• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "AsmPrinterHandler.h"
16 #include "CodeViewDebug.h"
17 #include "DwarfDebug.h"
18 #include "DwarfException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetOpcodes.h"
59 #include "llvm/CodeGen/TargetRegisterInfo.h"
60 #include "llvm/CodeGen/TargetSubtargetInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/MC/MCAsmInfo.h"
83 #include "llvm/MC/MCCodePadder.h"
84 #include "llvm/MC/MCContext.h"
85 #include "llvm/MC/MCDirectives.h"
86 #include "llvm/MC/MCDwarf.h"
87 #include "llvm/MC/MCExpr.h"
88 #include "llvm/MC/MCInst.h"
89 #include "llvm/MC/MCSection.h"
90 #include "llvm/MC/MCSectionCOFF.h"
91 #include "llvm/MC/MCSectionELF.h"
92 #include "llvm/MC/MCSectionMachO.h"
93 #include "llvm/MC/MCStreamer.h"
94 #include "llvm/MC/MCSubtargetInfo.h"
95 #include "llvm/MC/MCSymbol.h"
96 #include "llvm/MC/MCSymbolELF.h"
97 #include "llvm/MC/MCTargetOptions.h"
98 #include "llvm/MC/MCValue.h"
99 #include "llvm/MC/SectionKind.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/Format.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/Path.h"
108 #include "llvm/Support/TargetRegistry.h"
109 #include "llvm/Support/Timer.h"
110 #include "llvm/Support/raw_ostream.h"
111 #include "llvm/Target/TargetLoweringObjectFile.h"
112 #include "llvm/Target/TargetMachine.h"
113 #include "llvm/Target/TargetOptions.h"
114 #include <algorithm>
115 #include <cassert>
116 #include <cinttypes>
117 #include <cstdint>
118 #include <iterator>
119 #include <limits>
120 #include <memory>
121 #include <string>
122 #include <utility>
123 #include <vector>
124 
125 using namespace llvm;
126 
127 #define DEBUG_TYPE "asm-printer"
128 
129 static const char *const DWARFGroupName = "dwarf";
130 static const char *const DWARFGroupDescription = "DWARF Emission";
131 static const char *const DbgTimerName = "emit";
132 static const char *const DbgTimerDescription = "Debug Info Emission";
133 static const char *const EHTimerName = "write_exception";
134 static const char *const EHTimerDescription = "DWARF Exception Writer";
135 static const char *const CFGuardName = "Control Flow Guard";
136 static const char *const CFGuardDescription = "Control Flow Guard Tables";
137 static const char *const CodeViewLineTablesGroupName = "linetables";
138 static const char *const CodeViewLineTablesGroupDescription =
139   "CodeView Line Tables";
140 
141 STATISTIC(EmittedInsts, "Number of machine instrs printed");
142 
143 static cl::opt<bool>
144     PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
145                   cl::desc("Print 'sched: [latency:throughput]' in .s output"));
146 
147 char AsmPrinter::ID = 0;
148 
149 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
150 
getGCMap(void * & P)151 static gcp_map_type &getGCMap(void *&P) {
152   if (!P)
153     P = new gcp_map_type();
154   return *(gcp_map_type*)P;
155 }
156 
157 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
158 /// value in log2 form.  This rounds up to the preferred alignment if possible
159 /// and legal.
getGVAlignmentLog2(const GlobalValue * GV,const DataLayout & DL,unsigned InBits=0)160 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
161                                    unsigned InBits = 0) {
162   unsigned NumBits = 0;
163   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
164     NumBits = DL.getPreferredAlignmentLog(GVar);
165 
166   // If InBits is specified, round it to it.
167   if (InBits > NumBits)
168     NumBits = InBits;
169 
170   // If the GV has a specified alignment, take it into account.
171   if (GV->getAlignment() == 0)
172     return NumBits;
173 
174   unsigned GVAlign = Log2_32(GV->getAlignment());
175 
176   // If the GVAlign is larger than NumBits, or if we are required to obey
177   // NumBits because the GV has an assigned section, obey it.
178   if (GVAlign > NumBits || GV->hasSection())
179     NumBits = GVAlign;
180   return NumBits;
181 }
182 
AsmPrinter(TargetMachine & tm,std::unique_ptr<MCStreamer> Streamer)183 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
184     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
185       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
186   VerboseAsm = OutStreamer->isVerboseAsm();
187 }
188 
~AsmPrinter()189 AsmPrinter::~AsmPrinter() {
190   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
191 
192   if (GCMetadataPrinters) {
193     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
194 
195     delete &GCMap;
196     GCMetadataPrinters = nullptr;
197   }
198 }
199 
isPositionIndependent() const200 bool AsmPrinter::isPositionIndependent() const {
201   return TM.isPositionIndependent();
202 }
203 
204 /// getFunctionNumber - Return a unique ID for the current function.
getFunctionNumber() const205 unsigned AsmPrinter::getFunctionNumber() const {
206   return MF->getFunctionNumber();
207 }
208 
getObjFileLowering() const209 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
210   return *TM.getObjFileLowering();
211 }
212 
getDataLayout() const213 const DataLayout &AsmPrinter::getDataLayout() const {
214   return MMI->getModule()->getDataLayout();
215 }
216 
217 // Do not use the cached DataLayout because some client use it without a Module
218 // (dsymutil, llvm-dwarfdump).
getPointerSize() const219 unsigned AsmPrinter::getPointerSize() const {
220   return TM.getPointerSize(0); // FIXME: Default address space
221 }
222 
getSubtargetInfo() const223 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
224   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
225   return MF->getSubtarget<MCSubtargetInfo>();
226 }
227 
EmitToStreamer(MCStreamer & S,const MCInst & Inst)228 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
229   S.EmitInstruction(Inst, getSubtargetInfo());
230 }
231 
232 /// getCurrentSection() - Return the current section we are emitting to.
getCurrentSection() const233 const MCSection *AsmPrinter::getCurrentSection() const {
234   return OutStreamer->getCurrentSectionOnly();
235 }
236 
getAnalysisUsage(AnalysisUsage & AU) const237 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
238   AU.setPreservesAll();
239   MachineFunctionPass::getAnalysisUsage(AU);
240   AU.addRequired<MachineModuleInfo>();
241   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
242   AU.addRequired<GCModuleInfo>();
243 }
244 
doInitialization(Module & M)245 bool AsmPrinter::doInitialization(Module &M) {
246   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
247 
248   // Initialize TargetLoweringObjectFile.
249   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
250     .Initialize(OutContext, TM);
251 
252   OutStreamer->InitSections(false);
253 
254   // Emit the version-min deployment target directive if needed.
255   //
256   // FIXME: If we end up with a collection of these sorts of Darwin-specific
257   // or ELF-specific things, it may make sense to have a platform helper class
258   // that will work with the target helper class. For now keep it here, as the
259   // alternative is duplicated code in each of the target asm printers that
260   // use the directive, where it would need the same conditionalization
261   // anyway.
262   const Triple &Target = TM.getTargetTriple();
263   OutStreamer->EmitVersionForTarget(Target);
264 
265   // Allow the target to emit any magic that it wants at the start of the file.
266   EmitStartOfAsmFile(M);
267 
268   // Very minimal debug info. It is ignored if we emit actual debug info. If we
269   // don't, this at least helps the user find where a global came from.
270   if (MAI->hasSingleParameterDotFile()) {
271     // .file "foo.c"
272     OutStreamer->EmitFileDirective(
273         llvm::sys::path::filename(M.getSourceFileName()));
274   }
275 
276   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
277   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
278   for (auto &I : *MI)
279     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
280       MP->beginAssembly(M, *MI, *this);
281 
282   // Emit module-level inline asm if it exists.
283   if (!M.getModuleInlineAsm().empty()) {
284     // We're at the module level. Construct MCSubtarget from the default CPU
285     // and target triple.
286     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
287         TM.getTargetTriple().str(), TM.getTargetCPU(),
288         TM.getTargetFeatureString()));
289     OutStreamer->AddComment("Start of file scope inline assembly");
290     OutStreamer->AddBlankLine();
291     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
292                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
293     OutStreamer->AddComment("End of file scope inline assembly");
294     OutStreamer->AddBlankLine();
295   }
296 
297   if (MAI->doesSupportDebugInformation()) {
298     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
299     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
300       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
301                                      DbgTimerName, DbgTimerDescription,
302                                      CodeViewLineTablesGroupName,
303                                      CodeViewLineTablesGroupDescription));
304     }
305     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
306       DD = new DwarfDebug(this, &M);
307       DD->beginModule();
308       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
309                                      DWARFGroupName, DWARFGroupDescription));
310     }
311   }
312 
313   switch (MAI->getExceptionHandlingType()) {
314   case ExceptionHandling::SjLj:
315   case ExceptionHandling::DwarfCFI:
316   case ExceptionHandling::ARM:
317     isCFIMoveForDebugging = true;
318     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
319       break;
320     for (auto &F: M.getFunctionList()) {
321       // If the module contains any function with unwind data,
322       // .eh_frame has to be emitted.
323       // Ignore functions that won't get emitted.
324       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
325         isCFIMoveForDebugging = false;
326         break;
327       }
328     }
329     break;
330   default:
331     isCFIMoveForDebugging = false;
332     break;
333   }
334 
335   EHStreamer *ES = nullptr;
336   switch (MAI->getExceptionHandlingType()) {
337   case ExceptionHandling::None:
338     break;
339   case ExceptionHandling::SjLj:
340   case ExceptionHandling::DwarfCFI:
341     ES = new DwarfCFIException(this);
342     break;
343   case ExceptionHandling::ARM:
344     ES = new ARMException(this);
345     break;
346   case ExceptionHandling::WinEH:
347     switch (MAI->getWinEHEncodingType()) {
348     default: llvm_unreachable("unsupported unwinding information encoding");
349     case WinEH::EncodingType::Invalid:
350       break;
351     case WinEH::EncodingType::X86:
352     case WinEH::EncodingType::Itanium:
353       ES = new WinException(this);
354       break;
355     }
356     break;
357   case ExceptionHandling::Wasm:
358     // TODO to prevent warning
359     break;
360   }
361   if (ES)
362     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
363                                    DWARFGroupName, DWARFGroupDescription));
364 
365   if (mdconst::extract_or_null<ConstantInt>(
366           MMI->getModule()->getModuleFlag("cfguard")))
367     Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName,
368                                    CFGuardDescription, DWARFGroupName,
369                                    DWARFGroupDescription));
370 
371   return false;
372 }
373 
canBeHidden(const GlobalValue * GV,const MCAsmInfo & MAI)374 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
375   if (!MAI.hasWeakDefCanBeHiddenDirective())
376     return false;
377 
378   return GV->canBeOmittedFromSymbolTable();
379 }
380 
EmitLinkage(const GlobalValue * GV,MCSymbol * GVSym) const381 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
382   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
383   switch (Linkage) {
384   case GlobalValue::CommonLinkage:
385   case GlobalValue::LinkOnceAnyLinkage:
386   case GlobalValue::LinkOnceODRLinkage:
387   case GlobalValue::WeakAnyLinkage:
388   case GlobalValue::WeakODRLinkage:
389     if (MAI->hasWeakDefDirective()) {
390       // .globl _foo
391       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
392 
393       if (!canBeHidden(GV, *MAI))
394         // .weak_definition _foo
395         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
396       else
397         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
398     } else if (MAI->hasLinkOnceDirective()) {
399       // .globl _foo
400       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
401       //NOTE: linkonce is handled by the section the symbol was assigned to.
402     } else {
403       // .weak _foo
404       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
405     }
406     return;
407   case GlobalValue::ExternalLinkage:
408     // If external, declare as a global symbol: .globl _foo
409     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
410     return;
411   case GlobalValue::PrivateLinkage:
412   case GlobalValue::InternalLinkage:
413     return;
414   case GlobalValue::AppendingLinkage:
415   case GlobalValue::AvailableExternallyLinkage:
416   case GlobalValue::ExternalWeakLinkage:
417     llvm_unreachable("Should never emit this");
418   }
419   llvm_unreachable("Unknown linkage type!");
420 }
421 
getNameWithPrefix(SmallVectorImpl<char> & Name,const GlobalValue * GV) const422 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
423                                    const GlobalValue *GV) const {
424   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
425 }
426 
getSymbol(const GlobalValue * GV) const427 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
428   return TM.getSymbol(GV);
429 }
430 
431 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
EmitGlobalVariable(const GlobalVariable * GV)432 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
433   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
434   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
435          "No emulated TLS variables in the common section");
436 
437   // Never emit TLS variable xyz in emulated TLS model.
