1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 namespace brw {
33
34 void
emit_nir_code()35 vec4_visitor::emit_nir_code()
36 {
37 if (nir->num_uniforms > 0)
38 nir_setup_uniforms();
39
40 /* get the main function and emit it */
41 nir_foreach_function(function, nir) {
42 assert(strcmp(function->name, "main") == 0);
43 assert(function->impl);
44 nir_emit_impl(function->impl);
45 }
46 }
47
48 void
nir_setup_uniforms()49 vec4_visitor::nir_setup_uniforms()
50 {
51 uniforms = nir->num_uniforms / 16;
52 }
53
54 void
nir_emit_impl(nir_function_impl * impl)55 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
56 {
57 nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
58 for (unsigned i = 0; i < impl->reg_alloc; i++) {
59 nir_locals[i] = dst_reg();
60 }
61
62 foreach_list_typed(nir_register, reg, node, &impl->registers) {
63 unsigned array_elems =
64 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
65 const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32);
66 nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs));
67
68 if (reg->bit_size == 64)
69 nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF;
70 }
71
72 nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
73
74 nir_emit_cf_list(&impl->body);
75 }
76
77 void
nir_emit_cf_list(exec_list * list)78 vec4_visitor::nir_emit_cf_list(exec_list *list)
79 {
80 exec_list_validate(list);
81 foreach_list_typed(nir_cf_node, node, node, list) {
82 switch (node->type) {
83 case nir_cf_node_if:
84 nir_emit_if(nir_cf_node_as_if(node));
85 break;
86
87 case nir_cf_node_loop:
88 nir_emit_loop(nir_cf_node_as_loop(node));
89 break;
90
91 case nir_cf_node_block:
92 nir_emit_block(nir_cf_node_as_block(node));
93 break;
94
95 default:
96 unreachable("Invalid CFG node block");
97 }
98 }
99 }
100
101 void
nir_emit_if(nir_if * if_stmt)102 vec4_visitor::nir_emit_if(nir_if *if_stmt)
103 {
104 /* First, put the condition in f0 */
105 src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
106 vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
107 inst->conditional_mod = BRW_CONDITIONAL_NZ;
108
109 /* We can just predicate based on the X channel, as the condition only
110 * goes on its own line */
111 emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
112
113 nir_emit_cf_list(&if_stmt->then_list);
114
115 /* note: if the else is empty, dead CF elimination will remove it */
116 emit(BRW_OPCODE_ELSE);
117
118 nir_emit_cf_list(&if_stmt->else_list);
119
120 emit(BRW_OPCODE_ENDIF);
121 }
122
123 void
nir_emit_loop(nir_loop * loop)124 vec4_visitor::nir_emit_loop(nir_loop *loop)
125 {
126 emit(BRW_OPCODE_DO);
127
128 nir_emit_cf_list(&loop->body);
129
130 emit(BRW_OPCODE_WHILE);
131 }
132
133 void
nir_emit_block(nir_block * block)134 vec4_visitor::nir_emit_block(nir_block *block)
135 {
136 nir_foreach_instr(instr, block) {
137 nir_emit_instr(instr);
138 }
139 }
140
141 void
nir_emit_instr(nir_instr * instr)142 vec4_visitor::nir_emit_instr(nir_instr *instr)
143 {
144 base_ir = instr;
145
146 switch (instr->type) {
147 case nir_instr_type_load_const:
148 nir_emit_load_const(nir_instr_as_load_const(instr));
149 break;
150
151 case nir_instr_type_intrinsic:
152 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
153 break;
154
155 case nir_instr_type_alu:
156 nir_emit_alu(nir_instr_as_alu(instr));
157 break;
158
159 case nir_instr_type_jump:
160 nir_emit_jump(nir_instr_as_jump(instr));
161 break;
162
163 case nir_instr_type_tex:
164 nir_emit_texture(nir_instr_as_tex(instr));
165 break;
166
167 case nir_instr_type_ssa_undef:
168 nir_emit_undef(nir_instr_as_ssa_undef(instr));
169 break;
170
171 default:
172 fprintf(stderr, "VS instruction not yet implemented by NIR->vec4\n");
173 break;
174 }
175 }
176
177 static dst_reg
dst_reg_for_nir_reg(vec4_visitor * v,nir_register * nir_reg,unsigned base_offset,nir_src * indirect)178 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
179 unsigned base_offset, nir_src *indirect)
180 {
181 dst_reg reg;
182
183 reg = v->nir_locals[nir_reg->index];
184 if (nir_reg->bit_size == 64)
185 reg.type = BRW_REGISTER_TYPE_DF;
186 reg = offset(reg, 8, base_offset);
187 if (indirect) {
188 reg.reladdr =
189 new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
190 BRW_REGISTER_TYPE_D,
191 1));
192 }
193 return reg;
194 }
195
196 dst_reg
get_nir_dest(const nir_dest & dest)197 vec4_visitor::get_nir_dest(const nir_dest &dest)
198 {
199 if (dest.is_ssa) {
200 dst_reg dst =
201 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32)));
202 if (dest.ssa.bit_size == 64)
203 dst.type = BRW_REGISTER_TYPE_DF;
204 nir_ssa_values[dest.ssa.index] = dst;
205 return dst;
206 } else {
207 return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
208 dest.reg.indirect);
209 }
210 }
211
212 dst_reg
get_nir_dest(const nir_dest & dest,enum brw_reg_type type)213 vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type)
214 {
215 return retype(get_nir_dest(dest), type);
216 }
217
218 dst_reg
get_nir_dest(const nir_dest & dest,nir_alu_type type)219 vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type)
220 {
221 return get_nir_dest(dest, brw_type_for_nir_type(devinfo, type));
222 }
223
224 src_reg
get_nir_src(const nir_src & src,enum brw_reg_type type,unsigned num_components)225 vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type,
226 unsigned num_components)
227 {
228 dst_reg reg;
229
230 if (src.is_ssa) {
231 assert(src.ssa != NULL);
232 reg = nir_ssa_values[src.ssa->index];
233 }
234 else {
235 reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
236 src.reg.indirect);
237 }
238
239 reg = retype(reg, type);
240
241 src_reg reg_as_src = src_reg(reg);
242 reg_as_src.swizzle = brw_swizzle_for_size(num_components);
243 return reg_as_src;
244 }
245
246 src_reg
get_nir_src(const nir_src & src,nir_alu_type type,unsigned num_components)247 vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type,
248 unsigned num_components)
249 {
250 return get_nir_src(src, brw_type_for_nir_type(devinfo, type),
251 num_components);
252 }
253
254 src_reg
get_nir_src(const nir_src & src,unsigned num_components)255 vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components)
256 {
257 /* if type is not specified, default to signed int */
258 return get_nir_src(src, nir_type_int32, num_components);
259 }
260
261 src_reg
get_indirect_offset(nir_intrinsic_instr * instr)262 vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
263 {
264 nir_src *offset_src = nir_get_io_offset_src(instr);
265 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
266
267 if (const_value) {
268 /* The only constant offset we should find is 0. brw_nir.c's
269 * add_const_offset_to_base() will fold other constant offsets
270 * into instr->const_index[0].
271 */
272 assert(const_value->u32[0] == 0);
273 return src_reg();
274 }
275
276 return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
277 }
278
279 static src_reg
setup_imm_df(const vec4_builder & bld,double v)280 setup_imm_df(const vec4_builder &bld, double v)
281 {
282 const gen_device_info *devinfo = bld.shader->devinfo;
283 assert(devinfo->gen >= 7);
284
285 if (devinfo->gen >= 8)
286 return brw_imm_df(v);
287
288 /* gen7.5 does not support DF immediates straighforward but the DIM
289 * instruction allows to set the 64-bit immediate value.
290 */
291 if (devinfo->is_haswell) {
292 const vec4_builder ubld = bld.exec_all();
293 const dst_reg dst = bld.vgrf(BRW_REGISTER_TYPE_DF);
294 ubld.DIM(dst, brw_imm_df(v));
295 return swizzle(src_reg(dst), BRW_SWIZZLE_XXXX);
296 }
297
298 /* gen7 does not support DF immediates */
299 union {
300 double d;
301 struct {
302 uint32_t i1;
303 uint32_t i2;
304 };
305 } di;
306
307 di.d = v;
308
309 /* Write the low 32-bit of the constant to the X:UD channel and the
310 * high 32-bit to the Y:UD channel to build the constant in a VGRF.
311 * We have to do this twice (offset 0 and offset 1), since a DF VGRF takes
312 * two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle
313 * XXXX so any access to the VGRF only reads the constant data in these
314 * channels.
315 */
316 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
317 for (unsigned n = 0; n < 2; n++) {
318 const vec4_builder ubld = bld.exec_all().group(4, n);
319 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1));
320 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2));
321 }
322
323 return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
324 }
325
326 void
nir_emit_load_const(nir_load_const_instr * instr)327 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
328 {
329 dst_reg reg;
330
331 if (instr->def.bit_size == 64) {
332 reg = dst_reg(VGRF, alloc.allocate(2));
333 reg.type = BRW_REGISTER_TYPE_DF;
334 } else {
335 reg = dst_reg(VGRF, alloc.allocate(1));
336 reg.type = BRW_REGISTER_TYPE_D;
337 }
338
339 const vec4_builder ibld = vec4_builder(this).at_end();
340 unsigned remaining = brw_writemask_for_size(instr->def.num_components);
341
342 /* @FIXME: consider emitting vector operations to save some MOVs in
343 * cases where the components are representable in 8 bits.
344 * For now, we emit a MOV for each distinct value.
