• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Overview:
3  *   This is the generic MTD driver for NAND flash devices. It should be
4  *   capable of working with almost all NAND chips currently available.
5  *
6  *	Additional technical information is available on
7  *	http://www.linux-mtd.infradead.org/doc/nand.html
8  *
9  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
11  *
12  *  Credits:
13  *	David Woodhouse for adding multichip support
14  *
15  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16  *	rework for 2K page size chips
17  *
18  *  TODO:
19  *	Enable cached programming for 2k page size chips
20  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
21  *	if we have HW ECC support.
22  *	BBT table is not serialized, has to be fixed
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29 
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <common.h>
32 #if CONFIG_IS_ENABLED(OF_CONTROL)
33 #include <fdtdec.h>
34 #endif
35 #include <malloc.h>
36 #include <watchdog.h>
37 #include <linux/err.h>
38 #include <linux/compat.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/rawnand.h>
41 #include <linux/mtd/nand_ecc.h>
42 #include <linux/mtd/nand_bch.h>
43 #ifdef CONFIG_MTD_PARTITIONS
44 #include <linux/mtd/partitions.h>
45 #endif
46 #include <asm/io.h>
47 #include <linux/errno.h>
48 
49 /* Define default oob placement schemes for large and small page devices */
50 static struct nand_ecclayout nand_oob_8 = {
51 	.eccbytes = 3,
52 	.eccpos = {0, 1, 2},
53 	.oobfree = {
54 		{.offset = 3,
55 		 .length = 2},
56 		{.offset = 6,
57 		 .length = 2} }
58 };
59 
60 static struct nand_ecclayout nand_oob_16 = {
61 	.eccbytes = 6,
62 	.eccpos = {0, 1, 2, 3, 6, 7},
63 	.oobfree = {
64 		{.offset = 8,
65 		 . length = 8} }
66 };
67 
68 static struct nand_ecclayout nand_oob_64 = {
69 	.eccbytes = 24,
70 	.eccpos = {
71 		   40, 41, 42, 43, 44, 45, 46, 47,
72 		   48, 49, 50, 51, 52, 53, 54, 55,
73 		   56, 57, 58, 59, 60, 61, 62, 63},
74 	.oobfree = {
75 		{.offset = 2,
76 		 .length = 38} }
77 };
78 
79 static struct nand_ecclayout nand_oob_128 = {
80 	.eccbytes = 48,
81 	.eccpos = {
82 		   80, 81, 82, 83, 84, 85, 86, 87,
83 		   88, 89, 90, 91, 92, 93, 94, 95,
84 		   96, 97, 98, 99, 100, 101, 102, 103,
85 		   104, 105, 106, 107, 108, 109, 110, 111,
86 		   112, 113, 114, 115, 116, 117, 118, 119,
87 		   120, 121, 122, 123, 124, 125, 126, 127},
88 	.oobfree = {
89 		{.offset = 2,
90 		 .length = 78} }
91 };
92 
93 static int nand_get_device(struct mtd_info *mtd, int new_state);
94 
95 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
96 			     struct mtd_oob_ops *ops);
97 
98 /*
99  * For devices which display every fart in the system on a separate LED. Is
100  * compiled away when LED support is disabled.
101  */
102 DEFINE_LED_TRIGGER(nand_led_trigger);
103 
check_offs_len(struct mtd_info * mtd,loff_t ofs,uint64_t len)104 static int check_offs_len(struct mtd_info *mtd,
105 					loff_t ofs, uint64_t len)
106 {
107 	struct nand_chip *chip = mtd_to_nand(mtd);
108 	int ret = 0;
109 
110 	/* Start address must align on block boundary */
111 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
112 		pr_debug("%s: unaligned address\n", __func__);
113 		ret = -EINVAL;
114 	}
115 
116 	/* Length must align on block boundary */
117 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
118 		pr_debug("%s: length not block aligned\n", __func__);
119 		ret = -EINVAL;
120 	}
121 
122 	return ret;
123 }
124 
125 /**
126  * nand_release_device - [GENERIC] release chip
127  * @mtd: MTD device structure
128  *
129  * Release chip lock and wake up anyone waiting on the device.
130  */
nand_release_device(struct mtd_info * mtd)131 static void nand_release_device(struct mtd_info *mtd)
132 {
133 	struct nand_chip *chip = mtd_to_nand(mtd);
134 
135 	/* De-select the NAND device */
136 	chip->select_chip(mtd, -1);
137 }
138 
139 /**
140  * nand_read_byte - [DEFAULT] read one byte from the chip
141  * @mtd: MTD device structure
142  *
143  * Default read function for 8bit buswidth
144  */
nand_read_byte(struct mtd_info * mtd)145 uint8_t nand_read_byte(struct mtd_info *mtd)
146 {
147 	struct nand_chip *chip = mtd_to_nand(mtd);
148 	return readb(chip->IO_ADDR_R);
149 }
150 
151 /**
152  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
153  * @mtd: MTD device structure
154  *
155  * Default read function for 16bit buswidth with endianness conversion.
156  *
157  */
nand_read_byte16(struct mtd_info * mtd)158 static uint8_t nand_read_byte16(struct mtd_info *mtd)
159 {
160 	struct nand_chip *chip = mtd_to_nand(mtd);
161 	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
162 }
163 
164 /**
165  * nand_read_word - [DEFAULT] read one word from the chip
166  * @mtd: MTD device structure
167  *
168  * Default read function for 16bit buswidth without endianness conversion.
169  */
nand_read_word(struct mtd_info * mtd)170 static u16 nand_read_word(struct mtd_info *mtd)
171 {
172 	struct nand_chip *chip = mtd_to_nand(mtd);
173 	return readw(chip->IO_ADDR_R);
174 }
175 
176 /**
177  * nand_select_chip - [DEFAULT] control CE line
178  * @mtd: MTD device structure
179  * @chipnr: chipnumber to select, -1 for deselect
180  *
181  * Default select function for 1 chip devices.
182  */
nand_select_chip(struct mtd_info * mtd,int chipnr)183 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
184 {
185 	struct nand_chip *chip = mtd_to_nand(mtd);
186 
187 	switch (chipnr) {
188 	case -1:
189 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
190 		break;
191 	case 0:
192 		break;
193 
194 	default:
195 		BUG();
196 	}
197 }
198 
199 /**
200  * nand_write_byte - [DEFAULT] write single byte to chip
201  * @mtd: MTD device structure
202  * @byte: value to write
203  *
204  * Default function to write a byte to I/O[7:0]
205  */
nand_write_byte(struct mtd_info * mtd,uint8_t byte)206 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
207 {
208 	struct nand_chip *chip = mtd_to_nand(mtd);
209 
210 	chip->write_buf(mtd, &byte, 1);
211 }
212 
213 /**
214  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
215  * @mtd: MTD device structure
216  * @byte: value to write
217  *
218  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
219  */
nand_write_byte16(struct mtd_info * mtd,uint8_t byte)220 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
221 {
222 	struct nand_chip *chip = mtd_to_nand(mtd);
223 	uint16_t word = byte;
224 
225 	/*
226 	 * It's not entirely clear what should happen to I/O[15:8] when writing
227 	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
228 	 *
229 	 *    When the host supports a 16-bit bus width, only data is
230 	 *    transferred at the 16-bit width. All address and command line
231 	 *    transfers shall use only the lower 8-bits of the data bus. During
232 	 *    command transfers, the host may place any value on the upper
233 	 *    8-bits of the data bus. During address transfers, the host shall
234 	 *    set the upper 8-bits of the data bus to 00h.
235 	 *
236 	 * One user of the write_byte callback is nand_onfi_set_features. The
237 	 * four parameters are specified to be written to I/O[7:0], but this is
238 	 * neither an address nor a command transfer. Let's assume a 0 on the
239 	 * upper I/O lines is OK.
240 	 */
241 	chip->write_buf(mtd, (uint8_t *)&word, 2);
242 }
243 
iowrite8_rep(void * addr,const uint8_t * buf,int len)244 static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
245 {
246 	int i;
247 
248 	for (i = 0; i < len; i++)
249 		writeb(buf[i], addr);
250 }
ioread8_rep(void * addr,uint8_t * buf,int len)251 static void ioread8_rep(void *addr, uint8_t *buf, int len)
252 {
253 	int i;
254 
255 	for (i = 0; i < len; i++)
256 		buf[i] = readb(addr);
257 }
258 
ioread16_rep(void * addr,void * buf,int len)259 static void ioread16_rep(void *addr, void *buf, int len)
260 {
261 	int i;
262  	u16 *p = (u16 *) buf;
263 
264 	for (i = 0; i < len; i++)
265 		p[i] = readw(addr);
266 }
267 
iowrite16_rep(void * addr,void * buf,int len)268 static void iowrite16_rep(void *addr, void *buf, int len)
269 {
270 	int i;
271         u16 *p = (u16 *) buf;
272 
273         for (i = 0; i < len; i++)
274                 writew(p[i], addr);
275 }
276 
277 /**
278  * nand_write_buf - [DEFAULT] write buffer to chip
279  * @mtd: MTD device structure
280  * @buf: data buffer
281  * @len: number of bytes to write
282  *
283  * Default write function for 8bit buswidth.
284  */
nand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)285 void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
286 {
287 	struct nand_chip *chip = mtd_to_nand(mtd);
288 
289 	iowrite8_rep(chip->IO_ADDR_W, buf, len);
290 }
291 
292 /**
293  * nand_read_buf - [DEFAULT] read chip data into buffer
294  * @mtd: MTD device structure
295  * @buf: buffer to store date
296  * @len: number of bytes to read
297  *
298  * Default read function for 8bit buswidth.
299  */
nand_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)300 void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
301 {
302 	struct nand_chip *chip = mtd_to_nand(mtd);
303 
304 	ioread8_rep(chip->IO_ADDR_R, buf, len);
305 }
306 
307 /**
308  * nand_write_buf16 - [DEFAULT] write buffer to chip
309  * @mtd: MTD device structure
310  * @buf: data buffer
311  * @len: number of bytes to write
312  *
313  * Default write function for 16bit buswidth.
314  */
nand_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)315 void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
316 {
317 	struct nand_chip *chip = mtd_to_nand(mtd);
318 	u16 *p = (u16 *) buf;
319 
320 	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
321 }
322 
323 /**
324  * nand_read_buf16 - [DEFAULT] read chip data into buffer
325  * @mtd: MTD device structure
326  * @buf: buffer to store date
327  * @len: number of bytes to read
328  *
329  * Default read function for 16bit buswidth.
330  */
nand_read_buf16(struct mtd_info * mtd,uint8_t * buf,int len)331 void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
332 {
333 	struct nand_chip *chip = mtd_to_nand(mtd);
334 	u16 *p = (u16 *) buf;
335 
336 	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
337 }
338 
339 /**
340  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
341  * @mtd: MTD device structure
342  * @ofs: offset from device start
343  *
344  * Check, if the block is bad.
345  */
nand_block_bad(struct mtd_info * mtd,loff_t ofs)346 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
347 {
348 	int page, res = 0, i = 0;
349 	struct nand_chip *chip = mtd_to_nand(mtd);
350 	u16 bad;
351 
352 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
353 		ofs += mtd->erasesize - mtd->writesize;
354 
355 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
356 
357 	do {
358 		if (chip->options & NAND_BUSWIDTH_16) {
359 			chip->cmdfunc(mtd, NAND_CMD_READOOB,
360 					chip->badblockpos & 0xFE, page);
361 			bad = cpu_to_le16(chip->read_word(mtd));
362 			if (chip->badblockpos & 0x1)
363 				bad >>= 8;
364 			else
365 				bad &= 0xFF;
366 		} else {
367 			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
368 					page);
369 			bad = chip->read_byte(mtd);
370 		}
371 
372 		if (likely(chip->badblockbits == 8))
373 			res = bad != 0xFF;
374 		else
375 			res = hweight8(bad) < chip->badblockbits;
376 		ofs += mtd->writesize;
377 		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
378 		i++;
379 	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
380 
381 	return res;
382 }
383 
384 /**
385  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
386  * @mtd: MTD device structure
387  * @ofs: offset from device start
388  *
389  * This is the default implementation, which can be overridden by a hardware
390  * specific driver. It provides the details for writing a bad block marker to a
391  * block.
392  */
nand_default_block_markbad(struct mtd_info * mtd,loff_t ofs)393 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
394 {
395 	struct nand_chip *chip = mtd_to_nand(mtd);
396 	struct mtd_oob_ops ops;
397 	uint8_t buf[2] = { 0, 0 };
398 	int ret = 0, res, i = 0;
399 
400 	memset(&ops, 0, sizeof(ops));
401 	ops.oobbuf = buf;
402 	ops.ooboffs = chip->badblockpos;
403 	if (chip->options & NAND_BUSWIDTH_16) {
404 		ops.ooboffs &= ~0x01;
405 		ops.len = ops.ooblen = 2;
406 	} else {
407 		ops.len = ops.ooblen = 1;
408 	}
409 	ops.mode = MTD_OPS_PLACE_OOB;
410 
411 	/* Write to first/last page(s) if necessary */
412 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
413 		ofs += mtd->erasesize - mtd->writesize;
414 	do {
415 		res = nand_do_write_oob(mtd, ofs, &ops);
416 		if (!ret)
417 			ret = res;
418 
419 		i++;
420 		ofs += mtd->writesize;
421 	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
422 
423 	return ret;
424 }
425 
426 /**
427  * nand_block_markbad_lowlevel - mark a block bad
428  * @mtd: MTD device structure
429  * @ofs: offset from device start
430  *
431  * This function performs the generic NAND bad block marking steps (i.e., bad
432  * block table(s) and/or marker(s)). We only allow the hardware driver to
433  * specify how to write bad block markers to OOB (chip->block_markbad).
434  *
435  * We try operations in the following order:
436  *  (1) erase the affected block, to allow OOB marker to be written cleanly
437  *  (2) write bad block marker to OOB area of affected block (unless flag
438  *      NAND_BBT_NO_OOB_BBM is present)
439  *  (3) update the BBT
440  * Note that we retain the first error encountered in (2) or (3), finish the
441  * procedures, and dump the error in the end.
442 */
nand_block_markbad_lowlevel(struct mtd_info * mtd,loff_t ofs)443 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
444 {
445 	struct nand_chip *chip = mtd_to_nand(mtd);
446 	int res, ret = 0;
447 
448 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
449 		struct erase_info einfo;
450 
451 		/* Attempt erase before marking OOB */
452 		memset(&einfo, 0, sizeof(einfo));
453 		einfo.mtd = mtd;
454 		einfo.addr = ofs;
455 		einfo.len = 1ULL << chip->phys_erase_shift;
456 		nand_erase_nand(mtd, &einfo, 0);
457 
458 		/* Write bad block marker to OOB */
459 		nand_get_device(mtd, FL_WRITING);
460 		ret = chip->block_markbad(mtd, ofs);
461 		nand_release_device(mtd);
462 	}
463 
464 	/* Mark block bad in BBT */
465 	if (chip->bbt) {
466 		res = nand_markbad_bbt(mtd, ofs);
467 		if (!ret)
468 			ret = res;
469 	}
470 
471 	if (!ret)
472 		mtd->ecc_stats.badblocks++;
473 
474 	return ret;
475 }
476 
477 /**
478  * nand_check_wp - [GENERIC] check if the chip is write protected
479  * @mtd: MTD device structure
480  *
481  * Check, if the device is write protected. The function expects, that the
482  * device is already selected.
483  */
nand_check_wp(struct mtd_info * mtd)484 static int nand_check_wp(struct mtd_info *mtd)
485 {
486 	struct nand_chip *chip = mtd_to_nand(mtd);
487 
488 	/* Broken xD cards report WP despite being writable */
489 	if (chip->options & NAND_BROKEN_XD)
490 		return 0;
491 
492 	/* Check the WP bit */
493 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
494 	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
495 }
496 
497 /**
498  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
499  * @mtd: MTD device structure
500  * @ofs: offset from device start
501  *
502  * Check if the block is marked as reserved.
503  */
nand_block_isreserved(struct mtd_info * mtd,loff_t ofs)504 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
505 {
506 	struct nand_chip *chip = mtd_to_nand(mtd);
507 
508 	if (!chip->bbt)
509 		return 0;
510 	/* Return info from the table */
511 	return nand_isreserved_bbt(mtd, ofs);
512 }
513 
514 /**
515  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
516  * @mtd: MTD device structure
517  * @ofs: offset from device start
518  * @allowbbt: 1, if its allowed to access the bbt area
519  *
520  * Check, if the block is bad. Either by reading the bad block table or
521  * calling of the scan function.
522  */
nand_block_checkbad(struct mtd_info * mtd,loff_t ofs,int allowbbt)523 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
524 {
525 	struct nand_chip *chip = mtd_to_nand(mtd);
526 
527 	if (!(chip->options & NAND_SKIP_BBTSCAN) &&
528 	    !(chip->options & NAND_BBT_SCANNED)) {
529 		chip->options |= NAND_BBT_SCANNED;
530 		chip->scan_bbt(mtd);
531 	}
532 
533 	if (!chip->bbt)
534 		return chip->block_bad(mtd, ofs);
535 
536 	/* Return info from the table */
537 	return nand_isbad_bbt(mtd, ofs, allowbbt);
538 }
539 
540 /**
541  * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
542  * @mtd: MTD device structure
543  *
544  * Wait for the ready pin after a command, and warn if a timeout occurs.
545  */
nand_wait_ready(struct mtd_info * mtd)546 void nand_wait_ready(struct mtd_info *mtd)
547 {
548 	struct nand_chip *chip = mtd_to_nand(mtd);
549 	u32 timeo = (CONFIG_SYS_HZ * 400) / 1000;
550 	u32 time_start;
551 
552 	time_start = get_timer(0);
553 	/* Wait until command is processed or timeout occurs */
554 	while (get_timer(time_start) < timeo) {
555 		if (chip->dev_ready)
556 			if (chip->dev_ready(mtd))
557 				break;
558 	}
559 
560 	if (!chip->dev_ready(mtd))
561 		pr_warn("timeout while waiting for chip to become ready\n");
562 }
563 EXPORT_SYMBOL_GPL(nand_wait_ready);
564 
565 /**
566  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
567  * @mtd: MTD device structure
568  * @timeo: Timeout in ms
569  *
570  * Wait for status ready (i.e. command done) or timeout.
571  */
nand_wait_status_ready(struct mtd_info * mtd,unsigned long timeo)572 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
573 {
574 	register struct nand_chip *chip = mtd_to_nand(mtd);
575 	u32 time_start;
576 
577 	timeo = (CONFIG_SYS_HZ * timeo) / 1000;
578 	time_start = get_timer(0);
579 	while (get_timer(time_start) < timeo) {
580 		if ((chip->read_byte(mtd) & NAND_STATUS_READY))
581 			break;
582 		WATCHDOG_RESET();
583 	}
584 };
585 
586 /**
587  * nand_command - [DEFAULT] Send command to NAND device
588  * @mtd: MTD device structure
589  * @command: the command to be sent
590  * @column: the column address for this command, -1 if none
591  * @page_addr: the page address for this command, -1 if none
592  *
593  * Send command to NAND device. This function is used for small page devices
594  * (512 Bytes per page).
