1 /* 2 * Copyright (C) 2018 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_FEATURE_EXTRACTOR_H_ 18 #define NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_FEATURE_EXTRACTOR_H_ 19 20 #include <memory> 21 #include <string> 22 #include <vector> 23 24 #include "lang_id/common/fel/feature-extractor.h" 25 #include "lang_id/common/fel/task-context.h" 26 #include "lang_id/common/fel/workspace.h" 27 #include "lang_id/common/lite_base/attributes.h" 28 29 namespace libtextclassifier3 { 30 namespace mobile { 31 32 // An EmbeddingFeatureExtractor manages the extraction of features for 33 // embedding-based models. It wraps a sequence of underlying classes of feature 34 // extractors, along with associated predicate maps. Each class of feature 35 // extractors is associated with a name, e.g., "words", "labels", "tags". 36 // 37 // The class is split between a generic abstract version, 38 // GenericEmbeddingFeatureExtractor (that can be initialized without knowing the 39 // signature of the ExtractFeatures method) and a typed version. 40 // 41 // The predicate maps must be initialized before use: they can be loaded using 42 // Read() or updated via UpdateMapsForExample. 43 class GenericEmbeddingFeatureExtractor { 44 public: 45 // Constructs this GenericEmbeddingFeatureExtractor. 46 // 47 // |arg_prefix| is a string prefix for the relevant TaskContext parameters, to 48 // avoid name clashes. See GetParamName(). GenericEmbeddingFeatureExtractor(const string & arg_prefix)49 explicit GenericEmbeddingFeatureExtractor(const string &arg_prefix) 50 : arg_prefix_(arg_prefix) {} 51 ~GenericEmbeddingFeatureExtractor()52 virtual ~GenericEmbeddingFeatureExtractor() {} 53 54 // Sets/inits up predicate maps and embedding space names that are common for 55 // all embedding based feature extractors. 56 // 57 // Returns true on success, false otherwise. 58 SAFTM_MUST_USE_RESULT virtual bool Setup(TaskContext *context); 59 SAFTM_MUST_USE_RESULT virtual bool Init(TaskContext *context); 60 61 // Requests workspace for the underlying feature extractors. This is 62 // implemented in the typed class. 63 virtual void RequestWorkspaces(WorkspaceRegistry *registry) = 0; 64 65 // Returns number of embedding spaces. NumEmbeddings()66 int NumEmbeddings() const { return embedding_dims_.size(); } 67 embedding_fml()68 const std::vector<string> &embedding_fml() const { return embedding_fml_; } 69 70 // Get parameter name by concatenating the prefix and the original name. GetParamName(const string & param_name)71 string GetParamName(const string ¶m_name) const { 72 string full_name = arg_prefix_; 73 full_name.push_back('_'); 74 full_name.append(param_name); 75 return full_name; 76 } 77 78 private: 79 // Prefix for TaskContext parameters. 80 const string arg_prefix_; 81 82 // Embedding space names for parameter sharing. 83 std::vector<string> embedding_names_; 84 85 // FML strings for each feature extractor. 86 std::vector<string> embedding_fml_; 87 88 // Size of each of the embedding spaces (maximum predicate id). 89 std::vector<int> embedding_sizes_; 90 91 // Embedding dimensions of the embedding spaces (i.e. 32, 64 etc.) 92 std::vector<int> embedding_dims_; 93 }; 94 95 // Templated, object-specific implementation of the 96 // EmbeddingFeatureExtractor. EXTRACTOR should be a FeatureExtractor<OBJ, 97 // ARGS...> class that has the appropriate FeatureTraits() to ensure that 98 // locator type features work. 99 // 100 // Note: for backwards compatibility purposes, this always reads the FML spec 101 // from "<prefix>_features". 102 template <class EXTRACTOR, class OBJ, class... ARGS> 103 class EmbeddingFeatureExtractor : public GenericEmbeddingFeatureExtractor { 104 public: 105 // Constructs this EmbeddingFeatureExtractor. 106 // 107 // |arg_prefix| is a string prefix for the relevant TaskContext parameters, to 108 // avoid name clashes. See GetParamName(). EmbeddingFeatureExtractor(const string & arg_prefix)109 explicit EmbeddingFeatureExtractor(const string &arg_prefix) 110 : GenericEmbeddingFeatureExtractor(arg_prefix) {} 111 112 // Sets up all predicate maps, feature extractors, and flags. Setup(TaskContext * context)113 SAFTM_MUST_USE_RESULT bool Setup(TaskContext *context) override { 114 if (!GenericEmbeddingFeatureExtractor::Setup(context)) { 115 return false; 116 } 117 feature_extractors_.resize(embedding_fml().size()); 118 for (int i = 0; i < embedding_fml().size(); ++i) { 119 feature_extractors_[i].reset(new EXTRACTOR()); 120 if (!feature_extractors_[i]->Parse(embedding_fml()[i])) return false; 121 if (!feature_extractors_[i]->Setup(context)) return false; 122 } 123 return true; 124 } 125 126 // Initializes resources needed by the feature extractors. Init(TaskContext * context)127 SAFTM_MUST_USE_RESULT bool Init(TaskContext *context) override { 128 if (!GenericEmbeddingFeatureExtractor::Init(context)) return false; 129 for (auto &feature_extractor : feature_extractors_) { 130 if (!feature_extractor->Init(context)) return false; 131 } 132 return true; 133 } 134 135 // Requests workspaces from the registry. Must be called after Init(), and 136 // before Preprocess(). RequestWorkspaces(WorkspaceRegistry * registry)137 void RequestWorkspaces(WorkspaceRegistry *registry) override { 138 for (auto &feature_extractor : feature_extractors_) { 139 feature_extractor->RequestWorkspaces(registry); 140 } 141 } 142 143 // Must be called on the object one state for each sentence, before any 144 // feature extraction (e.g., UpdateMapsForExample, ExtractFeatures). Preprocess(WorkspaceSet * workspaces,OBJ * obj)145 void Preprocess(WorkspaceSet *workspaces, OBJ *obj) const { 146 for (auto &feature_extractor : feature_extractors_) { 147 feature_extractor->Preprocess(workspaces, obj); 148 } 149 } 150 151 // Extracts features using the extractors. Note that features must already 152 // be initialized to the correct number of feature extractors. No predicate 153 // mapping is applied. ExtractFeatures(const WorkspaceSet & workspaces,const OBJ & obj,ARGS...args,std::vector<FeatureVector> * features)154 void ExtractFeatures(const WorkspaceSet &workspaces, const OBJ &obj, 155 ARGS... args, 156 std::vector<FeatureVector> *features) const { 157 // DCHECK(features != nullptr); 158 // DCHECK_EQ(features->size(), feature_extractors_.size()); 159 for (int i = 0; i < feature_extractors_.size(); ++i) { 160 (*features)[i].clear(); 161 feature_extractors_[i]->ExtractFeatures(workspaces, obj, args..., 162 &(*features)[i]); 163 } 164 } 165 166 private: 167 // Templated feature extractor class. 168 std::vector<std::unique_ptr<EXTRACTOR>> feature_extractors_; 169 }; 170 171 } // namespace mobile 172 } // namespace nlp_saft 173 174 #endif // NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_FEATURE_EXTRACTOR_H_ 175