345 */
346 for (unsigned i = 0; i < instr->def.num_components; i++) {
347 unsigned writemask = 1 << i;
348
349 if ((remaining & writemask) == 0)
350 continue;
351
352 for (unsigned j = i; j < instr->def.num_components; j++) {
353 if ((instr->def.bit_size == 32 &&
354 instr->value.u32[i] == instr->value.u32[j]) ||
355 (instr->def.bit_size == 64 &&
356 instr->value.f64[i] == instr->value.f64[j])) {
357 writemask |= 1 << j;
358 }
359 }
360
361 reg.writemask = writemask;
362 if (instr->def.bit_size == 64) {
363 emit(MOV(reg, setup_imm_df(ibld, instr->value.f64[i])));
364 } else {
365 emit(MOV(reg, brw_imm_d(instr->value.i32[i])));
366 }
367
368 remaining &= ~writemask;
369 }
370
371 /* Set final writemask */
372 reg.writemask = brw_writemask_for_size(instr->def.num_components);
373
374 nir_ssa_values[instr->def.index] = reg;
375 }
376
377 void
nir_emit_intrinsic(nir_intrinsic_instr * instr)378 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
379 {
380 dst_reg dest;
381 src_reg src;
382
383 switch (instr->intrinsic) {
384
385 case nir_intrinsic_load_input: {
386 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
387
388 /* We set EmitNoIndirectInput for VS */
389 assert(const_offset);
390
391 dest = get_nir_dest(instr->dest);
392 dest.writemask = brw_writemask_for_size(instr->num_components);
393
394 src = src_reg(ATTR, instr->const_index[0] + const_offset->u32[0],
395 glsl_type::uvec4_type);
396 src = retype(src, dest.type);
397
398 bool is_64bit = nir_dest_bit_size(instr->dest) == 64;
399 if (is_64bit) {
400 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
401 src.swizzle = BRW_SWIZZLE_XYZW;
402 shuffle_64bit_data(tmp, src, false);
403 emit(MOV(dest, src_reg(tmp)));
404 } else {
405 /* Swizzle source based on component layout qualifier */
406 src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr));
407 emit(MOV(dest, src));
408 }
409 break;
410 }
411
412 case nir_intrinsic_store_output: {
413 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
414 assert(const_offset);
415
416 int varying = instr->const_index[0] + const_offset->u32[0];
417
418 bool is_64bit = nir_src_bit_size(instr->src[0]) == 64;
419 if (is_64bit) {
420 src_reg data;
421 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_DF,
422 instr->num_components);
423 data = src_reg(this, glsl_type::dvec4_type);
424 shuffle_64bit_data(dst_reg(data), src, true);
425 src = retype(data, BRW_REGISTER_TYPE_F);
426 } else {
427 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
428 instr->num_components);
429 }
430
431 unsigned c = nir_intrinsic_component(instr);
432 output_reg[varying][c] = dst_reg(src);
433 output_num_components[varying][c] = instr->num_components;
434
435 unsigned num_components = instr->num_components;
436 if (is_64bit)
437 num_components *= 2;
438
439 output_reg[varying][c] = dst_reg(src);
440 output_num_components[varying][c] = MIN2(4, num_components);
441
442 if (is_64bit && num_components > 4) {
443 assert(num_components <= 8);
444 output_reg[varying + 1][c] = byte_offset(dst_reg(src), REG_SIZE);
445 output_num_components[varying + 1][c] = num_components - 4;
446 }
447 break;
448 }
449
450 case nir_intrinsic_get_buffer_size: {
451 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
452 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
453
454 const unsigned index =
455 prog_data->base.binding_table.ssbo_start + ssbo_index;
456 dst_reg result_dst = get_nir_dest(instr->dest);
457 vec4_instruction *inst = new(mem_ctx)
458 vec4_instruction(SHADER_OPCODE_GET_BUFFER_SIZE, result_dst);
459
460 inst->base_mrf = 2;
461 inst->mlen = 1; /* always at least one */
462 inst->src[1] = brw_imm_ud(index);
463
464 /* MRF for the first parameter */
465 src_reg lod = brw_imm_d(0);
466 int param_base = inst->base_mrf;
467 int writemask = WRITEMASK_X;
468 emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
469
470 emit(inst);
471
472 brw_mark_surface_used(&prog_data->base, index);
473 break;
474 }
475
476 case nir_intrinsic_store_ssbo: {
477 assert(devinfo->gen >= 7);
478
479 /* Block index */
480 src_reg surf_index;
481 nir_const_value *const_uniform_block =
482 nir_src_as_const_value(instr->src[1]);
483 if (const_uniform_block) {
484 unsigned index = prog_data->base.binding_table.ssbo_start +
485 const_uniform_block->u32[0];
486 surf_index = brw_imm_ud(index);
487 brw_mark_surface_used(&prog_data->base, index);
488 } else {
489 surf_index = src_reg(this, glsl_type::uint_type);
490 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[1], 1),
491 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
492 surf_index = emit_uniformize(surf_index);
493
494 brw_mark_surface_used(&prog_data->base,
495 prog_data->base.binding_table.ssbo_start +
496 nir->info.num_ssbos - 1);
497 }
498
499 /* Offset */
500 src_reg offset_reg;
501 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
502 if (const_offset) {
503 offset_reg = brw_imm_ud(const_offset->u32[0]);
504 } else {
505 offset_reg = get_nir_src(instr->src[2], 1);
506 }
507
508 /* Value */
509 src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
510
511 /* Writemask */
512 unsigned write_mask = instr->const_index[0];
513
514 /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
515 * writes will use SIMD8 mode. In order to hide this and keep symmetry across
516 * typed and untyped messages and across hardware platforms, the
517 * current implementation of the untyped messages will transparently convert
518 * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
519 * and enabling only channel X on the SEND instruction.
520 *
521 * The above, works well for full vector writes, but not for partial writes
522 * where we want to write some channels and not others, like when we have
523 * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
524 * quite restrictive with regards to the channel enables we can configure in
525 * the message descriptor (not all combinations are allowed) we cannot simply
526 * implement these scenarios with a single message while keeping the
527 * aforementioned symmetry in the implementation. For now we de decided that
528 * it is better to keep the symmetry to reduce complexity, so in situations
529 * such as the one described we end up emitting two untyped write messages
530 * (one for xy and another for w).
531 *
532 * The code below packs consecutive channels into a single write message,
533 * detects gaps in the vector write and if needed, sends a second message
534 * with the remaining channels. If in the future we decide that we want to
535 * emit a single message at the expense of losing the symmetry in the
536 * implementation we can:
537 *
538 * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
539 * message payload. In this mode we can write up to 8 offsets and dwords
540 * to the red channel only (for the two vec4s in the SIMD4x2 execution)
541 * and select which of the 8 channels carry data to write by setting the
542 * appropriate writemask in the dst register of the SEND instruction.
543 * It would require to write a new generator opcode specifically for
544 * IvyBridge since we would need to prepare a SIMD8 payload that could
545 * use any channel, not just X.
546 *
547 * 2) For Haswell+: Simply send a single write message but set the writemask
548 * on the dst of the SEND instruction to select the channels we want to
549 * write. It would require to modify the current messages to receive
550 * and honor the writemask provided.
551 */
552 const vec4_builder bld = vec4_builder(this).at_end()
553 .annotate(current_annotation, base_ir);
554
555 unsigned type_slots = nir_src_bit_size(instr->src[0]) / 32;
556 if (type_slots == 2) {
557 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
558 shuffle_64bit_data(tmp, retype(val_reg, tmp.type), true);
559 val_reg = src_reg(retype(tmp, BRW_REGISTER_TYPE_F));
560 }
561
562 uint8_t swizzle[4] = { 0, 0, 0, 0};
563 int num_channels = 0;
564 unsigned skipped_channels = 0;
565 int num_components = instr->num_components;
566 for (int i = 0; i < num_components; i++) {
567 /* Read components Z/W of a dvec from the appropriate place. We will
568 * also have to adjust the swizzle (we do that with the '% 4' below)
569 */
570 if (i == 2 && type_slots == 2)
571 val_reg = byte_offset(val_reg, REG_SIZE);
572
573 /* Check if this channel needs to be written. If so, record the
574 * channel we need to take the data from in the swizzle array
575 */
576 int component_mask = 1 << i;
577 int write_test = write_mask & component_mask;
578 if (write_test) {
579 /* If we are writing doubles we have to write 2 channels worth of
580 * of data (64 bits) for each double component.
581 */
582 swizzle[num_channels++] = (i * type_slots) % 4;
583 if (type_slots == 2)
584 swizzle[num_channels++] = (i * type_slots + 1) % 4;
585 }
586
587 /* If we don't have to write this channel it means we have a gap in the
588 * vector, so write the channels we accumulated until now, if any. Do
589 * the same if this was the last component in the vector, if we have
590 * enough channels for a full vec4 write or if we have processed
591 * components XY of a dvec (since components ZW are not in the same
592 * SIMD register)
593 */
594 if (!write_test || i == num_components - 1 || num_channels == 4 ||
595 (i == 1 && type_slots == 2)) {
596 if (num_channels > 0) {
597 /* We have channels to write, so update the offset we need to
598 * write at to skip the channels we skipped, if any.
599 */
600 if (skipped_channels > 0) {
601 if (offset_reg.file == IMM) {
602 offset_reg.ud += 4 * skipped_channels;
603 } else {
604 emit(ADD(dst_reg(offset_reg), offset_reg,
605 brw_imm_ud(4 * skipped_channels)));
606 }
607 }
608
609 /* Swizzle the data register so we take the data from the channels
610 * we need to write and send the write message. This will write
611 * num_channels consecutive dwords starting at offset.
