1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 /* Sample from the MCS surface attached to this multisample texture. */
36 fs_reg
emit_mcs_fetch(const fs_reg & coordinate,unsigned components,const fs_reg & texture)37 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
38 const fs_reg &texture)
39 {
40 const fs_reg dest = vgrf(glsl_type::uvec4_type);
41
42 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
43 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
44 srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
45 srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
46 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
47 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
48
49 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
50 ARRAY_SIZE(srcs));
51
52 /* We only care about one or two regs of response, but the sampler always
53 * writes 4/8.
54 */
55 inst->size_written = 4 * dest.component_size(inst->exec_size);
56
57 return dest;
58 }
59
60 /**
61 * Apply workarounds for Gen6 gather with UINT/SINT
62 */
63 void
emit_gen6_gather_wa(uint8_t wa,fs_reg dst)64 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
65 {
66 if (!wa)
67 return;
68
69 int width = (wa & WA_8BIT) ? 8 : 16;
70
71 for (int i = 0; i < 4; i++) {
72 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
73 /* Convert from UNORM to UINT */
74 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
75 bld.MOV(dst, dst_f);
76
77 if (wa & WA_SIGN) {
78 /* Reinterpret the UINT value as a signed INT value by
79 * shifting the sign bit into place, then shifting back
80 * preserving sign.
81 */
82 bld.SHL(dst, dst, brw_imm_d(32 - width));
83 bld.ASR(dst, dst, brw_imm_d(32 - width));
84 }
85
86 dst = offset(dst, bld, 1);
87 }
88 }
89
90 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
91 void
emit_dummy_fs()92 fs_visitor::emit_dummy_fs()
93 {
94 int reg_width = dispatch_width / 8;
95
96 /* Everyone's favorite color. */
97 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
98 for (int i = 0; i < 4; i++) {
99 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
100 brw_imm_f(color[i]));
101 }
102
103 fs_inst *write;
104 write = bld.emit(FS_OPCODE_FB_WRITE);
105 write->eot = true;
106 if (devinfo->gen >= 6) {
107 write->base_mrf = 2;
108 write->mlen = 4 * reg_width;
109 } else {
110 write->header_size = 2;
111 write->base_mrf = 0;
112 write->mlen = 2 + 4 * reg_width;
113 }
114
115 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
116 * varying to avoid GPU hangs, so set that.
117 */
118 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
119 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
120 memset(wm_prog_data->urb_setup, -1,
121 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
122
123 /* We don't have any uniforms. */
124 stage_prog_data->nr_params = 0;
125 stage_prog_data->nr_pull_params = 0;
126 stage_prog_data->curb_read_length = 0;
127 stage_prog_data->dispatch_grf_start_reg = 2;
128 wm_prog_data->dispatch_grf_start_reg_2 = 2;
129 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
130
131 calculate_cfg();
132 }
133
134 /* The register location here is relative to the start of the URB
135 * data. It will get adjusted to be a real location before
136 * generate_code() time.
137 */
138 struct brw_reg
interp_reg(int location,int channel)139 fs_visitor::interp_reg(int location, int channel)
140 {
141 assert(stage == MESA_SHADER_FRAGMENT);
142 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
143 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
144 int stride = (channel & 1) * 4;
145
146 assert(prog_data->urb_setup[location] != -1);
147
148 return brw_vec1_grf(regnr, stride);
149 }
150
151 /** Emits the interpolation for the varying inputs. */
152 void
emit_interpolation_setup_gen4()153 fs_visitor::emit_interpolation_setup_gen4()
154 {
155 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
156
157 fs_builder abld = bld.annotate("compute pixel centers");
158 this->pixel_x = vgrf(glsl_type::uint_type);
159 this->pixel_y = vgrf(glsl_type::uint_type);
160 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
161 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
162 abld.ADD(this->pixel_x,
163 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
164 fs_reg(brw_imm_v(0x10101010)));
165 abld.ADD(this->pixel_y,
166 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
167 fs_reg(brw_imm_v(0x11001100)));
168
169 abld = bld.annotate("compute pixel deltas from v0");
170
171 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
172 vgrf(glsl_type::vec2_type);
173 const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
174 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
175 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
176
177 if (devinfo->has_pln && dispatch_width == 16) {
178 for (unsigned i = 0; i < 2; i++) {
179 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
180 half(this->pixel_x, i), xstart);
181 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
182 half(this->pixel_y, i), ystart);
183 }
184 } else {
185 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
186 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
187 }
188
189 abld = bld.annotate("compute pos.w and 1/pos.w");
190 /* Compute wpos.w. It's always in our setup, since it's needed to
191 * interpolate the other attributes.