595  */
nand_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)596 static void nand_command(struct mtd_info *mtd, unsigned int command,
597 			 int column, int page_addr)
598 {
599 	register struct nand_chip *chip = mtd_to_nand(mtd);
600 	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
601 
602 	/* Write out the command to the device */
603 	if (command == NAND_CMD_SEQIN) {
604 		int readcmd;
605 
606 		if (column >= mtd->writesize) {
607 			/* OOB area */
608 			column -= mtd->writesize;
609 			readcmd = NAND_CMD_READOOB;
610 		} else if (column < 256) {
611 			/* First 256 bytes --> READ0 */
612 			readcmd = NAND_CMD_READ0;
613 		} else {
614 			column -= 256;
615 			readcmd = NAND_CMD_READ1;
616 		}
617 		chip->cmd_ctrl(mtd, readcmd, ctrl);
618 		ctrl &= ~NAND_CTRL_CHANGE;
619 	}
620 	chip->cmd_ctrl(mtd, command, ctrl);
621 
622 	/* Address cycle, when necessary */
623 	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
624 	/* Serially input address */
625 	if (column != -1) {
626 		/* Adjust columns for 16 bit buswidth */
627 		if (chip->options & NAND_BUSWIDTH_16 &&
628 				!nand_opcode_8bits(command))
629 			column >>= 1;
630 		chip->cmd_ctrl(mtd, column, ctrl);
631 		ctrl &= ~NAND_CTRL_CHANGE;
632 	}
633 	if (page_addr != -1) {
634 		chip->cmd_ctrl(mtd, page_addr, ctrl);
635 		ctrl &= ~NAND_CTRL_CHANGE;
636 		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
637 		if (chip->options & NAND_ROW_ADDR_3)
638 			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
639 	}
640 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
641 
642 	/*
643 	 * Program and erase have their own busy handlers status and sequential
644 	 * in needs no delay
645 	 */
646 	switch (command) {
647 
648 	case NAND_CMD_PAGEPROG:
649 	case NAND_CMD_ERASE1:
650 	case NAND_CMD_ERASE2:
651 	case NAND_CMD_SEQIN:
652 	case NAND_CMD_STATUS:
653 	case NAND_CMD_READID:
654 	case NAND_CMD_SET_FEATURES:
655 		return;
656 
657 	case NAND_CMD_RESET:
658 		if (chip->dev_ready)
659 			break;
660 		udelay(chip->chip_delay);
661 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
662 			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
663 		chip->cmd_ctrl(mtd,
664 			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
665 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
666 		nand_wait_status_ready(mtd, 250);
667 		return;
668 
669 		/* This applies to read commands */
670 	default:
671 		/*
672 		 * If we don't have access to the busy pin, we apply the given
673 		 * command delay
674 		 */
675 		if (!chip->dev_ready) {
676 			udelay(chip->chip_delay);
677 			return;
678 		}
679 	}
680 	/*
681 	 * Apply this short delay always to ensure that we do wait tWB in
682 	 * any case on any machine.
683 	 */
684 	ndelay(100);
685 
686 	nand_wait_ready(mtd);
687 }
688 
689 /**
690  * nand_command_lp - [DEFAULT] Send command to NAND large page device
691  * @mtd: MTD device structure
692  * @command: the command to be sent
693  * @column: the column address for this command, -1 if none
694  * @page_addr: the page address for this command, -1 if none
695  *
696  * Send command to NAND device. This is the version for the new large page
697  * devices. We don't have the separate regions as we have in the small page
698  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
699  */
nand_command_lp(struct mtd_info * mtd,unsigned int command,int column,int page_addr)700 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
701 			    int column, int page_addr)
702 {
703 	register struct nand_chip *chip = mtd_to_nand(mtd);
704 
705 	/* Emulate NAND_CMD_READOOB */
706 	if (command == NAND_CMD_READOOB) {
707 		column += mtd->writesize;
708 		command = NAND_CMD_READ0;
709 	}
710 
711 	/* Command latch cycle */
712 	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
713 
714 	if (column != -1 || page_addr != -1) {
715 		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
716 
717 		/* Serially input address */
718 		if (column != -1) {
719 			/* Adjust columns for 16 bit buswidth */
720 			if (chip->options & NAND_BUSWIDTH_16 &&
721 					!nand_opcode_8bits(command))
722 				column >>= 1;
723 			chip->cmd_ctrl(mtd, column, ctrl);
724 			ctrl &= ~NAND_CTRL_CHANGE;
725 			chip->cmd_ctrl(mtd, column >> 8, ctrl);
726 		}
727 		if (page_addr != -1) {
728 			chip->cmd_ctrl(mtd, page_addr, ctrl);
729 			chip->cmd_ctrl(mtd, page_addr >> 8,
730 				       NAND_NCE | NAND_ALE);
731 			if (chip->options & NAND_ROW_ADDR_3)
732 				chip->cmd_ctrl(mtd, page_addr >> 16,
733 					       NAND_NCE | NAND_ALE);
734 		}
735 	}
736 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
737 
738 	/*
739 	 * Program and erase have their own busy handlers status, sequential
740 	 * in and status need no delay.
741 	 */
742 	switch (command) {
743 
744 	case NAND_CMD_CACHEDPROG:
745 	case NAND_CMD_PAGEPROG:
746 	case NAND_CMD_ERASE1:
747 	case NAND_CMD_ERASE2:
748 	case NAND_CMD_SEQIN:
749 	case NAND_CMD_RNDIN:
750 	case NAND_CMD_STATUS:
751 	case NAND_CMD_READID:
752 	case NAND_CMD_SET_FEATURES:
753 		return;
754 
755 	case NAND_CMD_RESET:
756 		if (chip->dev_ready)
757 			break;
758 		udelay(chip->chip_delay);
759 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
760 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
761 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
762 			       NAND_NCE | NAND_CTRL_CHANGE);
763 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
764 		nand_wait_status_ready(mtd, 250);
765 		return;
766 
767 	case NAND_CMD_RNDOUT:
768 		/* No ready / busy check necessary */
769 		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
770 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
771 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
772 			       NAND_NCE | NAND_CTRL_CHANGE);
773 		return;
774 
775 	case NAND_CMD_READ0:
776 		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
777 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
778 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
779 			       NAND_NCE | NAND_CTRL_CHANGE);
780 
781 		/* This applies to read commands */
782 	default:
783 		/*
784 		 * If we don't have access to the busy pin, we apply the given
785 		 * command delay.
786 		 */
787 		if (!chip->dev_ready) {
788 			udelay(chip->chip_delay);
789 			return;
790 		}
791 	}
792 
793 	/*
794 	 * Apply this short delay always to ensure that we do wait tWB in
795 	 * any case on any machine.
796 	 */
797 	ndelay(100);
798 
799 	nand_wait_ready(mtd);
800 }
801 
802 /**
803  * panic_nand_get_device - [GENERIC] Get chip for selected access
804  * @chip: the nand chip descriptor
805  * @mtd: MTD device structure
806  * @new_state: the state which is requested
807  *
808  * Used when in panic, no locks are taken.
809  */
panic_nand_get_device(struct nand_chip * chip,struct mtd_info * mtd,int new_state)810 static void panic_nand_get_device(struct nand_chip *chip,
811 		      struct mtd_info *mtd, int new_state)
812 {
813 	/* Hardware controller shared among independent devices */
814 	chip->controller->active = chip;
815 	chip->state = new_state;
816 }
817 
818 /**
819  * nand_get_device - [GENERIC] Get chip for selected access
820  * @mtd: MTD device structure
821  * @new_state: the state which is requested
822  *
823  * Get the device and lock it for exclusive access
824  */
825 static int
nand_get_device(struct mtd_info * mtd,int new_state)826 nand_get_device(struct mtd_info *mtd, int new_state)
827 {
828 	struct nand_chip *chip = mtd_to_nand(mtd);
829 	chip->state = new_state;
830 	return 0;
831 }
832 
833 /**
834  * panic_nand_wait - [GENERIC] wait until the command is done
835  * @mtd: MTD device structure
836  * @chip: NAND chip structure
837  * @timeo: timeout
838  *
839  * Wait for command done. This is a helper function for nand_wait used when
840  * we are in interrupt context. May happen when in panic and trying to write
841  * an oops through mtdoops.
842  */
panic_nand_wait(struct mtd_info * mtd,struct nand_chip * chip,unsigned long timeo)843 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
844 			    unsigned long timeo)
845 {
846 	int i;
847 	for (i = 0; i < timeo; i++) {
848 		if (chip->dev_ready) {
849 			if (chip->dev_ready(mtd))
850 				break;
851 		} else {
852 			if (chip->read_byte(mtd) & NAND_STATUS_READY)
853 				break;
854 		}
855 		mdelay(1);
856 	}
857 }
858 
859 /**
860  * nand_wait - [DEFAULT] wait until the command is done
861  * @mtd: MTD device structure
862  * @chip: NAND chip structure
863  *
864  * Wait for command done. This applies to erase and program only.
865  */
nand_wait(struct mtd_info * mtd,struct nand_chip * chip)866 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
867 {
868 	int status;
869 	unsigned long timeo = 400;
870 
871 	led_trigger_event(nand_led_trigger, LED_FULL);
872 
873 	/*
874 	 * Apply this short delay always to ensure that we do wait tWB in any
875 	 * case on any machine.
876 	 */
877 	ndelay(100);
878 
879 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
880 
881  	u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
882  	u32 time_start;
883 
884  	time_start = get_timer(0);
885  	while (get_timer(time_start) < timer) {
886 		if (chip->dev_ready) {
887 			if (chip->dev_ready(mtd))
888 				break;
889 		} else {
890 			if (chip->read_byte(mtd) & NAND_STATUS_READY)
891 				break;
892 		}
893 	}
894 	led_trigger_event(nand_led_trigger, LED_OFF);
895 
896 	status = (int)chip->read_byte(mtd);
897 	/* This can happen if in case of timeout or buggy dev_ready */
898 	WARN_ON(!(status & NAND_STATUS_READY));
899 	return status;
900 }
901 
902 /**
903  * nand_reset_data_interface - Reset data interface and timings
904  * @chip: The NAND chip
905  * @chipnr: Internal die id
906  *
907  * Reset the Data interface and timings to ONFI mode 0.
908  *
909  * Returns 0 for success or negative error code otherwise.
910  */
nand_reset_data_interface(struct nand_chip * chip,int chipnr)911 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
912 {
913 	struct mtd_info *mtd = nand_to_mtd(chip);
914 	const struct nand_data_interface *conf;
915 	int ret;
916 
917 	if (!chip->setup_data_interface)
918 		return 0;
919 
920 	/*
921 	 * The ONFI specification says:
922 	 * "
923 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
924 	 * interface, the host shall use the Reset (FFh) command
925 	 * using SDR timing mode 0. A device in any timing mode is
926 	 * required to recognize Reset (FFh) command issued in SDR
927 	 * timing mode 0.
928 	 * "
929 	 *
930 	 * Configure the data interface in SDR mode and set the
931 	 * timings to timing mode 0.
932 	 */
933 
934 	conf = nand_get_default_data_interface();
935 	ret = chip->setup_data_interface(mtd, chipnr, conf);
936 	if (ret)
937 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
938 
939 	return ret;
940 }
941 
942 /**
943  * nand_setup_data_interface - Setup the best data interface and timings
944  * @chip: The NAND chip
945  * @chipnr: Internal die id
946  *
947  * Find and configure the best data interface and NAND timings supported by
948  * the chip and the driver.
949  * First tries to retrieve supported timing modes from ONFI information,
950  * and if the NAND chip does not support ONFI, relies on the
951  * ->onfi_timing_mode_default specified in the nand_ids table.
952  *
953  * Returns 0 for success or negative error code otherwise.
954  */
nand_setup_data_interface(struct nand_chip * chip,int chipnr)955 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
956 {
957 	struct mtd_info *mtd = nand_to_mtd(chip);
958 	int ret;
959 
960 	if (!chip->setup_data_interface || !chip->data_interface)
961 		return 0;
962 
963 	/*
964 	 * Ensure the timing mode has been changed on the chip side
965 	 * before changing timings on the controller side.
966 	 */
967 	if (chip->onfi_version) {
968 		u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
969 			chip->onfi_timing_mode_default,
970 		};
971 
972 		ret = chip->onfi_set_features(mtd, chip,
973 				ONFI_FEATURE_ADDR_TIMING_MODE,
974 				tmode_param);
975 		if (ret)
976 			goto err;
977 	}
978 
979 	ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
980 err:
981 	return ret;
982 }
983 
984 /**
985  * nand_init_data_interface - find the best data interface and timings
986  * @chip: The NAND chip
987  *
988  * Find the best data interface and NAND timings supported by the chip
989  * and the driver.
990  * First tries to retrieve supported timing modes from ONFI information,
991  * and if the NAND chip does not support ONFI, relies on the
992  * ->onfi_timing_mode_default specified in the nand_ids table. After this
993  * function nand_chip->data_interface is initialized with the best timing mode
994  * available.
995  *
996  * Returns 0 for success or negative error code otherwise.
997  */
nand_init_data_interface(struct nand_chip * chip)998 static int nand_init_data_interface(struct nand_chip *chip)
999 {
1000 	struct mtd_info *mtd = nand_to_mtd(chip);
1001 	int modes, mode, ret;
1002 
1003 	if (!chip->setup_data_interface)
1004 		return 0;
1005 
1006 	/*
1007 	 * First try to identify the best timings from ONFI parameters and
1008 	 * if the NAND does not support ONFI, fallback to the default ONFI
1009 	 * timing mode.
1010 	 */
1011 	modes = onfi_get_async_timing_mode(chip);
1012 	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1013 		if (!chip->onfi_timing_mode_default)
1014 			return 0;
1015 
1016 		modes = GENMASK(chip->onfi_timing_mode_default, 0);
1017 	}
1018 
1019 	chip->data_interface = kzalloc(sizeof(*chip->data_interface),
1020 				       GFP_KERNEL);
1021 	if (!chip->data_interface)
1022 		return -ENOMEM;
1023 
1024 	for (mode = fls(modes) - 1; mode >= 0; mode--) {
1025 		ret = onfi_init_data_interface(chip, chip->data_interface,
1026 					       NAND_SDR_IFACE, mode);
1027 		if (ret)
1028 			continue;
1029 
1030 		/* Pass -1 to only */
1031 		ret = chip->setup_data_interface(mtd,
1032 						 NAND_DATA_IFACE_CHECK_ONLY,
1033 						 chip->data_interface);
1034 		if (!ret) {
1035 			chip->onfi_timing_mode_default = mode;
1036 			break;
1037 		}
1038 	}
1039 
1040 	return 0;
1041 }
1042 
nand_release_data_interface(struct nand_chip * chip)1043 static void __maybe_unused nand_release_data_interface(struct nand_chip *chip)
1044 {
1045 	kfree(chip->data_interface);
1046 }
1047 
1048 /**
1049  * nand_reset - Reset and initialize a NAND device
1050  * @chip: The NAND chip
1051  * @chipnr: Internal die id
1052  *
1053  * Returns 0 for success or negative error code otherwise
1054  */
nand_reset(struct nand_chip * chip,int chipnr)1055 int nand_reset(struct nand_chip *chip, int chipnr)
1056 {
1057 	struct mtd_info *mtd = nand_to_mtd(chip);
1058 	int ret;
1059 
1060 	ret = nand_reset_data_interface(chip, chipnr);
1061 	if (ret)
1062 		return ret;
1063 
1064 	/*
1065 	 * The CS line has to be released before we can apply the new NAND
1066 	 * interface settings, hence this weird ->select_chip() dance.
1067 	 */
1068 	chip->select_chip(mtd, chipnr);
1069 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1070 	chip->select_chip(mtd, -1);
1071 
1072 	chip->select_chip(mtd, chipnr);
1073 	ret = nand_setup_data_interface(chip, chipnr);
1074 	chip->select_chip(mtd, -1);
1075 	if (ret)
1076 		return ret;
1077 
1078 	return 0;
1079 }
1080 
1081 /**
1082  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1083  * @buf: buffer to test
1084  * @len: buffer length
1085  * @bitflips_threshold: maximum number of bitflips
1086  *
1087  * Check if a buffer contains only 0xff, which means the underlying region
1088  * has been erased and is ready to be programmed.
1089  * The bitflips_threshold specify the maximum number of bitflips before
1090  * considering the region is not erased.
1091  * Note: The logic of this function has been extracted from the memweight
1092  * implementation, except that nand_check_erased_buf function exit before
1093  * testing the whole buffer if the number of bitflips exceed the
1094  * bitflips_threshold value.
1095  *
1096  * Returns a positive number of bitflips less than or equal to
1097  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1098  * threshold.
1099  */
nand_check_erased_buf(void * buf,int len,int bitflips_threshold)1100 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1101 {
1102 	const unsigned char *bitmap = buf;
1103 	int bitflips = 0;
1104 	int weight;
1105 
1106 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
1107 	     len--, bitmap++) {
1108 		weight = hweight8(*bitmap);
1109 		bitflips += BITS_PER_BYTE - weight;
1110 		if (unlikely(bitflips > bitflips_threshold))
1111 			return -EBADMSG;
1112 	}
1113 
1114 	for (; len >= 4; len -= 4, bitmap += 4) {
1115 		weight = hweight32(*((u32 *)bitmap));
1116 		bitflips += 32 - weight;
1117 		if (unlikely(bitflips > bitflips_threshold))
1118 			return -EBADMSG;
1119 	}
1120 
1121 	for (; len > 0; len--, bitmap++) {
1122 		weight = hweight8(*bitmap);
1123 		bitflips += BITS_PER_BYTE - weight;
1124 		if (unlikely(bitflips > bitflips_threshold))
1125 			return -EBADMSG;
1126 	}
1127 
1128 	return bitflips;
1129 }
1130 
1131 /**
1132  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1133  *				 0xff data
1134  * @data: data buffer to test
1135  * @datalen: data length
1136  * @ecc: ECC buffer
1137  * @ecclen: ECC length
1138  * @extraoob: extra OOB buffer
1139  * @extraooblen: extra OOB length
1140  * @bitflips_threshold: maximum number of bitflips
1141  *
1142  * Check if a data buffer and its associated ECC and OOB data contains only
1143  * 0xff pattern, which means the underlying region has been erased and is
1144  * ready to be programmed.
1145  * The bitflips_threshold specify the maximum number of bitflips before
1146  * considering the region as not erased.
1147  *
1148  * Note:
1149  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1150  *    different from the NAND page size. When fixing bitflips, ECC engines will
1151  *    report the number of errors per chunk, and the NAND core infrastructure
1152  *    expect you to return the maximum number of bitflips for the whole page.
1153  *    This is why you should always use this function on a single chunk and
1154  *    not on the whole page. After checking each chunk you should update your
1155  *    max_bitflips value accordingly.