612 */
613 val_reg.swizzle =
614 BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
615 emit_untyped_write(bld, surf_index, offset_reg, val_reg,
616 1 /* dims */, num_channels /* size */,
617 BRW_PREDICATE_NONE);
618
619 /* If we have to do a second write we will have to update the
620 * offset so that we jump over the channels we have just written
621 * now.
622 */
623 skipped_channels = num_channels;
624
625 /* Restart the count for the next write message */
626 num_channels = 0;
627 }
628
629 /* If we didn't write the channel, increase skipped count */
630 if (!write_test)
631 skipped_channels += type_slots;
632 }
633 }
634
635 break;
636 }
637
638 case nir_intrinsic_load_ssbo: {
639 assert(devinfo->gen >= 7);
640
641 nir_const_value *const_uniform_block =
642 nir_src_as_const_value(instr->src[0]);
643
644 src_reg surf_index;
645 if (const_uniform_block) {
646 unsigned index = prog_data->base.binding_table.ssbo_start +
647 const_uniform_block->u32[0];
648 surf_index = brw_imm_ud(index);
649
650 brw_mark_surface_used(&prog_data->base, index);
651 } else {
652 surf_index = src_reg(this, glsl_type::uint_type);
653 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], 1),
654 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
655 surf_index = emit_uniformize(surf_index);
656
657 /* Assume this may touch any UBO. It would be nice to provide
658 * a tighter bound, but the array information is already lowered away.
659 */
660 brw_mark_surface_used(&prog_data->base,
661 prog_data->base.binding_table.ssbo_start +
662 nir->info.num_ssbos - 1);
663 }
664
665 src_reg offset_reg;
666 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
667 if (const_offset) {
668 offset_reg = brw_imm_ud(const_offset->u32[0]);
669 } else {
670 offset_reg = get_nir_src(instr->src[1], 1);
671 }
672
673 /* Read the vector */
674 const vec4_builder bld = vec4_builder(this).at_end()
675 .annotate(current_annotation, base_ir);
676
677 src_reg read_result;
678 dst_reg dest = get_nir_dest(instr->dest);
679 if (type_sz(dest.type) < 8) {
680 read_result = emit_untyped_read(bld, surf_index, offset_reg,
681 1 /* dims */, 4 /* size*/,
682 BRW_PREDICATE_NONE);
683 } else {
684 src_reg shuffled = src_reg(this, glsl_type::dvec4_type);
685
686 src_reg temp;
687 temp = emit_untyped_read(bld, surf_index, offset_reg,
688 1 /* dims */, 4 /* size*/,
689 BRW_PREDICATE_NONE);
690 emit(MOV(dst_reg(retype(shuffled, temp.type)), temp));
691
692 if (offset_reg.file == IMM)
693 offset_reg.ud += 16;
694 else
695 emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16)));
696
697 temp = emit_untyped_read(bld, surf_index, offset_reg,
698 1 /* dims */, 4 /* size*/,
699 BRW_PREDICATE_NONE);
700 emit(MOV(dst_reg(retype(byte_offset(shuffled, REG_SIZE), temp.type)),
701 temp));
702
703 read_result = src_reg(this, glsl_type::dvec4_type);
704 shuffle_64bit_data(dst_reg(read_result), shuffled, false);
705 }
706
707 read_result.type = dest.type;
708 read_result.swizzle = brw_swizzle_for_size(instr->num_components);
709 emit(MOV(dest, read_result));
710 break;
711 }
712
713 case nir_intrinsic_ssbo_atomic_add:
714 nir_emit_ssbo_atomic(BRW_AOP_ADD, instr);
715 break;
716 case nir_intrinsic_ssbo_atomic_imin:
717 nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
718 break;
719 case nir_intrinsic_ssbo_atomic_umin:
720 nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
721 break;
722 case nir_intrinsic_ssbo_atomic_imax:
723 nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
724 break;
725 case nir_intrinsic_ssbo_atomic_umax:
726 nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
727 break;
728 case nir_intrinsic_ssbo_atomic_and:
729 nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
730 break;
731 case nir_intrinsic_ssbo_atomic_or:
732 nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
733 break;
734 case nir_intrinsic_ssbo_atomic_xor:
735 nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
736 break;
737 case nir_intrinsic_ssbo_atomic_exchange:
738 nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
739 break;
740 case nir_intrinsic_ssbo_atomic_comp_swap:
741 nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
742 break;
743
744 case nir_intrinsic_load_vertex_id:
745 unreachable("should be lowered by lower_vertex_id()");
746
747 case nir_intrinsic_load_vertex_id_zero_base:
748 case nir_intrinsic_load_base_vertex:
749 case nir_intrinsic_load_instance_id:
750 case nir_intrinsic_load_base_instance:
751 case nir_intrinsic_load_draw_id:
752 case nir_intrinsic_load_invocation_id:
753 unreachable("should be lowered by brw_nir_lower_vs_inputs()");
754
755 case nir_intrinsic_load_uniform: {
756 /* Offsets are in bytes but they should always be multiples of 4 */
757 assert(nir_intrinsic_base(instr) % 4 == 0);
758
759 dest = get_nir_dest(instr->dest);
760
761 src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16));
762 src.type = dest.type;
763
764 /* Uniforms don't actually have to be vec4 aligned. In the case that
765 * it isn't, we have to use a swizzle to shift things around. They
766 * do still have the std140 alignment requirement that vec2's have to
767 * be vec2-aligned and vec3's and vec4's have to be vec4-aligned.
768 *
769 * The swizzle also works in the indirect case as the generator adds
770 * the swizzle to the offset for us.
771 */
772 const int type_size = type_sz(src.type);
773 unsigned shift = (nir_intrinsic_base(instr) % 16) / type_size;
774 assert(shift + instr->num_components <= 4);
775
776 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
777 if (const_offset) {
778 /* Offsets are in bytes but they should always be multiples of 4 */
779 assert(const_offset->u32[0] % 4 == 0);
780
781 src.swizzle = brw_swizzle_for_size(instr->num_components);
782 dest.writemask = brw_writemask_for_size(instr->num_components);
783 unsigned offset = const_offset->u32[0] + shift * type_size;
784 src.offset = ROUND_DOWN_TO(offset, 16);
785 shift = (offset % 16) / type_size;
786 assert(shift + instr->num_components <= 4);
787 src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
788
789 emit(MOV(dest, src));
790 } else {
791 /* Uniform arrays are vec4 aligned, because of std140 alignment
792 * rules.
793 */
794 assert(shift == 0);
795
796 src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
797
798 /* MOV_INDIRECT is going to stomp the whole thing anyway */
799 dest.writemask = WRITEMASK_XYZW;
800
801 emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
802 indirect, brw_imm_ud(instr->const_index[1]));
803 }
804 break;
805 }
806
807 case nir_intrinsic_load_ubo: {
808 nir_const_value *const_block_index = nir_src_as_const_value(instr->src[0]);
809 src_reg surf_index;
810
811 dest = get_nir_dest(instr->dest);
812
813 if (const_block_index) {
814 /* The block index is a constant, so just emit the binding table entry
815 * as an immediate.
816 */
817 const unsigned index = prog_data->base.binding_table.ubo_start +
818 const_block_index->u32[0];
819 surf_index = brw_imm_ud(index);
820 brw_mark_surface_used(&prog_data->base, index);
821 } else {
822 /* The block index is not a constant. Evaluate the index expression
823 * per-channel and add the base UBO index; we have to select a value
824 * from any live channel.
825 */
826 surf_index = src_reg(this, glsl_type::uint_type);
827 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32,
828 instr->num_components),
829 brw_imm_ud(prog_data->base.binding_table.ubo_start)));
830 surf_index = emit_uniformize(surf_index);
831
832 /* Assume this may touch any UBO. It would be nice to provide
833 * a tighter bound, but the array information is already lowered away.