192 */
193 this->wpos_w = vgrf(glsl_type::float_type);
194 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
195 interp_reg(VARYING_SLOT_POS, 3));
196 /* Compute the pixel 1/W value from wpos.w. */
197 this->pixel_w = vgrf(glsl_type::float_type);
198 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
199 }
200
201 /** Emits the interpolation for the varying inputs. */
202 void
emit_interpolation_setup_gen6()203 fs_visitor::emit_interpolation_setup_gen6()
204 {
205 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
206
207 fs_builder abld = bld.annotate("compute pixel centers");
208 if (devinfo->gen >= 8 || dispatch_width == 8) {
209 /* The "Register Region Restrictions" page says for BDW (and newer,
210 * presumably):
211 *
212 * "When destination spans two registers, the source may be one or
213 * two registers. The destination elements must be evenly split
214 * between the two registers."
215 *
216 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
217 * compute our pixel centers.
218 */
219 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
220 BRW_REGISTER_TYPE_UW);
221
222 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
223 dbld.ADD(int_pixel_xy,
224 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
225 fs_reg(brw_imm_v(0x11001010)));
226
227 this->pixel_x = vgrf(glsl_type::float_type);
228 this->pixel_y = vgrf(glsl_type::float_type);
229 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
230 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
231 } else {
232 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
233 *
234 * "When destination spans two registers, the source MUST span two
235 * registers."
236 *
237 * Since the GRF source of the ADD will only read a single register, we
238 * must do two separate ADDs in SIMD16.
239 */
240 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
241 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
242 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
243 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
244 abld.ADD(int_pixel_x,
245 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
246 fs_reg(brw_imm_v(0x10101010)));
247 abld.ADD(int_pixel_y,
248 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
249 fs_reg(brw_imm_v(0x11001100)));
250
251 /* As of gen6, we can no longer mix float and int sources. We have
252 * to turn the integer pixel centers into floats for their actual
253 * use.
254 */
255 this->pixel_x = vgrf(glsl_type::float_type);
256 this->pixel_y = vgrf(glsl_type::float_type);
257 abld.MOV(this->pixel_x, int_pixel_x);
258 abld.MOV(this->pixel_y, int_pixel_y);
259 }
260
261 abld = bld.annotate("compute pos.w");
262 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
263 this->wpos_w = vgrf(glsl_type::float_type);
264 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
265
266 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
267 uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
268 (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
269 1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
270
271 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
272 uint8_t reg = payload.barycentric_coord_reg[i];
273 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
274
275 if (devinfo->needs_unlit_centroid_workaround &&
276 (centroid_modes & (1 << i))) {
277 /* Get the pixel/sample mask into f0 so that we know which
278 * pixels are lit. Then, for each channel that is unlit,
279 * replace the centroid data with non-centroid data.