1156  * 2/ When checking for bitflips in erased pages you should not only check
1157  *    the payload data but also their associated ECC data, because a user might
1158  *    have programmed almost all bits to 1 but a few. In this case, we
1159  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
1160  *    this case.
1161  * 3/ The extraoob argument is optional, and should be used if some of your OOB
1162  *    data are protected by the ECC engine.
1163  *    It could also be used if you support subpages and want to attach some
1164  *    extra OOB data to an ECC chunk.
1165  *
1166  * Returns a positive number of bitflips less than or equal to
1167  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1168  * threshold. In case of success, the passed buffers are filled with 0xff.
1169  */
nand_check_erased_ecc_chunk(void * data,int datalen,void * ecc,int ecclen,void * extraoob,int extraooblen,int bitflips_threshold)1170 int nand_check_erased_ecc_chunk(void *data, int datalen,
1171 				void *ecc, int ecclen,
1172 				void *extraoob, int extraooblen,
1173 				int bitflips_threshold)
1174 {
1175 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1176 
1177 	data_bitflips = nand_check_erased_buf(data, datalen,
1178 					      bitflips_threshold);
1179 	if (data_bitflips < 0)
1180 		return data_bitflips;
1181 
1182 	bitflips_threshold -= data_bitflips;
1183 
1184 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1185 	if (ecc_bitflips < 0)
1186 		return ecc_bitflips;
1187 
1188 	bitflips_threshold -= ecc_bitflips;
1189 
1190 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1191 						  bitflips_threshold);
1192 	if (extraoob_bitflips < 0)
1193 		return extraoob_bitflips;
1194 
1195 	if (data_bitflips)
1196 		memset(data, 0xff, datalen);
1197 
1198 	if (ecc_bitflips)
1199 		memset(ecc, 0xff, ecclen);
1200 
1201 	if (extraoob_bitflips)
1202 		memset(extraoob, 0xff, extraooblen);
1203 
1204 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
1205 }
1206 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1207 
1208 /**
1209  * nand_read_page_raw - [INTERN] read raw page data without ecc
1210  * @mtd: mtd info structure
1211  * @chip: nand chip info structure
1212  * @buf: buffer to store read data
1213  * @oob_required: caller requires OOB data read to chip->oob_poi
1214  * @page: page number to read
1215  *
1216  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1217  */
nand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1218 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1219 			      uint8_t *buf, int oob_required, int page)
1220 {
1221 	chip->read_buf(mtd, buf, mtd->writesize);
1222 	if (oob_required)
1223 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1224 	return 0;
1225 }
1226 
1227 /**
1228  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1229  * @mtd: mtd info structure
1230  * @chip: nand chip info structure
1231  * @buf: buffer to store read data
1232  * @oob_required: caller requires OOB data read to chip->oob_poi
1233  * @page: page number to read
1234  *
1235  * We need a special oob layout and handling even when OOB isn't used.
1236  */
nand_read_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1237 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1238 				       struct nand_chip *chip, uint8_t *buf,
1239 				       int oob_required, int page)
1240 {
1241 	int eccsize = chip->ecc.size;
1242 	int eccbytes = chip->ecc.bytes;
1243 	uint8_t *oob = chip->oob_poi;
1244 	int steps, size;
1245 
1246 	for (steps = chip->ecc.steps; steps > 0; steps--) {
1247 		chip->read_buf(mtd, buf, eccsize);
1248 		buf += eccsize;
1249 
1250 		if (chip->ecc.prepad) {
1251 			chip->read_buf(mtd, oob, chip->ecc.prepad);
1252 			oob += chip->ecc.prepad;
1253 		}
1254 
1255 		chip->read_buf(mtd, oob, eccbytes);
1256 		oob += eccbytes;
1257 
1258 		if (chip->ecc.postpad) {
1259 			chip->read_buf(mtd, oob, chip->ecc.postpad);
1260 			oob += chip->ecc.postpad;
1261 		}
1262 	}
1263 
1264 	size = mtd->oobsize - (oob - chip->oob_poi);
1265 	if (size)
1266 		chip->read_buf(mtd, oob, size);
1267 
1268 	return 0;
1269 }
1270 
1271 /**
1272  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1273  * @mtd: mtd info structure
1274  * @chip: nand chip info structure
1275  * @buf: buffer to store read data
1276  * @oob_required: caller requires OOB data read to chip->oob_poi
1277  * @page: page number to read
1278  */
nand_read_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1279 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1280 				uint8_t *buf, int oob_required, int page)
1281 {
1282 	int i, eccsize = chip->ecc.size;
1283 	int eccbytes = chip->ecc.bytes;
1284 	int eccsteps = chip->ecc.steps;
1285 	uint8_t *p = buf;
1286 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1287 	uint8_t *ecc_code = chip->buffers->ecccode;
1288 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1289 	unsigned int max_bitflips = 0;
1290 
1291 	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1292 
1293 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1294 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1295 
1296 	for (i = 0; i < chip->ecc.total; i++)
1297 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1298 
1299 	eccsteps = chip->ecc.steps;
1300 	p = buf;
1301 
1302 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1303 		int stat;
1304 
1305 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1306 		if (stat < 0) {
1307 			mtd->ecc_stats.failed++;
1308 		} else {
1309 			mtd->ecc_stats.corrected += stat;
1310 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1311 		}
1312 	}
1313 	return max_bitflips;
1314 }
1315 
1316 /**
1317  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1318  * @mtd: mtd info structure
1319  * @chip: nand chip info structure
1320  * @data_offs: offset of requested data within the page
1321  * @readlen: data length
1322  * @bufpoi: buffer to store read data
1323  * @page: page number to read
1324  */
nand_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi,int page)1325 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1326 			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1327 			int page)
1328 {
1329 	int start_step, end_step, num_steps;
1330 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1331 	uint8_t *p;
1332 	int data_col_addr, i, gaps = 0;
1333 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1334 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1335 	int index;
1336 	unsigned int max_bitflips = 0;
1337 
1338 	/* Column address within the page aligned to ECC size (256bytes) */
1339 	start_step = data_offs / chip->ecc.size;
1340 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
1341 	num_steps = end_step - start_step + 1;
1342 	index = start_step * chip->ecc.bytes;
1343 
1344 	/* Data size aligned to ECC ecc.size */
1345 	datafrag_len = num_steps * chip->ecc.size;
1346 	eccfrag_len = num_steps * chip->ecc.bytes;
1347 
1348 	data_col_addr = start_step * chip->ecc.size;
1349 	/* If we read not a page aligned data */
1350 	if (data_col_addr != 0)
1351 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1352 
1353 	p = bufpoi + data_col_addr;
1354 	chip->read_buf(mtd, p, datafrag_len);
1355 
1356 	/* Calculate ECC */
1357 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1358 		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1359 
1360 	/*
1361 	 * The performance is faster if we position offsets according to
1362 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1363 	 */
1364 	for (i = 0; i < eccfrag_len - 1; i++) {
1365 		if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1366 			gaps = 1;
1367 			break;
1368 		}
1369 	}
1370 	if (gaps) {
1371 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1372 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1373 	} else {
1374 		/*
1375 		 * Send the command to read the particular ECC bytes take care
1376 		 * about buswidth alignment in read_buf.
1377 		 */
1378 		aligned_pos = eccpos[index] & ~(busw - 1);
1379 		aligned_len = eccfrag_len;
1380 		if (eccpos[index] & (busw - 1))
1381 			aligned_len++;
1382 		if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1383 			aligned_len++;
1384 
1385 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1386 					mtd->writesize + aligned_pos, -1);
1387 		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1388 	}
1389 
1390 	for (i = 0; i < eccfrag_len; i++)
1391 		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1392 
1393 	p = bufpoi + data_col_addr;
1394 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1395 		int stat;
1396 
1397 		stat = chip->ecc.correct(mtd, p,
1398 			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1399 		if (stat == -EBADMSG &&
1400 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1401 			/* check for empty pages with bitflips */
1402 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1403 						&chip->buffers->ecccode[i],
1404 						chip->ecc.bytes,
1405 						NULL, 0,
1406 						chip->ecc.strength);
1407 		}
1408 
1409 		if (stat < 0) {
1410 			mtd->ecc_stats.failed++;
1411 		} else {
1412 			mtd->ecc_stats.corrected += stat;
1413 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1414 		}
1415 	}
1416 	return max_bitflips;
1417 }
1418 
1419 /**
1420  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1421  * @mtd: mtd info structure
1422  * @chip: nand chip info structure
1423  * @buf: buffer to store read data
1424  * @oob_required: caller requires OOB data read to chip->oob_poi
1425  * @page: page number to read
1426  *
1427  * Not for syndrome calculating ECC controllers which need a special oob layout.
1428  */
nand_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1429 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1430 				uint8_t *buf, int oob_required, int page)
1431 {
1432 	int i, eccsize = chip->ecc.size;
1433 	int eccbytes = chip->ecc.bytes;
1434 	int eccsteps = chip->ecc.steps;
1435 	uint8_t *p = buf;
1436 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1437 	uint8_t *ecc_code = chip->buffers->ecccode;
1438 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1439 	unsigned int max_bitflips = 0;
1440 
1441 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1442 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1443 		chip->read_buf(mtd, p, eccsize);
1444 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1445 	}
1446 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1447 
1448 	for (i = 0; i < chip->ecc.total; i++)
1449 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1450 
1451 	eccsteps = chip->ecc.steps;
1452 	p = buf;
1453 
1454 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1455 		int stat;
1456 
1457 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1458 		if (stat == -EBADMSG &&
1459 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1460 			/* check for empty pages with bitflips */
1461 			stat = nand_check_erased_ecc_chunk(p, eccsize,
1462 						&ecc_code[i], eccbytes,
1463 						NULL, 0,
1464 						chip->ecc.strength);
1465 		}
1466 
1467 		if (stat < 0) {
1468 			mtd->ecc_stats.failed++;
1469 		} else {
1470 			mtd->ecc_stats.corrected += stat;
1471 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1472 		}
1473 	}
1474 	return max_bitflips;
1475 }
1476 
1477 /**
1478  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1479  * @mtd: mtd info structure
1480  * @chip: nand chip info structure
1481  * @buf: buffer to store read data
1482  * @oob_required: caller requires OOB data read to chip->oob_poi
1483  * @page: page number to read
1484  *
1485  * Hardware ECC for large page chips, require OOB to be read first. For this
1486  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1487  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1488  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1489  * the data area, by overwriting the NAND manufacturer bad block markings.
1490  */
nand_read_page_hwecc_oob_first(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1491 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1492 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1493 {
1494 	int i, eccsize = chip->ecc.size;
1495 	int eccbytes = chip->ecc.bytes;
1496 	int eccsteps = chip->ecc.steps;
1497 	uint8_t *p = buf;
1498 	uint8_t *ecc_code = chip->buffers->ecccode;
1499 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1500 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1501 	unsigned int max_bitflips = 0;
1502 
1503 	/* Read the OOB area first */
1504 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1505 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1506 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1507 
1508 	for (i = 0; i < chip->ecc.total; i++)
1509 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1510 
1511 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1512 		int stat;
1513 
1514 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1515 		chip->read_buf(mtd, p, eccsize);
1516 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1517 
1518 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1519 		if (stat == -EBADMSG &&
1520 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1521 			/* check for empty pages with bitflips */
1522 			stat = nand_check_erased_ecc_chunk(p, eccsize,
1523 						&ecc_code[i], eccbytes,
1524 						NULL, 0,
1525 						chip->ecc.strength);
1526 		}
1527 
1528 		if (stat < 0) {
1529 			mtd->ecc_stats.failed++;
1530 		} else {
1531 			mtd->ecc_stats.corrected += stat;
1532 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1533 		}
1534 	}
1535 	return max_bitflips;
1536 }
1537 
1538 /**
1539  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1540  * @mtd: mtd info structure
1541  * @chip: nand chip info structure
1542  * @buf: buffer to store read data
1543  * @oob_required: caller requires OOB data read to chip->oob_poi
1544  * @page: page number to read
1545  *
1546  * The hw generator calculates the error syndrome automatically. Therefore we
1547  * need a special oob layout and handling.
1548  */
nand_read_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1549 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1550 				   uint8_t *buf, int oob_required, int page)
1551 {
1552 	int i, eccsize = chip->ecc.size;
1553 	int eccbytes = chip->ecc.bytes;
1554 	int eccsteps = chip->ecc.steps;
1555 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1556 	uint8_t *p = buf;
1557 	uint8_t *oob = chip->oob_poi;
1558 	unsigned int max_bitflips = 0;
1559 
1560 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1561 		int stat;
1562 
1563 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1564 		chip->read_buf(mtd, p, eccsize);
1565 
1566 		if (chip->ecc.prepad) {
1567 			chip->read_buf(mtd, oob, chip->ecc.prepad);
1568 			oob += chip->ecc.prepad;
1569 		}
1570 
1571 		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1572 		chip->read_buf(mtd, oob, eccbytes);
1573 		stat = chip->ecc.correct(mtd, p, oob, NULL);
1574 
1575 		oob += eccbytes;
1576 
1577 		if (chip->ecc.postpad) {
1578 			chip->read_buf(mtd, oob, chip->ecc.postpad);
1579 			oob += chip->ecc.postpad;
1580 		}
1581 
1582 		if (stat == -EBADMSG &&
1583 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1584 			/* check for empty pages with bitflips */
1585 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1586 							   oob - eccpadbytes,
1587 							   eccpadbytes,
1588 							   NULL, 0,
1589 							   chip->ecc.strength);
1590 		}
1591 
1592 		if (stat < 0) {
1593 			mtd->ecc_stats.failed++;
1594 		} else {
1595 			mtd->ecc_stats.corrected += stat;
1596 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1597 		}
1598 	}
1599 
1600 	/* Calculate remaining oob bytes */
1601 	i = mtd->oobsize - (oob - chip->oob_poi);
1602 	if (i)
1603 		chip->read_buf(mtd, oob, i);
1604 
1605 	return max_bitflips;
1606 }
1607 
1608 /**
1609  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1610  * @chip: nand chip structure
1611  * @oob: oob destination address
1612  * @ops: oob ops structure
1613  * @len: size of oob to transfer
1614  */
nand_transfer_oob(struct nand_chip * chip,uint8_t * oob,struct mtd_oob_ops * ops,size_t len)1615 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1616 				  struct mtd_oob_ops *ops, size_t len)
1617 {
1618 	switch (ops->mode) {
1619 
1620 	case MTD_OPS_PLACE_OOB:
1621 	case MTD_OPS_RAW:
1622 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1623 		return oob + len;
1624 
1625 	case MTD_OPS_AUTO_OOB: {
1626 		struct nand_oobfree *free = chip->ecc.layout->oobfree;
1627 		uint32_t boffs = 0, roffs = ops->ooboffs;
1628 		size_t bytes = 0;
1629 
1630 		for (; free->length && len; free++, len -= bytes) {
1631 			/* Read request not from offset 0? */
1632 			if (unlikely(roffs)) {
1633 				if (roffs >= free->length) {
1634 					roffs -= free->length;
1635 					continue;
1636 				}
1637 				boffs = free->offset + roffs;
1638 				bytes = min_t(size_t, len,
1639 					      (free->length - roffs));
1640 				roffs = 0;
1641 			} else {
1642 				bytes = min_t(size_t, len, free->length);
1643 				boffs = free->offset;
1644 			}
1645 			memcpy(oob, chip->oob_poi + boffs, bytes);
1646 			oob += bytes;
1647 		}
1648 		return oob;
1649 	}
1650 	default:
1651 		BUG();
1652 	}
1653 	return NULL;
1654 }
1655 
1656 /**
1657  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1658  * @mtd: MTD device structure
1659  * @retry_mode: the retry mode to use
1660  *
1661  * Some vendors supply a special command to shift the Vt threshold, to be used
1662  * when there are too many bitflips in a page (i.e., ECC error). After setting
1663  * a new threshold, the host should retry reading the page.
1664  */
nand_setup_read_retry(struct mtd_info * mtd,int retry_mode)1665 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1666 {
1667 	struct nand_chip *chip = mtd_to_nand(mtd);
1668 
1669 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
1670 
1671 	if (retry_mode >= chip->read_retries)
1672 		return -EINVAL;
1673 
1674 	if (!chip->setup_read_retry)
1675 		return -EOPNOTSUPP;
1676 
1677 	return chip->setup_read_retry(mtd, retry_mode);
1678 }
1679 
1680 /**
1681  * nand_do_read_ops - [INTERN] Read data with ECC
1682  * @mtd: MTD device structure
1683  * @from: offset to read from
1684  * @ops: oob ops structure
1685  *
1686  * Internal function. Called with chip held.
1687  */
nand_do_read_ops(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1688 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1689 			    struct mtd_oob_ops *ops)
1690 {
1691 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
1692 	struct nand_chip *chip = mtd_to_nand(mtd);
1693 	int ret = 0;
1694 	uint32_t readlen = ops->len;
1695 	uint32_t oobreadlen = ops->ooblen;
1696 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1697 
1698 	uint8_t *bufpoi, *oob, *buf;
1699 	int use_bufpoi;
1700 	unsigned int max_bitflips = 0;
1701 	int retry_mode = 0;
1702 	bool ecc_fail = false;
1703 
1704 	chipnr = (int)(from >> chip->chip_shift);
1705 	chip->select_chip(mtd, chipnr);
1706 
1707 	realpage = (int)(from >> chip->page_shift);
1708 	page = realpage & chip->pagemask;
1709 
1710 	col = (int)(from & (mtd->writesize - 1));
1711 
1712 	buf = ops->datbuf;
1713 	oob = ops->oobbuf;
1714 	oob_required = oob ? 1 : 0;
1715 
1716 	while (1) {
1717 		unsigned int ecc_failures = mtd->ecc_stats.failed;
1718 
1719 		WATCHDOG_RESET();
1720 		bytes = min(mtd->writesize - col, readlen);
1721 		aligned = (bytes == mtd->writesize);
1722 
1723 		if (!aligned)
1724 			use_bufpoi = 1;
1725 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1726 			use_bufpoi = !IS_ALIGNED((unsigned long)buf,
1727 						 chip->buf_align);
1728 		else
1729 			use_bufpoi = 0;
1730 
1731 		/* Is the current page in the buffer? */
1732 		if (realpage != chip->pagebuf || oob) {
1733 			bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1734 
1735 			if (use_bufpoi && aligned)
1736 				pr_debug("%s: using read bounce buffer for buf@%p\n",
1737 						 __func__, buf);
1738 
1739 read_retry:
1740 			if (nand_standard_page_accessors(&chip->ecc))
1741 				chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1742 
1743 			/*
1744 			 * Now read the page into the buffer.  Absent an error,
1745 			 * the read methods return max bitflips per ecc step.