834 */
835 brw_mark_surface_used(&prog_data->base,
836 prog_data->base.binding_table.ubo_start +
837 nir->info.num_ubos - 1);
838 }
839
840 src_reg offset_reg;
841 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
842 if (const_offset) {
843 offset_reg = brw_imm_ud(const_offset->u32[0] & ~15);
844 } else {
845 offset_reg = src_reg(this, glsl_type::uint_type);
846 emit(MOV(dst_reg(offset_reg),
847 get_nir_src(instr->src[1], nir_type_uint32, 1)));
848 }
849
850 src_reg packed_consts;
851 if (nir_dest_bit_size(instr->dest) == 32) {
852 packed_consts = src_reg(this, glsl_type::vec4_type);
853 emit_pull_constant_load_reg(dst_reg(packed_consts),
854 surf_index,
855 offset_reg,
856 NULL, NULL /* before_block/inst */);
857 } else {
858 src_reg temp = src_reg(this, glsl_type::dvec4_type);
859 src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F);
860
861 emit_pull_constant_load_reg(dst_reg(temp_float),
862 surf_index, offset_reg, NULL, NULL);
863 if (offset_reg.file == IMM)
864 offset_reg.ud += 16;
865 else
866 emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u)));
867 emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)),
868 surf_index, offset_reg, NULL, NULL);
869
870 packed_consts = src_reg(this, glsl_type::dvec4_type);
871 shuffle_64bit_data(dst_reg(packed_consts), temp, false);
872 }
873
874 packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
875 if (const_offset) {
876 unsigned type_size = type_sz(dest.type);
877 packed_consts.swizzle +=
878 BRW_SWIZZLE4(const_offset->u32[0] % 16 / type_size,
879 const_offset->u32[0] % 16 / type_size,
880 const_offset->u32[0] % 16 / type_size,
881 const_offset->u32[0] % 16 / type_size);
882 }
883
884 emit(MOV(dest, retype(packed_consts, dest.type)));
885
886 break;
887 }
888
889 case nir_intrinsic_memory_barrier: {
890 const vec4_builder bld =
891 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
892 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
893 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
894 ->size_written = 2 * REG_SIZE;
895 break;
896 }
897
898 case nir_intrinsic_shader_clock: {
899 /* We cannot do anything if there is an event, so ignore it for now */
900 const src_reg shader_clock = get_timestamp();
901 const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
902
903 dest = get_nir_dest(instr->dest, type);
904 emit(MOV(dest, shader_clock));
905 break;
906 }
907
908 default:
909 unreachable("Unknown intrinsic");
910 }
911 }
912
913 void
nir_emit_ssbo_atomic(int op,nir_intrinsic_instr * instr)914 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
915 {
916 dst_reg dest;
917 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
918 dest = get_nir_dest(instr->dest);
919
920 src_reg surface;
921 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
922 if (const_surface) {
923 unsigned surf_index = prog_data->base.binding_table.ssbo_start +
924 const_surface->u32[0];
925 surface = brw_imm_ud(surf_index);
926 brw_mark_surface_used(&prog_data->base, surf_index);
927 } else {
928 surface = src_reg(this, glsl_type::uint_type);
929 emit(ADD(dst_reg(surface), get_nir_src(instr->src[0]),
930 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
931
932 /* Assume this may touch any UBO. This is the same we do for other
933 * UBO/SSBO accesses with non-constant surface.
934 */
935 brw_mark_surface_used(&prog_data->base,
936 prog_data->base.binding_table.ssbo_start +
937 nir->info.num_ssbos - 1);
938 }
939
940 src_reg offset = get_nir_src(instr->src[1], 1);
941 src_reg data1 = get_nir_src(instr->src[2], 1);
942 src_reg data2;
943 if (op == BRW_AOP_CMPWR)
944 data2 = get_nir_src(instr->src[3], 1);
945
946 /* Emit the actual atomic operation operation */
947 const vec4_builder bld =
948 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
949
950 src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
951 data1, data2,
952 1 /* dims */, 1 /* rsize */,
953 op,
954 BRW_PREDICATE_NONE);
955 dest.type = atomic_result.type;
956 bld.MOV(dest, atomic_result);
957 }
958
959 static unsigned
brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])960 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
961 {
962 return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
963 }
964
965 static enum brw_conditional_mod
brw_conditional_for_nir_comparison(nir_op op)966 brw_conditional_for_nir_comparison(nir_op op)
967 {
968 switch (op) {
969 case nir_op_flt:
970 case nir_op_ilt:
971 case nir_op_ult:
972 return BRW_CONDITIONAL_L;
973
974 case nir_op_fge:
975 case nir_op_ige:
976 case nir_op_uge:
977 return BRW_CONDITIONAL_GE;
978
979 case nir_op_feq:
980 case nir_op_ieq:
981 case nir_op_ball_fequal2:
982 case nir_op_ball_iequal2:
983 case nir_op_ball_fequal3:
984 case nir_op_ball_iequal3:
985 case nir_op_ball_fequal4:
986 case nir_op_ball_iequal4:
987 return BRW_CONDITIONAL_Z;
988
989 case nir_op_fne:
990 case nir_op_ine:
991 case nir_op_bany_fnequal2:
992 case nir_op_bany_inequal2:
993 case nir_op_bany_fnequal3:
994 case nir_op_bany_inequal3:
995 case nir_op_bany_fnequal4:
996 case nir_op_bany_inequal4:
997 return BRW_CONDITIONAL_NZ;
998
999 default:
1000 unreachable("not reached: bad operation for comparison");
1001 }
1002 }
1003
1004 bool
optimize_predicate(nir_alu_instr * instr,enum brw_predicate * predicate)1005 vec4_visitor::optimize_predicate(nir_alu_instr *instr,
1006 enum brw_predicate *predicate)
1007 {
1008 if (!instr->src[0].src.is_ssa ||
1009 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
1010 return false;
1011
1012 nir_alu_instr *cmp_instr =
1013 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
1014
1015 switch (cmp_instr->op) {
1016 case nir_op_bany_fnequal2:
1017 case nir_op_bany_inequal2:
1018 case nir_op_bany_fnequal3:
1019 case nir_op_bany_inequal3:
1020 case nir_op_bany_fnequal4:
1021 case nir_op_bany_inequal4:
1022 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1023 break;
1024 case nir_op_ball_fequal2:
1025 case nir_op_ball_iequal2:
1026 case nir_op_ball_fequal3:
1027 case nir_op_ball_iequal3:
1028 case nir_op_ball_fequal4:
1029 case nir_op_ball_iequal4:
1030 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1031 break;
1032 default:
1033 return false;
1034 }
1035
1036 unsigned size_swizzle =
1037 brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
1038
1039 src_reg op[2];
1040 assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
1041 for (unsigned i = 0; i < 2; i++) {
1042 nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i];
1043 unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src);
1044 type = (nir_alu_type) (((unsigned) type) | bit_size);
1045 op[i] = get_nir_src(cmp_instr->src[i].src, type, 4);
1046 unsigned base_swizzle =
1047 brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
1048 op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
1049 op[i].abs = cmp_instr->src[i].abs;
1050 op[i].negate = cmp_instr->src[i].negate;
1051 }
1052
1053 emit(CMP(dst_null_d(), op[0], op[1],
1054 brw_conditional_for_nir_comparison(cmp_instr->op)));
1055
1056 return true;
1057 }
1058
1059 static void
emit_find_msb_using_lzd(const vec4_builder & bld,const dst_reg & dst,const src_reg & src,bool is_signed)1060 emit_find_msb_using_lzd(const vec4_builder &bld,
1061 const dst_reg &dst,
1062 const src_reg &src,
1063 bool is_signed)
1064 {
1065 vec4_instruction *inst;
1066 src_reg temp = src;
1067
1068 if (is_signed) {
1069 /* LZD of an absolute value source almost always does the right
1070 * thing. There are two problem values:
1071 *
1072 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
1073 * 0. However, findMSB(int(0x80000000)) == 30.
1074 *
1075 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
1076 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1077 *
1078 * For a value of zero or negative one, -1 will be returned.
1079 *
1080 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
1081 * findMSB(-(1<<x)) should return x-1.
1082 *
1083 * For all negative number cases, including 0x80000000 and
1084 * 0xffffffff, the correct value is obtained from LZD if instead of
1085 * negating the (already negative) value the logical-not is used. A
1086 * conditonal logical-not can be achieved in two instructions.
1087 */
1088 temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D));
1089
1090 bld.ASR(dst_reg(temp), src, brw_imm_d(31));
1091 bld.XOR(dst_reg(temp), temp, src);
1092 }
1093
1094 bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD),
1095 retype(temp, BRW_REGISTER_TYPE_UD));
1096
1097 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
1098 * from the LSB side. Subtract the result from 31 to convert the MSB count
1099 * into an LSB count. If no bits are set, LZD will return 32. 31-32 = -1,
1100 * which is exactly what findMSB() is supposed to return.
1101 */
1102 inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D),
1103 brw_imm_d(31));
1104 inst->src[0].negate = true;
1105 }
1106
1107 void
emit_conversion_from_double(dst_reg dst,src_reg src,bool saturate)1108 vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src,
1109 bool saturate)
1110 {
1111 /* BDW PRM vol 15 - workarounds:
1112 * DF->f format conversion for Align16 has wrong emask calculation when
1113 * source is immediate.