280 */
281 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
282
283 uint8_t pixel_reg = payload.barycentric_coord_reg[i - 1];
284
285 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
286 bld.half(0).MOV(brw_vec8_grf(reg, 0),
287 brw_vec8_grf(pixel_reg, 0)));
288 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
289 bld.half(0).MOV(brw_vec8_grf(reg + 1, 0),
290 brw_vec8_grf(pixel_reg + 1, 0)));
291 if (dispatch_width == 16) {
292 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
293 bld.half(1).MOV(brw_vec8_grf(reg + 2, 0),
294 brw_vec8_grf(pixel_reg + 2, 0)));
295 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
296 bld.half(1).MOV(brw_vec8_grf(reg + 3, 0),
297 brw_vec8_grf(pixel_reg + 3, 0)));
298 }
299 assert(dispatch_width != 32); /* not implemented yet */
300 }
301 }
302 }
303
304 static enum brw_conditional_mod
cond_for_alpha_func(GLenum func)305 cond_for_alpha_func(GLenum func)
306 {
307 switch(func) {
308 case GL_GREATER:
309 return BRW_CONDITIONAL_G;
310 case GL_GEQUAL:
311 return BRW_CONDITIONAL_GE;
312 case GL_LESS:
313 return BRW_CONDITIONAL_L;
314 case GL_LEQUAL:
315 return BRW_CONDITIONAL_LE;
316 case GL_EQUAL:
317 return BRW_CONDITIONAL_EQ;
318 case GL_NOTEQUAL:
319 return BRW_CONDITIONAL_NEQ;
320 default:
321 unreachable("Not reached");
322 }
323 }
324
325 /**
326 * Alpha test support for when we compile it into the shader instead
327 * of using the normal fixed-function alpha test.
328 */
329 void
emit_alpha_test()330 fs_visitor::emit_alpha_test()
331 {
332 assert(stage == MESA_SHADER_FRAGMENT);
333 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
334 const fs_builder abld = bld.annotate("Alpha test");
335
336 fs_inst *cmp;
337 if (key->alpha_test_func == GL_ALWAYS)
338 return;
339
340 if (key->alpha_test_func == GL_NEVER) {
341 /* f0.1 = 0 */
342 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
343 BRW_REGISTER_TYPE_UW));
344 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
345 BRW_CONDITIONAL_NEQ);
346 } else {
347 /* RT0 alpha */
348 fs_reg color = offset(outputs[0], bld, 3);
349
350 /* f0.1 &= func(color, ref) */
351 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
352 cond_for_alpha_func(key->alpha_test_func));
353 }
354 cmp->predicate = BRW_PREDICATE_NORMAL;
355 cmp->flag_subreg = 1;
356 }
357
358 fs_inst *
emit_single_fb_write(const fs_builder & bld,fs_reg color0,fs_reg color1,fs_reg src0_alpha,unsigned components)359 fs_visitor::emit_single_fb_write(const fs_builder &bld,
360 fs_reg color0, fs_reg color1,
361 fs_reg src0_alpha, unsigned components)
362 {
363 assert(stage == MESA_SHADER_FRAGMENT);
364 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
365
366 /* Hand over gl_FragDepth or the payload depth. */
367 const fs_reg dst_depth = (payload.dest_depth_reg ?
368 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
369 fs_reg());
370 fs_reg src_depth, src_stencil;
371
372 if (source_depth_to_render_target) {
373 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
374 src_depth = frag_depth;
375 else
376 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
377 }
378
379 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
380 src_stencil = frag_stencil;
381
382 const fs_reg sources[] = {
383 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
384 (prog_data->uses_omask ? sample_mask : fs_reg()),
385 brw_imm_ud(components)
386 };
387 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
388 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
389 sources, ARRAY_SIZE(sources));
390
391 if (prog_data->uses_kill) {
392 write->predicate = BRW_PREDICATE_NORMAL;
393 write->flag_subreg = 1;
394 }
395
396 return write;
397 }
398
399 void
emit_fb_writes()400 fs_visitor::emit_fb_writes()
401 {
402 assert(stage == MESA_SHADER_FRAGMENT);
403 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
404 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
405
406 fs_inst *inst = NULL;
407
408 if (source_depth_to_render_target && devinfo->gen == 6) {
409 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
410 * would require SIMD8 moves of each half to message regs, e.g. by using
411 * the SIMD lowering pass. Unfortunately this is more difficult than it
412 * sounds because the SIMD8 single-source message lacks channel selects
413 * for the second and third subspans.
