETRANSMIT";
2275 case EAP_SUCCESS:
2276 return "SUCCESS";
2277 case EAP_FAILURE:
2278 return "FAILURE";
2279 default:
2280 return "UNKNOWN";
2281 }
2282 }
2283 #endif /* CONFIG_CTRL_IFACE */
2284
2285
2286 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_method_state_txt(EapMethodState state)2287 static const char * eap_sm_method_state_txt(EapMethodState state)
2288 {
2289 switch (state) {
2290 case METHOD_NONE:
2291 return "NONE";
2292 case METHOD_INIT:
2293 return "INIT";
2294 case METHOD_CONT:
2295 return "CONT";
2296 case METHOD_MAY_CONT:
2297 return "MAY_CONT";
2298 case METHOD_DONE:
2299 return "DONE";
2300 default:
2301 return "UNKNOWN";
2302 }
2303 }
2304
2305
eap_sm_decision_txt(EapDecision decision)2306 static const char * eap_sm_decision_txt(EapDecision decision)
2307 {
2308 switch (decision) {
2309 case DECISION_FAIL:
2310 return "FAIL";
2311 case DECISION_COND_SUCC:
2312 return "COND_SUCC";
2313 case DECISION_UNCOND_SUCC:
2314 return "UNCOND_SUCC";
2315 default:
2316 return "UNKNOWN";
2317 }
2318 }
2319 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2320
2321
2322 #ifdef CONFIG_CTRL_IFACE
2323
2324 /**
2325 * eap_sm_get_status - Get EAP state machine status
2326 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2327 * @buf: Buffer for status information
2328 * @buflen: Maximum buffer length
2329 * @verbose: Whether to include verbose status information
2330 * Returns: Number of bytes written to buf.
2331 *
2332 * Query EAP state machine for status information. This function fills in a
2333 * text area with current status information from the EAPOL state machine. If
2334 * the buffer (buf) is not large enough, status information will be truncated
2335 * to fit the buffer.
2336 */
eap_sm_get_status(struct eap_sm * sm,char * buf,size_t buflen,int verbose)2337 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
2338 {
2339 int len, ret;
2340
2341 if (sm == NULL)
2342 return 0;
2343
2344 len = os_snprintf(buf, buflen,
2345 "EAP state=%s\n",
2346 eap_sm_state_txt(sm->EAP_state));
2347 if (os_snprintf_error(buflen, len))
2348 return 0;
2349
2350 if (sm->selectedMethod != EAP_TYPE_NONE) {
2351 const char *name;
2352 if (sm->m) {
2353 name = sm->m->name;
2354 } else {
2355 const struct eap_method *m =
2356 eap_peer_get_eap_method(EAP_VENDOR_IETF,
2357 sm->selectedMethod);
2358 if (m)
2359 name = m->name;
2360 else
2361 name = "?";
2362 }
2363 ret = os_snprintf(buf + len, buflen - len,
2364 "selectedMethod=%d (EAP-%s)\n",
2365 sm->selectedMethod, name);
2366 if (os_snprintf_error(buflen - len, ret))
2367 return len;
2368 len += ret;
2369
2370 if (sm->m && sm->m->get_status) {
2371 len += sm->m->get_status(sm, sm->eap_method_priv,
2372 buf + len, buflen - len,
2373 verbose);
2374 }
2375 }
2376
2377 if (verbose) {
2378 ret = os_snprintf(buf + len, buflen - len,
2379 "reqMethod=%d\n"
2380 "methodState=%s\n"
2381 "decision=%s\n"
2382 "ClientTimeout=%d\n",
2383 sm->reqMethod,
2384 eap_sm_method_state_txt(sm->methodState),
2385 eap_sm_decision_txt(sm->decision),
2386 sm->ClientTimeout);
2387 if (os_snprintf_error(buflen - len, ret))
2388 return len;
2389 len += ret;
2390 }
2391
2392 return len;
2393 }
2394 #endif /* CONFIG_CTRL_IFACE */
2395
2396
eap_sm_request(struct eap_sm * sm,enum wpa_ctrl_req_type field,const char * msg,size_t msglen)2397 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
2398 const char *msg, size_t msglen)
2399 {
2400 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
2401 struct eap_peer_config *config;
2402 const char *txt = NULL;
2403 char *tmp;
2404
2405 if (sm == NULL)
2406 return;
2407 config = eap_get_config(sm);
2408 if (config == NULL)
2409 return;
2410
2411 switch (field) {
2412 case WPA_CTRL_REQ_EAP_IDENTITY:
2413 config->pending_req_identity++;
2414 break;
2415 case WPA_CTRL_REQ_EAP_PASSWORD:
2416 config->pending_req_password++;
2417 break;
2418 case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
2419 config->pending_req_new_password++;
2420 break;
2421 case WPA_CTRL_REQ_EAP_PIN:
2422 config->pending_req_pin++;
2423 break;