1114 */
1115 if (devinfo->gen == 8 && dst.type == BRW_REGISTER_TYPE_F &&
1116 src.file == BRW_IMMEDIATE_VALUE) {
1117 vec4_instruction *inst = emit(MOV(dst, brw_imm_f(src.df)));
1118 inst->saturate = saturate;
1119 return;
1120 }
1121
1122 enum opcode op;
1123 switch (dst.type) {
1124 case BRW_REGISTER_TYPE_D:
1125 op = VEC4_OPCODE_DOUBLE_TO_D32;
1126 break;
1127 case BRW_REGISTER_TYPE_UD:
1128 op = VEC4_OPCODE_DOUBLE_TO_U32;
1129 break;
1130 case BRW_REGISTER_TYPE_F:
1131 op = VEC4_OPCODE_DOUBLE_TO_F32;
1132 break;
1133 default:
1134 unreachable("Unknown conversion");
1135 }
1136
1137 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1138 emit(MOV(temp, src));
1139 dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type);
1140 emit(op, temp2, src_reg(temp));
1141
1142 emit(VEC4_OPCODE_PICK_LOW_32BIT, retype(temp2, dst.type), src_reg(temp2));
1143 vec4_instruction *inst = emit(MOV(dst, src_reg(retype(temp2, dst.type))));
1144 inst->saturate = saturate;
1145 }
1146
1147 void
emit_conversion_to_double(dst_reg dst,src_reg src,bool saturate)1148 vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src,
1149 bool saturate)
1150 {
1151 dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type));
1152 src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), src.type);
1153 emit(MOV(dst_reg(tmp_src), src));
1154 emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src);
1155 vec4_instruction *inst = emit(MOV(dst, src_reg(tmp_dst)));
1156 inst->saturate = saturate;
1157 }
1158
1159 void
nir_emit_alu(nir_alu_instr * instr)1160 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
1161 {
1162 vec4_instruction *inst;
1163
1164 nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type |
1165 nir_dest_bit_size(instr->dest.dest));
1166 dst_reg dst = get_nir_dest(instr->dest.dest, dst_type);
1167 dst.writemask = instr->dest.write_mask;
1168
1169 src_reg op[4];
1170 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1171 nir_alu_type src_type = (nir_alu_type)
1172 (nir_op_infos[instr->op].input_types[i] |
1173 nir_src_bit_size(instr->src[i].src));
1174 op[i] = get_nir_src(instr->src[i].src, src_type, 4);
1175 op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
1176 op[i].abs = instr->src[i].abs;
1177 op[i].negate = instr->src[i].negate;
1178 }
1179
1180 switch (instr->op) {
1181 case nir_op_imov:
1182 case nir_op_fmov:
1183 inst = emit(MOV(dst, op[0]));
1184 inst->saturate = instr->dest.saturate;
1185 break;
1186
1187 case nir_op_vec2:
1188 case nir_op_vec3:
1189 case nir_op_vec4:
1190 unreachable("not reached: should be handled by lower_vec_to_movs()");
1191
1192 case nir_op_i2f32:
1193 case nir_op_u2f32:
1194 inst = emit(MOV(dst, op[0]));
1195 inst->saturate = instr->dest.saturate;
1196 break;
1197
1198 case nir_op_f2f32:
1199 case nir_op_f2i32:
1200 case nir_op_f2u32:
1201 if (nir_src_bit_size(instr->src[0].src) == 64)
1202 emit_conversion_from_double(dst, op[0], instr->dest.saturate);
1203 else
1204 inst = emit(MOV(dst, op[0]));
1205 break;
1206
1207 case nir_op_f2f64:
1208 case nir_op_i2f64:
1209 case nir_op_u2f64:
1210 emit_conversion_to_double(dst, op[0], instr->dest.saturate);
1211 break;
1212
1213 case nir_op_iadd:
1214 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1215 /* fall through */
1216 case nir_op_fadd:
1217 inst = emit(ADD(dst, op[0], op[1]));
1218 inst->saturate = instr->dest.saturate;
1219 break;
1220
1221 case nir_op_fmul:
1222 inst = emit(MUL(dst, op[0], op[1]));
1223 inst->saturate = instr->dest.saturate;
1224 break;
1225
1226 case nir_op_imul: {
1227 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1228 if (devinfo->gen < 8) {
1229 nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
1230 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
1231
1232 /* For integer multiplication, the MUL uses the low 16 bits of one of
1233 * the operands (src0 through SNB, src1 on IVB and later). The MACH
1234 * accumulates in the contribution of the upper 16 bits of that
1235 * operand. If we can determine that one of the args is in the low
1236 * 16 bits, though, we can just emit a single MUL.
1237 */
1238 if (value0 && value0->u32[0] < (1 << 16)) {
1239 if (devinfo->gen < 7)
1240 emit(MUL(dst, op[0], op[1]));
1241 else
1242 emit(MUL(dst, op[1], op[0]));
1243 } else if (value1 && value1->u32[0] < (1 << 16)) {
1244 if (devinfo->gen < 7)
1245 emit(MUL(dst, op[1], op[0]));
1246 else
1247 emit(MUL(dst, op[0], op[1]));
1248 } else {
1249 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1250
1251 emit(MUL(acc, op[0], op[1]));
1252 emit(MACH(dst_null_d(), op[0], op[1]));
1253 emit(MOV(dst, src_reg(acc)));
1254 }
1255 } else {
1256 emit(MUL(dst, op[0], op[1]));
1257 }
1258 break;
1259 }
1260
1261 case nir_op_imul_high:
1262 case nir_op_umul_high: {
1263 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1264 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1265
1266 if (devinfo->gen >= 8)
1267 emit(MUL(acc, op[0], retype(op[1], BRW_REGISTER_TYPE_UW)));
1268 else
1269 emit(MUL(acc, op[0], op[1]));
1270
1271 emit(MACH(dst, op[0], op[1]));
1272 break;
1273 }
1274
1275 case nir_op_frcp:
1276 inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1277 inst->saturate = instr->dest.saturate;
1278 break;
1279
1280 case nir_op_fexp2:
1281 inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1282 inst->saturate = instr->dest.saturate;
1283 break;
1284
1285 case nir_op_flog2:
1286 inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1287 inst->saturate = instr->dest.saturate;
1288 break;
1289
1290 case nir_op_fsin:
1291 inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1292 inst->saturate = instr->dest.saturate;
1293 break;
1294
1295 case nir_op_fcos:
1296 inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1297 inst->saturate = instr->dest.saturate;
1298 break;
1299
1300 case nir_op_idiv:
1301 case nir_op_udiv:
1302 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1303 emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1304 break;
1305
1306 case nir_op_umod:
1307 case nir_op_irem:
1308 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1309 * appears that our hardware just does the right thing for signed
1310 * remainder.
1311 */
1312 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1313 emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1314 break;
1315
1316 case nir_op_imod: {
1317 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1318 inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1319
1320 /* Math instructions don't support conditional mod */
1321 inst = emit(MOV(dst_null_d(), src_reg(dst)));
1322 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1323
1324 /* Now, we need to determine if signs of the sources are different.
1325 * When we XOR the sources, the top bit is 0 if they are the same and 1
1326 * if they are different. We can then use a conditional modifier to
1327 * turn that into a predicate. This leads us to an XOR.l instruction.
1328 *
1329 * Technically, according to the PRM, you're not allowed to use .l on a
1330 * XOR instruction. However, emperical experiments and Curro's reading
1331 * of the simulator source both indicate that it's safe.
1332 */
1333 src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1334 inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1335 inst->predicate = BRW_PREDICATE_NORMAL;
1336 inst->conditional_mod = BRW_CONDITIONAL_L;
1337
1338 /* If the result of the initial remainder operation is non-zero and the
1339 * two sources have different signs, add in a copy of op[1] to get the
1340 * final integer modulus value.
1341 */
1342 inst = emit(ADD(dst, src_reg(dst), op[1]));
1343 inst->predicate = BRW_PREDICATE_NORMAL;
1344 break;
1345 }
1346
1347 case nir_op_ldexp:
1348 unreachable("not reached: should be handled by ldexp_to_arith()");
1349
1350 case nir_op_fsqrt:
1351 inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1352 inst->saturate = instr->dest.saturate;
1353 break;
1354
1355 case nir_op_frsq:
1356 inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1357 inst->saturate = instr->dest.saturate;
1358 break;
1359
1360 case nir_op_fpow:
1361 inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1362 inst->saturate = instr->dest.saturate;
1363 break;
1364
1365 case nir_op_uadd_carry: {
1366 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1367 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1368
1369 emit(ADDC(dst_null_ud(), op[0], op[1]));
1370 emit(MOV(dst, src_reg(acc)));
1371 break;
1372 }
1373
1374 case nir_op_usub_borrow: {
1375 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1376 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1377
1378 emit(SUBB(dst_null_ud(), op[0], op[1]));
1379 emit(MOV(dst, src_reg(acc)));
1380 break;
1381 }
1382
1383 case nir_op_ftrunc:
1384 inst = emit(RNDZ(dst, op[0]));
1385 inst->saturate = instr->dest.saturate;
1386 break;
1387
1388 case nir_op_fceil: {
1389 src_reg tmp = src_reg(this, glsl_type::float_type);
1390 tmp.swizzle =
1391 brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1392 instr->src[0].src.ssa->num_components :
1393 instr->src[0].src.reg.reg->num_components);
1394
1395 op[0].negate = !op[0].negate;
1396 emit(RNDD(dst_reg(tmp), op[0]));
1397 tmp.negate = true;
1398 inst = emit(MOV(dst, tmp));
1399 inst->saturate = instr->dest.saturate;
1400 break;
1401 }
1402
1403 case nir_op_ffloor:
1404 inst = emit(RNDD(dst, op[0]));
1405 inst->saturate = instr->dest.saturate;
1406 break;
1407
1408 case nir_op_ffract:
1409 inst = emit(FRC(dst, op[0]));
1410 inst->saturate = instr->dest.saturate;
1411 break;
1412
1413 case nir_op_fround_even:
1414 inst = emit(RNDE(dst, op[0]));
1415 inst->saturate = instr->dest.saturate;
1416 break;
1417
1418 case nir_op_fquantize2f16: {
1419 /* See also vec4_visitor::emit_pack_half_2x16() */
1420 src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
1421 src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
1422 src_reg zero = src_reg(this, glsl_type::vec4_type);
1423
1424 /* Check for denormal */
1425 src_reg abs_src0 = op[0];
1426 abs_src0.abs = true;
1427 emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1428 BRW_CONDITIONAL_L));
1429 /* Get the appropriately signed zero */
1430 emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
1431 retype(op[0], BRW_REGISTER_TYPE_UD),
1432 brw_imm_ud(0x80000000)));
1433 /* Do the actual F32 -> F16 -> F32 conversion */
1434 emit(F32TO16(dst_reg(tmp16), op[0]));
1435 emit(F16TO32(dst_reg(tmp32), tmp16));
1436 /* Select that or zero based on normal status */
1437 inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
1438 inst->predicate = BRW_PREDICATE_NORMAL;
1439 inst->saturate = instr->dest.saturate;
1440 break;
1441 }
1442
1443 case nir_op_imin:
1444 case nir_op_umin:
1445 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1446 /* fall through */
1447 case nir_op_fmin:
1448 inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1449 inst->saturate = instr->dest.saturate;
1450 break;
1451
1452 case nir_op_imax:
1453 case nir_op_umax:
1454 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1455 /* fall through */
1456 case nir_op_fmax:
1457 inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1458 inst->saturate = instr->dest.saturate;
1459 break;
1460
1461 case nir_op_fddx:
1462 case nir_op_fddx_coarse:
1463 case nir_op_fddx_fine:
1464 case nir_op_fddy:
1465 case nir_op_fddy_coarse:
1466 case nir_op_fddy_fine:
1467 unreachable("derivatives are not valid in vertex shaders");
1468
1469 case nir_op_ilt:
1470 case nir_op_ult:
1471 case nir_op_ige:
1472 case nir_op_uge:
1473 case nir_op_ieq:
1474 case nir_op_ine:
1475 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1476 /* Fallthrough */
1477 case nir_op_flt:
1478 case nir_op_fge:
1479 case nir_op_feq:
1480 case nir_op_fne: {
1481 enum brw_conditional_mod conditional_mod =
1482 brw_conditional_for_nir_comparison(instr->op);
1483
1484 if (nir_src_bit_size(instr->src[0].src) < 64) {
1485 emit(CMP(dst, op[0], op[1], conditional_mod));
1486 } else {
1487 /* Produce a 32-bit boolean result from the DF comparison by selecting
1488 * only the low 32-bit in each DF produced. Do this in a temporary
1489 * so we can then move from there to the result using align16 again
1490 * to honor the original writemask.