414 */
415 limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
416 }
417
418 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
419 /* From the 'Render Target Write message' section of the docs:
420 * "Output Stencil is not supported with SIMD16 Render Target Write
421 * Messages."
422 */
423 limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
424 "in SIMD16+ mode.\n");
425 }
426
427 for (int target = 0; target < key->nr_color_regions; target++) {
428 /* Skip over outputs that weren't written. */
429 if (this->outputs[target].file == BAD_FILE)
430 continue;
431
432 const fs_builder abld = bld.annotate(
433 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
434
435 fs_reg src0_alpha;
436 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
437 src0_alpha = offset(outputs[0], bld, 3);
438
439 inst = emit_single_fb_write(abld, this->outputs[target],
440 this->dual_src_output, src0_alpha, 4);
441 inst->target = target;
442 }
443
444 prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE);
445 assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
446
447 if (inst == NULL) {
448 /* Even if there's no color buffers enabled, we still need to send
449 * alpha out the pipeline to our null renderbuffer to support
450 * alpha-testing, alpha-to-coverage, and so on.
451 */
452 /* FINISHME: Factor out this frequently recurring pattern into a
453 * helper function.
454 */
455 const fs_reg srcs[] = { reg_undef, reg_undef,
456 reg_undef, offset(this->outputs[0], bld, 3) };
457 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
458 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
459
460 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
461 inst->target = 0;
462 }
463
464 inst->eot = true;
465 }
466
467 void
setup_uniform_clipplane_values()468 fs_visitor::setup_uniform_clipplane_values()
469 {
470 const struct brw_vs_prog_key *key =
471 (const struct brw_vs_prog_key *) this->key;
472
473 if (key->nr_userclip_plane_consts == 0)
474 return;
475
476 assert(stage_prog_data->nr_params == uniforms);
477 brw_stage_prog_data_add_params(stage_prog_data,
478 key->nr_userclip_plane_consts * 4);
479
480 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
481 this->userplane[i] = fs_reg(UNIFORM, uniforms);
482 for (int j = 0; j < 4; ++j) {
483 stage_prog_data->param[uniforms + j] =
484 BRW_PARAM_BUILTIN_CLIP_PLANE(i, j);
485 }
486 uniforms += 4;
487 }
488 }
489
490 /**
491 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
492 *
493 * This does nothing if the shader uses gl_ClipDistance or user clipping is
494 * disabled altogether.
495 */
compute_clip_distance()496 void fs_visitor::compute_clip_distance()
497 {
498 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
499 const struct brw_vs_prog_key *key =
500 (const struct brw_vs_prog_key *) this->key;
501
502 /* Bail unless some sort of legacy clipping is enabled */
503 if (key->nr_userclip_plane_consts == 0)
504 return;
505
506 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
507 *
508 * "If a linked set of shaders forming the vertex stage contains no
509 * static write to gl_ClipVertex or gl_ClipDistance, but the
510 * application has requested clipping against user clip planes through
511 * the API, then the coordinate written to gl_Position is used for
512 * comparison against the user clip planes."
513 *
514 * This function is only called if the shader didn't write to
515 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
516 * if the user wrote to it; otherwise we use gl_Position.
