• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_FEATURE_EXTRACTOR_H_
18 #define NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_FEATURE_EXTRACTOR_H_
19 
20 #include <memory>
21 #include <string>
22 #include <vector>
23 
24 #include "lang_id/common/fel/feature-extractor.h"
25 #include "lang_id/common/fel/task-context.h"
26 #include "lang_id/common/fel/workspace.h"
27 #include "lang_id/common/lite_base/attributes.h"
28 
29 namespace libtextclassifier3 {
30 namespace mobile {
31 
32 // An EmbeddingFeatureExtractor manages the extraction of features for
33 // embedding-based models. It wraps a sequence of underlying classes of feature
34 // extractors, along with associated predicate maps. Each class of feature
35 // extractors is associated with a name, e.g., "words", "labels", "tags".
36 //
37 // The class is split between a generic abstract version,
38 // GenericEmbeddingFeatureExtractor (that can be initialized without knowing the
39 // signature of the ExtractFeatures method) and a typed version.
40 //
41 // The predicate maps must be initialized before use: they can be loaded using
42 // Read() or updated via UpdateMapsForExample.
43 class GenericEmbeddingFeatureExtractor {
44  public:
45   // Constructs this GenericEmbeddingFeatureExtractor.
46   //
47   // |arg_prefix| is a string prefix for the relevant TaskContext parameters, to
48   // avoid name clashes.  See GetParamName().
GenericEmbeddingFeatureExtractor(const string & arg_prefix)49   explicit GenericEmbeddingFeatureExtractor(const string &arg_prefix)
50       : arg_prefix_(arg_prefix) {}
51 
~GenericEmbeddingFeatureExtractor()52   virtual ~GenericEmbeddingFeatureExtractor() {}
53 
54   // Sets/inits up predicate maps and embedding space names that are common for
55   // all embedding based feature extractors.
56   //
57   // Returns true on success, false otherwise.
58   SAFTM_MUST_USE_RESULT virtual bool Setup(TaskContext *context);
59   SAFTM_MUST_USE_RESULT virtual bool Init(TaskContext *context);
60 
61   // Requests workspace for the underlying feature extractors. This is
62   // implemented in the typed class.
63   virtual void RequestWorkspaces(WorkspaceRegistry *registry) = 0;
64 
65   // Returns number of embedding spaces.
NumEmbeddings()66   int NumEmbeddings() const { return embedding_dims_.size(); }
67 
embedding_fml()68   const std::vector<string> &embedding_fml() const { return embedding_fml_; }
69 
70   // Get parameter name by concatenating the prefix and the original name.
GetParamName(const string & param_name)71   string GetParamName(const string &param_name) const {
72     string full_name = arg_prefix_;
73     full_name.push_back('_');
74     full_name.append(param_name);
75     return full_name;
76   }
77 
78  private:
79   // Prefix for TaskContext parameters.
80   const string arg_prefix_;
81 
82   // Embedding space names for parameter sharing.
83   std::vector<string> embedding_names_;
84 
85   // FML strings for each feature extractor.
86   std::vector<string> embedding_fml_;
87 
88   // Size of each of the embedding spaces (maximum predicate id).
89   std::vector<int> embedding_sizes_;
90 
91   // Embedding dimensions of the embedding spaces (i.e. 32, 64 etc.)
92   std::vector<int> embedding_dims_;
93 };
94 
95 // Templated, object-specific implementation of the
96 // EmbeddingFeatureExtractor. EXTRACTOR should be a FeatureExtractor<OBJ,
97 // ARGS...> class that has the appropriate FeatureTraits() to ensure that
98 // locator type features work.
99 //
100 // Note: for backwards compatibility purposes, this always reads the FML spec
101 // from "<prefix>_features".
102 template <class EXTRACTOR, class OBJ, class... ARGS>
103 class EmbeddingFeatureExtractor : public GenericEmbeddingFeatureExtractor {
104  public:
105   // Constructs this EmbeddingFeatureExtractor.
106   //
107   // |arg_prefix| is a string prefix for the relevant TaskContext parameters, to
108   // avoid name clashes.  See GetParamName().
EmbeddingFeatureExtractor(const string & arg_prefix)109   explicit EmbeddingFeatureExtractor(const string &arg_prefix)
110       : GenericEmbeddingFeatureExtractor(arg_prefix) {}
111 
112   // Sets up all predicate maps, feature extractors, and flags.
Setup(TaskContext * context)113   SAFTM_MUST_USE_RESULT bool Setup(TaskContext *context) override {
114     if (!GenericEmbeddingFeatureExtractor::Setup(context)) {
115       return false;
116     }
117     feature_extractors_.resize(embedding_fml().size());
118     for (int i = 0; i < embedding_fml().size(); ++i) {
119       feature_extractors_[i].reset(new EXTRACTOR());
120       if (!feature_extractors_[i]->Parse(embedding_fml()[i])) return false;
121       if (!feature_extractors_[i]->Setup(context)) return false;
122     }
123     return true;
124   }
125 
126   // Initializes resources needed by the feature extractors.
Init(TaskContext * context)127   SAFTM_MUST_USE_RESULT bool Init(TaskContext *context) override {
128     if (!GenericEmbeddingFeatureExtractor::Init(context)) return false;
129     for (auto &feature_extractor : feature_extractors_) {
130       if (!feature_extractor->Init(context)) return false;
131     }
132     return true;
133   }
134 
135   // Requests workspaces from the registry. Must be called after Init(), and
136   // before Preprocess().
RequestWorkspaces(WorkspaceRegistry * registry)137   void RequestWorkspaces(WorkspaceRegistry *registry) override {
138     for (auto &feature_extractor : feature_extractors_) {
139       feature_extractor->RequestWorkspaces(registry);
140     }
141   }
142 
143   // Must be called on the object one state for each sentence, before any
144   // feature extraction (e.g., UpdateMapsForExample, ExtractFeatures).
Preprocess(WorkspaceSet * workspaces,OBJ * obj)145   void Preprocess(WorkspaceSet *workspaces, OBJ *obj) const {
146     for (auto &feature_extractor : feature_extractors_) {
147       feature_extractor->Preprocess(workspaces, obj);
148     }
149   }
150 
151   // Extracts features using the extractors. Note that features must already
152   // be initialized to the correct number of feature extractors. No predicate
153   // mapping is applied.
ExtractFeatures(const WorkspaceSet & workspaces,const OBJ & obj,ARGS...args,std::vector<FeatureVector> * features)154   void ExtractFeatures(const WorkspaceSet &workspaces, const OBJ &obj,
155                        ARGS... args,
156                        std::vector<FeatureVector> *features) const {
157     // DCHECK(features != nullptr);
158     // DCHECK_EQ(features->size(), feature_extractors_.size());
159     for (int i = 0; i < feature_extractors_.size(); ++i) {
160       (*features)[i].clear();
161       feature_extractors_[i]->ExtractFeatures(workspaces, obj, args...,
162                                               &(*features)[i]);
163     }
164   }
165 
166  private:
167   // Templated feature extractor class.
168   std::vector<std::unique_ptr<EXTRACTOR>> feature_extractors_;
169 };
170 
171 }  // namespace mobile
172 }  // namespace nlp_saft
173 
174 #endif  // NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_FEATURE_EXTRACTOR_H_
175