2424 case WPA_CTRL_REQ_EAP_OTP:
2425 if (msg) {
2426 tmp = os_malloc(msglen + 3);
2427 if (tmp == NULL)
2428 return;
2429 tmp[0] = '[';
2430 os_memcpy(tmp + 1, msg, msglen);
2431 tmp[msglen + 1] = ']';
2432 tmp[msglen + 2] = '\0';
2433 txt = tmp;
2434 os_free(config->pending_req_otp);
2435 config->pending_req_otp = tmp;
2436 config->pending_req_otp_len = msglen + 3;
2437 } else {
2438 if (config->pending_req_otp == NULL)
2439 return;
2440 txt = config->pending_req_otp;
2441 }
2442 break;
2443 case WPA_CTRL_REQ_EAP_PASSPHRASE:
2444 config->pending_req_passphrase++;
2445 break;
2446 case WPA_CTRL_REQ_SIM:
2447 config->pending_req_sim++;
2448 txt = msg;
2449 break;
2450 case WPA_CTRL_REQ_EXT_CERT_CHECK:
2451 break;
2452 default:
2453 return;
2454 }
2455
2456 if (sm->eapol_cb->eap_param_needed)
2457 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
2458 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2459 }
2460
2461
eap_sm_get_method_name(struct eap_sm * sm)2462 const char * eap_sm_get_method_name(struct eap_sm *sm)
2463 {
2464 if (sm->m == NULL)
2465 return "UNKNOWN";
2466 return sm->m->name;
2467 }
2468
2469
2470 /**
2471 * eap_sm_request_identity - Request identity from user (ctrl_iface)
2472 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2473 *
2474 * EAP methods can call this function to request identity information for the
2475 * current network. This is normally called when the identity is not included
2476 * in the network configuration. The request will be sent to monitor programs
2477 * through the control interface.
2478 */
eap_sm_request_identity(struct eap_sm * sm)2479 void eap_sm_request_identity(struct eap_sm *sm)
2480 {
2481 eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
2482 }
2483
2484
2485 /**
2486 * eap_sm_request_password - Request password from user (ctrl_iface)
2487 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2488 *
2489 * EAP methods can call this function to request password information for the
2490 * current network. This is normally called when the password is not included
2491 * in the network configuration. The request will be sent to monitor programs
2492 * through the control interface.
2493 */
eap_sm_request_password(struct eap_sm * sm)2494 void eap_sm_request_password(struct eap_sm *sm)
2495 {
2496 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
2497 }
2498
2499
2500 /**
2501 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
2502 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2503 *
2504 * EAP methods can call this function to request new password information for
2505 * the current network. This is normally called when the EAP method indicates
2506 * that the current password has expired and password change is required. The
2507 * request will be sent to monitor programs through the control interface.
2508 */
eap_sm_request_new_password(struct eap_sm * sm)2509 void eap_sm_request_new_password(struct eap_sm *sm)
2510 {
2511 eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
2512 }
2513
2514
2515 /**
2516 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
2517 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2518 *
2519 * EAP methods can call this function to request SIM or smart card PIN
2520 * information for the current network. This is normally called when the PIN is
2521 * not included in the network configuration. The request will be sent to
2522 * monitor programs through the control interface.
2523 */
eap_sm_request_pin(struct eap_sm * sm)2524 void eap_sm_request_pin(struct eap_sm *sm)
2525 {
2526 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
2527 }
2528
2529
2530 /**
2531 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
2532 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2533 * @msg: Message to be displayed to the user when asking for OTP
2534 * @msg_len: Length of the user displayable message
2535 *
2536 * EAP methods can call this function to request open time password (OTP) for
2537 * the current network. The request will be sent to monitor programs through
2538 * the control interface.