517 */
518
519 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
520 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
521 clip_vertex = VARYING_SLOT_POS;
522
523 /* If the clip vertex isn't written, skip this. Typically this means
524 * the GS will set up clipping. */
525 if (outputs[clip_vertex].file == BAD_FILE)
526 return;
527
528 setup_uniform_clipplane_values();
529
530 const fs_builder abld = bld.annotate("user clip distances");
531
532 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
533 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
534
535 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
536 fs_reg u = userplane[i];
537 const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4],
538 bld, i & 3);
539
540 abld.MUL(output, outputs[clip_vertex], u);
541 for (int j = 1; j < 4; j++) {
542 u.nr = userplane[i].nr + j;
543 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
544 }
545 }
546 }
547
548 void
emit_urb_writes(const fs_reg & gs_vertex_count)549 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
550 {
551 int slot, urb_offset, length;
552 int starting_urb_offset = 0;
553 const struct brw_vue_prog_data *vue_prog_data =
554 brw_vue_prog_data(this->prog_data);
555 const struct brw_vs_prog_key *vs_key =
556 (const struct brw_vs_prog_key *) this->key;
557 const GLbitfield64 psiz_mask =
558 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
559 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
560 bool flush;
561 fs_reg sources[8];
562 fs_reg urb_handle;
563
564 if (stage == MESA_SHADER_TESS_EVAL)
565 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
566 else
567 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
568
569 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
570 int header_size = 1;
571 fs_reg per_slot_offsets;
572
573 if (stage == MESA_SHADER_GEOMETRY) {
574 const struct brw_gs_prog_data *gs_prog_data =
575 brw_gs_prog_data(this->prog_data);
576
577 /* We need to increment the Global Offset to skip over the control data
578 * header and the extra "Vertex Count" field (1 HWord) at the beginning
579 * of the VUE. We're counting in OWords, so the units are doubled.
580 */
581 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
582 if (gs_prog_data->static_vertex_count == -1)
583 starting_urb_offset += 2;
584
585 /* We also need to use per-slot offsets. The per-slot offset is the
586 * Vertex Count. SIMD8 mode processes 8 different primitives at a
587 * time; each may output a different number of vertices.
588 */
589 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
590 header_size++;
591
592 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
593 const int output_vertex_size_owords =
594 gs_prog_data->output_vertex_size_hwords * 2;
595
596 if (gs_vertex_count.file == IMM) {
597 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
598 gs_vertex_count.ud);
599 } else {
600 per_slot_offsets = vgrf(glsl_type::int_type);
601 bld.MUL(per_slot_offsets, gs_vertex_count,
602 brw_imm_ud(output_vertex_size_owords));
603 }
604 }
605
606 length = 0;
607 urb_offset = starting_urb_offset;
608 flush = false;
609
610 /* SSO shaders can have VUE slots allocated which are never actually
611 * written to, so ignore them when looking for the last (written) slot.
612 */
613 int last_slot = vue_map->num_slots - 1;
614 while (last_slot > 0 &&
615 (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
616 outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
617 last_slot--;
618 }
619
620 bool urb_written = false;
621 for (slot = 0; slot < vue_map->num_slots; slot++) {
622 int varying = vue_map->slot_to_varying[slot];
623 switch (varying) {
624 case VARYING_SLOT_PSIZ: {
625 /* The point size varying slot is the vue header and is always in the
626 * vue map. But often none of the special varyings that live there
627 * are written and in that case we can skip writing to the vue
628 * header, provided the corresponding state properly clamps the
629 * values further down the pipeline. */
630 if ((vue_map->slots_valid & psiz_mask) == 0) {
631 assert(length == 0);
632 urb_offset++;
633 break;
634 }
635
636 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
637 bld.MOV(zero, brw_imm_ud(0u));
638
639 sources[length++] = zero;
640 if (vue_map->slots_valid & VARYING_BIT_LAYER)
641 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
642 else
643 sources[length++] = zero;
644
645 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
646 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
647 else
648 sources[length++] = zero;
649
650 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
651 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
652 else
653 sources[length++] = zero;
654 break;
655 }
656 case BRW_VARYING_SLOT_NDC:
657 case VARYING_SLOT_EDGE:
658 unreachable("unexpected scalar vs output");
659 break;
660
661 default:
662 /* gl_Position is always in the vue map, but isn't always written by
663 * the shader. Other varyings (clip distances) get added to the vue
664 * map but don't always get written. In those cases, the
665 * corresponding this->output[] slot will be invalid we and can skip
666 * the urb write for the varying. If we've already queued up a vue
667 * slot for writing we flush a mlen 5 urb write, otherwise we just
668 * advance the urb_offset.