1746 			 */
1747 			if (unlikely(ops->mode == MTD_OPS_RAW))
1748 				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1749 							      oob_required,
1750 							      page);
1751 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1752 				 !oob)
1753 				ret = chip->ecc.read_subpage(mtd, chip,
1754 							col, bytes, bufpoi,
1755 							page);
1756 			else
1757 				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1758 							  oob_required, page);
1759 			if (ret < 0) {
1760 				if (use_bufpoi)
1761 					/* Invalidate page cache */
1762 					chip->pagebuf = -1;
1763 				break;
1764 			}
1765 
1766 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1767 
1768 			/* Transfer not aligned data */
1769 			if (use_bufpoi) {
1770 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1771 				    !(mtd->ecc_stats.failed - ecc_failures) &&
1772 				    (ops->mode != MTD_OPS_RAW)) {
1773 					chip->pagebuf = realpage;
1774 					chip->pagebuf_bitflips = ret;
1775 				} else {
1776 					/* Invalidate page cache */
1777 					chip->pagebuf = -1;
1778 				}
1779 				memcpy(buf, chip->buffers->databuf + col, bytes);
1780 			}
1781 
1782 			if (unlikely(oob)) {
1783 				int toread = min(oobreadlen, max_oobsize);
1784 
1785 				if (toread) {
1786 					oob = nand_transfer_oob(chip,
1787 						oob, ops, toread);
1788 					oobreadlen -= toread;
1789 				}
1790 			}
1791 
1792 			if (chip->options & NAND_NEED_READRDY) {
1793 				/* Apply delay or wait for ready/busy pin */
1794 				if (!chip->dev_ready)
1795 					udelay(chip->chip_delay);
1796 				else
1797 					nand_wait_ready(mtd);
1798 			}
1799 
1800 			if (mtd->ecc_stats.failed - ecc_failures) {
1801 				if (retry_mode + 1 < chip->read_retries) {
1802 					retry_mode++;
1803 					ret = nand_setup_read_retry(mtd,
1804 							retry_mode);
1805 					if (ret < 0)
1806 						break;
1807 
1808 					/* Reset failures; retry */
1809 					mtd->ecc_stats.failed = ecc_failures;
1810 					goto read_retry;
1811 				} else {
1812 					/* No more retry modes; real failure */
1813 					ecc_fail = true;
1814 				}
1815 			}
1816 
1817 			buf += bytes;
1818 		} else {
1819 			memcpy(buf, chip->buffers->databuf + col, bytes);
1820 			buf += bytes;
1821 			max_bitflips = max_t(unsigned int, max_bitflips,
1822 					     chip->pagebuf_bitflips);
1823 		}
1824 
1825 		readlen -= bytes;
1826 
1827 		/* Reset to retry mode 0 */
1828 		if (retry_mode) {
1829 			ret = nand_setup_read_retry(mtd, 0);
1830 			if (ret < 0)
1831 				break;
1832 			retry_mode = 0;
1833 		}
1834 
1835 		if (!readlen)
1836 			break;
1837 
1838 		/* For subsequent reads align to page boundary */
1839 		col = 0;
1840 		/* Increment page address */
1841 		realpage++;
1842 
1843 		page = realpage & chip->pagemask;
1844 		/* Check, if we cross a chip boundary */
1845 		if (!page) {
1846 			chipnr++;
1847 			chip->select_chip(mtd, -1);
1848 			chip->select_chip(mtd, chipnr);
1849 		}
1850 	}
1851 	chip->select_chip(mtd, -1);
1852 
1853 	ops->retlen = ops->len - (size_t) readlen;
1854 	if (oob)
1855 		ops->oobretlen = ops->ooblen - oobreadlen;
1856 
1857 	if (ret < 0)
1858 		return ret;
1859 
1860 	if (ecc_fail)
1861 		return -EBADMSG;
1862 
1863 	return max_bitflips;
1864 }
1865 
1866 /**
1867  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1868  * @mtd: MTD device structure
1869  * @from: offset to read from
1870  * @len: number of bytes to read
1871  * @retlen: pointer to variable to store the number of read bytes
1872  * @buf: the databuffer to put data
1873  *
1874  * Get hold of the chip and call nand_do_read.
1875  */
nand_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,uint8_t * buf)1876 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1877 		     size_t *retlen, uint8_t *buf)
1878 {
1879 	struct mtd_oob_ops ops;
1880 	int ret;
1881 
1882 	nand_get_device(mtd, FL_READING);
1883 	memset(&ops, 0, sizeof(ops));
1884 	ops.len = len;
1885 	ops.datbuf = buf;
1886 	ops.mode = MTD_OPS_PLACE_OOB;
1887 	ret = nand_do_read_ops(mtd, from, &ops);
1888 	*retlen = ops.retlen;
1889 	nand_release_device(mtd);
1890 	return ret;
1891 }
1892 
1893 /**
1894  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1895  * @mtd: mtd info structure
1896  * @chip: nand chip info structure
1897  * @page: page number to read
1898  */
nand_read_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)1899 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1900 			     int page)
1901 {
1902 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1903 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1904 	return 0;
1905 }
1906 
1907 /**
1908  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1909  *			    with syndromes
1910  * @mtd: mtd info structure
1911  * @chip: nand chip info structure
1912  * @page: page number to read
1913  */
nand_read_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)1914 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1915 				  int page)
1916 {
1917 	int length = mtd->oobsize;
1918 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1919 	int eccsize = chip->ecc.size;
1920 	uint8_t *bufpoi = chip->oob_poi;
1921 	int i, toread, sndrnd = 0, pos;
1922 
1923 	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1924 	for (i = 0; i < chip->ecc.steps; i++) {
1925 		if (sndrnd) {
1926 			pos = eccsize + i * (eccsize + chunk);
1927 			if (mtd->writesize > 512)
1928 				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1929 			else
1930 				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1931 		} else
1932 			sndrnd = 1;
1933 		toread = min_t(int, length, chunk);
1934 		chip->read_buf(mtd, bufpoi, toread);
1935 		bufpoi += toread;
1936 		length -= toread;
1937 	}
1938 	if (length > 0)
1939 		chip->read_buf(mtd, bufpoi, length);
1940 
1941 	return 0;
1942 }
1943 
1944 /**
1945  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1946  * @mtd: mtd info structure
1947  * @chip: nand chip info structure
1948  * @page: page number to write
1949  */
nand_write_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)1950 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1951 			      int page)
1952 {
1953 	int status = 0;
1954 	const uint8_t *buf = chip->oob_poi;
1955 	int length = mtd->oobsize;
1956 
1957 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1958 	chip->write_buf(mtd, buf, length);
1959 	/* Send command to program the OOB data */
1960 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1961 
1962 	status = chip->waitfunc(mtd, chip);
1963 
1964 	return status & NAND_STATUS_FAIL ? -EIO : 0;
1965 }
1966 
1967 /**
1968  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1969  *			     with syndrome - only for large page flash
1970  * @mtd: mtd info structure
1971  * @chip: nand chip info structure
1972  * @page: page number to write
1973  */
nand_write_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)1974 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1975 				   struct nand_chip *chip, int page)
1976 {
1977 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1978 	int eccsize = chip->ecc.size, length = mtd->oobsize;
1979 	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1980 	const uint8_t *bufpoi = chip->oob_poi;
1981 
1982 	/*
1983 	 * data-ecc-data-ecc ... ecc-oob
1984 	 * or
1985 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1986 	 */
1987 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
1988 		pos = steps * (eccsize + chunk);
1989 		steps = 0;
1990 	} else
1991 		pos = eccsize;
1992 
1993 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1994 	for (i = 0; i < steps; i++) {
1995 		if (sndcmd) {
1996 			if (mtd->writesize <= 512) {
1997 				uint32_t fill = 0xFFFFFFFF;
1998 
1999 				len = eccsize;
2000 				while (len > 0) {
2001 					int num = min_t(int, len, 4);
2002 					chip->write_buf(mtd, (uint8_t *)&fill,
2003 							num);
2004 					len -= num;
2005 				}
2006 			} else {
2007 				pos = eccsize + i * (eccsize + chunk);
2008 				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2009 			}
2010 		} else
2011 			sndcmd = 1;
2012 		len = min_t(int, length, chunk);
2013 		chip->write_buf(mtd, bufpoi, len);
2014 		bufpoi += len;
2015 		length -= len;
2016 	}
2017 	if (length > 0)
2018 		chip->write_buf(mtd, bufpoi, length);
2019 
2020 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2021 	status = chip->waitfunc(mtd, chip);
2022 
2023 	return status & NAND_STATUS_FAIL ? -EIO : 0;
2024 }
2025 
2026 /**
2027  * nand_do_read_oob - [INTERN] NAND read out-of-band
2028  * @mtd: MTD device structure
2029  * @from: offset to read from
2030  * @ops: oob operations description structure
2031  *
2032  * NAND read out-of-band data from the spare area.
2033  */
nand_do_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)2034 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2035 			    struct mtd_oob_ops *ops)
2036 {
2037 	int page, realpage, chipnr;
2038 	struct nand_chip *chip = mtd_to_nand(mtd);
2039 	struct mtd_ecc_stats stats;
2040 	int readlen = ops->ooblen;
2041 	int len;
2042 	uint8_t *buf = ops->oobbuf;
2043 	int ret = 0;
2044 
2045 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
2046 			__func__, (unsigned long long)from, readlen);
2047 
2048 	stats = mtd->ecc_stats;
2049 
2050 	len = mtd_oobavail(mtd, ops);
2051 
2052 	if (unlikely(ops->ooboffs >= len)) {
2053 		pr_debug("%s: attempt to start read outside oob\n",
2054 				__func__);
2055 		return -EINVAL;
2056 	}
2057 
2058 	/* Do not allow reads past end of device */
2059 	if (unlikely(from >= mtd->size ||
2060 		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2061 					(from >> chip->page_shift)) * len)) {
2062 		pr_debug("%s: attempt to read beyond end of device\n",
2063 				__func__);
2064 		return -EINVAL;
2065 	}
2066 
2067 	chipnr = (int)(from >> chip->chip_shift);
2068 	chip->select_chip(mtd, chipnr);
2069 
2070 	/* Shift to get page */
2071 	realpage = (int)(from >> chip->page_shift);
2072 	page = realpage & chip->pagemask;
2073 
2074 	while (1) {
2075 		WATCHDOG_RESET();
2076 
2077 		if (ops->mode == MTD_OPS_RAW)
2078 			ret = chip->ecc.read_oob_raw(mtd, chip, page);
2079 		else
2080 			ret = chip->ecc.read_oob(mtd, chip, page);
2081 
2082 		if (ret < 0)
2083 			break;
2084 
2085 		len = min(len, readlen);
2086 		buf = nand_transfer_oob(chip, buf, ops, len);
2087 
2088 		if (chip->options & NAND_NEED_READRDY) {
2089 			/* Apply delay or wait for ready/busy pin */
2090 			if (!chip->dev_ready)
2091 				udelay(chip->chip_delay);
2092 			else
2093 				nand_wait_ready(mtd);
2094 		}
2095 
2096 		readlen -= len;
2097 		if (!readlen)
2098 			break;
2099 
2100 		/* Increment page address */
2101 		realpage++;
2102 
2103 		page = realpage & chip->pagemask;
2104 		/* Check, if we cross a chip boundary */
2105 		if (!page) {
2106 			chipnr++;
2107 			chip->select_chip(mtd, -1);
2108 			chip->select_chip(mtd, chipnr);
2109 		}
2110 	}
2111 	chip->select_chip(mtd, -1);
2112 
2113 	ops->oobretlen = ops->ooblen - readlen;
2114 
2115 	if (ret < 0)
2116 		return ret;
2117 
2118 	if (mtd->ecc_stats.failed - stats.failed)
2119 		return -EBADMSG;
2120 
2121 	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2122 }
2123 
2124 /**
2125  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2126  * @mtd: MTD device structure
2127  * @from: offset to read from
2128  * @ops: oob operation description structure
2129  *
2130  * NAND read data and/or out-of-band data.
2131  */
nand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)2132 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2133 			 struct mtd_oob_ops *ops)
2134 {
2135 	int ret = -ENOTSUPP;
2136 
2137 	ops->retlen = 0;
2138 
2139 	/* Do not allow reads past end of device */
2140 	if (ops->datbuf && (from + ops->len) > mtd->size) {
2141 		pr_debug("%s: attempt to read beyond end of device\n",
2142 				__func__);
2143 		return -EINVAL;
2144 	}
2145 
2146 	nand_get_device(mtd, FL_READING);
2147 
2148 	switch (ops->mode) {
2149 	case MTD_OPS_PLACE_OOB:
2150 	case MTD_OPS_AUTO_OOB:
2151 	case MTD_OPS_RAW:
2152 		break;
2153 
2154 	default:
2155 		goto out;
2156 	}
2157 
2158 	if (!ops->datbuf)
2159 		ret = nand_do_read_oob(mtd, from, ops);
2160 	else
2161 		ret = nand_do_read_ops(mtd, from, ops);
2162 
2163 out:
2164 	nand_release_device(mtd);
2165 	return ret;
2166 }
2167 
2168 
2169 /**
2170  * nand_write_page_raw - [INTERN] raw page write function
2171  * @mtd: mtd info structure
2172  * @chip: nand chip info structure
2173  * @buf: data buffer
2174  * @oob_required: must write chip->oob_poi to OOB
2175  * @page: page number to write
2176  *
2177  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2178  */
nand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2179 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2180 			       const uint8_t *buf, int oob_required, int page)
2181 {
2182 	chip->write_buf(mtd, buf, mtd->writesize);
2183 	if (oob_required)
2184 		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2185 
2186 	return 0;
2187 }
2188 
2189 /**
2190  * nand_write_page_raw_syndrome - [INTERN] raw page write function
2191  * @mtd: mtd info structure
2192  * @chip: nand chip info structure
2193  * @buf: data buffer
2194  * @oob_required: must write chip->oob_poi to OOB
2195  * @page: page number to write
2196  *
2197  * We need a special oob layout and handling even when ECC isn't checked.
2198  */
nand_write_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2199 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2200 					struct nand_chip *chip,
2201 					const uint8_t *buf, int oob_required,
2202 					int page)
2203 {
2204 	int eccsize = chip->ecc.size;
2205 	int eccbytes = chip->ecc.bytes;
2206 	uint8_t *oob = chip->oob_poi;
2207 	int steps, size;
2208 
2209 	for (steps = chip->ecc.steps; steps > 0; steps--) {
2210 		chip->write_buf(mtd, buf, eccsize);
2211 		buf += eccsize;
2212 
2213 		if (chip->ecc.prepad) {
2214 			chip->write_buf(mtd, oob, chip->ecc.prepad);
2215 			oob += chip->ecc.prepad;
2216 		}
2217 
2218 		chip->write_buf(mtd, oob, eccbytes);
2219 		oob += eccbytes;
2220 
2221 		if (chip->ecc.postpad) {
2222 			chip->write_buf(mtd, oob, chip->ecc.postpad);
2223 			oob += chip->ecc.postpad;
2224 		}
2225 	}
2226 
2227 	size = mtd->oobsize - (oob - chip->oob_poi);
2228 	if (size)
2229 		chip->write_buf(mtd, oob, size);
2230 
2231 	return 0;
2232 }
2233 /**
2234  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2235  * @mtd: mtd info structure
2236  * @chip: nand chip info structure
2237  * @buf: data buffer
2238  * @oob_required: must write chip->oob_poi to OOB
2239  * @page: page number to write
2240  */
nand_write_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2241 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2242 				 const uint8_t *buf, int oob_required,
2243 				 int page)
2244 {
2245 	int i, eccsize = chip->ecc.size;
2246 	int eccbytes = chip->ecc.bytes;
2247 	int eccsteps = chip->ecc.steps;
2248 	uint8_t *ecc_calc = chip->buffers->ecccalc;
2249 	const uint8_t *p = buf;
2250 	uint32_t *eccpos = chip->ecc.layout->eccpos;
2251 
2252 	/* Software ECC calculation */
2253 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2254 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2255 
2256 	for (i = 0; i < chip->ecc.total; i++)
2257 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2258 
2259 	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2260 }
2261 
2262 /**
2263  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2264  * @mtd: mtd info structure
2265  * @chip: nand chip info structure
2266  * @buf: data buffer
2267  * @oob_required: must write chip->oob_poi to OOB
2268  * @page: page number to write
2269  */
nand_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2270 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2271 				  const uint8_t *buf, int oob_required,
2272 				  int page)
2273 {
2274 	int i, eccsize = chip->ecc.size;
2275 	int eccbytes = chip->ecc.bytes;
2276 	int eccsteps = chip->ecc.steps;
2277 	uint8_t *ecc_calc = chip->buffers->ecccalc;
2278 	const uint8_t *p = buf;
2279 	uint32_t *eccpos = chip->ecc.layout->eccpos;
2280 
2281 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2282 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2283 		chip->write_buf(mtd, p, eccsize);
2284 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2285 	}
2286 
2287 	for (i = 0; i < chip->ecc.total; i++)
2288 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2289 
2290 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2291 
2292 	return 0;
2293 }
2294 
2295 
2296 /**
2297  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2298  * @mtd:	mtd info structure
2299  * @chip:	nand chip info structure
2300  * @offset:	column address of subpage within the page
2301  * @data_len:	data length
2302  * @buf:	data buffer
2303  * @oob_required: must write chip->oob_poi to OOB
2304  * @page: page number to write
2305  */
nand_write_subpage_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,uint32_t data_len,const uint8_t * buf,int oob_required,int page)2306 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2307 				struct nand_chip *chip, uint32_t offset,
2308 				uint32_t data_len, const uint8_t *buf,
2309 				int oob_required, int page)
2310 {
2311 	uint8_t *oob_buf  = chip->oob_poi;
2312 	uint8_t *ecc_calc = chip->buffers->ecccalc;
2313 	int ecc_size      = chip->ecc.size;
2314 	int ecc_bytes     = chip->ecc.bytes;
2315 	int ecc_steps     = chip->ecc.steps;
2316 	uint32_t *eccpos  = chip->ecc.layout->eccpos;
2317 	uint32_t start_step = offset / ecc_size;
2318 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2319 	int oob_bytes       = mtd->oobsize / ecc_steps;
2320 	int step, i;
2321 
2322 	for (step = 0; step < ecc_steps; step++) {
2323 		/* configure controller for WRITE access */
2324 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2325 
2326 		/* write data (untouched subpages already masked by 0xFF) */
2327 		chip->write_buf(mtd, buf, ecc_size);
2328 
2329 		/* mask ECC of un-touched subpages by padding 0xFF */
2330 		if ((step < start_step) || (step > end_step))
2331 			memset(ecc_calc, 0xff, ecc_bytes);
2332 		else
2333 			chip->ecc.calculate(mtd, buf, ecc_calc);
2334 
2335 		/* mask OOB of un-touched subpages by padding 0xFF */
2336 		/* if oob_required, preserve OOB metadata of written subpage */
2337 		if (!oob_required || (step < start_step) || (step > end_step))
2338 			memset(oob_buf, 0xff, oob_bytes);
2339 
2340 		buf += ecc_size;
2341 		ecc_calc += ecc_bytes;
2342 		oob_buf  += oob_bytes;
2343 	}
2344 
2345 	/* copy calculated ECC for whole page to chip->buffer->oob */
2346 	/* this include masked-value(0xFF) for unwritten subpages */
2347 	ecc_calc = chip->buffers->ecccalc;
2348 	for (i = 0; i < chip->ecc.total; i++)
2349 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2350 
2351 	/* write OOB buffer to NAND device */
2352 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2353 
2354 	return 0;
2355 }
2356 
2357 
2358 /**
2359  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2360  * @mtd: mtd info structure
2361  * @chip: nand chip info structure
2362  * @buf: data buffer
2363  * @oob_required: must write chip->oob_poi to OOB
2364  * @page: page number to write
2365  *
2366  * The hw generator calculates the error syndrome automatically. Therefore we
2367  * need a special oob layout and handling.