438   // The initialization value is in __emutls_t.xyz instead of xyz.
439   if (IsEmuTLSVar)
440     return;
441 
442   if (GV->hasInitializer()) {
443     // Check to see if this is a special global used by LLVM, if so, emit it.
444     if (EmitSpecialLLVMGlobal(GV))
445       return;
446 
447     // Skip the emission of global equivalents. The symbol can be emitted later
448     // on by emitGlobalGOTEquivs in case it turns out to be needed.
449     if (GlobalGOTEquivs.count(getSymbol(GV)))
450       return;
451 
452     if (isVerbose()) {
453       // When printing the control variable __emutls_v.*,
454       // we don't need to print the original TLS variable name.
455       GV->printAsOperand(OutStreamer->GetCommentOS(),
456                      /*PrintType=*/false, GV->getParent());
457       OutStreamer->GetCommentOS() << '\n';
458     }
459   }
460 
461   MCSymbol *GVSym = getSymbol(GV);
462   MCSymbol *EmittedSym = GVSym;
463 
464   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
465   // attributes.
466   // GV's or GVSym's attributes will be used for the EmittedSym.
467   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
468 
469   if (!GV->hasInitializer())   // External globals require no extra code.
470     return;
471 
472   GVSym->redefineIfPossible();
473   if (GVSym->isDefined() || GVSym->isVariable())
474     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
475                        "' is already defined");
476 
477   if (MAI->hasDotTypeDotSizeDirective())
478     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
479 
480   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
481 
482   const DataLayout &DL = GV->getParent()->getDataLayout();
483   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
484 
485   // If the alignment is specified, we *must* obey it.  Overaligning a global
486   // with a specified alignment is a prompt way to break globals emitted to
487   // sections and expected to be contiguous (e.g. ObjC metadata).
488   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
489 
490   for (const HandlerInfo &HI : Handlers) {
491     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
492                        HI.TimerGroupName, HI.TimerGroupDescription,
493                        TimePassesIsEnabled);
494     HI.Handler->setSymbolSize(GVSym, Size);
495   }
496 
497   // Handle common symbols
498   if (GVKind.isCommon()) {
499     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
500     unsigned Align = 1 << AlignLog;
501     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
502       Align = 0;
503 
504     // .comm _foo, 42, 4
505     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
506     return;
507   }
508 
509   // Determine to which section this global should be emitted.
510   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
511 
512   // If we have a bss global going to a section that supports the
513   // zerofill directive, do so here.
514   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
515       TheSection->isVirtualSection()) {
516     if (Size == 0)
517       Size = 1; // zerofill of 0 bytes is undefined.
518     unsigned Align = 1 << AlignLog;
519     EmitLinkage(GV, GVSym);
520     // .zerofill __DATA, __bss, _foo, 400, 5
521     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
522     return;
523   }
524 
525   // If this is a BSS local symbol and we are emitting in the BSS
526   // section use .lcomm/.comm directive.
527   if (GVKind.isBSSLocal() &&
528       getObjFileLowering().getBSSSection() == TheSection) {
529     if (Size == 0)
530       Size = 1; // .comm Foo, 0 is undefined, avoid it.
531     unsigned Align = 1 << AlignLog;
532 
533     // Use .lcomm only if it supports user-specified alignment.
534     // Otherwise, while it would still be correct to use .lcomm in some
535     // cases (e.g. when Align == 1), the external assembler might enfore
536     // some -unknown- default alignment behavior, which could cause
537     // spurious differences between external and integrated assembler.
538     // Prefer to simply fall back to .local / .comm in this case.
539     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
540       // .lcomm _foo, 42
541       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
542       return;
543     }
544 
545     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
546       Align = 0;
547 
548     // .local _foo
549     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
550     // .comm _foo, 42, 4
551     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
552     return;
553   }
554 
555   // Handle thread local data for mach-o which requires us to output an
556   // additional structure of data and mangle the original symbol so that we
557   // can reference it later.
558   //
559   // TODO: This should become an "emit thread local global" method on TLOF.
560   // All of this macho specific stuff should be sunk down into TLOFMachO and
561   // stuff like "TLSExtraDataSection" should no longer be part of the parent
562   // TLOF class.  This will also make it more obvious that stuff like
563   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
564   // specific code.
565   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
566     // Emit the .tbss symbol
567     MCSymbol *MangSym =
568         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
569 
570     if (GVKind.isThreadBSS()) {
571       TheSection = getObjFileLowering().getTLSBSSSection();
572       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
573     } else if (GVKind.isThreadData()) {
574       OutStreamer->SwitchSection(TheSection);
575 
576       EmitAlignment(AlignLog, GV);
577       OutStreamer->EmitLabel(MangSym);
578 
579       EmitGlobalConstant(GV->getParent()->getDataLayout(),
580                          GV->getInitializer());
581     }
582 
583     OutStreamer->AddBlankLine();
584 
585     // Emit the variable struct for the runtime.
586     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
587 
588     OutStreamer->SwitchSection(TLVSect);
589     // Emit the linkage here.
590     EmitLinkage(GV, GVSym);
591     OutStreamer->EmitLabel(GVSym);
592 
593     // Three pointers in size:
594     //   - __tlv_bootstrap - used to make sure support exists
595     //   - spare pointer, used when mapped by the runtime
596     //   - pointer to mangled symbol above with initializer
597     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
598     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
599                                 PtrSize);
600     OutStreamer->EmitIntValue(0, PtrSize);
601     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
602 
603     OutStreamer->AddBlankLine();
604     return;
605   }
606 
607   MCSymbol *EmittedInitSym = GVSym;
608 
609   OutStreamer->SwitchSection(TheSection);
610 
611   EmitLinkage(GV, EmittedInitSym);
612   EmitAlignment(AlignLog, GV);
613 
614   OutStreamer->EmitLabel(EmittedInitSym);
615 
616   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
617 
618   if (MAI->hasDotTypeDotSizeDirective())
619     // .size foo, 42
620     OutStreamer->emitELFSize(EmittedInitSym,
621                              MCConstantExpr::create(Size, OutContext));
622 
623   OutStreamer->AddBlankLine();
624 }
625 
626 /// Emit the directive and value for debug thread local expression
627 ///
628 /// \p Value - The value to emit.
629 /// \p Size - The size of the integer (in bytes) to emit.
EmitDebugThreadLocal(const MCExpr * Value,unsigned Size) const630 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
631                                       unsigned Size) const {
632   OutStreamer->EmitValue(Value, Size);
633 }
634 
635 /// EmitFunctionHeader - This method emits the header for the current
636 /// function.
EmitFunctionHeader()637 void AsmPrinter::EmitFunctionHeader() {
638   const Function &F = MF->getFunction();
639 
640   if (isVerbose())
641     OutStreamer->GetCommentOS()
642         << "-- Begin function "
643         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
644 
645   // Print out constants referenced by the function
646   EmitConstantPool();
647 
648   // Print the 'header' of function.
649   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
650   EmitVisibility(CurrentFnSym, F.getVisibility());
651 
652   EmitLinkage(&F, CurrentFnSym);
653   if (MAI->hasFunctionAlignment())
654     EmitAlignment(MF->getAlignment(), &F);
655 
656   if (MAI->hasDotTypeDotSizeDirective())
657     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
658 
659   if (isVerbose()) {
660     F.printAsOperand(OutStreamer->GetCommentOS(),
661                    /*PrintType=*/false, F.getParent());
662     OutStreamer->GetCommentOS() << '\n';
663   }
664 
665   // Emit the prefix data.
666   if (F.hasPrefixData()) {
667     if (MAI->hasSubsectionsViaSymbols()) {
668       // Preserving prefix data on platforms which use subsections-via-symbols
669       // is a bit tricky. Here we introduce a symbol for the prefix data
670       // and use the .alt_entry attribute to mark the function's real entry point
671       // as an alternative entry point to the prefix-data symbol.
672       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
673       OutStreamer->EmitLabel(PrefixSym);
674 
675       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
676 
677       // Emit an .alt_entry directive for the actual function symbol.
678       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
679     } else {
680       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
681     }
682   }
683 
684   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
685   // do their wild and crazy things as required.
686   EmitFunctionEntryLabel();
687 
688   // If the function had address-taken blocks that got deleted, then we have
689   // references to the dangling symbols.  Emit them at the start of the function
690   // so that we don't get references to undefined symbols.
691   std::vector<MCSymbol*> DeadBlockSyms;
692   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
693   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
694     OutStreamer->AddComment("Address taken block that was later removed");
695     OutStreamer->EmitLabel(DeadBlockSyms[i]);
696   }
697 
698   if (CurrentFnBegin) {
699     if (MAI->useAssignmentForEHBegin()) {
700       MCSymbol *CurPos = OutContext.createTempSymbol();
701       OutStreamer->EmitLabel(CurPos);
702       OutStreamer->EmitAssignment(CurrentFnBegin,
703                                  MCSymbolRefExpr::create(CurPos, OutContext));
704     } else {
705       OutStreamer->EmitLabel(CurrentFnBegin);
706     }
707   }
708 
709   // Emit pre-function debug and/or EH information.
710   for (const HandlerInfo &HI : Handlers) {
711     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
712                        HI.TimerGroupDescription, TimePassesIsEnabled);
713     HI.Handler->beginFunction(MF);
714   }
715 
716   // Emit the prologue data.
717   if (F.hasPrologueData())
718     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
719 }
720 
721 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
722 /// function.  This can be overridden by targets as required to do custom stuff.
EmitFunctionEntryLabel()723 void AsmPrinter::EmitFunctionEntryLabel() {
724   CurrentFnSym->redefineIfPossible();
725 
726   // The function label could have already been emitted if two symbols end up
727   // conflicting due to asm renaming.  Detect this and emit an error.
728   if (CurrentFnSym->isVariable())
729     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
730                        "' is a protected alias");
731   if (CurrentFnSym->isDefined())
732     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
733                        "' label emitted multiple times to assembly file");
734 
735   return OutStreamer->EmitLabel(CurrentFnSym);
736 }
737 
738 /// emitComments - Pretty-print comments for instructions.
739 /// It returns true iff the sched comment was emitted.
740 ///   Otherwise it returns false.
emitComments(const MachineInstr & MI,raw_ostream & CommentOS,AsmPrinter * AP)741 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
742                          AsmPrinter *AP) {
743   const MachineFunction *MF = MI.getMF();
744   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
745 
746   // Check for spills and reloads
747   int FI;
748 
749   const MachineFrameInfo &MFI = MF->getFrameInfo();
750   bool Commented = false;
751 
752   // We assume a single instruction only has a spill or reload, not
753   // both.
754   const MachineMemOperand *MMO;
755   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
756     if (MFI.isSpillSlotObjectIndex(FI)) {
757       MMO = *MI.memoperands_begin();
758       CommentOS << MMO->getSize() << "-byte Reload";
759       Commented = true;
760     }
761   } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
762     if (MFI.isSpillSlotObjectIndex(FI)) {
763       CommentOS << MMO->getSize() << "-byte Folded Reload";
764       Commented = true;
765     }
766   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
767     if (MFI.isSpillSlotObjectIndex(FI)) {
768       MMO = *MI.memoperands_begin();
769       CommentOS << MMO->getSize() << "-byte Spill";
770       Commented = true;
771     }
772   } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
773     if (MFI.isSpillSlotObjectIndex(FI)) {
774       CommentOS << MMO->getSize() << "-byte Folded Spill";
775       Commented = true;
776     }
777   }
778 
779   // Check for spill-induced copies
780   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
781     Commented = true;
782     CommentOS << " Reload Reuse";
783   }
784 
785   if (Commented) {
786     if (AP->EnablePrintSchedInfo) {
787       // If any comment was added above and we need sched info comment then add
788       // this new comment just after the above comment w/o "\n" between them.