2539 */
eap_sm_request_otp(struct eap_sm * sm,const char * msg,size_t msg_len)2540 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
2541 {
2542 eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
2543 }
2544
2545
2546 /**
2547 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
2548 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2549 *
2550 * EAP methods can call this function to request passphrase for a private key
2551 * for the current network. This is normally called when the passphrase is not
2552 * included in the network configuration. The request will be sent to monitor
2553 * programs through the control interface.
2554 */
eap_sm_request_passphrase(struct eap_sm * sm)2555 void eap_sm_request_passphrase(struct eap_sm *sm)
2556 {
2557 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
2558 }
2559
2560
2561 /**
2562 * eap_sm_request_sim - Request external SIM processing
2563 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2564 * @req: EAP method specific request
2565 */
eap_sm_request_sim(struct eap_sm * sm,const char * req)2566 void eap_sm_request_sim(struct eap_sm *sm, const char *req)
2567 {
2568 eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
2569 }
2570
2571
2572 /**
2573 * eap_sm_notify_ctrl_attached - Notification of attached monitor
2574 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2575 *
2576 * Notify EAP state machines that a monitor was attached to the control
2577 * interface to trigger re-sending of pending requests for user input.
2578 */
eap_sm_notify_ctrl_attached(struct eap_sm * sm)2579 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
2580 {
2581 struct eap_peer_config *config = eap_get_config(sm);
2582
2583 if (config == NULL)
2584 return;
2585
2586 /* Re-send any pending requests for user data since a new control
2587 * interface was added. This handles cases where the EAP authentication
2588 * starts immediately after system startup when the user interface is
2589 * not yet running. */
2590 if (config->pending_req_identity)
2591 eap_sm_request_identity(sm);
2592 if (config->pending_req_password)
2593 eap_sm_request_password(sm);
2594 if (config->pending_req_new_password)
2595 eap_sm_request_new_password(sm);
2596 if (config->pending_req_otp)
2597 eap_sm_request_otp(sm, NULL, 0);
2598 if (config->pending_req_pin)
2599 eap_sm_request_pin(sm);
2600 if (config->pending_req_passphrase)
2601 eap_sm_request_passphrase(sm);
2602 }
2603
2604
eap_allowed_phase2_type(int vendor,int type)2605 static int eap_allowed_phase2_type(int vendor, int type)
2606 {
2607 if (vendor != EAP_VENDOR_IETF)
2608 return 0;
2609 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
2610 type != EAP_TYPE_FAST;
2611 }
2612
2613
2614 /**
2615 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
2616 * @name: EAP method name, e.g., MD5
2617 * @vendor: Buffer for returning EAP Vendor-Id
2618 * Returns: EAP method type or %EAP_TYPE_NONE if not found
2619 *
2620 * This function maps EAP type names into EAP type numbers that are allowed for
2621 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
2622 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
2623 */
eap_get_phase2_type(const char * name,int * vendor)2624 u32 eap_get_phase2_type(const char *name, int *vendor)
2625 {
2626 int v;
2627 u32 type = eap_peer_get_type(name, &v);
2628 if (eap_allowed_phase2_type(v, type)) {
2629 *vendor = v;
2630 return type;
2631 }
2632 *vendor = EAP_VENDOR_IETF;
2633 return EAP_TYPE_NONE;
2634 }
2635
2636
2637 /**
2638 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
2639 * @config: Pointer to a network configuration
2640 * @count: Pointer to a variable to be filled with number of returned EAP types
2641 * Returns: Pointer to allocated type list or %NULL on failure
2642 *
2643 * This function generates an array of allowed EAP phase 2 (tunneled) types for
2644 * the given network configuration.