2368  */
nand_write_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2369 static int nand_write_page_syndrome(struct mtd_info *mtd,
2370 				    struct nand_chip *chip,
2371 				    const uint8_t *buf, int oob_required,
2372 				    int page)
2373 {
2374 	int i, eccsize = chip->ecc.size;
2375 	int eccbytes = chip->ecc.bytes;
2376 	int eccsteps = chip->ecc.steps;
2377 	const uint8_t *p = buf;
2378 	uint8_t *oob = chip->oob_poi;
2379 
2380 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2381 
2382 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2383 		chip->write_buf(mtd, p, eccsize);
2384 
2385 		if (chip->ecc.prepad) {
2386 			chip->write_buf(mtd, oob, chip->ecc.prepad);
2387 			oob += chip->ecc.prepad;
2388 		}
2389 
2390 		chip->ecc.calculate(mtd, p, oob);
2391 		chip->write_buf(mtd, oob, eccbytes);
2392 		oob += eccbytes;
2393 
2394 		if (chip->ecc.postpad) {
2395 			chip->write_buf(mtd, oob, chip->ecc.postpad);
2396 			oob += chip->ecc.postpad;
2397 		}
2398 	}
2399 
2400 	/* Calculate remaining oob bytes */
2401 	i = mtd->oobsize - (oob - chip->oob_poi);
2402 	if (i)
2403 		chip->write_buf(mtd, oob, i);
2404 
2405 	return 0;
2406 }
2407 
2408 /**
2409  * nand_write_page - [REPLACEABLE] write one page
2410  * @mtd: MTD device structure
2411  * @chip: NAND chip descriptor
2412  * @offset: address offset within the page
2413  * @data_len: length of actual data to be written
2414  * @buf: the data to write
2415  * @oob_required: must write chip->oob_poi to OOB
2416  * @page: page number to write
2417  * @raw: use _raw version of write_page
2418  */
nand_write_page(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,int data_len,const uint8_t * buf,int oob_required,int page,int raw)2419 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2420 		uint32_t offset, int data_len, const uint8_t *buf,
2421 		int oob_required, int page, int raw)
2422 {
2423 	int status, subpage;
2424 
2425 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2426 		chip->ecc.write_subpage)
2427 		subpage = offset || (data_len < mtd->writesize);
2428 	else
2429 		subpage = 0;
2430 
2431 	if (nand_standard_page_accessors(&chip->ecc))
2432 		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2433 
2434 	if (unlikely(raw))
2435 		status = chip->ecc.write_page_raw(mtd, chip, buf,
2436 						  oob_required, page);
2437 	else if (subpage)
2438 		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2439 						 buf, oob_required, page);
2440 	else
2441 		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2442 					      page);
2443 
2444 	if (status < 0)
2445 		return status;
2446 
2447 	if (nand_standard_page_accessors(&chip->ecc)) {
2448 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2449 
2450 		status = chip->waitfunc(mtd, chip);
2451 		if (status & NAND_STATUS_FAIL)
2452 			return -EIO;
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 /**
2459  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2460  * @mtd: MTD device structure
2461  * @oob: oob data buffer
2462  * @len: oob data write length
2463  * @ops: oob ops structure
2464  */
nand_fill_oob(struct mtd_info * mtd,uint8_t * oob,size_t len,struct mtd_oob_ops * ops)2465 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2466 			      struct mtd_oob_ops *ops)
2467 {
2468 	struct nand_chip *chip = mtd_to_nand(mtd);
2469 
2470 	/*
2471 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2472 	 * data from a previous OOB read.
2473 	 */
2474 	memset(chip->oob_poi, 0xff, mtd->oobsize);
2475 
2476 	switch (ops->mode) {
2477 
2478 	case MTD_OPS_PLACE_OOB:
2479 	case MTD_OPS_RAW:
2480 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2481 		return oob + len;
2482 
2483 	case MTD_OPS_AUTO_OOB: {
2484 		struct nand_oobfree *free = chip->ecc.layout->oobfree;
2485 		uint32_t boffs = 0, woffs = ops->ooboffs;
2486 		size_t bytes = 0;
2487 
2488 		for (; free->length && len; free++, len -= bytes) {
2489 			/* Write request not from offset 0? */
2490 			if (unlikely(woffs)) {
2491 				if (woffs >= free->length) {
2492 					woffs -= free->length;
2493 					continue;
2494 				}
2495 				boffs = free->offset + woffs;
2496 				bytes = min_t(size_t, len,
2497 					      (free->length - woffs));
2498 				woffs = 0;
2499 			} else {
2500 				bytes = min_t(size_t, len, free->length);
2501 				boffs = free->offset;
2502 			}
2503 			memcpy(chip->oob_poi + boffs, oob, bytes);
2504 			oob += bytes;
2505 		}
2506 		return oob;
2507 	}
2508 	default:
2509 		BUG();
2510 	}
2511 	return NULL;
2512 }
2513 
2514 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
2515 
2516 /**
2517  * nand_do_write_ops - [INTERN] NAND write with ECC
2518  * @mtd: MTD device structure
2519  * @to: offset to write to
2520  * @ops: oob operations description structure
2521  *
2522  * NAND write with ECC.
2523  */
nand_do_write_ops(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2524 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2525 			     struct mtd_oob_ops *ops)
2526 {
2527 	int chipnr, realpage, page, column;
2528 	struct nand_chip *chip = mtd_to_nand(mtd);
2529 	uint32_t writelen = ops->len;
2530 
2531 	uint32_t oobwritelen = ops->ooblen;
2532 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2533 
2534 	uint8_t *oob = ops->oobbuf;
2535 	uint8_t *buf = ops->datbuf;
2536 	int ret;
2537 	int oob_required = oob ? 1 : 0;
2538 
2539 	ops->retlen = 0;
2540 	if (!writelen)
2541 		return 0;
2542 
2543 	/* Reject writes, which are not page aligned */
2544 	if (NOTALIGNED(to)) {
2545 		pr_notice("%s: attempt to write non page aligned data\n",
2546 			   __func__);
2547 		return -EINVAL;
2548 	}
2549 
2550 	column = to & (mtd->writesize - 1);
2551 
2552 	chipnr = (int)(to >> chip->chip_shift);
2553 	chip->select_chip(mtd, chipnr);
2554 
2555 	/* Check, if it is write protected */
2556 	if (nand_check_wp(mtd)) {
2557 		ret = -EIO;
2558 		goto err_out;
2559 	}
2560 
2561 	realpage = (int)(to >> chip->page_shift);
2562 	page = realpage & chip->pagemask;
2563 
2564 	/* Invalidate the page cache, when we write to the cached page */
2565 	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2566 	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2567 		chip->pagebuf = -1;
2568 
2569 	/* Don't allow multipage oob writes with offset */
2570 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2571 		ret = -EINVAL;
2572 		goto err_out;
2573 	}
2574 
2575 	while (1) {
2576 		int bytes = mtd->writesize;
2577 		uint8_t *wbuf = buf;
2578 		int use_bufpoi;
2579 		int part_pagewr = (column || writelen < mtd->writesize);
2580 
2581 		if (part_pagewr)
2582 			use_bufpoi = 1;
2583 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2584 			use_bufpoi = !IS_ALIGNED((unsigned long)buf,
2585 						 chip->buf_align);
2586 		else
2587 			use_bufpoi = 0;
2588 
2589 		WATCHDOG_RESET();
2590 		/* Partial page write?, or need to use bounce buffer */
2591 		if (use_bufpoi) {
2592 			pr_debug("%s: using write bounce buffer for buf@%p\n",
2593 					 __func__, buf);
2594 			if (part_pagewr)
2595 				bytes = min_t(int, bytes - column, writelen);
2596 			chip->pagebuf = -1;
2597 			memset(chip->buffers->databuf, 0xff, mtd->writesize);
2598 			memcpy(&chip->buffers->databuf[column], buf, bytes);
2599 			wbuf = chip->buffers->databuf;
2600 		}
2601 
2602 		if (unlikely(oob)) {
2603 			size_t len = min(oobwritelen, oobmaxlen);
2604 			oob = nand_fill_oob(mtd, oob, len, ops);
2605 			oobwritelen -= len;
2606 		} else {
2607 			/* We still need to erase leftover OOB data */
2608 			memset(chip->oob_poi, 0xff, mtd->oobsize);
2609 		}
2610 		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2611 					oob_required, page,
2612 					(ops->mode == MTD_OPS_RAW));
2613 		if (ret)
2614 			break;
2615 
2616 		writelen -= bytes;
2617 		if (!writelen)
2618 			break;
2619 
2620 		column = 0;
2621 		buf += bytes;
2622 		realpage++;
2623 
2624 		page = realpage & chip->pagemask;
2625 		/* Check, if we cross a chip boundary */
2626 		if (!page) {
2627 			chipnr++;
2628 			chip->select_chip(mtd, -1);
2629 			chip->select_chip(mtd, chipnr);
2630 		}
2631 	}
2632 
2633 	ops->retlen = ops->len - writelen;
2634 	if (unlikely(oob))
2635 		ops->oobretlen = ops->ooblen;
2636 
2637 err_out:
2638 	chip->select_chip(mtd, -1);
2639 	return ret;
2640 }
2641 
2642 /**
2643  * panic_nand_write - [MTD Interface] NAND write with ECC
2644  * @mtd: MTD device structure
2645  * @to: offset to write to
2646  * @len: number of bytes to write
2647  * @retlen: pointer to variable to store the number of written bytes
2648  * @buf: the data to write
2649  *
2650  * NAND write with ECC. Used when performing writes in interrupt context, this
2651  * may for example be called by mtdoops when writing an oops while in panic.
2652  */
panic_nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)2653 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2654 			    size_t *retlen, const uint8_t *buf)
2655 {
2656 	struct nand_chip *chip = mtd_to_nand(mtd);
2657 	struct mtd_oob_ops ops;
2658 	int ret;
2659 
2660 	/* Wait for the device to get ready */
2661 	panic_nand_wait(mtd, chip, 400);
2662 
2663 	/* Grab the device */
2664 	panic_nand_get_device(chip, mtd, FL_WRITING);
2665 
2666 	memset(&ops, 0, sizeof(ops));
2667 	ops.len = len;
2668 	ops.datbuf = (uint8_t *)buf;
2669 	ops.mode = MTD_OPS_PLACE_OOB;
2670 
2671 	ret = nand_do_write_ops(mtd, to, &ops);
2672 
2673 	*retlen = ops.retlen;
2674 	return ret;
2675 }
2676 
2677 /**
2678  * nand_write - [MTD Interface] NAND write with ECC
2679  * @mtd: MTD device structure
2680  * @to: offset to write to
2681  * @len: number of bytes to write
2682  * @retlen: pointer to variable to store the number of written bytes
2683  * @buf: the data to write
2684  *
2685  * NAND write with ECC.
2686  */
nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)2687 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2688 			  size_t *retlen, const uint8_t *buf)
2689 {
2690 	struct mtd_oob_ops ops;
2691 	int ret;
2692 
2693 	nand_get_device(mtd, FL_WRITING);
2694 	memset(&ops, 0, sizeof(ops));
2695 	ops.len = len;
2696 	ops.datbuf = (uint8_t *)buf;
2697 	ops.mode = MTD_OPS_PLACE_OOB;
2698 	ret = nand_do_write_ops(mtd, to, &ops);
2699 	*retlen = ops.retlen;
2700 	nand_release_device(mtd);
2701 	return ret;
2702 }
2703 
2704 /**
2705  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2706  * @mtd: MTD device structure
2707  * @to: offset to write to
2708  * @ops: oob operation description structure
2709  *
2710  * NAND write out-of-band.
2711  */
nand_do_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2712 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2713 			     struct mtd_oob_ops *ops)
2714 {
2715 	int chipnr, page, status, len;
2716 	struct nand_chip *chip = mtd_to_nand(mtd);
2717 
2718 	pr_debug("%s: to = 0x%08x, len = %i\n",
2719 			 __func__, (unsigned int)to, (int)ops->ooblen);
2720 
2721 	len = mtd_oobavail(mtd, ops);
2722 
2723 	/* Do not allow write past end of page */
2724 	if ((ops->ooboffs + ops->ooblen) > len) {
2725 		pr_debug("%s: attempt to write past end of page\n",
2726 				__func__);
2727 		return -EINVAL;
2728 	}
2729 
2730 	if (unlikely(ops->ooboffs >= len)) {
2731 		pr_debug("%s: attempt to start write outside oob\n",
2732 				__func__);
2733 		return -EINVAL;
2734 	}
2735 
2736 	/* Do not allow write past end of device */
2737 	if (unlikely(to >= mtd->size ||
2738 		     ops->ooboffs + ops->ooblen >
2739 			((mtd->size >> chip->page_shift) -
2740 			 (to >> chip->page_shift)) * len)) {
2741 		pr_debug("%s: attempt to write beyond end of device\n",
2742 				__func__);
2743 		return -EINVAL;
2744 	}
2745 
2746 	chipnr = (int)(to >> chip->chip_shift);
2747 
2748 	/*
2749 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2750 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
2751 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2752 	 * it in the doc2000 driver in August 1999.  dwmw2.
2753 	 */
2754 	nand_reset(chip, chipnr);
2755 
2756 	chip->select_chip(mtd, chipnr);
2757 
2758 	/* Shift to get page */
2759 	page = (int)(to >> chip->page_shift);
2760 
2761 	/* Check, if it is write protected */
2762 	if (nand_check_wp(mtd)) {
2763 		chip->select_chip(mtd, -1);
2764 		return -EROFS;
2765 	}
2766 
2767 	/* Invalidate the page cache, if we write to the cached page */
2768 	if (page == chip->pagebuf)
2769 		chip->pagebuf = -1;
2770 
2771 	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2772 
2773 	if (ops->mode == MTD_OPS_RAW)
2774 		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2775 	else
2776 		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2777 
2778 	chip->select_chip(mtd, -1);
2779 
2780 	if (status)
2781 		return status;
2782 
2783 	ops->oobretlen = ops->ooblen;
2784 
2785 	return 0;
2786 }
2787 
2788 /**
2789  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2790  * @mtd: MTD device structure
2791  * @to: offset to write to
2792  * @ops: oob operation description structure
2793  */
nand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2794 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2795 			  struct mtd_oob_ops *ops)
2796 {
2797 	int ret = -ENOTSUPP;
2798 
2799 	ops->retlen = 0;
2800 
2801 	/* Do not allow writes past end of device */
2802 	if (ops->datbuf && (to + ops->len) > mtd->size) {
2803 		pr_debug("%s: attempt to write beyond end of device\n",
2804 				__func__);
2805 		return -EINVAL;
2806 	}
2807 
2808 	nand_get_device(mtd, FL_WRITING);
2809 
2810 	switch (ops->mode) {
2811 	case MTD_OPS_PLACE_OOB:
2812 	case MTD_OPS_AUTO_OOB:
2813 	case MTD_OPS_RAW:
2814 		break;
2815 
2816 	default:
2817 		goto out;
2818 	}
2819 
2820 	if (!ops->datbuf)
2821 		ret = nand_do_write_oob(mtd, to, ops);
2822 	else
2823 		ret = nand_do_write_ops(mtd, to, ops);
2824 
2825 out:
2826 	nand_release_device(mtd);
2827 	return ret;
2828 }
2829 
2830 /**
2831  * single_erase - [GENERIC] NAND standard block erase command function
2832  * @mtd: MTD device structure
2833  * @page: the page address of the block which will be erased
2834  *
2835  * Standard erase command for NAND chips. Returns NAND status.
2836  */
single_erase(struct mtd_info * mtd,int page)2837 static int single_erase(struct mtd_info *mtd, int page)
2838 {
2839 	struct nand_chip *chip = mtd_to_nand(mtd);
2840 	/* Send commands to erase a block */
2841 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2842 	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2843 
2844 	return chip->waitfunc(mtd, chip);
2845 }
2846 
2847 /**
2848  * nand_erase - [MTD Interface] erase block(s)
2849  * @mtd: MTD device structure
2850  * @instr: erase instruction
2851  *
2852  * Erase one ore more blocks.
2853  */
nand_erase(struct mtd_info * mtd,struct erase_info * instr)2854 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2855 {
2856 	return nand_erase_nand(mtd, instr, 0);
2857 }
2858 
2859 /**
2860  * nand_erase_nand - [INTERN] erase block(s)
2861  * @mtd: MTD device structure
2862  * @instr: erase instruction
2863  * @allowbbt: allow erasing the bbt area
2864  *
2865  * Erase one ore more blocks.
2866  */
nand_erase_nand(struct mtd_info * mtd,struct erase_info * instr,int allowbbt)2867 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2868 		    int allowbbt)
2869 {
2870 	int page, status, pages_per_block, ret, chipnr;
2871 	struct nand_chip *chip = mtd_to_nand(mtd);
2872 	loff_t len;
2873 
2874 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
2875 			__func__, (unsigned long long)instr->addr,
2876 			(unsigned long long)instr->len);
2877 
2878 	if (check_offs_len(mtd, instr->addr, instr->len))
2879 		return -EINVAL;
2880 
2881 	/* Grab the lock and see if the device is available */
2882 	nand_get_device(mtd, FL_ERASING);
2883 
2884 	/* Shift to get first page */
2885 	page = (int)(instr->addr >> chip->page_shift);
2886 	chipnr = (int)(instr->addr >> chip->chip_shift);
2887 
2888 	/* Calculate pages in each block */
2889 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2890 
2891 	/* Select the NAND device */
2892 	chip->select_chip(mtd, chipnr);
2893 
2894 	/* Check, if it is write protected */
2895 	if (nand_check_wp(mtd)) {
2896 		pr_debug("%s: device is write protected!\n",
2897 				__func__);
2898 		instr->state = MTD_ERASE_FAILED;
2899 		goto erase_exit;
2900 	}
2901 
2902 	/* Loop through the pages */
2903 	len = instr->len;
2904 
2905 	instr->state = MTD_ERASING;
2906 
2907 	while (len) {
2908 		WATCHDOG_RESET();
2909 
2910 		/* Check if we have a bad block, we do not erase bad blocks! */
2911 		if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
2912 					chip->page_shift, allowbbt)) {
2913 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2914 				    __func__, page);
2915 			instr->state = MTD_ERASE_FAILED;
2916 			goto erase_exit;
2917 		}
2918 
2919 		/*
2920 		 * Invalidate the page cache, if we erase the block which
2921 		 * contains the current cached page.