789       CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
790       return true;
791     }
792     CommentOS << "\n";
793   }
794   return false;
795 }
796 
797 /// emitImplicitDef - This method emits the specified machine instruction
798 /// that is an implicit def.
emitImplicitDef(const MachineInstr * MI) const799 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
800   unsigned RegNo = MI->getOperand(0).getReg();
801 
802   SmallString<128> Str;
803   raw_svector_ostream OS(Str);
804   OS << "implicit-def: "
805      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
806 
807   OutStreamer->AddComment(OS.str());
808   OutStreamer->AddBlankLine();
809 }
810 
emitKill(const MachineInstr * MI,AsmPrinter & AP)811 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
812   std::string Str;
813   raw_string_ostream OS(Str);
814   OS << "kill:";
815   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
816     const MachineOperand &Op = MI->getOperand(i);
817     assert(Op.isReg() && "KILL instruction must have only register operands");
818     OS << ' ' << (Op.isDef() ? "def " : "killed ")
819        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
820   }
821   AP.OutStreamer->AddComment(OS.str());
822   AP.OutStreamer->AddBlankLine();
823 }
824 
825 /// emitDebugValueComment - This method handles the target-independent form
826 /// of DBG_VALUE, returning true if it was able to do so.  A false return
827 /// means the target will need to handle MI in EmitInstruction.
emitDebugValueComment(const MachineInstr * MI,AsmPrinter & AP)828 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
829   // This code handles only the 4-operand target-independent form.
830   if (MI->getNumOperands() != 4)
831     return false;
832 
833   SmallString<128> Str;
834   raw_svector_ostream OS(Str);
835   OS << "DEBUG_VALUE: ";
836 
837   const DILocalVariable *V = MI->getDebugVariable();
838   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
839     StringRef Name = SP->getName();
840     if (!Name.empty())
841       OS << Name << ":";
842   }
843   OS << V->getName();
844   OS << " <- ";
845 
846   // The second operand is only an offset if it's an immediate.
847   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
848   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
849   const DIExpression *Expr = MI->getDebugExpression();
850   if (Expr->getNumElements()) {
851     OS << '[';
852     bool NeedSep = false;
853     for (auto Op : Expr->expr_ops()) {
854       if (NeedSep)
855         OS << ", ";
856       else
857         NeedSep = true;
858       OS << dwarf::OperationEncodingString(Op.getOp());
859       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
860         OS << ' ' << Op.getArg(I);
861     }
862     OS << "] ";
863   }
864 
865   // Register or immediate value. Register 0 means undef.
866   if (MI->getOperand(0).isFPImm()) {
867     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
868     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
869       OS << (double)APF.convertToFloat();
870     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
871       OS << APF.convertToDouble();
872     } else {
873       // There is no good way to print long double.  Convert a copy to
874       // double.  Ah well, it's only a comment.
875       bool ignored;
876       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
877                   &ignored);
878       OS << "(long double) " << APF.convertToDouble();
879     }
880   } else if (MI->getOperand(0).isImm()) {
881     OS << MI->getOperand(0).getImm();
882   } else if (MI->getOperand(0).isCImm()) {
883     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
884   } else {
885     unsigned Reg;
886     if (MI->getOperand(0).isReg()) {
887       Reg = MI->getOperand(0).getReg();
888     } else {
889       assert(MI->getOperand(0).isFI() && "Unknown operand type");
890       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
891       Offset += TFI->getFrameIndexReference(*AP.MF,
892                                             MI->getOperand(0).getIndex(), Reg);
893       MemLoc = true;
894     }
895     if (Reg == 0) {
896       // Suppress offset, it is not meaningful here.
897       OS << "undef";
898       // NOTE: Want this comment at start of line, don't emit with AddComment.
899       AP.OutStreamer->emitRawComment(OS.str());
900       return true;
901     }
902     if (MemLoc)
903       OS << '[';
904     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
905   }
906 
907   if (MemLoc)
908     OS << '+' << Offset << ']';
909 
910   // NOTE: Want this comment at start of line, don't emit with AddComment.
911   AP.OutStreamer->emitRawComment(OS.str());
912   return true;
913 }
914 
915 /// This method handles the target-independent form of DBG_LABEL, returning
916 /// true if it was able to do so.  A false return means the target will need
917 /// to handle MI in EmitInstruction.
emitDebugLabelComment(const MachineInstr * MI,AsmPrinter & AP)918 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
919   if (MI->getNumOperands() != 1)
920     return false;
921 
922   SmallString<128> Str;
923   raw_svector_ostream OS(Str);
924   OS << "DEBUG_LABEL: ";
925 
926   const DILabel *V = MI->getDebugLabel();
927   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
928     StringRef Name = SP->getName();
929     if (!Name.empty())
930       OS << Name << ":";
931   }
932   OS << V->getName();
933 
934   // NOTE: Want this comment at start of line, don't emit with AddComment.
935   AP.OutStreamer->emitRawComment(OS.str());
936   return true;
937 }
938 
needsCFIMoves() const939 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
940   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
941       MF->getFunction().needsUnwindTableEntry())
942     return CFI_M_EH;
943 
944   if (MMI->hasDebugInfo())
945     return CFI_M_Debug;
946 
947   return CFI_M_None;
948 }
949 
needsSEHMoves()950 bool AsmPrinter::needsSEHMoves() {
951   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
952 }
953 
emitCFIInstruction(const MachineInstr & MI)954 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
955   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
956   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
957       ExceptionHandlingType != ExceptionHandling::ARM)
958     return;
959 
960   if (needsCFIMoves() == CFI_M_None)
961     return;
962 
963   // If there is no "real" instruction following this CFI instruction, skip
964   // emitting it; it would be beyond the end of the function's FDE range.
965   auto *MBB = MI.getParent();
966   auto I = std::next(MI.getIterator());
967   while (I != MBB->end() && I->isTransient())
968     ++I;
969   if (I == MBB->instr_end() &&
970       MBB->getReverseIterator() == MBB->getParent()->rbegin())
971     return;
972 
973   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
974   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
975   const MCCFIInstruction &CFI = Instrs[CFIIndex];
976   emitCFIInstruction(CFI);
977 }
978 
emitFrameAlloc(const MachineInstr & MI)979 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
980   // The operands are the MCSymbol and the frame offset of the allocation.
981   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
982   int FrameOffset = MI.getOperand(1).getImm();
983 
984   // Emit a symbol assignment.
985   OutStreamer->EmitAssignment(FrameAllocSym,
986                              MCConstantExpr::create(FrameOffset, OutContext));
987 }
988 
emitStackSizeSection(const MachineFunction & MF)989 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
990   if (!MF.getTarget().Options.EmitStackSizeSection)
991     return;
992 
993   MCSection *StackSizeSection =
994       getObjFileLowering().getStackSizesSection(*getCurrentSection());
995   if (!StackSizeSection)
996     return;
997 
998   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
999   // Don't emit functions with dynamic stack allocations.
1000   if (FrameInfo.hasVarSizedObjects())
1001     return;
1002 
1003   OutStreamer->PushSection();
1004   OutStreamer->SwitchSection(StackSizeSection);
1005 
1006   const MCSymbol *FunctionSymbol = getFunctionBegin();
1007   uint64_t StackSize = FrameInfo.getStackSize();
1008   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1009   OutStreamer->EmitULEB128IntValue(StackSize);
1010 
1011   OutStreamer->PopSection();
1012 }
1013 
needFuncLabelsForEHOrDebugInfo(const MachineFunction & MF,MachineModuleInfo * MMI)1014 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1015                                            MachineModuleInfo *MMI) {
1016   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1017     return true;
1018 
1019   // We might emit an EH table that uses function begin and end labels even if
1020   // we don't have any landingpads.
1021   if (!MF.getFunction().hasPersonalityFn())
1022     return false;
1023   return !isNoOpWithoutInvoke(
1024       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1025 }
1026 
1027 /// EmitFunctionBody - This method emits the body and trailer for a
1028 /// function.
EmitFunctionBody()1029 void AsmPrinter::EmitFunctionBody() {
1030   EmitFunctionHeader();
1031 
1032   // Emit target-specific gunk before the function body.
1033   EmitFunctionBodyStart();
1034 
1035   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1036 
1037   if (isVerbose()) {
1038     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1039     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1040     if (!MDT) {
1041       OwnedMDT = make_unique<MachineDominatorTree>();
1042       OwnedMDT->getBase().recalculate(*MF);
1043       MDT = OwnedMDT.get();
1044     }
1045 
1046     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1047     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1048     if (!MLI) {
1049       OwnedMLI = make_unique<MachineLoopInfo>();
1050       OwnedMLI->getBase().analyze(MDT->getBase());
1051       MLI = OwnedMLI.get();
1052     }
1053   }
1054 
1055   // Print out code for the function.
1056   bool HasAnyRealCode = false;
1057   int NumInstsInFunction = 0;
1058   for (auto &MBB : *MF) {
1059     // Print a label for the basic block.
1060     EmitBasicBlockStart(MBB);
1061     for (auto &MI : MBB) {
1062       // Print the assembly for the instruction.
1063       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1064           !MI.isDebugInstr()) {
1065         HasAnyRealCode = true;
1066         ++NumInstsInFunction;
1067       }
1068 
1069       if (ShouldPrintDebugScopes) {
1070         for (const HandlerInfo &HI : Handlers) {
1071           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1072                              HI.TimerGroupName, HI.TimerGroupDescription,
1073                              TimePassesIsEnabled);
1074           HI.Handler->beginInstruction(&MI);
1075         }
1076       }
1077 
1078       if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) {
1079         MachineInstr *MIP = const_cast<MachineInstr *>(&MI);
1080         MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment);
1081       }
1082 
1083       switch (MI.getOpcode()) {
1084       case TargetOpcode::CFI_INSTRUCTION:
1085         emitCFIInstruction(MI);
1086         break;
1087       case TargetOpcode::LOCAL_ESCAPE:
1088         emitFrameAlloc(MI);
1089         break;
1090       case TargetOpcode::EH_LABEL:
1091       case TargetOpcode::GC_LABEL:
1092         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1093         break;
1094       case TargetOpcode::INLINEASM:
1095         EmitInlineAsm(&MI);
1096         break;
1097       case TargetOpcode::DBG_VALUE:
1098         if (isVerbose()) {
1099           if (!emitDebugValueComment(&MI, *this))
1100             EmitInstruction(&MI);
1101         }
1102         break;
1103       case TargetOpcode::DBG_LABEL:
1104         if (isVerbose()) {
1105           if (!emitDebugLabelComment(&MI, *this))
1106             EmitInstruction(&MI);
1107         }
1108         break;
1109       case TargetOpcode::IMPLICIT_DEF:
1110         if (isVerbose()) emitImplicitDef(&MI);
1111         break;
1112       case TargetOpcode::KILL:
1113         if (isVerbose()) emitKill(&MI, *this);
1114         break;
1115       default:
1116         EmitInstruction(&MI);
1117         break;
1118       }
1119 
1120       if (ShouldPrintDebugScopes) {
1121         for (const HandlerInfo &HI : Handlers) {
1122           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1123                              HI.TimerGroupName, HI.TimerGroupDescription,
1124                              TimePassesIsEnabled);
1125           HI.Handler->endInstruction();
1126         }
1127       }
1128     }
1129 
1130     EmitBasicBlockEnd(MBB);
1131   }
1132 
1133   EmittedInsts += NumInstsInFunction;
1134   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1135                                       MF->getFunction().getSubprogram(),
1136                                       &MF->front());
1137   R << ore::NV("NumInstructions", NumInstsInFunction)
1138     << " instructions in function";
1139   ORE->emit(R);
1140 
1141   // If the function is empty and the object file uses .subsections_via_symbols,
1142   // then we need to emit *something* to the function body to prevent the
1143   // labels from collapsing together.  Just emit a noop.
1144   // Similarly, don't emit empty functions on Windows either. It can lead to
1145   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1146   // after linking, causing the kernel not to load the binary:
1147   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1148   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1149   const Triple &TT = TM.getTargetTriple();
1150   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1151                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1152     MCInst Noop;
1153     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1154 
1155     // Targets can opt-out of emitting the noop here by leaving the opcode
1156     // unspecified.
1157     if (Noop.getOpcode()) {
1158       OutStreamer->AddComment("avoids zero-length function");
1159       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1160     }
1161   }
1162 
1163   const Function &F = MF->getFunction();
1164   for (const auto &BB : F) {
1165     if (!BB.hasAddressTaken())
1166       continue;
1167     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1168     if (Sym->isDefined())
1169       continue;
1170     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1171     OutStreamer->EmitLabel(Sym);
1172   }
1173 
1174   // Emit target-specific gunk after the function body.