2645 */
eap_get_phase2_types(struct eap_peer_config * config,size_t * count)2646 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
2647 size_t *count)
2648 {
2649 struct eap_method_type *buf;
2650 u32 method;
2651 int vendor;
2652 size_t mcount;
2653 const struct eap_method *methods, *m;
2654
2655 methods = eap_peer_get_methods(&mcount);
2656 if (methods == NULL)
2657 return NULL;
2658 *count = 0;
2659 buf = os_malloc(mcount * sizeof(struct eap_method_type));
2660 if (buf == NULL)
2661 return NULL;
2662
2663 for (m = methods; m; m = m->next) {
2664 vendor = m->vendor;
2665 method = m->method;
2666 if (eap_allowed_phase2_type(vendor, method)) {
2667 if (vendor == EAP_VENDOR_IETF &&
2668 method == EAP_TYPE_TLS && config &&
2669 config->private_key2 == NULL)
2670 continue;
2671 buf[*count].vendor = vendor;
2672 buf[*count].method = method;
2673 (*count)++;
2674 }
2675 }
2676
2677 return buf;
2678 }
2679
2680
2681 /**
2682 * eap_set_fast_reauth - Update fast_reauth setting
2683 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2684 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
2685 */
eap_set_fast_reauth(struct eap_sm * sm,int enabled)2686 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
2687 {
2688 sm->fast_reauth = enabled;
2689 }
2690
2691
2692 /**
2693 * eap_set_workaround - Update EAP workarounds setting
2694 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2695 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
2696 */
eap_set_workaround(struct eap_sm * sm,unsigned int workaround)2697 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
2698 {
2699 sm->workaround = workaround;
2700 }
2701
2702
2703 /**
2704 * eap_get_config - Get current network configuration
2705 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2706 * Returns: Pointer to the current network configuration or %NULL if not found
2707 *
2708 * EAP peer methods should avoid using this function if they can use other
2709 * access functions, like eap_get_config_identity() and
2710 * eap_get_config_password(), that do not require direct access to
2711 * struct eap_peer_config.
2712 */
eap_get_config(struct eap_sm * sm)2713 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
2714 {
2715 return sm->eapol_cb->get_config(sm->eapol_ctx);
2716 }
2717
2718
2719 /**
2720 * eap_get_config_identity - Get identity from the network configuration
2721 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2722 * @len: Buffer for the length of the identity
2723 * Returns: Pointer to the identity or %NULL if not found
2724 */
eap_get_config_identity(struct eap_sm * sm,size_t * len)2725 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
2726 {
2727 struct eap_peer_config *config = eap_get_config(sm);
2728 if (config == NULL)
2729 return NULL;
2730 *len = config->identity_len;
2731 return config->identity;
2732 }
2733
2734
eap_get_ext_password(struct eap_sm * sm,struct eap_peer_config * config)2735 static int eap_get_ext_password(struct eap_sm *sm,
2736 struct eap_peer_config *config)
2737 {
2738 char *name;
2739
2740 if (config->password == NULL)
2741 return -1;
2742
2743 name = os_zalloc(config->password_len + 1);
2744 if (name == NULL)
2745 return -1;
2746 os_memcpy(name, config->password, config->password_len);
2747
2748 ext_password_free(sm->ext_pw_buf);
2749 sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
2750 os_free(name);
2751
2752 return sm->ext_pw_buf == NULL ? -1 : 0;
2753 }
2754
2755
2756 /**
2757 * eap_get_config_password - Get password from the network configuration
2758 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2759 * @len: Buffer for the length of the password
2760 * Returns: Pointer to the password or %NULL if not found
2761 */
eap_get_config_password(struct eap_sm * sm,size_t * len)2762 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
2763 {
2764 struct eap_peer_config *config = eap_get_config(sm);
2765 if (config == NULL)
2766 return NULL;
2767
2768 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2769 if (eap_get_ext_password(sm, config) < 0)
2770 return NULL;
2771 *len = wpabuf_len(sm->ext_pw_buf);
2772 return wpabuf_head(sm->ext_pw_buf);
2773 }
2774
2775 *len = config->password_len;
2776 return config->password;
2777 }
2778
2779
2780 /**
2781 * eap_get_config_password2 - Get password from the network configuration
2782 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2783 * @len: Buffer for the length of the password
2784 * @hash: Buffer for returning whether the password is stored as a
2785 * NtPasswordHash instead of plaintext password; can be %NULL if this