2922 		 */
2923 		if (page <= chip->pagebuf && chip->pagebuf <
2924 		    (page + pages_per_block))
2925 			chip->pagebuf = -1;
2926 
2927 		status = chip->erase(mtd, page & chip->pagemask);
2928 
2929 		/* See if block erase succeeded */
2930 		if (status & NAND_STATUS_FAIL) {
2931 			pr_debug("%s: failed erase, page 0x%08x\n",
2932 					__func__, page);
2933 			instr->state = MTD_ERASE_FAILED;
2934 			instr->fail_addr =
2935 				((loff_t)page << chip->page_shift);
2936 			goto erase_exit;
2937 		}
2938 
2939 		/* Increment page address and decrement length */
2940 		len -= (1ULL << chip->phys_erase_shift);
2941 		page += pages_per_block;
2942 
2943 		/* Check, if we cross a chip boundary */
2944 		if (len && !(page & chip->pagemask)) {
2945 			chipnr++;
2946 			chip->select_chip(mtd, -1);
2947 			chip->select_chip(mtd, chipnr);
2948 		}
2949 	}
2950 	instr->state = MTD_ERASE_DONE;
2951 
2952 erase_exit:
2953 
2954 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2955 
2956 	/* Deselect and wake up anyone waiting on the device */
2957 	chip->select_chip(mtd, -1);
2958 	nand_release_device(mtd);
2959 
2960 	/* Do call back function */
2961 	if (!ret)
2962 		mtd_erase_callback(instr);
2963 
2964 	/* Return more or less happy */
2965 	return ret;
2966 }
2967 
2968 /**
2969  * nand_sync - [MTD Interface] sync
2970  * @mtd: MTD device structure
2971  *
2972  * Sync is actually a wait for chip ready function.
2973  */
nand_sync(struct mtd_info * mtd)2974 static void nand_sync(struct mtd_info *mtd)
2975 {
2976 	pr_debug("%s: called\n", __func__);
2977 
2978 	/* Grab the lock and see if the device is available */
2979 	nand_get_device(mtd, FL_SYNCING);
2980 	/* Release it and go back */
2981 	nand_release_device(mtd);
2982 }
2983 
2984 /**
2985  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2986  * @mtd: MTD device structure
2987  * @offs: offset relative to mtd start
2988  */
nand_block_isbad(struct mtd_info * mtd,loff_t offs)2989 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2990 {
2991 	struct nand_chip *chip = mtd_to_nand(mtd);
2992 	int chipnr = (int)(offs >> chip->chip_shift);
2993 	int ret;
2994 
2995 	/* Select the NAND device */
2996 	nand_get_device(mtd, FL_READING);
2997 	chip->select_chip(mtd, chipnr);
2998 
2999 	ret = nand_block_checkbad(mtd, offs, 0);
3000 
3001 	chip->select_chip(mtd, -1);
3002 	nand_release_device(mtd);
3003 
3004 	return ret;
3005 }
3006 
3007 /**
3008  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3009  * @mtd: MTD device structure
3010  * @ofs: offset relative to mtd start
3011  */
nand_block_markbad(struct mtd_info * mtd,loff_t ofs)3012 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3013 {
3014 	int ret;
3015 
3016 	ret = nand_block_isbad(mtd, ofs);
3017 	if (ret) {
3018 		/* If it was bad already, return success and do nothing */
3019 		if (ret > 0)
3020 			return 0;
3021 		return ret;
3022 	}
3023 
3024 	return nand_block_markbad_lowlevel(mtd, ofs);
3025 }
3026 
3027 /**
3028  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3029  * @mtd: MTD device structure
3030  * @chip: nand chip info structure
3031  * @addr: feature address.
3032  * @subfeature_param: the subfeature parameters, a four bytes array.
3033  */
nand_onfi_set_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,uint8_t * subfeature_param)3034 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3035 			int addr, uint8_t *subfeature_param)
3036 {
3037 	int status;
3038 	int i;
3039 
3040 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3041 	if (!chip->onfi_version ||
3042 	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
3043 	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3044 		return -EINVAL;
3045 #endif
3046 
3047 	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3048 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3049 		chip->write_byte(mtd, subfeature_param[i]);
3050 
3051 	status = chip->waitfunc(mtd, chip);
3052 	if (status & NAND_STATUS_FAIL)
3053 		return -EIO;
3054 	return 0;
3055 }
3056 
3057 /**
3058  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3059  * @mtd: MTD device structure
3060  * @chip: nand chip info structure
3061  * @addr: feature address.
3062  * @subfeature_param: the subfeature parameters, a four bytes array.
3063  */
nand_onfi_get_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,uint8_t * subfeature_param)3064 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3065 			int addr, uint8_t *subfeature_param)
3066 {
3067 	int i;
3068 
3069 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3070 	if (!chip->onfi_version ||
3071 	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
3072 	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3073 		return -EINVAL;
3074 #endif
3075 
3076 	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3077 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3078 		*subfeature_param++ = chip->read_byte(mtd);
3079 	return 0;
3080 }
3081 
3082 /* Set default functions */
nand_set_defaults(struct nand_chip * chip,int busw)3083 static void nand_set_defaults(struct nand_chip *chip, int busw)
3084 {
3085 	/* check for proper chip_delay setup, set 20us if not */
3086 	if (!chip->chip_delay)
3087 		chip->chip_delay = 20;
3088 
3089 	/* check, if a user supplied command function given */
3090 	if (chip->cmdfunc == NULL)
3091 		chip->cmdfunc = nand_command;
3092 
3093 	/* check, if a user supplied wait function given */
3094 	if (chip->waitfunc == NULL)
3095 		chip->waitfunc = nand_wait;
3096 
3097 	if (!chip->select_chip)
3098 		chip->select_chip = nand_select_chip;
3099 
3100 	/* set for ONFI nand */
3101 	if (!chip->onfi_set_features)
3102 		chip->onfi_set_features = nand_onfi_set_features;
3103 	if (!chip->onfi_get_features)
3104 		chip->onfi_get_features = nand_onfi_get_features;
3105 
3106 	/* If called twice, pointers that depend on busw may need to be reset */
3107 	if (!chip->read_byte || chip->read_byte == nand_read_byte)
3108 		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3109 	if (!chip->read_word)
3110 		chip->read_word = nand_read_word;
3111 	if (!chip->block_bad)
3112 		chip->block_bad = nand_block_bad;
3113 	if (!chip->block_markbad)
3114 		chip->block_markbad = nand_default_block_markbad;
3115 	if (!chip->write_buf || chip->write_buf == nand_write_buf)
3116 		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3117 	if (!chip->write_byte || chip->write_byte == nand_write_byte)
3118 		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3119 	if (!chip->read_buf || chip->read_buf == nand_read_buf)
3120 		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3121 	if (!chip->scan_bbt)
3122 		chip->scan_bbt = nand_default_bbt;
3123 
3124 	if (!chip->controller) {
3125 		chip->controller = &chip->hwcontrol;
3126 		spin_lock_init(&chip->controller->lock);
3127 		init_waitqueue_head(&chip->controller->wq);
3128 	}
3129 
3130 	if (!chip->buf_align)
3131 		chip->buf_align = 1;
3132 }
3133 
3134 /* Sanitize ONFI strings so we can safely print them */
sanitize_string(char * s,size_t len)3135 static void sanitize_string(char *s, size_t len)
3136 {
3137 	ssize_t i;
3138 
3139 	/* Null terminate */
3140 	s[len - 1] = 0;
3141 
3142 	/* Remove non printable chars */
3143 	for (i = 0; i < len - 1; i++) {
3144 		if (s[i] < ' ' || s[i] > 127)
3145 			s[i] = '?';
3146 	}
3147 
3148 	/* Remove trailing spaces */
3149 	strim(s);
3150 }
3151 
onfi_crc16(u16 crc,u8 const * p,size_t len)3152 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3153 {
3154 	int i;
3155 	while (len--) {
3156 		crc ^= *p++ << 8;
3157 		for (i = 0; i < 8; i++)
3158 			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3159 	}
3160 
3161 	return crc;
3162 }
3163 
3164 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3165 /* Parse the Extended Parameter Page. */
nand_flash_detect_ext_param_page(struct mtd_info * mtd,struct nand_chip * chip,struct nand_onfi_params * p)3166 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3167 		struct nand_chip *chip, struct nand_onfi_params *p)
3168 {
3169 	struct onfi_ext_param_page *ep;
3170 	struct onfi_ext_section *s;
3171 	struct onfi_ext_ecc_info *ecc;
3172 	uint8_t *cursor;
3173 	int ret = -EINVAL;
3174 	int len;
3175 	int i;
3176 
3177 	len = le16_to_cpu(p->ext_param_page_length) * 16;
3178 	ep = kmalloc(len, GFP_KERNEL);
3179 	if (!ep)
3180 		return -ENOMEM;
3181 
3182 	/* Send our own NAND_CMD_PARAM. */
3183 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3184 
3185 	/* Use the Change Read Column command to skip the ONFI param pages. */
3186 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3187 			sizeof(*p) * p->num_of_param_pages , -1);
3188 
3189 	/* Read out the Extended Parameter Page. */
3190 	chip->read_buf(mtd, (uint8_t *)ep, len);
3191 	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3192 		!= le16_to_cpu(ep->crc))) {
3193 		pr_debug("fail in the CRC.\n");
3194 		goto ext_out;
3195 	}
3196 
3197 	/*
3198 	 * Check the signature.
3199 	 * Do not strictly follow the ONFI spec, maybe changed in future.
3200 	 */
3201 	if (strncmp((char *)ep->sig, "EPPS", 4)) {
3202 		pr_debug("The signature is invalid.\n");
3203 		goto ext_out;
3204 	}
3205 
3206 	/* find the ECC section. */
3207 	cursor = (uint8_t *)(ep + 1);
3208 	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3209 		s = ep->sections + i;
3210 		if (s->type == ONFI_SECTION_TYPE_2)
3211 			break;
3212 		cursor += s->length * 16;
3213 	}
3214 	if (i == ONFI_EXT_SECTION_MAX) {
3215 		pr_debug("We can not find the ECC section.\n");
3216 		goto ext_out;
3217 	}
3218 
3219 	/* get the info we want. */
3220 	ecc = (struct onfi_ext_ecc_info *)cursor;
3221 
3222 	if (!ecc->codeword_size) {
3223 		pr_debug("Invalid codeword size\n");
3224 		goto ext_out;
3225 	}
3226 
3227 	chip->ecc_strength_ds = ecc->ecc_bits;
3228 	chip->ecc_step_ds = 1 << ecc->codeword_size;
3229 	ret = 0;
3230 
3231 ext_out:
3232 	kfree(ep);
3233 	return ret;
3234 }
3235 
nand_setup_read_retry_micron(struct mtd_info * mtd,int retry_mode)3236 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3237 {
3238 	struct nand_chip *chip = mtd_to_nand(mtd);
3239 	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3240 
3241 	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3242 			feature);
3243 }
3244 
3245 /*
3246  * Configure chip properties from Micron vendor-specific ONFI table
3247  */
nand_onfi_detect_micron(struct nand_chip * chip,struct nand_onfi_params * p)3248 static void nand_onfi_detect_micron(struct nand_chip *chip,
3249 		struct nand_onfi_params *p)
3250 {
3251 	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3252 
3253 	if (le16_to_cpu(p->vendor_revision) < 1)
3254 		return;
3255 
3256 	chip->read_retries = micron->read_retry_options;
3257 	chip->setup_read_retry = nand_setup_read_retry_micron;
3258 }
3259 
3260 /*
3261  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3262  */
nand_flash_detect_onfi(struct mtd_info * mtd,struct nand_chip * chip,int * busw)3263 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3264 					int *busw)
3265 {
3266 	struct nand_onfi_params *p = &chip->onfi_params;
3267 	int i, j;
3268 	int val;
3269 
3270 	/* Try ONFI for unknown chip or LP */
3271 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3272 	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3273 		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3274 		return 0;
3275 
3276 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3277 	for (i = 0; i < 3; i++) {
3278 		for (j = 0; j < sizeof(*p); j++)
3279 			((uint8_t *)p)[j] = chip->read_byte(mtd);
3280 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3281 				le16_to_cpu(p->crc)) {
3282 			break;
3283 		}
3284 	}
3285 
3286 	if (i == 3) {
3287 		pr_err("Could not find valid ONFI parameter page; aborting\n");
3288 		return 0;
3289 	}
3290 
3291 	/* Check version */
3292 	val = le16_to_cpu(p->revision);
3293 	if (val & (1 << 5))
3294 		chip->onfi_version = 23;
3295 	else if (val & (1 << 4))
3296 		chip->onfi_version = 22;
3297 	else if (val & (1 << 3))
3298 		chip->onfi_version = 21;
3299 	else if (val & (1 << 2))
3300 		chip->onfi_version = 20;
3301 	else if (val & (1 << 1))
3302 		chip->onfi_version = 10;
3303 
3304 	if (!chip->onfi_version) {
3305 		pr_info("unsupported ONFI version: %d\n", val);
3306 		return 0;
3307 	}
3308 
3309 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3310 	sanitize_string(p->model, sizeof(p->model));
3311 	if (!mtd->name)
3312 		mtd->name = p->model;
3313 
3314 	mtd->writesize = le32_to_cpu(p->byte_per_page);
3315 
3316 	/*
3317 	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3318 	 * (don't ask me who thought of this...). MTD assumes that these
3319 	 * dimensions will be power-of-2, so just truncate the remaining area.
3320 	 */
3321 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3322 	mtd->erasesize *= mtd->writesize;
3323 
3324 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3325 
3326 	/* See erasesize comment */
3327 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3328 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3329 	chip->bits_per_cell = p->bits_per_cell;
3330 
3331 	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3332 		*busw = NAND_BUSWIDTH_16;
3333 	else
3334 		*busw = 0;
3335 
3336 	if (p->ecc_bits != 0xff) {
3337 		chip->ecc_strength_ds = p->ecc_bits;
3338 		chip->ecc_step_ds = 512;
3339 	} else if (chip->onfi_version >= 21 &&
3340 		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3341 
3342 		/*
3343 		 * The nand_flash_detect_ext_param_page() uses the
3344 		 * Change Read Column command which maybe not supported
3345 		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3346 		 * now. We do not replace user supplied command function.
3347 		 */
3348 		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3349 			chip->cmdfunc = nand_command_lp;
3350 
3351 		/* The Extended Parameter Page is supported since ONFI 2.1. */
3352 		if (nand_flash_detect_ext_param_page(mtd, chip, p))
3353 			pr_warn("Failed to detect ONFI extended param page\n");
3354 	} else {
3355 		pr_warn("Could not retrieve ONFI ECC requirements\n");
3356 	}
3357 
3358 	if (p->jedec_id == NAND_MFR_MICRON)
3359 		nand_onfi_detect_micron(chip, p);
3360 
3361 	return 1;
3362 }
3363 #else
nand_flash_detect_onfi(struct mtd_info * mtd,struct nand_chip * chip,int * busw)3364 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3365 					int *busw)
3366 {
3367 	return 0;
3368 }
3369 #endif
3370 
3371 /*
3372  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3373  */
nand_flash_detect_jedec(struct mtd_info * mtd,struct nand_chip * chip,int * busw)3374 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3375 					int *busw)
3376 {
3377 	struct nand_jedec_params *p = &chip->jedec_params;
3378 	struct jedec_ecc_info *ecc;
3379 	int val;
3380 	int i, j;
3381 
3382 	/* Try JEDEC for unknown chip or LP */
3383 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3384 	if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3385 		chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3386 		chip->read_byte(mtd) != 'C')
3387 		return 0;
3388 
3389 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3390 	for (i = 0; i < 3; i++) {
3391 		for (j = 0; j < sizeof(*p); j++)
3392 			((uint8_t *)p)[j] = chip->read_byte(mtd);
3393 
3394 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3395 				le16_to_cpu(p->crc))
3396 			break;
3397 	}
3398 
3399 	if (i == 3) {
3400 		pr_err("Could not find valid JEDEC parameter page; aborting\n");
3401 		return 0;
3402 	}
3403 
3404 	/* Check version */
3405 	val = le16_to_cpu(p->revision);
3406 	if (val & (1 << 2))
3407 		chip->jedec_version = 10;
3408 	else if (val & (1 << 1))
3409 		chip->jedec_version = 1; /* vendor specific version */
3410 
3411 	if (!chip->jedec_version) {
3412 		pr_info("unsupported JEDEC version: %d\n", val);
3413 		return 0;
3414 	}
3415 
3416 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3417 	sanitize_string(p->model, sizeof(p->model));
3418 	if (!mtd->name)
3419 		mtd->name = p->model;
3420 
3421 	mtd->writesize = le32_to_cpu(p->byte_per_page);
3422 
3423 	/* Please reference to the comment for nand_flash_detect_onfi. */
3424 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3425 	mtd->erasesize *= mtd->writesize;
3426 
3427 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3428 
3429 	/* Please reference to the comment for nand_flash_detect_onfi. */
3430 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3431 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3432 	chip->bits_per_cell = p->bits_per_cell;
3433 
3434 	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3435 		*busw = NAND_BUSWIDTH_16;
3436 	else
3437 		*busw = 0;
3438 
3439 	/* ECC info */
3440 	ecc = &p->ecc_info[0];
3441 
3442 	if (ecc->codeword_size >= 9) {
3443 		chip->ecc_strength_ds = ecc->ecc_bits;
3444 		chip->ecc_step_ds = 1 << ecc->codeword_size;
3445 	} else {
3446 		pr_warn("Invalid codeword size\n");
3447 	}
3448 
3449 	return 1;
3450 }
3451 
3452 /*
3453  * nand_id_has_period - Check if an ID string has a given wraparound period
3454  * @id_data: the ID string
3455  * @arrlen: the length of the @id_data array
3456  * @period: the period of repitition
3457  *
3458  * Check if an ID string is repeated within a given sequence of bytes at
3459  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3460  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3461  * if the repetition has a period of @period; otherwise, returns zero.
3462  */
nand_id_has_period(u8 * id_data,int arrlen,int period)3463 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3464 {
3465 	int i, j;
3466 	for (i = 0; i < period; i++)
3467 		for (j = i + period; j < arrlen; j += period)
3468 			if (id_data[i] != id_data[j])
3469 				return 0;
3470 	return 1;
3471 }
3472 
3473 /*
3474  * nand_id_len - Get the length of an ID string returned by CMD_READID
3475  * @id_data: the ID string
3476  * @arrlen: the length of the @id_data array
3477 
3478  * Returns the length of the ID string, according to known wraparound/trailing
3479  * zero patterns. If no pattern exists, returns the length of the array.