669 */
670 if (varying == BRW_VARYING_SLOT_PAD ||
671 this->outputs[varying].file == BAD_FILE) {
672 if (length > 0)
673 flush = true;
674 else
675 urb_offset++;
676 break;
677 }
678
679 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
680 (varying == VARYING_SLOT_COL0 ||
681 varying == VARYING_SLOT_COL1 ||
682 varying == VARYING_SLOT_BFC0 ||
683 varying == VARYING_SLOT_BFC1)) {
684 /* We need to clamp these guys, so do a saturating MOV into a
685 * temp register and use that for the payload.
686 */
687 for (int i = 0; i < 4; i++) {
688 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
689 fs_reg src = offset(this->outputs[varying], bld, i);
690 set_saturate(true, bld.MOV(reg, src));
691 sources[length++] = reg;
692 }
693 } else {
694 for (unsigned i = 0; i < 4; i++)
695 sources[length++] = offset(this->outputs[varying], bld, i);
696 }
697 break;
698 }
699
700 const fs_builder abld = bld.annotate("URB write");
701
702 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
703 * the last slot or if we need to flush (see BAD_FILE varying case
704 * above), emit a URB write send now to flush out the data.
705 */
706 if (length == 8 || (length > 0 && slot == last_slot))
707 flush = true;
708 if (flush) {
709 fs_reg *payload_sources =
710 ralloc_array(mem_ctx, fs_reg, length + header_size);
711 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
712 BRW_REGISTER_TYPE_F);
713 payload_sources[0] = urb_handle;
714
715 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
716 payload_sources[1] = per_slot_offsets;
717
718 memcpy(&payload_sources[header_size], sources,
719 length * sizeof sources[0]);
720
721 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
722 header_size);
723
724 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
725 inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
726 inst->mlen = length + header_size;
727 inst->offset = urb_offset;
728 urb_offset = starting_urb_offset + slot + 1;
729 length = 0;
730 flush = false;
731 urb_written = true;
732 }
733 }
734
735 /* If we don't have any valid slots to write, just do a minimal urb write
736 * send to terminate the shader. This includes 1 slot of undefined data,
737 * because it's invalid to write 0 data:
738 *
739 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
740 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
741 * Write Data Payload:
742 *
743 * "The write data payload can be between 1 and 8 message phases long."
744 */
745 if (!urb_written) {
746 /* For GS, just turn EmitVertex() into a no-op. We don't want it to
747 * end the thread, and emit_gs_thread_end() already emits a SEND with
748 * EOT at the end of the program for us.
749 */
750 if (stage == MESA_SHADER_GEOMETRY)
751 return;
752
753 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
754 bld.exec_all().MOV(payload, urb_handle);
755
756 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
757 inst->eot = true;
758 inst->mlen = 2;
759 inst->offset = 1;
760 return;
761 }
762 }
763
764 void
emit_cs_terminate()765 fs_visitor::emit_cs_terminate()
766 {
767 assert(devinfo->gen >= 7);
768
769 /* We are getting the thread ID from the compute shader header */
770 assert(stage == MESA_SHADER_COMPUTE);
771
772 /* We can't directly send from g0, since sends with EOT have to use
773 * g112-127. So, copy it to a virtual register, The register allocator will
774 * make sure it uses the appropriate register range.
775 */
776 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
777 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
778 bld.group(8, 0).exec_all().MOV(payload, g0);
779
780 /* Send a message to the thread spawner to terminate the thread. */
781 fs_inst *inst = bld.exec_all()
782 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
783 inst->eot = true;
784 }
785
786 void
emit_barrier()787 fs_visitor::emit_barrier()
788 {
789 assert(devinfo->gen >= 7);
790 const uint32_t barrier_id_mask =
791 devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
792
793 /* We are getting the barrier ID from the compute shader header */
794 assert(stage == MESA_SHADER_COMPUTE);
795
796 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
797
798 /* Clear the message payload */
799 bld.exec_all().group(8, 0).MOV(payload, brw_imm_ud(0u));
800
801 /* Copy the barrier id from r0.2 to the message payload reg.2 */
802 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
803 bld.exec_all().group(1, 0).AND(component(payload, 2), r0_2,
804 brw_imm_ud(barrier_id_mask));
805
806 /* Emit a gateway "barrier" message using the payload we set up, followed
807 * by a wait instruction.