2786 * information is not needed
2787 * Returns: Pointer to the password or %NULL if not found
2788 */
eap_get_config_password2(struct eap_sm * sm,size_t * len,int * hash)2789 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2790 {
2791 struct eap_peer_config *config = eap_get_config(sm);
2792 if (config == NULL)
2793 return NULL;
2794
2795 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2796 if (eap_get_ext_password(sm, config) < 0)
2797 return NULL;
2798 if (hash)
2799 *hash = 0;
2800 *len = wpabuf_len(sm->ext_pw_buf);
2801 return wpabuf_head(sm->ext_pw_buf);
2802 }
2803
2804 *len = config->password_len;
2805 if (hash)
2806 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2807 return config->password;
2808 }
2809
2810
2811 /**
2812 * eap_get_config_new_password - Get new password from network configuration
2813 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2814 * @len: Buffer for the length of the new password
2815 * Returns: Pointer to the new password or %NULL if not found
2816 */
eap_get_config_new_password(struct eap_sm * sm,size_t * len)2817 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2818 {
2819 struct eap_peer_config *config = eap_get_config(sm);
2820 if (config == NULL)
2821 return NULL;
2822 *len = config->new_password_len;
2823 return config->new_password;
2824 }
2825
2826
2827 /**
2828 * eap_get_config_otp - Get one-time password from the network configuration
2829 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2830 * @len: Buffer for the length of the one-time password
2831 * Returns: Pointer to the one-time password or %NULL if not found
2832 */
eap_get_config_otp(struct eap_sm * sm,size_t * len)2833 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2834 {
2835 struct eap_peer_config *config = eap_get_config(sm);
2836 if (config == NULL)
2837 return NULL;
2838 *len = config->otp_len;
2839 return config->otp;
2840 }
2841
2842
2843 /**
2844 * eap_clear_config_otp - Clear used one-time password
2845 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2846 *
2847 * This function clears a used one-time password (OTP) from the current network
2848 * configuration. This should be called when the OTP has been used and is not
2849 * needed anymore.
2850 */
eap_clear_config_otp(struct eap_sm * sm)2851 void eap_clear_config_otp(struct eap_sm *sm)
2852 {
2853 struct eap_peer_config *config = eap_get_config(sm);
2854 if (config == NULL)
2855 return;
2856 os_memset(config->otp, 0, config->otp_len);
2857 os_free(config->otp);
2858 config->otp = NULL;
2859 config->otp_len = 0;
2860 }
2861
2862
2863 /**
2864 * eap_get_config_phase1 - Get phase1 data from the network configuration
2865 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2866 * Returns: Pointer to the phase1 data or %NULL if not found
2867 */
eap_get_config_phase1(struct eap_sm * sm)2868 const char * eap_get_config_phase1(struct eap_sm *sm)
2869 {
2870 struct eap_peer_config *config = eap_get_config(sm);
2871 if (config == NULL)
2872 return NULL;
2873 return config->phase1;
2874 }
2875
2876
2877 /**
2878 * eap_get_config_phase2 - Get phase2 data from the network configuration
2879 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2880 * Returns: Pointer to the phase1 data or %NULL if not found
2881 */
eap_get_config_phase2(struct eap_sm * sm)2882 const char * eap_get_config_phase2(struct eap_sm *sm)
2883 {
2884 struct eap_peer_config *config = eap_get_config(sm);
2885 if (config == NULL)
2886 return NULL;
2887 return config->phase2;
2888 }
2889
2890
eap_get_config_fragment_size(struct eap_sm * sm)2891 int eap_get_config_fragment_size(struct eap_sm *sm)
2892 {
2893 struct eap_peer_config *config = eap_get_config(sm);
2894 if (config == NULL)
2895 return -1;
2896 return config->fragment_size;
2897 }
2898
2899
2900 /**
2901 * eap_key_available - Get key availability (eapKeyAvailable variable)
2902 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2903 * Returns: 1 if EAP keying material is available, 0 if not
2904 */
eap_key_available(struct eap_sm * sm)2905 int eap_key_available(struct eap_sm *sm)
2906 {
2907 return sm ? sm->eapKeyAvailable : 0;
2908 }
2909
2910
2911 /**
2912 * eap_notify_success - Notify EAP state machine about external success trigger
2913 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2914 *
2915 * This function is called when external event, e.g., successful completion of
2916 * WPA-PSK key handshake, is indicating that EAP state machine should move to
2917 * success state. This is mainly used with security modes that do not use EAP
2918 * state machine (e.g., WPA-PSK).