1175   EmitFunctionBodyEnd();
1176 
1177   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1178       MAI->hasDotTypeDotSizeDirective()) {
1179     // Create a symbol for the end of function.
1180     CurrentFnEnd = createTempSymbol("func_end");
1181     OutStreamer->EmitLabel(CurrentFnEnd);
1182   }
1183 
1184   // If the target wants a .size directive for the size of the function, emit
1185   // it.
1186   if (MAI->hasDotTypeDotSizeDirective()) {
1187     // We can get the size as difference between the function label and the
1188     // temp label.
1189     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1190         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1191         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1192     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1193   }
1194 
1195   for (const HandlerInfo &HI : Handlers) {
1196     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1197                        HI.TimerGroupDescription, TimePassesIsEnabled);
1198     HI.Handler->markFunctionEnd();
1199   }
1200 
1201   // Print out jump tables referenced by the function.
1202   EmitJumpTableInfo();
1203 
1204   // Emit post-function debug and/or EH information.
1205   for (const HandlerInfo &HI : Handlers) {
1206     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1207                        HI.TimerGroupDescription, TimePassesIsEnabled);
1208     HI.Handler->endFunction(MF);
1209   }
1210 
1211   // Emit section containing stack size metadata.
1212   emitStackSizeSection(*MF);
1213 
1214   if (isVerbose())
1215     OutStreamer->GetCommentOS() << "-- End function\n";
1216 
1217   OutStreamer->AddBlankLine();
1218 }
1219 
1220 /// Compute the number of Global Variables that uses a Constant.
getNumGlobalVariableUses(const Constant * C)1221 static unsigned getNumGlobalVariableUses(const Constant *C) {
1222   if (!C)
1223     return 0;
1224 
1225   if (isa<GlobalVariable>(C))
1226     return 1;
1227 
1228   unsigned NumUses = 0;
1229   for (auto *CU : C->users())
1230     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1231 
1232   return NumUses;
1233 }
1234 
1235 /// Only consider global GOT equivalents if at least one user is a
1236 /// cstexpr inside an initializer of another global variables. Also, don't
1237 /// handle cstexpr inside instructions. During global variable emission,
1238 /// candidates are skipped and are emitted later in case at least one cstexpr
1239 /// isn't replaced by a PC relative GOT entry access.
isGOTEquivalentCandidate(const GlobalVariable * GV,unsigned & NumGOTEquivUsers)1240 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1241                                      unsigned &NumGOTEquivUsers) {
1242   // Global GOT equivalents are unnamed private globals with a constant
1243   // pointer initializer to another global symbol. They must point to a
1244   // GlobalVariable or Function, i.e., as GlobalValue.
1245   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1246       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1247       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1248     return false;
1249 
1250   // To be a got equivalent, at least one of its users need to be a constant
1251   // expression used by another global variable.
1252   for (auto *U : GV->users())
1253     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1254 
1255   return NumGOTEquivUsers > 0;
1256 }
1257 
1258 /// Unnamed constant global variables solely contaning a pointer to
1259 /// another globals variable is equivalent to a GOT table entry; it contains the
1260 /// the address of another symbol. Optimize it and replace accesses to these
1261 /// "GOT equivalents" by using the GOT entry for the final global instead.
1262 /// Compute GOT equivalent candidates among all global variables to avoid
1263 /// emitting them if possible later on, after it use is replaced by a GOT entry
1264 /// access.
computeGlobalGOTEquivs(Module & M)1265 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1266   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1267     return;
1268 
1269   for (const auto &G : M.globals()) {
1270     unsigned NumGOTEquivUsers = 0;
1271     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1272       continue;
1273 
1274     const MCSymbol *GOTEquivSym = getSymbol(&G);
1275     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1276   }
1277 }
1278 
1279 /// Constant expressions using GOT equivalent globals may not be eligible
1280 /// for PC relative GOT entry conversion, in such cases we need to emit such
1281 /// globals we previously omitted in EmitGlobalVariable.
emitGlobalGOTEquivs()1282 void AsmPrinter::emitGlobalGOTEquivs() {
1283   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1284     return;
1285 
1286   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1287   for (auto &I : GlobalGOTEquivs) {
1288     const GlobalVariable *GV = I.second.first;
1289     unsigned Cnt = I.second.second;
1290     if (Cnt)
1291       FailedCandidates.push_back(GV);
1292   }
1293   GlobalGOTEquivs.clear();
1294 
1295   for (auto *GV : FailedCandidates)
1296     EmitGlobalVariable(GV);
1297 }
1298 
emitGlobalIndirectSymbol(Module & M,const GlobalIndirectSymbol & GIS)1299 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1300                                           const GlobalIndirectSymbol& GIS) {
1301   MCSymbol *Name = getSymbol(&GIS);
1302 
1303   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1304     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1305   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1306     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1307   else
1308     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1309 
1310   // Set the symbol type to function if the alias has a function type.
1311   // This affects codegen when the aliasee is not a function.
1312   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1313     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1314     if (isa<GlobalIFunc>(GIS))
1315       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1316   }
1317 
1318   EmitVisibility(Name, GIS.getVisibility());
1319 
1320   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1321 
1322   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1323     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1324 
1325   // Emit the directives as assignments aka .set:
1326   OutStreamer->EmitAssignment(Name, Expr);
1327 
1328   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1329     // If the aliasee does not correspond to a symbol in the output, i.e. the
1330     // alias is not of an object or the aliased object is private, then set the
1331     // size of the alias symbol from the type of the alias. We don't do this in
1332     // other situations as the alias and aliasee having differing types but same
1333     // size may be intentional.
1334     const GlobalObject *BaseObject = GA->getBaseObject();
1335     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1336         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1337       const DataLayout &DL = M.getDataLayout();
1338       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1339       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1340     }
1341   }
1342 }
1343 
doFinalization(Module & M)1344 bool AsmPrinter::doFinalization(Module &M) {
1345   // Set the MachineFunction to nullptr so that we can catch attempted
1346   // accesses to MF specific features at the module level and so that
1347   // we can conditionalize accesses based on whether or not it is nullptr.
1348   MF = nullptr;
1349 
1350   // Gather all GOT equivalent globals in the module. We really need two
1351   // passes over the globals: one to compute and another to avoid its emission
1352   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1353   // where the got equivalent shows up before its use.
1354   computeGlobalGOTEquivs(M);
1355 
1356   // Emit global variables.
1357   for (const auto &G : M.globals())
1358     EmitGlobalVariable(&G);
1359 
1360   // Emit remaining GOT equivalent globals.
1361   emitGlobalGOTEquivs();
1362 
1363   // Emit visibility info for declarations
1364   for (const Function &F : M) {
1365     if (!F.isDeclarationForLinker())
1366       continue;
1367     GlobalValue::VisibilityTypes V = F.getVisibility();
1368     if (V == GlobalValue::DefaultVisibility)
1369       continue;
1370 
1371     MCSymbol *Name = getSymbol(&F);
1372     EmitVisibility(Name, V, false);
1373   }
1374 
1375   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1376 
1377   TLOF.emitModuleMetadata(*OutStreamer, M);
1378 
1379   if (TM.getTargetTriple().isOSBinFormatELF()) {
1380     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1381 
1382     // Output stubs for external and common global variables.
1383     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1384     if (!Stubs.empty()) {
1385       OutStreamer->SwitchSection(TLOF.getDataSection());
1386       const DataLayout &DL = M.getDataLayout();
1387 
1388       EmitAlignment(Log2_32(DL.getPointerSize()));
1389       for (const auto &Stub : Stubs) {
1390         OutStreamer->EmitLabel(Stub.first);
1391         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1392                                      DL.getPointerSize());
1393       }
1394     }
1395   }
1396 
1397   // Finalize debug and EH information.
1398   for (const HandlerInfo &HI : Handlers) {
1399     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1400                        HI.TimerGroupDescription, TimePassesIsEnabled);
1401     HI.Handler->endModule();
1402     delete HI.Handler;
1403   }
1404   Handlers.clear();
1405   DD = nullptr;
1406 
1407   // If the target wants to know about weak references, print them all.
1408   if (MAI->getWeakRefDirective()) {
1409     // FIXME: This is not lazy, it would be nice to only print weak references
1410     // to stuff that is actually used.  Note that doing so would require targets
1411     // to notice uses in operands (due to constant exprs etc).  This should
1412     // happen with the MC stuff eventually.
1413 
1414     // Print out module-level global objects here.
1415     for (const auto &GO : M.global_objects()) {
1416       if (!GO.hasExternalWeakLinkage())
1417         continue;
1418       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1419     }
1420   }
1421 
1422   OutStreamer->AddBlankLine();
1423 
1424   // Print aliases in topological order, that is, for each alias a = b,
1425   // b must be printed before a.
1426   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1427   // such an order to generate correct TOC information.
1428   SmallVector<const GlobalAlias *, 16> AliasStack;
1429   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1430   for (const auto &Alias : M.aliases()) {
1431     for (const GlobalAlias *Cur = &Alias; Cur;
1432          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1433       if (!AliasVisited.insert(Cur).second)
1434         break;
1435       AliasStack.push_back(Cur);
1436     }
1437     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1438       emitGlobalIndirectSymbol(M, *AncestorAlias);
1439     AliasStack.clear();
1440   }
1441   for (const auto &IFunc : M.ifuncs())
1442     emitGlobalIndirectSymbol(M, IFunc);
1443 
1444   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1445   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1446   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1447     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1448       MP->finishAssembly(M, *MI, *this);
1449 
1450   // Emit llvm.ident metadata in an '.ident' directive.
1451   EmitModuleIdents(M);
1452 
1453   // Emit __morestack address if needed for indirect calls.
1454   if (MMI->usesMorestackAddr()) {
1455     unsigned Align = 1;
1456     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1457         getDataLayout(), SectionKind::getReadOnly(),
1458         /*C=*/nullptr, Align);
1459     OutStreamer->SwitchSection(ReadOnlySection);
1460 
1461     MCSymbol *AddrSymbol =
1462         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1463     OutStreamer->EmitLabel(AddrSymbol);
1464 
1465     unsigned PtrSize = MAI->getCodePointerSize();
1466     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1467                                  PtrSize);
1468   }
1469 
1470   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1471   // split-stack is used.
1472   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1473     OutStreamer->SwitchSection(
1474         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1475     if (MMI->hasNosplitStack())
1476       OutStreamer->SwitchSection(
1477           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1478   }
1479 
1480   // If we don't have any trampolines, then we don't require stack memory
1481   // to be executable. Some targets have a directive to declare this.
1482   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1483   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1484     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1485       OutStreamer->SwitchSection(S);
1486 
1487   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1488     // Emit /EXPORT: flags for each exported global as necessary.
1489     const auto &TLOF = getObjFileLowering();
1490     std::string Flags;
1491 
1492     for (const GlobalValue &GV : M.global_values()) {
1493       raw_string_ostream OS(Flags);
1494       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1495       OS.flush();
1496       if (!Flags.empty()) {
1497         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1498         OutStreamer->EmitBytes(Flags);
1499       }
1500       Flags.clear();
1501     }
1502 
1503     // Emit /INCLUDE: flags for each used global as necessary.
1504     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1505       assert(LU->hasInitializer() &&
1506              "expected llvm.used to have an initializer");
1507       assert(isa<ArrayType>(LU->getValueType()) &&
1508              "expected llvm.used to be an array type");
1509       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1510         for (const Value *Op : A->operands()) {
1511           const auto *GV =
1512               cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1513           // Global symbols with internal or private linkage are not visible to
1514           // the linker, and thus would cause an error when the linker tried to
1515           // preserve the symbol due to the `/include:` directive.
1516           if (GV->hasLocalLinkage())
1517             continue;
1518 
1519           raw_string_ostream OS(Flags);
1520           TLOF.emitLinkerFlagsForUsed(OS, GV);
1521           OS.flush();
1522 
1523           if (!Flags.empty()) {
1524             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1525             OutStreamer->EmitBytes(Flags);
1526           }
1527           Flags.clear();
1528         }
1529       }
1530     }
1531   }
1532 
1533   if (TM.Options.EmitAddrsig) {
1534     // Emit address-significance attributes for all globals.
1535     OutStreamer->EmitAddrsig();
1536     for (const GlobalValue &GV : M.global_values())
1537       if (!GV.isThreadLocal() && !GV.getName().startswith("llvm.") &&
1538           !GV.hasAtLeastLocalUnnamedAddr())
1539         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1540   }
1541 
1542   // Allow the target to emit any magic that it wants at the end of the file,
1543   // after everything else has gone out.