808 */
809 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
810 }
811
fs_visitor(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const void * key,struct brw_stage_prog_data * prog_data,struct gl_program * prog,const nir_shader * shader,unsigned dispatch_width,int shader_time_index,const struct brw_vue_map * input_vue_map)812 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
813 void *mem_ctx,
814 const void *key,
815 struct brw_stage_prog_data *prog_data,
816 struct gl_program *prog,
817 const nir_shader *shader,
818 unsigned dispatch_width,
819 int shader_time_index,
820 const struct brw_vue_map *input_vue_map)
821 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
822 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
823 input_vue_map(input_vue_map),
824 dispatch_width(dispatch_width),
825 shader_time_index(shader_time_index),
826 bld(fs_builder(this, dispatch_width).at_end())
827 {
828 init();
829 }
830
fs_visitor(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,struct brw_gs_compile * c,struct brw_gs_prog_data * prog_data,const nir_shader * shader,int shader_time_index)831 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
832 void *mem_ctx,
833 struct brw_gs_compile *c,
834 struct brw_gs_prog_data *prog_data,
835 const nir_shader *shader,
836 int shader_time_index)
837 : backend_shader(compiler, log_data, mem_ctx, shader,
838 &prog_data->base.base),
839 key(&c->key), gs_compile(c),
840 prog_data(&prog_data->base.base), prog(NULL),
841 dispatch_width(8),
842 shader_time_index(shader_time_index),
843 bld(fs_builder(this, dispatch_width).at_end())
844 {
845 init();
846 }
847
848
849 void
init()850 fs_visitor::init()
851 {
852 switch (stage) {
853 case MESA_SHADER_FRAGMENT:
854 key_tex = &((const brw_wm_prog_key *) key)->tex;
855 break;
856 case MESA_SHADER_VERTEX:
857 key_tex = &((const brw_vs_prog_key *) key)->tex;
858 break;
859 case MESA_SHADER_TESS_CTRL:
860 key_tex = &((const brw_tcs_prog_key *) key)->tex;
861 break;
862 case MESA_SHADER_TESS_EVAL:
863 key_tex = &((const brw_tes_prog_key *) key)->tex;
864 break;
865 case MESA_SHADER_GEOMETRY:
866 key_tex = &((const brw_gs_prog_key *) key)->tex;
867 break;
868 case MESA_SHADER_COMPUTE:
869 key_tex = &((const brw_cs_prog_key*) key)->tex;
870 break;
871 default:
872 unreachable("unhandled shader stage");
873 }
874
875 this->max_dispatch_width = 32;
876 this->prog_data = this->stage_prog_data;
877
878 this->failed = false;
879
880 this->nir_locals = NULL;
881 this->nir_ssa_values = NULL;
882
883 memset(&this->payload, 0, sizeof(this->payload));
884 this->source_depth_to_render_target = false;
885 this->runtime_check_aads_emit = false;
886 this->first_non_payload_grf = 0;
887 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
888
889 this->virtual_grf_start = NULL;
890 this->virtual_grf_end = NULL;
891 this->live_intervals = NULL;
892 this->regs_live_at_ip = NULL;
893
894 this->uniforms = 0;
895 this->last_scratch = 0;
896 this->pull_constant_loc = NULL;
897 this->push_constant_loc = NULL;
898
899 this->promoted_constants = 0,
900
901 this->grf_used = 0;
902 this->spilled_any_registers = false;
903 }
904
~fs_visitor()905 fs_visitor::~fs_visitor()
906 {
907 }
908