1491 */
1492 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1493 emit(CMP(temp, op[0], op[1], conditional_mod));
1494 dst_reg result = dst_reg(this, glsl_type::bvec4_type);
1495 emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp));
1496 emit(MOV(dst, src_reg(result)));
1497 }
1498 break;
1499 }
1500
1501 case nir_op_ball_iequal2:
1502 case nir_op_ball_iequal3:
1503 case nir_op_ball_iequal4:
1504 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1505 /* Fallthrough */
1506 case nir_op_ball_fequal2:
1507 case nir_op_ball_fequal3:
1508 case nir_op_ball_fequal4: {
1509 unsigned swiz =
1510 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1511
1512 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1513 brw_conditional_for_nir_comparison(instr->op)));
1514 emit(MOV(dst, brw_imm_d(0)));
1515 inst = emit(MOV(dst, brw_imm_d(~0)));
1516 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1517 break;
1518 }
1519
1520 case nir_op_bany_inequal2:
1521 case nir_op_bany_inequal3:
1522 case nir_op_bany_inequal4:
1523 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1524 /* Fallthrough */
1525 case nir_op_bany_fnequal2:
1526 case nir_op_bany_fnequal3:
1527 case nir_op_bany_fnequal4: {
1528 unsigned swiz =
1529 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1530
1531 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1532 brw_conditional_for_nir_comparison(instr->op)));
1533
1534 emit(MOV(dst, brw_imm_d(0)));
1535 inst = emit(MOV(dst, brw_imm_d(~0)));
1536 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1537 break;
1538 }
1539
1540 case nir_op_inot:
1541 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1542 if (devinfo->gen >= 8) {
1543 op[0] = resolve_source_modifiers(op[0]);
1544 }
1545 emit(NOT(dst, op[0]));
1546 break;
1547
1548 case nir_op_ixor:
1549 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1550 if (devinfo->gen >= 8) {
1551 op[0] = resolve_source_modifiers(op[0]);
1552 op[1] = resolve_source_modifiers(op[1]);
1553 }
1554 emit(XOR(dst, op[0], op[1]));
1555 break;
1556
1557 case nir_op_ior:
1558 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1559 if (devinfo->gen >= 8) {
1560 op[0] = resolve_source_modifiers(op[0]);
1561 op[1] = resolve_source_modifiers(op[1]);
1562 }
1563 emit(OR(dst, op[0], op[1]));
1564 break;
1565
1566 case nir_op_iand:
1567 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1568 if (devinfo->gen >= 8) {
1569 op[0] = resolve_source_modifiers(op[0]);
1570 op[1] = resolve_source_modifiers(op[1]);
1571 }
1572 emit(AND(dst, op[0], op[1]));
1573 break;
1574
1575 case nir_op_b2i:
1576 case nir_op_b2f:
1577 emit(MOV(dst, negate(op[0])));
1578 break;
1579
1580 case nir_op_f2b:
1581 if (nir_src_bit_size(instr->src[0].src) == 64) {
1582 /* We use a MOV with conditional_mod to check if the provided value is
1583 * 0.0. We want this to flush denormalized numbers to zero, so we set a
1584 * source modifier on the source operand to trigger this, as source
1585 * modifiers don't affect the result of the testing against 0.0.
1586 */
1587 src_reg value = op[0];
1588 value.abs = true;
1589 vec4_instruction *inst = emit(MOV(dst_null_df(), value));
1590 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1591
1592 src_reg one = src_reg(this, glsl_type::ivec4_type);
1593 emit(MOV(dst_reg(one), brw_imm_d(~0)));
1594 inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0));
1595 inst->predicate = BRW_PREDICATE_NORMAL;
1596 } else {
1597 emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1598 }
1599 break;
1600
1601 case nir_op_i2b:
1602 emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1603 break;
1604
1605 case nir_op_fnoise1_1:
1606 case nir_op_fnoise1_2:
1607 case nir_op_fnoise1_3:
1608 case nir_op_fnoise1_4:
1609 case nir_op_fnoise2_1:
1610 case nir_op_fnoise2_2:
1611 case nir_op_fnoise2_3:
1612 case nir_op_fnoise2_4:
1613 case nir_op_fnoise3_1:
1614 case nir_op_fnoise3_2:
1615 case nir_op_fnoise3_3:
1616 case nir_op_fnoise3_4:
1617 case nir_op_fnoise4_1:
1618 case nir_op_fnoise4_2:
1619 case nir_op_fnoise4_3:
1620 case nir_op_fnoise4_4:
1621 unreachable("not reached: should be handled by lower_noise");
1622
1623 case nir_op_unpack_half_2x16_split_x:
1624 case nir_op_unpack_half_2x16_split_y:
1625 case nir_op_pack_half_2x16_split:
1626 unreachable("not reached: should not occur in vertex shader");
1627
1628 case nir_op_unpack_snorm_2x16:
1629 case nir_op_unpack_unorm_2x16:
1630 case nir_op_pack_snorm_2x16:
1631 case nir_op_pack_unorm_2x16:
1632 unreachable("not reached: should be handled by lower_packing_builtins");
1633
1634 case nir_op_pack_uvec4_to_uint:
1635 unreachable("not reached");
1636
1637 case nir_op_pack_uvec2_to_uint: {
1638 dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
1639 tmp1.writemask = WRITEMASK_X;
1640 op[0].swizzle = BRW_SWIZZLE_YYYY;
1641 emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
1642
1643 dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
1644 tmp2.writemask = WRITEMASK_X;
1645 op[0].swizzle = BRW_SWIZZLE_XXXX;
1646 emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
1647
1648 emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
1649 break;
1650 }
1651
1652 case nir_op_pack_64_2x32_split: {
1653 dst_reg result = dst_reg(this, glsl_type::dvec4_type);
1654 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1655 emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD)));
1656 emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp));
1657 emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD)));
1658 emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp));
1659 emit(MOV(dst, src_reg(result)));
1660 break;
1661 }
1662
1663 case nir_op_unpack_64_2x32_split_x:
1664 case nir_op_unpack_64_2x32_split_y: {
1665 enum opcode oper = (instr->op == nir_op_unpack_64_2x32_split_x) ?
1666 VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT;
1667 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
1668 emit(MOV(tmp, op[0]));
1669 dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type);
1670 emit(oper, tmp2, src_reg(tmp));
1671 emit(MOV(dst, src_reg(tmp2)));
1672 break;
1673 }
1674
1675 case nir_op_unpack_half_2x16:
1676 /* As NIR does not guarantee that we have a correct swizzle outside the
1677 * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1678 * uses the source operand in an operation with WRITEMASK_Y while our
1679 * source operand has only size 1, it accessed incorrect data producing
1680 * regressions in Piglit. We repeat the swizzle of the first component on the
1681 * rest of components to avoid regressions. In the vec4_visitor IR code path
1682 * this is not needed because the operand has already the correct swizzle.
1683 */
1684 op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1685 emit_unpack_half_2x16(dst, op[0]);
1686 break;
1687
1688 case nir_op_pack_half_2x16:
1689 emit_pack_half_2x16(dst, op[0]);
1690 break;
1691
1692 case nir_op_unpack_unorm_4x8:
1693 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1694 emit_unpack_unorm_4x8(dst, op[0]);
1695 break;
1696
1697 case nir_op_pack_unorm_4x8:
1698 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1699 emit_pack_unorm_4x8(dst, op[0]);
1700 break;
1701
1702 case nir_op_unpack_snorm_4x8:
1703 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1704 emit_unpack_snorm_4x8(dst, op[0]);
1705 break;
1706
1707 case nir_op_pack_snorm_4x8:
1708 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1709 emit_pack_snorm_4x8(dst, op[0]);
1710 break;
1711
1712 case nir_op_bitfield_reverse:
1713 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1714 emit(BFREV(dst, op[0]));
1715 break;
1716
1717 case nir_op_bit_count:
1718 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1719 emit(CBIT(dst, op[0]));
1720 break;
1721
1722 case nir_op_ufind_msb:
1723 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1724 emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false);
1725 break;
1726
1727 case nir_op_ifind_msb: {
1728 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1729 vec4_builder bld = vec4_builder(this).at_end();
1730 src_reg src(dst);
1731
1732 if (devinfo->gen < 7) {
1733 emit_find_msb_using_lzd(bld, dst, op[0], true);
1734 } else {
1735 emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1736
1737 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1738 * count from the LSB side. If FBH didn't return an error
1739 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1740 * count into an LSB count.