3480  */
nand_id_len(u8 * id_data,int arrlen)3481 static int nand_id_len(u8 *id_data, int arrlen)
3482 {
3483 	int last_nonzero, period;
3484 
3485 	/* Find last non-zero byte */
3486 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3487 		if (id_data[last_nonzero])
3488 			break;
3489 
3490 	/* All zeros */
3491 	if (last_nonzero < 0)
3492 		return 0;
3493 
3494 	/* Calculate wraparound period */
3495 	for (period = 1; period < arrlen; period++)
3496 		if (nand_id_has_period(id_data, arrlen, period))
3497 			break;
3498 
3499 	/* There's a repeated pattern */
3500 	if (period < arrlen)
3501 		return period;
3502 
3503 	/* There are trailing zeros */
3504 	if (last_nonzero < arrlen - 1)
3505 		return last_nonzero + 1;
3506 
3507 	/* No pattern detected */
3508 	return arrlen;
3509 }
3510 
3511 /* Extract the bits of per cell from the 3rd byte of the extended ID */
nand_get_bits_per_cell(u8 cellinfo)3512 static int nand_get_bits_per_cell(u8 cellinfo)
3513 {
3514 	int bits;
3515 
3516 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3517 	bits >>= NAND_CI_CELLTYPE_SHIFT;
3518 	return bits + 1;
3519 }
3520 
3521 /*
3522  * Many new NAND share similar device ID codes, which represent the size of the
3523  * chip. The rest of the parameters must be decoded according to generic or
3524  * manufacturer-specific "extended ID" decoding patterns.
3525  */
nand_decode_ext_id(struct mtd_info * mtd,struct nand_chip * chip,u8 id_data[8],int * busw)3526 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3527 				u8 id_data[8], int *busw)
3528 {
3529 	int extid, id_len;
3530 	/* The 3rd id byte holds MLC / multichip data */
3531 	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3532 	/* The 4th id byte is the important one */
3533 	extid = id_data[3];
3534 
3535 	id_len = nand_id_len(id_data, 8);
3536 
3537 	/*
3538 	 * Field definitions are in the following datasheets:
3539 	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3540 	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3541 	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3542 	 *
3543 	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3544 	 * ID to decide what to do.
3545 	 */
3546 	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3547 			!nand_is_slc(chip) && id_data[5] != 0x00) {
3548 		/* Calc pagesize */
3549 		mtd->writesize = 2048 << (extid & 0x03);
3550 		extid >>= 2;
3551 		/* Calc oobsize */
3552 		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3553 		case 1:
3554 			mtd->oobsize = 128;
3555 			break;
3556 		case 2:
3557 			mtd->oobsize = 218;
3558 			break;
3559 		case 3:
3560 			mtd->oobsize = 400;
3561 			break;
3562 		case 4:
3563 			mtd->oobsize = 436;
3564 			break;
3565 		case 5:
3566 			mtd->oobsize = 512;
3567 			break;
3568 		case 6:
3569 			mtd->oobsize = 640;
3570 			break;
3571 		case 7:
3572 		default: /* Other cases are "reserved" (unknown) */
3573 			mtd->oobsize = 1024;
3574 			break;
3575 		}
3576 		extid >>= 2;
3577 		/* Calc blocksize */
3578 		mtd->erasesize = (128 * 1024) <<
3579 			(((extid >> 1) & 0x04) | (extid & 0x03));
3580 		*busw = 0;
3581 	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3582 			!nand_is_slc(chip)) {
3583 		unsigned int tmp;
3584 
3585 		/* Calc pagesize */
3586 		mtd->writesize = 2048 << (extid & 0x03);
3587 		extid >>= 2;
3588 		/* Calc oobsize */
3589 		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3590 		case 0:
3591 			mtd->oobsize = 128;
3592 			break;
3593 		case 1:
3594 			mtd->oobsize = 224;
3595 			break;
3596 		case 2:
3597 			mtd->oobsize = 448;
3598 			break;
3599 		case 3:
3600 			mtd->oobsize = 64;
3601 			break;
3602 		case 4:
3603 			mtd->oobsize = 32;
3604 			break;
3605 		case 5:
3606 			mtd->oobsize = 16;
3607 			break;
3608 		default:
3609 			mtd->oobsize = 640;
3610 			break;
3611 		}
3612 		extid >>= 2;
3613 		/* Calc blocksize */
3614 		tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3615 		if (tmp < 0x03)
3616 			mtd->erasesize = (128 * 1024) << tmp;
3617 		else if (tmp == 0x03)
3618 			mtd->erasesize = 768 * 1024;
3619 		else
3620 			mtd->erasesize = (64 * 1024) << tmp;
3621 		*busw = 0;
3622 	} else {
3623 		/* Calc pagesize */
3624 		mtd->writesize = 1024 << (extid & 0x03);
3625 		extid >>= 2;
3626 		/* Calc oobsize */
3627 		mtd->oobsize = (8 << (extid & 0x01)) *
3628 			(mtd->writesize >> 9);
3629 		extid >>= 2;
3630 		/* Calc blocksize. Blocksize is multiples of 64KiB */
3631 		mtd->erasesize = (64 * 1024) << (extid & 0x03);
3632 		extid >>= 2;
3633 		/* Get buswidth information */
3634 		*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3635 
3636 		/*
3637 		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3638 		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3639 		 * follows:
3640 		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3641 		 *                         110b -> 24nm
3642 		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3643 		 */
3644 		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3645 				nand_is_slc(chip) &&
3646 				(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3647 				!(id_data[4] & 0x80) /* !BENAND */) {
3648 			mtd->oobsize = 32 * mtd->writesize >> 9;
3649 		}
3650 
3651 	}
3652 }
3653 
3654 /*
3655  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3656  * decodes a matching ID table entry and assigns the MTD size parameters for
3657  * the chip.
3658  */
nand_decode_id(struct mtd_info * mtd,struct nand_chip * chip,struct nand_flash_dev * type,u8 id_data[8],int * busw)3659 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3660 				struct nand_flash_dev *type, u8 id_data[8],
3661 				int *busw)
3662 {
3663 	int maf_id = id_data[0];
3664 
3665 	mtd->erasesize = type->erasesize;
3666 	mtd->writesize = type->pagesize;
3667 	mtd->oobsize = mtd->writesize / 32;
3668 	*busw = type->options & NAND_BUSWIDTH_16;
3669 
3670 	/* All legacy ID NAND are small-page, SLC */
3671 	chip->bits_per_cell = 1;
3672 
3673 	/*
3674 	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3675 	 * some Spansion chips have erasesize that conflicts with size
3676 	 * listed in nand_ids table.
3677 	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3678 	 */
3679 	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3680 			&& id_data[6] == 0x00 && id_data[7] == 0x00
3681 			&& mtd->writesize == 512) {
3682 		mtd->erasesize = 128 * 1024;
3683 		mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3684 	}
3685 }
3686 
3687 /*
3688  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3689  * heuristic patterns using various detected parameters (e.g., manufacturer,
3690  * page size, cell-type information).
3691  */
nand_decode_bbm_options(struct mtd_info * mtd,struct nand_chip * chip,u8 id_data[8])3692 static void nand_decode_bbm_options(struct mtd_info *mtd,
3693 				    struct nand_chip *chip, u8 id_data[8])
3694 {
3695 	int maf_id = id_data[0];
3696 
3697 	/* Set the bad block position */
3698 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3699 		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3700 	else
3701 		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3702 
3703 	/*
3704 	 * Bad block marker is stored in the last page of each block on Samsung
3705 	 * and Hynix MLC devices; stored in first two pages of each block on
3706 	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3707 	 * AMD/Spansion, and Macronix.  All others scan only the first page.
3708 	 */
3709 	if (!nand_is_slc(chip) &&
3710 			(maf_id == NAND_MFR_SAMSUNG ||
3711 			 maf_id == NAND_MFR_HYNIX))
3712 		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3713 	else if ((nand_is_slc(chip) &&
3714 				(maf_id == NAND_MFR_SAMSUNG ||
3715 				 maf_id == NAND_MFR_HYNIX ||
3716 				 maf_id == NAND_MFR_TOSHIBA ||
3717 				 maf_id == NAND_MFR_AMD ||
3718 				 maf_id == NAND_MFR_MACRONIX)) ||
3719 			(mtd->writesize == 2048 &&
3720 			 maf_id == NAND_MFR_MICRON))
3721 		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3722 }
3723 
is_full_id_nand(struct nand_flash_dev * type)3724 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3725 {
3726 	return type->id_len;
3727 }
3728 
find_full_id_nand(struct mtd_info * mtd,struct nand_chip * chip,struct nand_flash_dev * type,u8 * id_data,int * busw)3729 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3730 		   struct nand_flash_dev *type, u8 *id_data, int *busw)
3731 {
3732 	if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
3733 		mtd->writesize = type->pagesize;
3734 		mtd->erasesize = type->erasesize;
3735 		mtd->oobsize = type->oobsize;
3736 
3737 		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3738 		chip->chipsize = (uint64_t)type->chipsize << 20;
3739 		chip->options |= type->options;
3740 		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3741 		chip->ecc_step_ds = NAND_ECC_STEP(type);
3742 		chip->onfi_timing_mode_default =
3743 					type->onfi_timing_mode_default;
3744 
3745 		*busw = type->options & NAND_BUSWIDTH_16;
3746 
3747 		if (!mtd->name)
3748 			mtd->name = type->name;
3749 
3750 		return true;
3751 	}
3752 	return false;
3753 }
3754 
3755 /*
3756  * Get the flash and manufacturer id and lookup if the type is supported.
3757  */
nand_get_flash_type(struct mtd_info * mtd,struct nand_chip * chip,int * maf_id,int * dev_id,struct nand_flash_dev * type)3758 struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3759 						  struct nand_chip *chip,
3760 						  int *maf_id, int *dev_id,
3761 						  struct nand_flash_dev *type)
3762 {
3763 	int busw;
3764 	int i, maf_idx;
3765 	u8 id_data[8];
3766 
3767 	/*
3768 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3769 	 * after power-up.
3770 	 */
3771 	nand_reset(chip, 0);
3772 
3773 	/* Select the device */
3774 	chip->select_chip(mtd, 0);
3775 
3776 	/* Send the command for reading device ID */
3777 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3778 
3779 	/* Read manufacturer and device IDs */
3780 	*maf_id = chip->read_byte(mtd);
3781 	*dev_id = chip->read_byte(mtd);
3782 
3783 	/*
3784 	 * Try again to make sure, as some systems the bus-hold or other
3785 	 * interface concerns can cause random data which looks like a
3786 	 * possibly credible NAND flash to appear. If the two results do
3787 	 * not match, ignore the device completely.
3788 	 */
3789 
3790 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3791 
3792 	/* Read entire ID string */
3793 	for (i = 0; i < 8; i++)
3794 		id_data[i] = chip->read_byte(mtd);
3795 
3796 	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3797 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3798 			*maf_id, *dev_id, id_data[0], id_data[1]);
3799 		return ERR_PTR(-ENODEV);
3800 	}
3801 
3802 	if (!type)
3803 		type = nand_flash_ids;
3804 
3805 	for (; type->name != NULL; type++) {
3806 		if (is_full_id_nand(type)) {
3807 			if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3808 				goto ident_done;
3809 		} else if (*dev_id == type->dev_id) {
3810 			break;
3811 		}
3812 	}
3813 
3814 	chip->onfi_version = 0;
3815 	if (!type->name || !type->pagesize) {
3816 		/* Check if the chip is ONFI compliant */
3817 		if (nand_flash_detect_onfi(mtd, chip, &busw))
3818 			goto ident_done;
3819 
3820 		/* Check if the chip is JEDEC compliant */
3821 		if (nand_flash_detect_jedec(mtd, chip, &busw))
3822 			goto ident_done;
3823 	}
3824 
3825 	if (!type->name)
3826 		return ERR_PTR(-ENODEV);
3827 
3828 	if (!mtd->name)
3829 		mtd->name = type->name;
3830 
3831 	chip->chipsize = (uint64_t)type->chipsize << 20;
3832 
3833 	if (!type->pagesize) {
3834 		/* Decode parameters from extended ID */
3835 		nand_decode_ext_id(mtd, chip, id_data, &busw);
3836 	} else {
3837 		nand_decode_id(mtd, chip, type, id_data, &busw);
3838 	}
3839 	/* Get chip options */
3840 	chip->options |= type->options;
3841 
3842 	/*
3843 	 * Check if chip is not a Samsung device. Do not clear the
3844 	 * options for chips which do not have an extended id.
3845 	 */
3846 	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3847 		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3848 ident_done:
3849 
3850 	/* Try to identify manufacturer */
3851 	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3852 		if (nand_manuf_ids[maf_idx].id == *maf_id)
3853 			break;
3854 	}
3855 
3856 	if (chip->options & NAND_BUSWIDTH_AUTO) {
3857 		WARN_ON(chip->options & NAND_BUSWIDTH_16);
3858 		chip->options |= busw;
3859 		nand_set_defaults(chip, busw);
3860 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3861 		/*
3862 		 * Check, if buswidth is correct. Hardware drivers should set
3863 		 * chip correct!
3864 		 */
3865 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3866 			*maf_id, *dev_id);
3867 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3868 		pr_warn("bus width %d instead %d bit\n",
3869 			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3870 			   busw ? 16 : 8);
3871 		return ERR_PTR(-EINVAL);
3872 	}
3873 
3874 	nand_decode_bbm_options(mtd, chip, id_data);
3875 
3876 	/* Calculate the address shift from the page size */
3877 	chip->page_shift = ffs(mtd->writesize) - 1;
3878 	/* Convert chipsize to number of pages per chip -1 */
3879 	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3880 
3881 	chip->bbt_erase_shift = chip->phys_erase_shift =
3882 		ffs(mtd->erasesize) - 1;
3883 	if (chip->chipsize & 0xffffffff)
3884 		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3885 	else {
3886 		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3887 		chip->chip_shift += 32 - 1;
3888 	}
3889 
3890 	if (chip->chip_shift - chip->page_shift > 16)
3891 		chip->options |= NAND_ROW_ADDR_3;
3892 
3893 	chip->badblockbits = 8;
3894 	chip->erase = single_erase;
3895 
3896 	/* Do not replace user supplied command function! */
3897 	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3898 		chip->cmdfunc = nand_command_lp;
3899 
3900 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3901 		*maf_id, *dev_id);
3902 
3903 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3904 	if (chip->onfi_version)
3905 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3906 				chip->onfi_params.model);
3907 	else if (chip->jedec_version)
3908 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3909 				chip->jedec_params.model);
3910 	else
3911 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3912 				type->name);
3913 #else
3914 	if (chip->jedec_version)
3915 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3916 				chip->jedec_params.model);
3917 	else
3918 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3919 				type->name);
3920 
3921 	pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3922 		type->name);
3923 #endif
3924 
3925 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3926 		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3927 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3928 	return type;
3929 }
3930 EXPORT_SYMBOL(nand_get_flash_type);
3931 
3932 #if CONFIG_IS_ENABLED(OF_CONTROL)
3933 DECLARE_GLOBAL_DATA_PTR;
3934 
nand_dt_init(struct mtd_info * mtd,struct nand_chip * chip,int node)3935 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
3936 {
3937 	int ret, ecc_mode = -1, ecc_strength, ecc_step;
3938 	const void *blob = gd->fdt_blob;
3939 	const char *str;
3940 
3941 	ret = fdtdec_get_int(blob, node, "nand-bus-width", -1);
3942 	if (ret == 16)
3943 		chip->options |= NAND_BUSWIDTH_16;
3944 
3945 	if (fdtdec_get_bool(blob, node, "nand-on-flash-bbt"))
3946 		chip->bbt_options |= NAND_BBT_USE_FLASH;
3947 
3948 	str = fdt_getprop(blob, node, "nand-ecc-mode", NULL);
3949 	if (str) {
3950 		if (!strcmp(str, "none"))
3951 			ecc_mode = NAND_ECC_NONE;
3952 		else if (!strcmp(str, "soft"))
3953 			ecc_mode = NAND_ECC_SOFT;
3954 		else if (!strcmp(str, "hw"))
3955 			ecc_mode = NAND_ECC_HW;
3956 		else if (!strcmp(str, "hw_syndrome"))
3957 			ecc_mode = NAND_ECC_HW_SYNDROME;
3958 		else if (!strcmp(str, "hw_oob_first"))
3959 			ecc_mode = NAND_ECC_HW_OOB_FIRST;
3960 		else if (!strcmp(str, "soft_bch"))
3961 			ecc_mode = NAND_ECC_SOFT_BCH;
3962 	}
3963 
3964 
3965 	ecc_strength = fdtdec_get_int(blob, node, "nand-ecc-strength", -1);
3966 	ecc_step = fdtdec_get_int(blob, node, "nand-ecc-step-size", -1);
3967 
3968 	if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3969 	    (!(ecc_step >= 0) && ecc_strength >= 0)) {
3970 		pr_err("must set both strength and step size in DT\n");
3971 		return -EINVAL;
3972 	}
3973 
3974 	if (ecc_mode >= 0)
3975 		chip->ecc.mode = ecc_mode;
3976 
3977 	if (ecc_strength >= 0)
3978 		chip->ecc.strength = ecc_strength;
3979 
3980 	if (ecc_step > 0)
3981 		chip->ecc.size = ecc_step;
3982 
3983 	if (fdt_getprop(blob, node, "nand-ecc-maximize", NULL))
3984 		chip->ecc.options |= NAND_ECC_MAXIMIZE;
3985 
3986 	return 0;
3987 }
3988 #else
nand_dt_init(struct mtd_info * mtd,struct nand_chip * chip,int node)3989 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
3990 {
3991 	return 0;
3992 }
3993 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
3994 
3995 /**
3996  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3997  * @mtd: MTD device structure
3998  * @maxchips: number of chips to scan for
3999  * @table: alternative NAND ID table
4000  *
4001  * This is the first phase of the normal nand_scan() function. It reads the
4002  * flash ID and sets up MTD fields accordingly.
4003  *
4004  */
nand_scan_ident(struct mtd_info * mtd,int maxchips,struct nand_flash_dev * table)4005 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4006 		    struct nand_flash_dev *table)
4007 {
4008 	int i, nand_maf_id, nand_dev_id;
4009 	struct nand_chip *chip = mtd_to_nand(mtd);
4010 	struct nand_flash_dev *type;
4011 	int ret;
4012 
4013 	if (chip->flash_node) {
4014 		ret = nand_dt_init(mtd, chip, chip->flash_node);
4015 		if (ret)
4016 			return ret;
4017 	}
4018 
4019 	/* Set the default functions */
4020 	nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4021 
4022 	/* Read the flash type */
4023 	type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4024 				   &nand_dev_id, table);
4025 
4026 	if (IS_ERR(type)) {
4027 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4028 			pr_warn("No NAND device found\n");
4029 		chip->select_chip(mtd, -1);
4030 		return PTR_ERR(type);
4031 	}
4032 
4033 	/* Initialize the ->data_interface field. */
4034 	ret = nand_init_data_interface(chip);
4035 	if (ret)
4036 		return ret;
4037 
4038 	/*
4039 	 * Setup the data interface correctly on the chip and controller side.