2919 */
eap_notify_success(struct eap_sm * sm)2920 void eap_notify_success(struct eap_sm *sm)
2921 {
2922 if (sm) {
2923 sm->decision = DECISION_COND_SUCC;
2924 sm->EAP_state = EAP_SUCCESS;
2925 }
2926 }
2927
2928
2929 /**
2930 * eap_notify_lower_layer_success - Notification of lower layer success
2931 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2932 *
2933 * Notify EAP state machines that a lower layer has detected a successful
2934 * authentication. This is used to recover from dropped EAP-Success messages.
2935 */
eap_notify_lower_layer_success(struct eap_sm * sm)2936 void eap_notify_lower_layer_success(struct eap_sm *sm)
2937 {
2938 if (sm == NULL)
2939 return;
2940
2941 if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2942 sm->decision == DECISION_FAIL ||
2943 (sm->methodState != METHOD_MAY_CONT &&
2944 sm->methodState != METHOD_DONE))
2945 return;
2946
2947 if (sm->eapKeyData != NULL)
2948 sm->eapKeyAvailable = TRUE;
2949 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2950 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2951 "EAP authentication completed successfully (based on lower "
2952 "layer success)");
2953 }
2954
2955
2956 /**
2957 * eap_get_eapSessionId - Get Session-Id from EAP state machine
2958 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2959 * @len: Pointer to variable that will be set to number of bytes in the session
2960 * Returns: Pointer to the EAP Session-Id or %NULL on failure
2961 *
2962 * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2963 * only after a successful authentication. EAP state machine continues to manage
2964 * the Session-Id and the caller must not change or free the returned data.
2965 */
eap_get_eapSessionId(struct eap_sm * sm,size_t * len)2966 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2967 {
2968 if (sm == NULL || sm->eapSessionId == NULL) {
2969 *len = 0;
2970 return NULL;
2971 }
2972
2973 *len = sm->eapSessionIdLen;
2974 return sm->eapSessionId;
2975 }
2976
2977
2978 /**
2979 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2980 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2981 * @len: Pointer to variable that will be set to number of bytes in the key
2982 * Returns: Pointer to the EAP keying data or %NULL on failure
2983 *
2984 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2985 * key is available only after a successful authentication. EAP state machine
2986 * continues to manage the key data and the caller must not change or free the
2987 * returned data.
2988 */
eap_get_eapKeyData(struct eap_sm * sm,size_t * len)2989 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2990 {
2991 if (sm == NULL || sm->eapKeyData == NULL) {
2992 *len = 0;
2993 return NULL;
2994 }
2995
2996 *len = sm->eapKeyDataLen;
2997 return sm->eapKeyData;
2998 }
2999
3000
3001 /**
3002 * eap_get_eapKeyData - Get EAP response data
3003 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3004 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
3005 *
3006 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
3007 * available when EAP state machine has processed an incoming EAP request. The
3008 * EAP state machine does not maintain a reference to the response after this
3009 * function is called and the caller is responsible for freeing the data.
3010 */
eap_get_eapRespData(struct eap_sm * sm)3011 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
3012 {
3013 struct wpabuf *resp;
3014
3015 if (sm == NULL || sm->eapRespData == NULL)
3016 return NULL;
3017
3018 resp = sm->eapRespData;
3019 sm->eapRespData = NULL;
3020
3021 return resp;
3022 }
3023
3024
3025 /**
3026 * eap_sm_register_scard_ctx - Notification of smart card context
3027 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3028 * @ctx: Context data for smart card operations
3029 *
3030 * Notify EAP state machines of context data for smart card operations. This
3031 * context data will be used as a parameter for scard_*() functions.
3032 */
eap_register_scard_ctx(struct eap_sm * sm,void * ctx)3033 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
3034 {
3035 if (sm)
3036 sm->scard_ctx = ctx;
3037 }
3038
3039
3040 /**
3041 * eap_set_config_blob - Set or add a named configuration blob
3042 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3043 * @blob: New value for the blob
3044 *
3045 * Adds a new configuration blob or replaces the current value of an existing
3046 * blob.