1544   EmitEndOfAsmFile(M);
1545 
1546   MMI = nullptr;
1547 
1548   OutStreamer->Finish();
1549   OutStreamer->reset();
1550   OwnedMLI.reset();
1551   OwnedMDT.reset();
1552 
1553   return false;
1554 }
1555 
getCurExceptionSym()1556 MCSymbol *AsmPrinter::getCurExceptionSym() {
1557   if (!CurExceptionSym)
1558     CurExceptionSym = createTempSymbol("exception");
1559   return CurExceptionSym;
1560 }
1561 
SetupMachineFunction(MachineFunction & MF)1562 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1563   this->MF = &MF;
1564   // Get the function symbol.
1565   CurrentFnSym = getSymbol(&MF.getFunction());
1566   CurrentFnSymForSize = CurrentFnSym;
1567   CurrentFnBegin = nullptr;
1568   CurExceptionSym = nullptr;
1569   bool NeedsLocalForSize = MAI->needsLocalForSize();
1570   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1571       MF.getTarget().Options.EmitStackSizeSection) {
1572     CurrentFnBegin = createTempSymbol("func_begin");
1573     if (NeedsLocalForSize)
1574       CurrentFnSymForSize = CurrentFnBegin;
1575   }
1576 
1577   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1578 
1579   const TargetSubtargetInfo &STI = MF.getSubtarget();
1580   EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
1581                              ? PrintSchedule
1582                              : STI.supportPrintSchedInfo();
1583 }
1584 
1585 namespace {
1586 
1587 // Keep track the alignment, constpool entries per Section.
1588   struct SectionCPs {
1589     MCSection *S;
1590     unsigned Alignment;
1591     SmallVector<unsigned, 4> CPEs;
1592 
SectionCPs__anon30c2cbd00111::SectionCPs1593     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1594   };
1595 
1596 } // end anonymous namespace
1597 
1598 /// EmitConstantPool - Print to the current output stream assembly
1599 /// representations of the constants in the constant pool MCP. This is
1600 /// used to print out constants which have been "spilled to memory" by
1601 /// the code generator.
EmitConstantPool()1602 void AsmPrinter::EmitConstantPool() {
1603   const MachineConstantPool *MCP = MF->getConstantPool();
1604   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1605   if (CP.empty()) return;
1606 
1607   // Calculate sections for constant pool entries. We collect entries to go into
1608   // the same section together to reduce amount of section switch statements.
1609   SmallVector<SectionCPs, 4> CPSections;
1610   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1611     const MachineConstantPoolEntry &CPE = CP[i];
1612     unsigned Align = CPE.getAlignment();
1613 
1614     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1615 
1616     const Constant *C = nullptr;
1617     if (!CPE.isMachineConstantPoolEntry())
1618       C = CPE.Val.ConstVal;
1619 
1620     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1621                                                               Kind, C, Align);
1622 
1623     // The number of sections are small, just do a linear search from the
1624     // last section to the first.
1625     bool Found = false;
1626     unsigned SecIdx = CPSections.size();
1627     while (SecIdx != 0) {
1628       if (CPSections[--SecIdx].S == S) {
1629         Found = true;
1630         break;
1631       }
1632     }
1633     if (!Found) {
1634       SecIdx = CPSections.size();
1635       CPSections.push_back(SectionCPs(S, Align));
1636     }
1637 
1638     if (Align > CPSections[SecIdx].Alignment)
1639       CPSections[SecIdx].Alignment = Align;
1640     CPSections[SecIdx].CPEs.push_back(i);
1641   }
1642 
1643   // Now print stuff into the calculated sections.
1644   const MCSection *CurSection = nullptr;
1645   unsigned Offset = 0;
1646   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1647     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1648       unsigned CPI = CPSections[i].CPEs[j];
1649       MCSymbol *Sym = GetCPISymbol(CPI);
1650       if (!Sym->isUndefined())
1651         continue;
1652 
1653       if (CurSection != CPSections[i].S) {
1654         OutStreamer->SwitchSection(CPSections[i].S);
1655         EmitAlignment(Log2_32(CPSections[i].Alignment));
1656         CurSection = CPSections[i].S;
1657         Offset = 0;
1658       }
1659 
1660       MachineConstantPoolEntry CPE = CP[CPI];
1661 
1662       // Emit inter-object padding for alignment.
1663       unsigned AlignMask = CPE.getAlignment() - 1;
1664       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1665       OutStreamer->EmitZeros(NewOffset - Offset);
1666 
1667       Type *Ty = CPE.getType();
1668       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1669 
1670       OutStreamer->EmitLabel(Sym);
1671       if (CPE.isMachineConstantPoolEntry())
1672         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1673       else
1674         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1675     }
1676   }
1677 }
1678 
1679 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1680 /// by the current function to the current output stream.
EmitJumpTableInfo()1681 void AsmPrinter::EmitJumpTableInfo() {
1682   const DataLayout &DL = MF->getDataLayout();
1683   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1684   if (!MJTI) return;
1685   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1686   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1687   if (JT.empty()) return;
1688 
1689   // Pick the directive to use to print the jump table entries, and switch to
1690   // the appropriate section.
1691   const Function &F = MF->getFunction();
1692   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1693   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1694       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1695       F);
1696   if (JTInDiffSection) {
1697     // Drop it in the readonly section.
1698     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1699     OutStreamer->SwitchSection(ReadOnlySection);
1700   }
1701 
1702   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1703 
1704   // Jump tables in code sections are marked with a data_region directive
1705   // where that's supported.
1706   if (!JTInDiffSection)
1707     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1708 
1709   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1710     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1711 
1712     // If this jump table was deleted, ignore it.
1713     if (JTBBs.empty()) continue;
1714 
1715     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1716     /// emit a .set directive for each unique entry.
1717     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1718         MAI->doesSetDirectiveSuppressReloc()) {
1719       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1720       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1721       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1722       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1723         const MachineBasicBlock *MBB = JTBBs[ii];
1724         if (!EmittedSets.insert(MBB).second)
1725           continue;
1726 
1727         // .set LJTSet, LBB32-base
1728         const MCExpr *LHS =
1729           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1730         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1731                                     MCBinaryExpr::createSub(LHS, Base,
1732                                                             OutContext));
1733       }
1734     }
1735 
1736     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1737     // before each jump table.  The first label is never referenced, but tells
1738     // the assembler and linker the extents of the jump table object.  The
1739     // second label is actually referenced by the code.
1740     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1741       // FIXME: This doesn't have to have any specific name, just any randomly
1742       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1743       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1744 
1745     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1746 
1747     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1748       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1749   }
1750   if (!JTInDiffSection)
1751     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1752 }
1753 
1754 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1755 /// current stream.
EmitJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned UID) const1756 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1757                                     const MachineBasicBlock *MBB,
1758                                     unsigned UID) const {
1759   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1760   const MCExpr *Value = nullptr;
1761   switch (MJTI->getEntryKind()) {
1762   case MachineJumpTableInfo::EK_Inline:
1763     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1764   case MachineJumpTableInfo::EK_Custom32:
1765     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1766         MJTI, MBB, UID, OutContext);
1767     break;
1768   case MachineJumpTableInfo::EK_BlockAddress:
1769     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1770     //     .word LBB123
1771     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1772     break;
1773   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1774     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1775     // with a relocation as gp-relative, e.g.:
1776     //     .gprel32 LBB123
1777     MCSymbol *MBBSym = MBB->getSymbol();
1778     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1779     return;
1780   }
1781 
1782   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1783     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1784     // with a relocation as gp-relative, e.g.:
1785     //     .gpdword LBB123
1786     MCSymbol *MBBSym = MBB->getSymbol();
1787     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1788     return;
1789   }
1790 
1791   case MachineJumpTableInfo::EK_LabelDifference32: {
1792     // Each entry is the address of the block minus the address of the jump
1793     // table. This is used for PIC jump tables where gprel32 is not supported.
1794     // e.g.:
1795     //      .word LBB123 - LJTI1_2
1796     // If the .set directive avoids relocations, this is emitted as:
1797     //      .set L4_5_set_123, LBB123 - LJTI1_2
1798     //      .word L4_5_set_123
1799     if (MAI->doesSetDirectiveSuppressReloc()) {
1800       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1801                                       OutContext);
1802       break;
1803     }
1804     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1805     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1806     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1807     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1808     break;
1809   }
1810   }
1811 
1812   assert(Value && "Unknown entry kind!");
1813 
1814   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1815   OutStreamer->EmitValue(Value, EntrySize);
1816 }
1817 
1818 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1819 /// special global used by LLVM.  If so, emit it and return true, otherwise
1820 /// do nothing and return false.
EmitSpecialLLVMGlobal(const GlobalVariable * GV)1821 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1822   if (GV->getName() == "llvm.used") {
1823     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1824       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1825     return true;
1826   }
1827 
1828   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1829   if (GV->getSection() == "llvm.metadata" ||
1830       GV->hasAvailableExternallyLinkage())
1831     return true;
1832 
1833   if (!GV->hasAppendingLinkage()) return false;
1834 
1835   assert(GV->hasInitializer() && "Not a special LLVM global!");
1836 
1837   if (GV->getName() == "llvm.global_ctors") {
1838     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1839                        /* isCtor */ true);
1840 
1841     return true;
1842   }
1843 
1844   if (GV->getName() == "llvm.global_dtors") {
1845     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1846                        /* isCtor */ false);
1847 
1848     return true;
1849   }
1850 
1851   report_fatal_error("unknown special variable");
1852 }
1853 
1854 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1855 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1856 /// is true, as being used with this directive.
EmitLLVMUsedList(const ConstantArray * InitList)1857 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1858   // Should be an array of 'i8*'.
1859   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1860     const GlobalValue *GV =
1861       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1862     if (GV)
1863       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1864   }
1865 }
1866 
1867 namespace {
1868 
1869 struct Structor {
1870   int Priority = 0;
1871   Constant *Func = nullptr;
1872   GlobalValue *ComdatKey = nullptr;
1873 
1874   Structor() = default;
1875 };
1876 
1877 } // end anonymous namespace
1878 
1879 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1880 /// priority.
EmitXXStructorList(const DataLayout & DL,const Constant * List,bool isCtor)1881 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1882                                     bool isCtor) {
1883   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1884   // init priority.
1885   if (!isa<ConstantArray>(List)) return;
1886 
1887   // Sanity check the structors list.
1888   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1889   if (!InitList) return; // Not an array!
1890   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1891   // FIXME: Only allow the 3-field form in LLVM 4.0.
1892   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1893     return; // Not an array of two or three elements!
1894   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1895       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1896   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1897     return; // Not (int, ptr, ptr).
1898 
1899   // Gather the structors in a form that's convenient for sorting by priority.
1900   SmallVector<Structor, 8> Structors;
1901   for (Value *O : InitList->operands()) {
1902     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1903     if (!CS) continue; // Malformed.
1904     if (CS->getOperand(1)->isNullValue())
1905       break;  // Found a null terminator, skip the rest.
1906     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1907     if (!Priority) continue; // Malformed.
1908     Structors.push_back(Structor());
1909     Structor &S = Structors.back();
1910     S.Priority = Priority->getLimitedValue(65535);
1911     S.Func = CS->getOperand(1);
1912     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1913       S.ComdatKey =
1914           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1915   }
1916 
1917   // Emit the function pointers in the target-specific order
1918   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1919   std::stable_sort(Structors.begin(), Structors.end(),
1920                    [](const Structor &L,
1921                       const Structor &R) { return L.Priority < R.Priority; });
1922   for (Structor &S : Structors) {
1923     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1924     const MCSymbol *KeySym = nullptr;
1925     if (GlobalValue *GV = S.ComdatKey) {
1926       if (GV->isDeclarationForLinker())
1927         // If the associated variable is not defined in this module
1928         // (it might be available_externally, or have been an
1929         // available_externally definition that was dropped by the
1930         // EliminateAvailableExternally pass), some other TU
1931         // will provide its dynamic initializer.