1741 */
1742 bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1743
1744 inst = bld.ADD(dst, src, brw_imm_d(31));
1745 inst->predicate = BRW_PREDICATE_NORMAL;
1746 inst->src[0].negate = true;
1747 }
1748 break;
1749 }
1750
1751 case nir_op_find_lsb: {
1752 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1753 vec4_builder bld = vec4_builder(this).at_end();
1754
1755 if (devinfo->gen < 7) {
1756 dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D);
1757
1758 /* (x & -x) generates a value that consists of only the LSB of x.
1759 * For all powers of 2, findMSB(y) == findLSB(y).
1760 */
1761 src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D));
1762 src_reg negated_src = src;
1763
1764 /* One must be negated, and the other must be non-negated. It
1765 * doesn't matter which is which.
1766 */
1767 negated_src.negate = true;
1768 src.negate = false;
1769
1770 bld.AND(temp, src, negated_src);
1771 emit_find_msb_using_lzd(bld, dst, src_reg(temp), false);
1772 } else {
1773 bld.FBL(dst, op[0]);
1774 }
1775 break;
1776 }
1777
1778 case nir_op_ubitfield_extract:
1779 case nir_op_ibitfield_extract:
1780 unreachable("should have been lowered");
1781 case nir_op_ubfe:
1782 case nir_op_ibfe:
1783 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1784 op[0] = fix_3src_operand(op[0]);
1785 op[1] = fix_3src_operand(op[1]);
1786 op[2] = fix_3src_operand(op[2]);
1787
1788 emit(BFE(dst, op[2], op[1], op[0]));
1789 break;
1790
1791 case nir_op_bfm:
1792 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1793 emit(BFI1(dst, op[0], op[1]));
1794 break;
1795
1796 case nir_op_bfi:
1797 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1798 op[0] = fix_3src_operand(op[0]);
1799 op[1] = fix_3src_operand(op[1]);
1800 op[2] = fix_3src_operand(op[2]);
1801
1802 emit(BFI2(dst, op[0], op[1], op[2]));
1803 break;
1804
1805 case nir_op_bitfield_insert:
1806 unreachable("not reached: should have been lowered");
1807
1808 case nir_op_fsign:
1809 if (type_sz(op[0].type) < 8) {
1810 /* AND(val, 0x80000000) gives the sign bit.
1811 *
1812 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1813 * zero.
1814 */
1815 emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1816
1817 op[0].type = BRW_REGISTER_TYPE_UD;
1818 dst.type = BRW_REGISTER_TYPE_UD;
1819 emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1820
1821 inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1822 inst->predicate = BRW_PREDICATE_NORMAL;
1823 dst.type = BRW_REGISTER_TYPE_F;
1824
1825 if (instr->dest.saturate) {
1826 inst = emit(MOV(dst, src_reg(dst)));
1827 inst->saturate = true;
1828 }
1829 } else {
1830 /* For doubles we do the same but we need to consider:
1831 *
1832 * - We use a MOV with conditional_mod instead of a CMP so that we can
1833 * skip loading a 0.0 immediate. We use a source modifier on the
1834 * source of the MOV so that we flush denormalized values to 0.
1835 * Since we want to compare against 0, this won't alter the result.
1836 * - We need to extract the high 32-bit of each DF where the sign
1837 * is stored.
1838 * - We need to produce a DF result.
1839 */
1840
1841 /* Check for zero */
1842 src_reg value = op[0];
1843 value.abs = true;
1844 inst = emit(MOV(dst_null_df(), value));
1845 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1846
1847 /* AND each high 32-bit channel with 0x80000000u */
1848 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1849 emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]);
1850 emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u)));
1851
1852 /* Add 1.0 to each channel, predicated to skip the cases where the
1853 * channel's value was 0
1854 */
1855 inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u)));
1856 inst->predicate = BRW_PREDICATE_NORMAL;
1857
1858 /* Now convert the result from float to double */
1859 emit_conversion_to_double(dst, retype(src_reg(tmp),
1860 BRW_REGISTER_TYPE_F),
1861 instr->dest.saturate);
1862 }
1863 break;
1864
1865 case nir_op_isign:
1866 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
1867 * -> non-negative val generates 0x00000000.
1868 * Predicated OR sets 1 if val is positive.
1869 */
1870 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1871 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G));
1872 emit(ASR(dst, op[0], brw_imm_d(31)));
1873 inst = emit(OR(dst, src_reg(dst), brw_imm_d(1)));
1874 inst->predicate = BRW_PREDICATE_NORMAL;
1875 break;
1876
1877 case nir_op_ishl:
1878 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1879 emit(SHL(dst, op[0], op[1]));
1880 break;
1881
1882 case nir_op_ishr:
1883 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1884 emit(ASR(dst, op[0], op[1]));
1885 break;
1886
1887 case nir_op_ushr:
1888 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1889 emit(SHR(dst, op[0], op[1]));
1890 break;
1891
1892 case nir_op_ffma:
1893 if (type_sz(dst.type) == 8) {
1894 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
1895 emit(MUL(mul_dst, op[1], op[0]));
1896 inst = emit(ADD(dst, src_reg(mul_dst), op[2]));
1897 inst->saturate = instr->dest.saturate;
1898 } else {
1899 op[0] = fix_3src_operand(op[0]);
1900 op[1] = fix_3src_operand(op[1]);
1901 op[2] = fix_3src_operand(op[2]);
1902
1903 inst = emit(MAD(dst, op[2], op[1], op[0]));
1904 inst->saturate = instr->dest.saturate;
1905 }
1906 break;
1907
1908 case nir_op_flrp:
1909 inst = emit_lrp(dst, op[0], op[1], op[2]);
1910 inst->saturate = instr->dest.saturate;
1911 break;
1912
1913 case nir_op_bcsel:
1914 enum brw_predicate predicate;
1915 if (!optimize_predicate(instr, &predicate)) {
1916 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1917 switch (dst.writemask) {
1918 case WRITEMASK_X:
1919 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1920 break;
1921 case WRITEMASK_Y:
1922 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1923 break;
1924 case WRITEMASK_Z:
1925 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1926 break;
1927 case WRITEMASK_W:
1928 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1929 break;
1930 default:
1931 predicate = BRW_PREDICATE_NORMAL;
1932 break;
1933 }
1934 }
1935 inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1936 inst->predicate = predicate;
1937 break;
1938
1939 case nir_op_fdot_replicated2:
1940 inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
1941 inst->saturate = instr->dest.saturate;
1942 break;
1943
1944 case nir_op_fdot_replicated3:
1945 inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
1946 inst->saturate = instr->dest.saturate;
1947 break;
1948
1949 case nir_op_fdot_replicated4:
1950 inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
1951 inst->saturate = instr->dest.saturate;
1952 break;
1953
1954 case nir_op_fdph_replicated:
1955 inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
1956 inst->saturate = instr->dest.saturate;
1957 break;
1958
1959 case nir_op_iabs:
1960 case nir_op_ineg:
1961 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1962 /* fall through */
1963 case nir_op_fabs:
1964 case nir_op_fneg:
1965 case nir_op_fsat:
1966 unreachable("not reached: should be lowered by lower_source mods");
1967
1968 case nir_op_fdiv:
1969 unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
1970
1971 case nir_op_fmod:
1972 unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
1973
1974 case nir_op_fsub:
1975 case nir_op_isub:
1976 unreachable("not reached: should be handled by ir_sub_to_add_neg");
1977
1978 default:
1979 unreachable("Unimplemented ALU operation");
1980 }
1981
1982 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1983 * to sign extend the low bit to 0/~0
1984 */
1985 if (devinfo->gen <= 5 &&
1986 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
1987 BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1988 dst_reg masked = dst_reg(this, glsl_type::int_type);
1989 masked.writemask = dst.writemask;
1990 emit(AND(masked, src_reg(dst), brw_imm_d(1)));
1991 src_reg masked_neg = src_reg(masked);
1992 masked_neg.negate = true;
1993 emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
1994 }
1995 }
1996
1997 void
nir_emit_jump(nir_jump_instr * instr)1998 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
1999 {
2000 switch (instr->type) {
2001 case nir_jump_break:
2002 emit(BRW_OPCODE_BREAK);
2003 break;
2004
2005 case nir_jump_continue:
2006 emit(BRW_OPCODE_CONTINUE);
2007 break;
2008
2009 case nir_jump_return:
2010 /* fall through */
2011 default:
2012 unreachable("unknown jump");
2013 }
2014 }
2015
2016 static enum ir_texture_opcode
ir_texture_opcode_for_nir_texop(nir_texop texop)2017 ir_texture_opcode_for_nir_texop(nir_texop texop)
2018 {
2019 enum ir_texture_opcode op;
2020
2021 switch (texop) {
2022 case nir_texop_lod: op = ir_lod; break;
2023 case nir_texop_query_levels: op = ir_query_levels; break;
2024 case nir_texop_texture_samples: op = ir_texture_samples; break;
2025 case nir_texop_tex: op = ir_tex; break;
2026 case nir_texop_tg4: op = ir_tg4; break;
2027 case nir_texop_txb: op = ir_txb; break;
2028 case nir_texop_txd: op = ir_txd; break;