3047 */
eap_set_config_blob(struct eap_sm * sm,struct wpa_config_blob * blob)3048 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
3049 {
3050 #ifndef CONFIG_NO_CONFIG_BLOBS
3051 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
3052 #endif /* CONFIG_NO_CONFIG_BLOBS */
3053 }
3054
3055
3056 /**
3057 * eap_get_config_blob - Get a named configuration blob
3058 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3059 * @name: Name of the blob
3060 * Returns: Pointer to blob data or %NULL if not found
3061 */
eap_get_config_blob(struct eap_sm * sm,const char * name)3062 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
3063 const char *name)
3064 {
3065 #ifndef CONFIG_NO_CONFIG_BLOBS
3066 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
3067 #else /* CONFIG_NO_CONFIG_BLOBS */
3068 return NULL;
3069 #endif /* CONFIG_NO_CONFIG_BLOBS */
3070 }
3071
3072
3073 /**
3074 * eap_set_force_disabled - Set force_disabled flag
3075 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3076 * @disabled: 1 = EAP disabled, 0 = EAP enabled
3077 *
3078 * This function is used to force EAP state machine to be disabled when it is
3079 * not in use (e.g., with WPA-PSK or plaintext connections).
3080 */
eap_set_force_disabled(struct eap_sm * sm,int disabled)3081 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
3082 {
3083 sm->force_disabled = disabled;
3084 }
3085
3086
3087 /**
3088 * eap_set_external_sim - Set external_sim flag
3089 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3090 * @external_sim: Whether external SIM/USIM processing is used
3091 */
eap_set_external_sim(struct eap_sm * sm,int external_sim)3092 void eap_set_external_sim(struct eap_sm *sm, int external_sim)
3093 {
3094 sm->external_sim = external_sim;
3095 }
3096
3097
3098 /**
3099 * eap_notify_pending - Notify that EAP method is ready to re-process a request
3100 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3101 *
3102 * An EAP method can perform a pending operation (e.g., to get a response from
3103 * an external process). Once the response is available, this function can be
3104 * used to request EAPOL state machine to retry delivering the previously
3105 * received (and still unanswered) EAP request to EAP state machine.
3106 */
eap_notify_pending(struct eap_sm * sm)3107 void eap_notify_pending(struct eap_sm *sm)
3108 {
3109 sm->eapol_cb->notify_pending(sm->eapol_ctx);
3110 }
3111
3112
3113 /**
3114 * eap_invalidate_cached_session - Mark cached session data invalid
3115 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3116 */
eap_invalidate_cached_session(struct eap_sm * sm)3117 void eap_invalidate_cached_session(struct eap_sm *sm)
3118 {
3119 if (sm)
3120 eap_deinit_prev_method(sm, "invalidate");
3121 }
3122
3123
eap_is_wps_pbc_enrollee(struct eap_peer_config * conf)3124 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
3125 {
3126 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
3127 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
3128 return 0; /* Not a WPS Enrollee */
3129
3130 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
3131 return 0; /* Not using PBC */
3132
3133 return 1;
3134 }
3135
3136
eap_is_wps_pin_enrollee(struct eap_peer_config * conf)3137 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
3138 {
3139 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
3140 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
3141 return 0; /* Not a WPS Enrollee */
3142
3143 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
3144 return 0; /* Not using PIN */
3145
3146 return 1;
3147 }
3148
3149
eap_sm_set_ext_pw_ctx(struct eap_sm * sm,struct ext_password_data * ext)3150 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
3151 {
3152 ext_password_free(sm->ext_pw_buf);
3153 sm->ext_pw_buf = NULL;
3154 sm->ext_pw = ext;
3155 }
3156
3157
3158 /**
3159 * eap_set_anon_id - Set or add anonymous identity
3160 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3161 * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
3162 * @len: Length of anonymous identity in octets
3163 */
eap_set_anon_id(struct eap_sm * sm,const u8 * id,size_t len)3164 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
3165 {
3166 if (sm->eapol_cb->set_anon_id)
3167 sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
3168 }
3169
3170
eap_peer_was_failure_expected(struct eap_sm * sm)3171 int eap_peer_was_failure_expected(struct eap_sm *sm)
3172 {
3173 return sm->expected_failure;
3174 }
3175