1932         continue;
1933 
1934       KeySym = getSymbol(GV);
1935     }
1936     MCSection *OutputSection =
1937         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1938                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1939     OutStreamer->SwitchSection(OutputSection);
1940     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1941       EmitAlignment(Align);
1942     EmitXXStructor(DL, S.Func);
1943   }
1944 }
1945 
EmitModuleIdents(Module & M)1946 void AsmPrinter::EmitModuleIdents(Module &M) {
1947   if (!MAI->hasIdentDirective())
1948     return;
1949 
1950   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1951     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1952       const MDNode *N = NMD->getOperand(i);
1953       assert(N->getNumOperands() == 1 &&
1954              "llvm.ident metadata entry can have only one operand");
1955       const MDString *S = cast<MDString>(N->getOperand(0));
1956       OutStreamer->EmitIdent(S->getString());
1957     }
1958   }
1959 }
1960 
1961 //===--------------------------------------------------------------------===//
1962 // Emission and print routines
1963 //
1964 
1965 /// Emit a byte directive and value.
1966 ///
emitInt8(int Value) const1967 void AsmPrinter::emitInt8(int Value) const {
1968   OutStreamer->EmitIntValue(Value, 1);
1969 }
1970 
1971 /// Emit a short directive and value.
emitInt16(int Value) const1972 void AsmPrinter::emitInt16(int Value) const {
1973   OutStreamer->EmitIntValue(Value, 2);
1974 }
1975 
1976 /// Emit a long directive and value.
emitInt32(int Value) const1977 void AsmPrinter::emitInt32(int Value) const {
1978   OutStreamer->EmitIntValue(Value, 4);
1979 }
1980 
1981 /// Emit a long long directive and value.
emitInt64(uint64_t Value) const1982 void AsmPrinter::emitInt64(uint64_t Value) const {
1983   OutStreamer->EmitIntValue(Value, 8);
1984 }
1985 
1986 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1987 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1988 /// .set if it avoids relocations.
EmitLabelDifference(const MCSymbol * Hi,const MCSymbol * Lo,unsigned Size) const1989 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1990                                      unsigned Size) const {
1991   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1992 }
1993 
1994 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1995 /// where the size in bytes of the directive is specified by Size and Label
1996 /// specifies the label.  This implicitly uses .set if it is available.
EmitLabelPlusOffset(const MCSymbol * Label,uint64_t Offset,unsigned Size,bool IsSectionRelative) const1997 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1998                                      unsigned Size,
1999                                      bool IsSectionRelative) const {
2000   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2001     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2002     if (Size > 4)
2003       OutStreamer->EmitZeros(Size - 4);
2004     return;
2005   }
2006 
2007   // Emit Label+Offset (or just Label if Offset is zero)
2008   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2009   if (Offset)
2010     Expr = MCBinaryExpr::createAdd(
2011         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2012 
2013   OutStreamer->EmitValue(Expr, Size);
2014 }
2015 
2016 //===----------------------------------------------------------------------===//
2017 
2018 // EmitAlignment - Emit an alignment directive to the specified power of
2019 // two boundary.  For example, if you pass in 3 here, you will get an 8
2020 // byte alignment.  If a global value is specified, and if that global has
2021 // an explicit alignment requested, it will override the alignment request
2022 // if required for correctness.
EmitAlignment(unsigned NumBits,const GlobalObject * GV) const2023 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2024   if (GV)
2025     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2026 
2027   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
2028 
2029   assert(NumBits <
2030              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2031          "undefined behavior");
2032   if (getCurrentSection()->getKind().isText())
2033     OutStreamer->EmitCodeAlignment(1u << NumBits);
2034   else
2035     OutStreamer->EmitValueToAlignment(1u << NumBits);
2036 }
2037 
2038 //===----------------------------------------------------------------------===//
2039 // Constant emission.
2040 //===----------------------------------------------------------------------===//
2041 
lowerConstant(const Constant * CV)2042 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2043   MCContext &Ctx = OutContext;
2044 
2045   if (CV->isNullValue() || isa<UndefValue>(CV))
2046     return MCConstantExpr::create(0, Ctx);
2047 
2048   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2049     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2050 
2051   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2052     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2053 
2054   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2055     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2056 
2057   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2058   if (!CE) {
2059     llvm_unreachable("Unknown constant value to lower!");
2060   }
2061 
2062   switch (CE->getOpcode()) {
2063   default:
2064     // If the code isn't optimized, there may be outstanding folding
2065     // opportunities. Attempt to fold the expression using DataLayout as a
2066     // last resort before giving up.
2067     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2068       if (C != CE)
2069         return lowerConstant(C);
2070 
2071     // Otherwise report the problem to the user.
2072     {
2073       std::string S;
2074       raw_string_ostream OS(S);
2075       OS << "Unsupported expression in static initializer: ";
2076       CE->printAsOperand(OS, /*PrintType=*/false,
2077                      !MF ? nullptr : MF->getFunction().getParent());
2078       report_fatal_error(OS.str());
2079     }
2080   case Instruction::GetElementPtr: {
2081     // Generate a symbolic expression for the byte address
2082     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2083     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2084 
2085     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2086     if (!OffsetAI)
2087       return Base;
2088 
2089     int64_t Offset = OffsetAI.getSExtValue();
2090     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2091                                    Ctx);
2092   }
2093 
2094   case Instruction::Trunc:
2095     // We emit the value and depend on the assembler to truncate the generated
2096     // expression properly.  This is important for differences between
2097     // blockaddress labels.  Since the two labels are in the same function, it
2098     // is reasonable to treat their delta as a 32-bit value.
2099     LLVM_FALLTHROUGH;
2100   case Instruction::BitCast:
2101     return lowerConstant(CE->getOperand(0));
2102 
2103   case Instruction::IntToPtr: {
2104     const DataLayout &DL = getDataLayout();
2105 
2106     // Handle casts to pointers by changing them into casts to the appropriate
2107     // integer type.  This promotes constant folding and simplifies this code.
2108     Constant *Op = CE->getOperand(0);
2109     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2110                                       false/*ZExt*/);
2111     return lowerConstant(Op);
2112   }
2113 
2114   case Instruction::PtrToInt: {
2115     const DataLayout &DL = getDataLayout();
2116 
2117     // Support only foldable casts to/from pointers that can be eliminated by
2118     // changing the pointer to the appropriately sized integer type.
2119     Constant *Op = CE->getOperand(0);
2120     Type *Ty = CE->getType();
2121 
2122     const MCExpr *OpExpr = lowerConstant(Op);
2123 
2124     // We can emit the pointer value into this slot if the slot is an
2125     // integer slot equal to the size of the pointer.
2126     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2127       return OpExpr;
2128 
2129     // Otherwise the pointer is smaller than the resultant integer, mask off
2130     // the high bits so we are sure to get a proper truncation if the input is
2131     // a constant expr.
2132     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2133     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2134     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2135   }
2136 
2137   case Instruction::Sub: {
2138     GlobalValue *LHSGV;
2139     APInt LHSOffset;
2140     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2141                                    getDataLayout())) {
2142       GlobalValue *RHSGV;
2143       APInt RHSOffset;
2144       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2145                                      getDataLayout())) {
2146         const MCExpr *RelocExpr =
2147             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2148         if (!RelocExpr)
2149           RelocExpr = MCBinaryExpr::createSub(
2150               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2151               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2152         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2153         if (Addend != 0)
2154           RelocExpr = MCBinaryExpr::createAdd(
2155               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2156         return RelocExpr;
2157       }
2158     }
2159   }
2160   // else fallthrough
2161   LLVM_FALLTHROUGH;
2162 
2163   // The MC library also has a right-shift operator, but it isn't consistently
2164   // signed or unsigned between different targets.
2165   case Instruction::Add:
2166   case Instruction::Mul:
2167   case Instruction::SDiv:
2168   case Instruction::SRem:
2169   case Instruction::Shl:
2170   case Instruction::And:
2171   case Instruction::Or:
2172   case Instruction::Xor: {
2173     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2174     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2175     switch (CE->getOpcode()) {
2176     default: llvm_unreachable("Unknown binary operator constant cast expr");
2177     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2178     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2179     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2180     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2181     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2182     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2183     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2184     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2185     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2186     }
2187   }
2188   }
2189 }
2190 
2191 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2192                                    AsmPrinter &AP,
2193                                    const Constant *BaseCV = nullptr,
2194                                    uint64_t Offset = 0);
2195 
2196 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2197 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2198 
2199 /// isRepeatedByteSequence - Determine whether the given value is
2200 /// composed of a repeated sequence of identical bytes and return the
2201 /// byte value.  If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const ConstantDataSequential * V)2202 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2203   StringRef Data = V->getRawDataValues();
2204   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2205   char C = Data[0];
2206   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2207     if (Data[i] != C) return -1;
2208   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2209 }
2210 
2211 /// isRepeatedByteSequence - Determine whether the given value is
2212 /// composed of a repeated sequence of identical bytes and return the
2213 /// byte value.  If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const Value * V,const DataLayout & DL)2214 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2215   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2216     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2217     assert(Size % 8 == 0);
2218 
2219     // Extend the element to take zero padding into account.
2220     APInt Value = CI->getValue().zextOrSelf(Size);
2221     if (!Value.isSplat(8))
2222       return -1;
2223 
2224     return Value.zextOrTrunc(8).getZExtValue();
2225   }
2226   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2227     // Make sure all array elements are sequences of the same repeated
2228     // byte.
2229     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2230     Constant *Op0 = CA->getOperand(0);
2231     int Byte = isRepeatedByteSequence(Op0, DL);
2232     if (Byte == -1)
2233       return -1;
2234 
2235     // All array elements must be equal.
2236     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2237       if (CA->getOperand(i) != Op0)
2238         return -1;
2239     return Byte;
2240   }
2241 
2242   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2243     return isRepeatedByteSequence(CDS);
2244 
2245   return -1;
2246 }
2247 
emitGlobalConstantDataSequential(const DataLayout & DL,const ConstantDataSequential * CDS,AsmPrinter & AP)2248 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2249                                              const ConstantDataSequential *CDS,
2250                                              AsmPrinter &AP) {
2251   // See if we can aggregate this into a .fill, if so, emit it as such.
2252   int Value = isRepeatedByteSequence(CDS, DL);
2253   if (Value != -1) {
2254     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2255     // Don't emit a 1-byte object as a .fill.
2256     if (Bytes > 1)
2257       return AP.OutStreamer->emitFill(Bytes, Value);
2258   }
2259 
2260   // If this can be emitted with .ascii/.asciz, emit it as such.
2261   if (CDS->isString())
2262     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2263 
2264   // Otherwise, emit the values in successive locations.
2265   unsigned ElementByteSize = CDS->getElementByteSize();
2266   if (isa<IntegerType>(CDS->getElementType())) {
2267     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2268       if (AP.isVerbose())
2269         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2270                                                  CDS->getElementAsInteger(i));
2271       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2272                                    ElementByteSize);
2273     }
2274   } else {
2275     Type *ET = CDS->getElementType();
2276     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2277       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2278   }
2279 
2280   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2281   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2282                         CDS->getNumElements();
2283   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2284   if (unsigned Padding = Size - EmittedSize)
2285     AP.OutStreamer->EmitZeros(Padding);
2286 }
2287 
emitGlobalConstantArray(const DataLayout & DL,const ConstantArray * CA,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)2288 static void emitGlobalConstantArray(const DataLayout &DL,
2289                                     const ConstantArray *CA, AsmPrinter &AP,
2290                                     const Constant *BaseCV, uint64_t Offset) {
2291   // See if we can aggregate some values.  Make sure it can be
2292   // represented as a series of bytes of the constant value.
2293   int Value = isRepeatedByteSequence(CA, DL);
2294 
2295   if (Value != -1) {
2296     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2297     AP.OutStreamer->emitFill(Bytes, Value);
2298   }
2299   else {
2300     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2301       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2302       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2303     }
2304   }
2305 }
2306 
emitGlobalConstantVector(const DataLayout & DL,const ConstantVector * CV,AsmPrinter & AP)2307 static void emitGlobalConstantVector(const DataLayout &DL,
2308                                      const ConstantVector *CV, AsmPrinter &AP) {
2309   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2310     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2311 
2312   unsigned Size = DL.getTypeAllocSize(CV->getType());
2313   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2314                          CV->getType()->getNumElements();
2315   if (unsigned Padding = Size - EmittedSize)
2316     AP.OutStreamer->EmitZeros(Padding);
2317 }
2318 
emitGlobalConstantStruct(const DataLayout & DL,const ConstantStruct * CS,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)2319 static void emitGlobalConstantStruct(const DataLayout &DL,
2320                                      const ConstantStruct *CS, AsmPrinter &AP,
2321                                      const Constant *BaseCV, uint64_t Offset) {
2322   // Print the fields in successive locations. Pad to align if needed!