2029 case nir_texop_txf: op = ir_txf; break;
2030 case nir_texop_txf_ms: op = ir_txf_ms; break;
2031 case nir_texop_txl: op = ir_txl; break;
2032 case nir_texop_txs: op = ir_txs; break;
2033 case nir_texop_samples_identical: op = ir_samples_identical; break;
2034 default:
2035 unreachable("unknown texture opcode");
2036 }
2037
2038 return op;
2039 }
2040
2041 static const glsl_type *
glsl_type_for_nir_alu_type(nir_alu_type alu_type,unsigned components)2042 glsl_type_for_nir_alu_type(nir_alu_type alu_type,
2043 unsigned components)
2044 {
2045 return glsl_type::get_instance(brw_glsl_base_type_for_nir_type(alu_type),
2046 components, 1);
2047 }
2048
2049 void
nir_emit_texture(nir_tex_instr * instr)2050 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
2051 {
2052 unsigned texture = instr->texture_index;
2053 unsigned sampler = instr->sampler_index;
2054 src_reg texture_reg = brw_imm_ud(texture);
2055 src_reg sampler_reg = brw_imm_ud(sampler);
2056 src_reg coordinate;
2057 const glsl_type *coord_type = NULL;
2058 src_reg shadow_comparator;
2059 src_reg offset_value;
2060 src_reg lod, lod2;
2061 src_reg sample_index;
2062 src_reg mcs;
2063
2064 const glsl_type *dest_type =
2065 glsl_type_for_nir_alu_type(instr->dest_type,
2066 nir_tex_instr_dest_size(instr));
2067 dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
2068
2069 /* The hardware requires a LOD for buffer textures */
2070 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
2071 lod = brw_imm_d(0);
2072
2073 /* Load the texture operation sources */
2074 uint32_t constant_offset = 0;
2075 for (unsigned i = 0; i < instr->num_srcs; i++) {
2076 switch (instr->src[i].src_type) {
2077 case nir_tex_src_comparator:
2078 shadow_comparator = get_nir_src(instr->src[i].src,
2079 BRW_REGISTER_TYPE_F, 1);
2080 break;
2081
2082 case nir_tex_src_coord: {
2083 unsigned src_size = nir_tex_instr_src_size(instr, i);
2084
2085 switch (instr->op) {
2086 case nir_texop_txf:
2087 case nir_texop_txf_ms:
2088 case nir_texop_samples_identical:
2089 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
2090 src_size);
2091 coord_type = glsl_type::ivec(src_size);
2092 break;
2093
2094 default:
2095 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2096 src_size);
2097 coord_type = glsl_type::vec(src_size);
2098 break;
2099 }
2100 break;
2101 }
2102
2103 case nir_tex_src_ddx:
2104 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2105 nir_tex_instr_src_size(instr, i));
2106 break;
2107
2108 case nir_tex_src_ddy:
2109 lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2110 nir_tex_instr_src_size(instr, i));
2111 break;
2112
2113 case nir_tex_src_lod:
2114 switch (instr->op) {
2115 case nir_texop_txs:
2116 case nir_texop_txf:
2117 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2118 break;
2119
2120 default:
2121 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
2122 break;
2123 }
2124 break;
2125
2126 case nir_tex_src_ms_index: {
2127 sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2128 break;
2129 }
2130
2131 case nir_tex_src_offset: {
2132 nir_const_value *const_offset =
2133 nir_src_as_const_value(instr->src[i].src);
2134 if (!const_offset ||
2135 !brw_texture_offset(const_offset->i32,
2136 nir_tex_instr_src_size(instr, i),
2137 &constant_offset)) {
2138 offset_value =
2139 get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
2140 }
2141 break;
2142 }
2143
2144 case nir_tex_src_texture_offset: {
2145 /* The highest texture which may be used by this operation is
2146 * the last element of the array. Mark it here, because the generator
2147 * doesn't have enough information to determine the bound.
2148 */
2149 uint32_t array_size = instr->texture_array_size;
2150 uint32_t max_used = texture + array_size - 1;
2151 if (instr->op == nir_texop_tg4) {
2152 max_used += prog_data->base.binding_table.gather_texture_start;
2153 } else {
2154 max_used += prog_data->base.binding_table.texture_start;
2155 }
2156
2157 brw_mark_surface_used(&prog_data->base, max_used);
2158
2159 /* Emit code to evaluate the actual indexing expression */
2160 src_reg src = get_nir_src(instr->src[i].src, 1);
2161 src_reg temp(this, glsl_type::uint_type);
2162 emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
2163 texture_reg = emit_uniformize(temp);
2164 break;
2165 }
2166
2167 case nir_tex_src_sampler_offset: {
2168 /* Emit code to evaluate the actual indexing expression */
2169 src_reg src = get_nir_src(instr->src[i].src, 1);
2170 src_reg temp(this, glsl_type::uint_type);
2171 emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
2172 sampler_reg = emit_uniformize(temp);
2173 break;
2174 }
2175
2176 case nir_tex_src_projector:
2177 unreachable("Should be lowered by do_lower_texture_projection");
2178
2179 case nir_tex_src_bias:
2180 unreachable("LOD bias is not valid for vertex shaders.\n");
2181
2182 default:
2183 unreachable("unknown texture source");
2184 }
2185 }
2186
2187 if (instr->op == nir_texop_txf_ms ||
2188 instr->op == nir_texop_samples_identical) {
2189 assert(coord_type != NULL);
2190 if (devinfo->gen >= 7 &&
2191 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
2192 mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
2193 } else {
2194 mcs = brw_imm_ud(0u);
2195 }
2196 }
2197
2198 /* Stuff the channel select bits in the top of the texture offset */
2199 if (instr->op == nir_texop_tg4) {
2200 if (instr->component == 1 &&
2201 (key_tex->gather_channel_quirk_mask & (1 << texture))) {
2202 /* gather4 sampler is broken for green channel on RG32F --
2203 * we must ask for blue instead.
2204 */
2205 constant_offset |= 2 << 16;
2206 } else {
2207 constant_offset |= instr->component << 16;
2208 }
2209 }
2210
2211 ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
2212
2213 emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
2214 shadow_comparator,
2215 lod, lod2, sample_index,
2216 constant_offset, offset_value, mcs,
2217 texture, texture_reg, sampler_reg);
2218 }
2219
2220 void
nir_emit_undef(nir_ssa_undef_instr * instr)2221 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
2222 {
2223 nir_ssa_values[instr->def.index] =
2224 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32)));
2225 }
2226
2227 /* SIMD4x2 64bit data is stored in register space like this:
2228 *
2229 * r0.0:DF x0 y0 z0 w0
2230 * r1.0:DF x1 y1 z1 w1
2231 *
2232 * When we need to write data such as this to memory using 32-bit write
2233 * messages we need to shuffle it in this fashion:
2234 *
2235 * r0.0:DF x0 y0 x1 y1 (to be written at base offset)
2236 * r0.0:DF z0 w0 z1 w1 (to be written at base offset + 16)
2237 *
2238 * We need to do the inverse operation when we read using 32-bit messages,
2239 * which we can do by applying the same exact shuffling on the 64-bit data
2240 * read, only that because the data for each vertex is positioned differently
2241 * we need to apply different channel enables.
2242 *
2243 * This function takes 64bit data and shuffles it as explained above.
2244 *
2245 * The @for_write parameter is used to specify if the shuffling is being done
2246 * for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit
2247 * write message (for_write = true), or instead we are doing the inverse
2248 * operation and we have just read 64-bit data using a 32-bit messages that we
2249 * need to shuffle to create valid SIMD4x2 64-bit data (for_write = false).
2250 *
2251 * If @block and @ref are non-NULL, then the shuffling is done after @ref,
2252 * otherwise the instructions are emitted normally at the end. The function
2253 * returns the last instruction inserted.
2254 *
2255 * Notice that @src and @dst cannot be the same register.
2256 */
2257 vec4_instruction *
shuffle_64bit_data(dst_reg dst,src_reg src,bool for_write,bblock_t * block,vec4_instruction * ref)2258 vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write,
2259 bblock_t *block, vec4_instruction *ref)
2260 {
2261 assert(type_sz(src.type) == 8);
2262 assert(type_sz(dst.type) == 8);
2263 assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE));
2264 assert(!ref == !block);
2265
2266 const vec4_builder bld = !ref ? vec4_builder(this).at_end() :
2267 vec4_builder(this).at(block, ref->next);
2268
2269 /* Resolve swizzle in src */
2270 vec4_instruction *inst;
2271 if (src.swizzle != BRW_SWIZZLE_XYZW) {
2272 dst_reg data = dst_reg(this, glsl_type::dvec4_type);
2273 inst = bld.MOV(data, src);
2274 src = src_reg(data);
2275 }
2276
2277 /* dst+0.XY = src+0.XY */
2278 inst = bld.group(4, 0).MOV(writemask(dst, WRITEMASK_XY), src);
2279
2280 /* dst+0.ZW = src+1.XY */
2281 inst = bld.group(4, for_write ? 1 : 0)
2282 .MOV(writemask(dst, WRITEMASK_ZW),
2283 swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY));
2284
2285 /* dst+1.XY = src+0.ZW */
2286 inst = bld.group(4, for_write ? 0 : 1)
2287 .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY),
2288 swizzle(src, BRW_SWIZZLE_ZWZW));
2289
2290 /* dst+1.ZW = src+1.ZW */
2291 inst = bld.group(4, 1)
2292 .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW),
2293 byte_offset(src, REG_SIZE));
2294
2295 return inst;
2296 }
2297
2298 }
2299