2323   unsigned Size = DL.getTypeAllocSize(CS->getType());
2324   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2325   uint64_t SizeSoFar = 0;
2326   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2327     const Constant *Field = CS->getOperand(i);
2328 
2329     // Print the actual field value.
2330     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2331 
2332     // Check if padding is needed and insert one or more 0s.
2333     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2334     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2335                         - Layout->getElementOffset(i)) - FieldSize;
2336     SizeSoFar += FieldSize + PadSize;
2337 
2338     // Insert padding - this may include padding to increase the size of the
2339     // current field up to the ABI size (if the struct is not packed) as well
2340     // as padding to ensure that the next field starts at the right offset.
2341     AP.OutStreamer->EmitZeros(PadSize);
2342   }
2343   assert(SizeSoFar == Layout->getSizeInBytes() &&
2344          "Layout of constant struct may be incorrect!");
2345 }
2346 
emitGlobalConstantFP(APFloat APF,Type * ET,AsmPrinter & AP)2347 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2348   APInt API = APF.bitcastToAPInt();
2349 
2350   // First print a comment with what we think the original floating-point value
2351   // should have been.
2352   if (AP.isVerbose()) {
2353     SmallString<8> StrVal;
2354     APF.toString(StrVal);
2355 
2356     if (ET)
2357       ET->print(AP.OutStreamer->GetCommentOS());
2358     else
2359       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2360     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2361   }
2362 
2363   // Now iterate through the APInt chunks, emitting them in endian-correct
2364   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2365   // floats).
2366   unsigned NumBytes = API.getBitWidth() / 8;
2367   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2368   const uint64_t *p = API.getRawData();
2369 
2370   // PPC's long double has odd notions of endianness compared to how LLVM
2371   // handles it: p[0] goes first for *big* endian on PPC.
2372   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2373     int Chunk = API.getNumWords() - 1;
2374 
2375     if (TrailingBytes)
2376       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2377 
2378     for (; Chunk >= 0; --Chunk)
2379       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2380   } else {
2381     unsigned Chunk;
2382     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2383       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2384 
2385     if (TrailingBytes)
2386       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2387   }
2388 
2389   // Emit the tail padding for the long double.
2390   const DataLayout &DL = AP.getDataLayout();
2391   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2392 }
2393 
emitGlobalConstantFP(const ConstantFP * CFP,AsmPrinter & AP)2394 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2395   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2396 }
2397 
emitGlobalConstantLargeInt(const ConstantInt * CI,AsmPrinter & AP)2398 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2399   const DataLayout &DL = AP.getDataLayout();
2400   unsigned BitWidth = CI->getBitWidth();
2401 
2402   // Copy the value as we may massage the layout for constants whose bit width
2403   // is not a multiple of 64-bits.
2404   APInt Realigned(CI->getValue());
2405   uint64_t ExtraBits = 0;
2406   unsigned ExtraBitsSize = BitWidth & 63;
2407 
2408   if (ExtraBitsSize) {
2409     // The bit width of the data is not a multiple of 64-bits.
2410     // The extra bits are expected to be at the end of the chunk of the memory.
2411     // Little endian:
2412     // * Nothing to be done, just record the extra bits to emit.
2413     // Big endian:
2414     // * Record the extra bits to emit.
2415     // * Realign the raw data to emit the chunks of 64-bits.
2416     if (DL.isBigEndian()) {
2417       // Basically the structure of the raw data is a chunk of 64-bits cells:
2418       //    0        1         BitWidth / 64
2419       // [chunk1][chunk2] ... [chunkN].
2420       // The most significant chunk is chunkN and it should be emitted first.
2421       // However, due to the alignment issue chunkN contains useless bits.
2422       // Realign the chunks so that they contain only useless information:
2423       // ExtraBits     0       1       (BitWidth / 64) - 1
2424       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2425       ExtraBits = Realigned.getRawData()[0] &
2426         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2427       Realigned.lshrInPlace(ExtraBitsSize);
2428     } else
2429       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2430   }
2431 
2432   // We don't expect assemblers to support integer data directives
2433   // for more than 64 bits, so we emit the data in at most 64-bit
2434   // quantities at a time.
2435   const uint64_t *RawData = Realigned.getRawData();
2436   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2437     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2438     AP.OutStreamer->EmitIntValue(Val, 8);
2439   }
2440 
2441   if (ExtraBitsSize) {
2442     // Emit the extra bits after the 64-bits chunks.
2443 
2444     // Emit a directive that fills the expected size.
2445     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2446     Size -= (BitWidth / 64) * 8;
2447     assert(Size && Size * 8 >= ExtraBitsSize &&
2448            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2449            == ExtraBits && "Directive too small for extra bits.");
2450     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2451   }
2452 }
2453 
2454 /// Transform a not absolute MCExpr containing a reference to a GOT
2455 /// equivalent global, by a target specific GOT pc relative access to the
2456 /// final symbol.
handleIndirectSymViaGOTPCRel(AsmPrinter & AP,const MCExpr ** ME,const Constant * BaseCst,uint64_t Offset)2457 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2458                                          const Constant *BaseCst,
2459                                          uint64_t Offset) {
2460   // The global @foo below illustrates a global that uses a got equivalent.
2461   //
2462   //  @bar = global i32 42
2463   //  @gotequiv = private unnamed_addr constant i32* @bar
2464   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2465   //                             i64 ptrtoint (i32* @foo to i64))
2466   //                        to i32)
2467   //
2468   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2469   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2470   // form:
2471   //
2472   //  foo = cstexpr, where
2473   //    cstexpr := <gotequiv> - "." + <cst>
2474   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2475   //
2476   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2477   //
2478   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2479   //    gotpcrelcst := <offset from @foo base> + <cst>
2480   MCValue MV;
2481   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2482     return;
2483   const MCSymbolRefExpr *SymA = MV.getSymA();
2484   if (!SymA)
2485     return;
2486 
2487   // Check that GOT equivalent symbol is cached.
2488   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2489   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2490     return;
2491 
2492   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2493   if (!BaseGV)
2494     return;
2495 
2496   // Check for a valid base symbol
2497   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2498   const MCSymbolRefExpr *SymB = MV.getSymB();
2499 
2500   if (!SymB || BaseSym != &SymB->getSymbol())
2501     return;
2502 
2503   // Make sure to match:
2504   //
2505   //    gotpcrelcst := <offset from @foo base> + <cst>
2506   //
2507   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2508   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2509   // if the target knows how to encode it.
2510   int64_t GOTPCRelCst = Offset + MV.getConstant();
2511   if (GOTPCRelCst < 0)
2512     return;
2513   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2514     return;
2515 
2516   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2517   //
2518   //  bar:
2519   //    .long 42
2520   //  gotequiv:
2521   //    .quad bar
2522   //  foo:
2523   //    .long gotequiv - "." + <cst>
2524   //
2525   // is replaced by the target specific equivalent to:
2526   //
2527   //  bar:
2528   //    .long 42
2529   //  foo:
2530   //    .long bar@GOTPCREL+<gotpcrelcst>
2531   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2532   const GlobalVariable *GV = Result.first;
2533   int NumUses = (int)Result.second;
2534   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2535   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2536   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2537       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2538 
2539   // Update GOT equivalent usage information
2540   --NumUses;
2541   if (NumUses >= 0)
2542     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2543 }
2544 
emitGlobalConstantImpl(const DataLayout & DL,const Constant * CV,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)2545 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2546                                    AsmPrinter &AP, const Constant *BaseCV,
2547                                    uint64_t Offset) {
2548   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2549 
2550   // Globals with sub-elements such as combinations of arrays and structs
2551   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2552   // constant symbol base and the current position with BaseCV and Offset.
2553   if (!BaseCV && CV->hasOneUse())
2554     BaseCV = dyn_cast<Constant>(CV->user_back());
2555 
2556   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2557     return AP.OutStreamer->EmitZeros(Size);
2558 
2559   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2560     switch (Size) {
2561     case 1:
2562     case 2:
2563     case 4:
2564     case 8:
2565       if (AP.isVerbose())
2566         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2567                                                  CI->getZExtValue());
2568       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2569       return;
2570     default:
2571       emitGlobalConstantLargeInt(CI, AP);
2572       return;
2573     }
2574   }
2575 
2576   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2577     return emitGlobalConstantFP(CFP, AP);
2578 
2579   if (isa<ConstantPointerNull>(CV)) {
2580     AP.OutStreamer->EmitIntValue(0, Size);
2581     return;
2582   }
2583 
2584   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2585     return emitGlobalConstantDataSequential(DL, CDS, AP);
2586 
2587   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2588     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2589 
2590   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2591     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2592 
2593   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2594     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2595     // vectors).
2596     if (CE->getOpcode() == Instruction::BitCast)
2597       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2598 
2599     if (Size > 8) {
2600       // If the constant expression's size is greater than 64-bits, then we have
2601       // to emit the value in chunks. Try to constant fold the value and emit it
2602       // that way.
2603       Constant *New = ConstantFoldConstant(CE, DL);
2604       if (New && New != CE)
2605         return emitGlobalConstantImpl(DL, New, AP);
2606     }
2607   }
2608 
2609   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2610     return emitGlobalConstantVector(DL, V, AP);
2611 
2612   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2613   // thread the streamer with EmitValue.
2614   const MCExpr *ME = AP.lowerConstant(CV);
2615 
2616   // Since lowerConstant already folded and got rid of all IR pointer and
2617   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2618   // directly.
2619   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2620     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2621 
2622   AP.OutStreamer->EmitValue(ME, Size);
2623 }
2624 
2625 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
EmitGlobalConstant(const DataLayout & DL,const Constant * CV)2626 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2627   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2628   if (Size)
2629     emitGlobalConstantImpl(DL, CV, *this);
2630   else if (MAI->hasSubsectionsViaSymbols()) {
2631     // If the global has zero size, emit a single byte so that two labels don't
2632     // look like they are at the same location.
2633     OutStreamer->EmitIntValue(0, 1);
2634   }
2635 }
2636 
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)2637 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2638   // Target doesn't support this yet!
2639   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2640 }
2641 
printOffset(int64_t Offset,raw_ostream & OS) const2642 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2643   if (Offset > 0)
2644     OS << '+' << Offset;
2645   else if (Offset < 0)
2646     OS << Offset;
2647 }
2648 
2649 //===----------------------------------------------------------------------===//
2650 // Symbol Lowering Routines.
2651 //===----------------------------------------------------------------------===//
2652 
createTempSymbol(const Twine & Name) const2653 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2654   return OutContext.createTempSymbol(Name, true);
2655 }
2656 
GetBlockAddressSymbol(const BlockAddress * BA) const2657 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2658   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2659 }
2660 
GetBlockAddressSymbol(const BasicBlock * BB) const2661 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2662   return MMI->getAddrLabelSymbol(BB);
2663 }
2664 
2665 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
GetCPISymbol(unsigned CPID) const2666 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2667   if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) {
2668     const MachineConstantPoolEntry &CPE =
2669         MF->getConstantPool()->getConstants()[CPID];
2670     if (!CPE.isMachineConstantPoolEntry()) {
2671       const DataLayout &DL = MF->getDataLayout();
2672       SectionKind Kind = CPE.getSectionKind(&DL);
2673       const Constant *C = CPE.Val.ConstVal;
2674       unsigned Align = CPE.Alignment;
2675       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2676               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2677         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2678           if (Sym->isUndefined())
2679             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2680           return Sym;
2681         }
2682       }
2683     }
2684   }
2685 
2686   const DataLayout &DL = getDataLayout();
2687   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2688                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2689                                       Twine(CPID));
2690 }
2691 
2692 /// GetJTISymbol - Return the symbol for the specified jump table entry.
GetJTISymbol(unsigned JTID,bool isLinkerPrivate) const2693 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2694   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2695 }
2696 
2697 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2698 /// FIXME: privatize to AsmPrinter.
GetJTSetSymbol(unsigned UID,unsigned MBBID) const2699 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2700   const DataLayout &DL = getDataLayout();
2701   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2702                                       Twine(getFunctionNumber()) + "_" +
2703                                       Twine(UID) + "_set_" + Twine(MBBID));
2704 }
2705 
getSymbolWithGlobalValueBase(const GlobalValue * GV,StringRef Suffix) const2706 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2707                                                    StringRef Suffix) const {
2708   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2709 }
2710 
2711 /// Return the MCSymbol for the specified ExternalSymbol.
GetExternalSymbolSymbol(StringRef Sym) const2712 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2713   SmallString<60> NameStr;
2714   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2715   return OutContext.getOrCreateSymbol(NameStr);
2716 }
2717 
2718 /// PrintParentLoopComment - Print comments about parent loops of this one.
PrintParentLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2719 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2720                                    unsigned FunctionNumber) {
2721   if (!Loop) return;
2722   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2723   OS.indent(Loop->getLoopDepth()*2)
2724     << "Parent Loop BB" << FunctionNumber << "_"
2725     << Loop->getHeader()->getNumber()
2726     << " Depth=" << Loop->getLoopDepth() << '\n';
2727 }
2728 
2729 /// PrintChildLoopComment - Print comments about child loops within
2730 /// the loop for this basic block, with nesting.
PrintChildLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2731 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2732                                   unsigned FunctionNumber) {
2733   // Add child loop information
2734   for (const MachineLoop *CL : *Loop) {
2735     OS.indent(CL->getLoopDepth()*2)
2736       << "Child Loop BB" << FunctionNumber << "_"
2737       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2738       << '\n';
2739     PrintChildLoopComment(OS, CL, FunctionNumber);
2740   }
2741 }
2742 
2743 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
emitBasicBlockLoopComments(const MachineBasicBlock & MBB,const MachineLoopInfo * LI,const AsmPrinter & AP)2744 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2745                                        const MachineLoopInfo *LI,
2746                                        const AsmPrinter &AP) {
2747   // Add loop depth information
2748   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2749   if (!Loop) return;
2750 
2751   MachineBasicBlock *Header = Loop->getHeader();
2752   assert(Header && "No header for loop");
2753 
2754   // If this block is not a loop header, just print out what is the loop header
2755   // and return.
2756   if (Header != &MBB) {
2757     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2758                                Twine(AP.getFunctionNumber())+"_" +
2759                                Twine(Loop->getHeader()->getNumber())+
2760                                " Depth="+Twine(Loop->getLoopDepth()));
2761     return;
2762   }
2763 
2764   // Otherwise, it is a loop header.  Print out information about child and
2765   // parent loops.
2766   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2767 
2768   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2769 
2770   OS << "=>";
2771   OS.indent(Loop->getLoopDepth()*2-2);
2772 
2773   OS << "This ";
2774   if (Loop->empty())
2775     OS << "Inner ";
2776   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2777 
2778   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2779 }
2780 
setupCodePaddingContext(const MachineBasicBlock & MBB,MCCodePaddingContext & Context) const2781 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2782                                          MCCodePaddingContext &Context) const {
2783   assert(MF != nullptr && "Machine function must be valid");
2784   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2785                             !MF->getFunction().optForSize() &&
2786                             TM.getOptLevel() != CodeGenOpt::None;
2787   Context.IsBasicBlockReachableViaFallthrough =
2788       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2789       MBB.pred_end();
2790   Context.IsBasicBlockReachableViaBranch =
2791       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2792 }
2793 
2794 /// EmitBasicBlockStart - This method prints the label for the specified
2795 /// MachineBasicBlock, an alignment (if present) and a comment describing
2796 /// it if appropriate.
EmitBasicBlockStart(const MachineBasicBlock & MBB) const2797 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2798   // End the previous funclet and start a new one.
2799   if (MBB.isEHFuncletEntry()) {
2800     for (const HandlerInfo &HI : Handlers) {
2801       HI.Handler->endFunclet();
2802       HI.Handler->beginFunclet(MBB);
2803     }
2804   }
2805 
2806   // Emit an alignment directive for this block, if needed.
2807   if (unsigned Align = MBB.getAlignment())
2808     EmitAlignment(Align);
2809   MCCodePaddingContext Context;
2810   setupCodePaddingContext(MBB, Context);
2811   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2812 
2813   // If the block has its address taken, emit any labels that were used to
2814   // reference the block.  It is possible that there is more than one label
2815   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2816   // the references were generated.
2817   if (MBB.hasAddressTaken()) {
2818     const BasicBlock *BB = MBB.getBasicBlock();
2819     if (isVerbose())
2820       OutStreamer->AddComment("Block address taken");
2821 
2822     // MBBs can have their address taken as part of CodeGen without having
2823     // their corresponding BB's address taken in IR
2824     if (BB->hasAddressTaken())
2825       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2826         OutStreamer->EmitLabel(Sym);
2827   }
2828 
2829   // Print some verbose block comments.
2830   if (isVerbose()) {
2831     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2832       if (BB->hasName()) {
2833         BB->printAsOperand(OutStreamer->GetCommentOS(),
2834                            /*PrintType=*/false, BB->getModule());
2835         OutStreamer->GetCommentOS() << '\n';
2836       }
2837     }
2838 
2839     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2840     emitBasicBlockLoopComments(MBB, MLI, *this);
2841   }
2842 
2843   // Print the main label for the block.
2844   if (MBB.pred_empty() ||
2845       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2846     if (isVerbose()) {
2847       // NOTE: Want this comment at start of line, don't emit with AddComment.
2848       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2849                                   false);
2850     }
2851   } else {
2852     OutStreamer->EmitLabel(MBB.getSymbol());
2853   }
2854 }
2855 
EmitBasicBlockEnd(const MachineBasicBlock & MBB)2856 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2857   MCCodePaddingContext Context;
2858   setupCodePaddingContext(MBB, Context);
2859   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2860 }
2861 
EmitVisibility(MCSymbol * Sym,unsigned Visibility,bool IsDefinition) const2862 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2863                                 bool IsDefinition) const {
2864   MCSymbolAttr Attr = MCSA_Invalid;
2865 
2866   switch (Visibility) {
2867   default: break;
2868   case GlobalValue::HiddenVisibility:
2869     if (IsDefinition)
2870       Attr = MAI->getHiddenVisibilityAttr();
2871     else
2872       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2873     break;
2874   case GlobalValue::ProtectedVisibility:
2875     Attr = MAI->getProtectedVisibilityAttr();
2876     break;
2877   }
2878 
2879   if (Attr != MCSA_Invalid)
2880     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2881 }
2882 
2883 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2884 /// exactly one predecessor and the control transfer mechanism between
2885 /// the predecessor and this block is a fall-through.
2886 bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const2887 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2888   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2889   // then nothing falls through to it.
2890   if (MBB->isEHPad() || MBB->pred_empty())
2891     return false;
2892 
2893   // If there isn't exactly one predecessor, it can't be a fall through.
2894   if (MBB->pred_size() > 1)
2895     return false;
2896 
2897   // The predecessor has to be immediately before this block.
2898   MachineBasicBlock *Pred = *MBB->pred_begin();
2899   if (!Pred->isLayoutSuccessor(MBB))
2900     return false;
2901 
2902   // If the block is completely empty, then it definitely does fall through.
2903   if (Pred->empty())
2904     return true;
2905 
2906   // Check the terminators in the previous blocks
2907   for (const auto &MI : Pred->terminators()) {
2908     // If it is not a simple branch, we are in a table somewhere.
2909     if (!MI.isBranch() || MI.isIndirectBranch())
2910       return false;
2911 
2912     // If we are the operands of one of the branches, this is not a fall
2913     // through. Note that targets with delay slots will usually bundle
2914     // terminators with the delay slot instruction.
2915     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2916       if (OP->isJTI())
2917         return false;
2918       if (OP->isMBB() && OP->getMBB() == MBB)
2919         return false;
2920     }
2921   }
2922 
2923   return true;
2924 }
2925 
GetOrCreateGCPrinter(GCStrategy & S)2926 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2927   if (!S.usesMetadata())
2928     return nullptr;
2929 
2930   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2931          " stackmap formats, please see the documentation for a description of"
2932          " the default format.  If you really need a custom serialized format,"
2933          " please file a bug");
2934 
2935   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2936   gcp_map_type::iterator GCPI = GCMap.find(&S);
2937   if (GCPI != GCMap.end())
2938     return GCPI->second.get();
2939 
2940   auto Name = S.getName();
2941 
2942   for (GCMetadataPrinterRegistry::iterator
2943          I = GCMetadataPrinterRegistry::begin(),
2944          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2945     if (Name == I->getName()) {
2946       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2947       GMP->S = &S;
2948       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2949       return IterBool.first->second.get();
2950     }
2951 
2952   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2953 }
2954 
2955 /// Pin vtable to this file.
2956 AsmPrinterHandler::~AsmPrinterHandler() = default;
2957 
markFunctionEnd()2958 void AsmPrinterHandler::markFunctionEnd() {}
2959 
2960 // In the binary's "xray_instr_map" section, an array of these function entries
2961 // describes each instrumentation point.  When XRay patches your code, the index
2962 // into this table will be given to your handler as a patch point identifier.
emit(int Bytes,MCStreamer * Out,const MCSymbol * CurrentFnSym) const2963 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
2964                                          const MCSymbol *CurrentFnSym) const {
2965   Out->EmitSymbolValue(Sled, Bytes);
2966   Out->EmitSymbolValue(CurrentFnSym, Bytes);
2967   auto Kind8 = static_cast<uint8_t>(Kind);
2968   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
2969   Out->EmitBinaryData(
2970       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
2971   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
2972   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
2973   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
2974   Out->EmitZeros(Padding);
2975 }
2976 
emitXRayTable()2977 void AsmPrinter::emitXRayTable() {
2978   if (Sleds.empty())
2979     return;
2980 
2981   auto PrevSection = OutStreamer->getCurrentSectionOnly();
2982   const Function &F = MF->getFunction();
2983   MCSection *InstMap = nullptr;
2984   MCSection *FnSledIndex = nullptr;
2985   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
2986     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
2987     assert(Associated != nullptr);
2988     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
2989     std::string GroupName;
2990     if (F.hasComdat()) {
2991       Flags |= ELF::SHF_GROUP;
2992       GroupName = F.getComdat()->getName();
2993     }
2994 
2995     auto UniqueID = ++XRayFnUniqueID;
2996     InstMap =
2997         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
2998                                  GroupName, UniqueID, Associated);
2999     FnSledIndex =
3000         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3001                                  GroupName, UniqueID, Associated);
3002   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3003     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3004                                          SectionKind::getReadOnlyWithRel());
3005     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3006                                              SectionKind::getReadOnlyWithRel());
3007   } else {
3008     llvm_unreachable("Unsupported target");
3009   }
3010 
3011   auto WordSizeBytes = MAI->getCodePointerSize();
3012 
3013   // Now we switch to the instrumentation map section. Because this is done
3014   // per-function, we are able to create an index entry that will represent the
3015   // range of sleds associated with a function.
3016   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3017   OutStreamer->SwitchSection(InstMap);
3018   OutStreamer->EmitLabel(SledsStart);
3019   for (const auto &Sled : Sleds)
3020     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3021   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3022   OutStreamer->EmitLabel(SledsEnd);
3023 
3024   // We then emit a single entry in the index per function. We use the symbols
3025   // that bound the instrumentation map as the range for a specific function.
3026   // Each entry here will be 2 * word size aligned, as we're writing down two
3027   // pointers. This should work for both 32-bit and 64-bit platforms.
3028   OutStreamer->SwitchSection(FnSledIndex);
3029   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3030   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3031   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3032   OutStreamer->SwitchSection(PrevSection);
3033   Sleds.clear();
3034 }
3035 
recordSled(MCSymbol * Sled,const MachineInstr & MI,SledKind Kind,uint8_t Version)3036 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3037                             SledKind Kind, uint8_t Version) {
3038   const Function &F = MI.getMF()->getFunction();
3039   auto Attr = F.getFnAttribute("function-instrument");
3040   bool LogArgs = F.hasFnAttribute("xray-log-args");
3041   bool AlwaysInstrument =
3042     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3043   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3044     Kind = SledKind::LOG_ARGS_ENTER;
3045   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3046                                        AlwaysInstrument, &F, Version});
3047 }
3048 
getDwarfVersion() const3049 uint16_t AsmPrinter::getDwarfVersion() const {
3050   return OutStreamer->getContext().getDwarfVersion();
3051 }
3052 
setDwarfVersion(uint16_t Version)3053 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3054   OutStreamer->getContext().setDwarfVersion(Version);
3055 }
3056