4040 	 * This explicit call to nand_setup_data_interface() is only required
4041 	 * for the first die, because nand_reset() has been called before
4042 	 * ->data_interface and ->default_onfi_timing_mode were set.
4043 	 * For the other dies, nand_reset() will automatically switch to the
4044 	 * best mode for us.
4045 	 */
4046 	ret = nand_setup_data_interface(chip, 0);
4047 	if (ret)
4048 		return ret;
4049 
4050 	chip->select_chip(mtd, -1);
4051 
4052 	/* Check for a chip array */
4053 	for (i = 1; i < maxchips; i++) {
4054 		/* See comment in nand_get_flash_type for reset */
4055 		nand_reset(chip, i);
4056 
4057 		chip->select_chip(mtd, i);
4058 		/* Send the command for reading device ID */
4059 		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4060 		/* Read manufacturer and device IDs */
4061 		if (nand_maf_id != chip->read_byte(mtd) ||
4062 		    nand_dev_id != chip->read_byte(mtd)) {
4063 			chip->select_chip(mtd, -1);
4064 			break;
4065 		}
4066 		chip->select_chip(mtd, -1);
4067 	}
4068 
4069 #ifdef DEBUG
4070 	if (i > 1)
4071 		pr_info("%d chips detected\n", i);
4072 #endif
4073 
4074 	/* Store the number of chips and calc total size for mtd */
4075 	chip->numchips = i;
4076 	mtd->size = i * chip->chipsize;
4077 
4078 	return 0;
4079 }
4080 EXPORT_SYMBOL(nand_scan_ident);
4081 
4082 /**
4083  * nand_check_ecc_caps - check the sanity of preset ECC settings
4084  * @chip: nand chip info structure
4085  * @caps: ECC caps info structure
4086  * @oobavail: OOB size that the ECC engine can use
4087  *
4088  * When ECC step size and strength are already set, check if they are supported
4089  * by the controller and the calculated ECC bytes fit within the chip's OOB.
4090  * On success, the calculated ECC bytes is set.
4091  */
nand_check_ecc_caps(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)4092 int nand_check_ecc_caps(struct nand_chip *chip,
4093 			const struct nand_ecc_caps *caps, int oobavail)
4094 {
4095 	struct mtd_info *mtd = nand_to_mtd(chip);
4096 	const struct nand_ecc_step_info *stepinfo;
4097 	int preset_step = chip->ecc.size;
4098 	int preset_strength = chip->ecc.strength;
4099 	int nsteps, ecc_bytes;
4100 	int i, j;
4101 
4102 	if (WARN_ON(oobavail < 0))
4103 		return -EINVAL;
4104 
4105 	if (!preset_step || !preset_strength)
4106 		return -ENODATA;
4107 
4108 	nsteps = mtd->writesize / preset_step;
4109 
4110 	for (i = 0; i < caps->nstepinfos; i++) {
4111 		stepinfo = &caps->stepinfos[i];
4112 
4113 		if (stepinfo->stepsize != preset_step)
4114 			continue;
4115 
4116 		for (j = 0; j < stepinfo->nstrengths; j++) {
4117 			if (stepinfo->strengths[j] != preset_strength)
4118 				continue;
4119 
4120 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
4121 							 preset_strength);
4122 			if (WARN_ON_ONCE(ecc_bytes < 0))
4123 				return ecc_bytes;
4124 
4125 			if (ecc_bytes * nsteps > oobavail) {
4126 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
4127 				       preset_step, preset_strength);
4128 				return -ENOSPC;
4129 			}
4130 
4131 			chip->ecc.bytes = ecc_bytes;
4132 
4133 			return 0;
4134 		}
4135 	}
4136 
4137 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
4138 	       preset_step, preset_strength);
4139 
4140 	return -ENOTSUPP;
4141 }
4142 EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
4143 
4144 /**
4145  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
4146  * @chip: nand chip info structure
4147  * @caps: ECC engine caps info structure
4148  * @oobavail: OOB size that the ECC engine can use
4149  *
4150  * If a chip's ECC requirement is provided, try to meet it with the least
4151  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
4152  * On success, the chosen ECC settings are set.
4153  */
nand_match_ecc_req(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)4154 int nand_match_ecc_req(struct nand_chip *chip,
4155 		       const struct nand_ecc_caps *caps, int oobavail)
4156 {
4157 	struct mtd_info *mtd = nand_to_mtd(chip);
4158 	const struct nand_ecc_step_info *stepinfo;
4159 	int req_step = chip->ecc_step_ds;
4160 	int req_strength = chip->ecc_strength_ds;
4161 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
4162 	int best_step, best_strength, best_ecc_bytes;
4163 	int best_ecc_bytes_total = INT_MAX;
4164 	int i, j;
4165 
4166 	if (WARN_ON(oobavail < 0))
4167 		return -EINVAL;
4168 
4169 	/* No information provided by the NAND chip */
4170 	if (!req_step || !req_strength)
4171 		return -ENOTSUPP;
4172 
4173 	/* number of correctable bits the chip requires in a page */
4174 	req_corr = mtd->writesize / req_step * req_strength;
4175 
4176 	for (i = 0; i < caps->nstepinfos; i++) {
4177 		stepinfo = &caps->stepinfos[i];
4178 		step_size = stepinfo->stepsize;
4179 
4180 		for (j = 0; j < stepinfo->nstrengths; j++) {
4181 			strength = stepinfo->strengths[j];
4182 
4183 			/*
4184 			 * If both step size and strength are smaller than the
4185 			 * chip's requirement, it is not easy to compare the
4186 			 * resulted reliability.
4187 			 */
4188 			if (step_size < req_step && strength < req_strength)
4189 				continue;
4190 
4191 			if (mtd->writesize % step_size)
4192 				continue;
4193 
4194 			nsteps = mtd->writesize / step_size;
4195 
4196 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4197 			if (WARN_ON_ONCE(ecc_bytes < 0))
4198 				continue;
4199 			ecc_bytes_total = ecc_bytes * nsteps;
4200 
4201 			if (ecc_bytes_total > oobavail ||
4202 			    strength * nsteps < req_corr)
4203 				continue;
4204 
4205 			/*
4206 			 * We assume the best is to meet the chip's requrement
4207 			 * with the least number of ECC bytes.
4208 			 */
4209 			if (ecc_bytes_total < best_ecc_bytes_total) {
4210 				best_ecc_bytes_total = ecc_bytes_total;
4211 				best_step = step_size;
4212 				best_strength = strength;
4213 				best_ecc_bytes = ecc_bytes;
4214 			}
4215 		}
4216 	}
4217 
4218 	if (best_ecc_bytes_total == INT_MAX)
4219 		return -ENOTSUPP;
4220 
4221 	chip->ecc.size = best_step;
4222 	chip->ecc.strength = best_strength;
4223 	chip->ecc.bytes = best_ecc_bytes;
4224 
4225 	return 0;
4226 }
4227 EXPORT_SYMBOL_GPL(nand_match_ecc_req);
4228 
4229 /**
4230  * nand_maximize_ecc - choose the max ECC strength available
4231  * @chip: nand chip info structure
4232  * @caps: ECC engine caps info structure
4233  * @oobavail: OOB size that the ECC engine can use
4234  *
4235  * Choose the max ECC strength that is supported on the controller, and can fit
4236  * within the chip's OOB.  On success, the chosen ECC settings are set.
4237  */
nand_maximize_ecc(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)4238 int nand_maximize_ecc(struct nand_chip *chip,
4239 		      const struct nand_ecc_caps *caps, int oobavail)
4240 {
4241 	struct mtd_info *mtd = nand_to_mtd(chip);
4242 	const struct nand_ecc_step_info *stepinfo;
4243 	int step_size, strength, nsteps, ecc_bytes, corr;
4244 	int best_corr = 0;
4245 	int best_step = 0;
4246 	int best_strength, best_ecc_bytes;
4247 	int i, j;
4248 
4249 	if (WARN_ON(oobavail < 0))
4250 		return -EINVAL;
4251 
4252 	for (i = 0; i < caps->nstepinfos; i++) {
4253 		stepinfo = &caps->stepinfos[i];
4254 		step_size = stepinfo->stepsize;
4255 
4256 		/* If chip->ecc.size is already set, respect it */
4257 		if (chip->ecc.size && step_size != chip->ecc.size)
4258 			continue;
4259 
4260 		for (j = 0; j < stepinfo->nstrengths; j++) {
4261 			strength = stepinfo->strengths[j];
4262 
4263 			if (mtd->writesize % step_size)
4264 				continue;
4265 
4266 			nsteps = mtd->writesize / step_size;
4267 
4268 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4269 			if (WARN_ON_ONCE(ecc_bytes < 0))
4270 				continue;
4271 
4272 			if (ecc_bytes * nsteps > oobavail)
4273 				continue;
4274 
4275 			corr = strength * nsteps;
4276 
4277 			/*
4278 			 * If the number of correctable bits is the same,
4279 			 * bigger step_size has more reliability.
4280 			 */
4281 			if (corr > best_corr ||
4282 			    (corr == best_corr && step_size > best_step)) {
4283 				best_corr = corr;
4284 				best_step = step_size;
4285 				best_strength = strength;
4286 				best_ecc_bytes = ecc_bytes;
4287 			}
4288 		}
4289 	}
4290 
4291 	if (!best_corr)
4292 		return -ENOTSUPP;
4293 
4294 	chip->ecc.size = best_step;
4295 	chip->ecc.strength = best_strength;
4296 	chip->ecc.bytes = best_ecc_bytes;
4297 
4298 	return 0;
4299 }
4300 EXPORT_SYMBOL_GPL(nand_maximize_ecc);
4301 
4302 /*
4303  * Check if the chip configuration meet the datasheet requirements.
4304 
4305  * If our configuration corrects A bits per B bytes and the minimum
4306  * required correction level is X bits per Y bytes, then we must ensure
4307  * both of the following are true:
4308  *
4309  * (1) A / B >= X / Y
4310  * (2) A >= X
4311  *
4312  * Requirement (1) ensures we can correct for the required bitflip density.
4313  * Requirement (2) ensures we can correct even when all bitflips are clumped
4314  * in the same sector.
4315  */
nand_ecc_strength_good(struct mtd_info * mtd)4316 static bool nand_ecc_strength_good(struct mtd_info *mtd)
4317 {
4318 	struct nand_chip *chip = mtd_to_nand(mtd);
4319 	struct nand_ecc_ctrl *ecc = &chip->ecc;
4320 	int corr, ds_corr;
4321 
4322 	if (ecc->size == 0 || chip->ecc_step_ds == 0)
4323 		/* Not enough information */
4324 		return true;
4325 
4326 	/*
4327 	 * We get the number of corrected bits per page to compare
4328 	 * the correction density.
4329 	 */
4330 	corr = (mtd->writesize * ecc->strength) / ecc->size;
4331 	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4332 
4333 	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4334 }
4335 
invalid_ecc_page_accessors(struct nand_chip * chip)4336 static bool invalid_ecc_page_accessors(struct nand_chip *chip)
4337 {
4338 	struct nand_ecc_ctrl *ecc = &chip->ecc;
4339 
4340 	if (nand_standard_page_accessors(ecc))
4341 		return false;
4342 
4343 	/*
4344 	 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
4345 	 * controller driver implements all the page accessors because
4346 	 * default helpers are not suitable when the core does not
4347 	 * send the READ0/PAGEPROG commands.
4348 	 */
4349 	return (!ecc->read_page || !ecc->write_page ||
4350 		!ecc->read_page_raw || !ecc->write_page_raw ||
4351 		(NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
4352 		(NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
4353 		 ecc->hwctl && ecc->calculate));
4354 }
4355 
4356 /**
4357  * nand_scan_tail - [NAND Interface] Scan for the NAND device
4358  * @mtd: MTD device structure
4359  *
4360  * This is the second phase of the normal nand_scan() function. It fills out
4361  * all the uninitialized function pointers with the defaults and scans for a
4362  * bad block table if appropriate.
4363  */
nand_scan_tail(struct mtd_info * mtd)4364 int nand_scan_tail(struct mtd_info *mtd)
4365 {
4366 	int i;
4367 	struct nand_chip *chip = mtd_to_nand(mtd);
4368 	struct nand_ecc_ctrl *ecc = &chip->ecc;
4369 	struct nand_buffers *nbuf;
4370 
4371 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
4372 	BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4373 			!(chip->bbt_options & NAND_BBT_USE_FLASH));
4374 
4375 	if (invalid_ecc_page_accessors(chip)) {
4376 		pr_err("Invalid ECC page accessors setup\n");
4377 		return -EINVAL;
4378 	}
4379 
4380 	if (!(chip->options & NAND_OWN_BUFFERS)) {
4381 		nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
4382 		chip->buffers = nbuf;
4383 	} else {
4384 		if (!chip->buffers)
4385 			return -ENOMEM;
4386 	}
4387 
4388 	/* Set the internal oob buffer location, just after the page data */
4389 	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4390 
4391 	/*
4392 	 * If no default placement scheme is given, select an appropriate one.
4393 	 */
4394 	if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
4395 		switch (mtd->oobsize) {
4396 		case 8:
4397 			ecc->layout = &nand_oob_8;
4398 			break;
4399 		case 16:
4400 			ecc->layout = &nand_oob_16;
4401 			break;
4402 		case 64:
4403 			ecc->layout = &nand_oob_64;
4404 			break;
4405 		case 128:
4406 			ecc->layout = &nand_oob_128;
4407 			break;
4408 		default:
4409 			pr_warn("No oob scheme defined for oobsize %d\n",
4410 				   mtd->oobsize);
4411 			BUG();
4412 		}
4413 	}
4414 
4415 	if (!chip->write_page)
4416 		chip->write_page = nand_write_page;
4417 
4418 	/*
4419 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4420 	 * selected and we have 256 byte pagesize fallback to software ECC
4421 	 */
4422 
4423 	switch (ecc->mode) {
4424 	case NAND_ECC_HW_OOB_FIRST:
4425 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
4426 		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4427 			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4428 			BUG();
4429 		}
4430 		if (!ecc->read_page)
4431 			ecc->read_page = nand_read_page_hwecc_oob_first;
4432 
4433 	case NAND_ECC_HW:
4434 		/* Use standard hwecc read page function? */
4435 		if (!ecc->read_page)
4436 			ecc->read_page = nand_read_page_hwecc;
4437 		if (!ecc->write_page)
4438 			ecc->write_page = nand_write_page_hwecc;
4439 		if (!ecc->read_page_raw)
4440 			ecc->read_page_raw = nand_read_page_raw;
4441 		if (!ecc->write_page_raw)
4442 			ecc->write_page_raw = nand_write_page_raw;
4443 		if (!ecc->read_oob)
4444 			ecc->read_oob = nand_read_oob_std;
4445 		if (!ecc->write_oob)
4446 			ecc->write_oob = nand_write_oob_std;
4447 		if (!ecc->read_subpage)
4448 			ecc->read_subpage = nand_read_subpage;
4449 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4450 			ecc->write_subpage = nand_write_subpage_hwecc;
4451 
4452 	case NAND_ECC_HW_SYNDROME:
4453 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4454 		    (!ecc->read_page ||
4455 		     ecc->read_page == nand_read_page_hwecc ||
4456 		     !ecc->write_page ||
4457 		     ecc->write_page == nand_write_page_hwecc)) {
4458 			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4459 			BUG();
4460 		}
4461 		/* Use standard syndrome read/write page function? */
4462 		if (!ecc->read_page)
4463 			ecc->read_page = nand_read_page_syndrome;
4464 		if (!ecc->write_page)
4465 			ecc->write_page = nand_write_page_syndrome;
4466 		if (!ecc->read_page_raw)
4467 			ecc->read_page_raw = nand_read_page_raw_syndrome;
4468 		if (!ecc->write_page_raw)
4469 			ecc->write_page_raw = nand_write_page_raw_syndrome;
4470 		if (!ecc->read_oob)
4471 			ecc->read_oob = nand_read_oob_syndrome;
4472 		if (!ecc->write_oob)
4473 			ecc->write_oob = nand_write_oob_syndrome;
4474 
4475 		if (mtd->writesize >= ecc->size) {
4476 			if (!ecc->strength) {
4477 				pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4478 				BUG();
4479 			}
4480 			break;
4481 		}
4482 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4483 			ecc->size, mtd->writesize);
4484 		ecc->mode = NAND_ECC_SOFT;
4485 
4486 	case NAND_ECC_SOFT:
4487 		ecc->calculate = nand_calculate_ecc;
4488 		ecc->correct = nand_correct_data;
4489 		ecc->read_page = nand_read_page_swecc;
4490 		ecc->read_subpage = nand_read_subpage;
4491 		ecc->write_page = nand_write_page_swecc;
4492 		ecc->read_page_raw = nand_read_page_raw;
4493 		ecc->write_page_raw = nand_write_page_raw;
4494 		ecc->read_oob = nand_read_oob_std;
4495 		ecc->write_oob = nand_write_oob_std;
4496 		if (!ecc->size)
4497 			ecc->size = 256;
4498 		ecc->bytes = 3;
4499 		ecc->strength = 1;
4500 		break;
4501 
4502 	case NAND_ECC_SOFT_BCH:
4503 		if (!mtd_nand_has_bch()) {
4504 			pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4505 			BUG();
4506 		}
4507 		ecc->calculate = nand_bch_calculate_ecc;
4508 		ecc->correct = nand_bch_correct_data;
4509 		ecc->read_page = nand_read_page_swecc;
4510 		ecc->read_subpage = nand_read_subpage;
4511 		ecc->write_page = nand_write_page_swecc;
4512 		ecc->read_page_raw = nand_read_page_raw;
4513 		ecc->write_page_raw = nand_write_page_raw;
4514 		ecc->read_oob = nand_read_oob_std;
4515 		ecc->write_oob = nand_write_oob_std;
4516 		/*
4517 		 * Board driver should supply ecc.size and ecc.strength values
4518 		 * to select how many bits are correctable. Otherwise, default
4519 		 * to 4 bits for large page devices.
4520 		 */
4521 		if (!ecc->size && (mtd->oobsize >= 64)) {
4522 			ecc->size = 512;
4523 			ecc->strength = 4;
4524 		}
4525 
4526 		/* See nand_bch_init() for details. */
4527 		ecc->bytes = 0;
4528 		ecc->priv = nand_bch_init(mtd);
4529 		if (!ecc->priv) {
4530 			pr_warn("BCH ECC initialization failed!\n");
4531 			BUG();
4532 		}
4533 		break;
4534 
4535 	case NAND_ECC_NONE:
4536 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4537 		ecc->read_page = nand_read_page_raw;
4538 		ecc->write_page = nand_write_page_raw;
4539 		ecc->read_oob = nand_read_oob_std;
4540 		ecc->read_page_raw = nand_read_page_raw;
4541 		ecc->write_page_raw = nand_write_page_raw;
4542 		ecc->write_oob = nand_write_oob_std;
4543 		ecc->size = mtd->writesize;
4544 		ecc->bytes = 0;
4545 		ecc->strength = 0;
4546 		break;
4547 
4548 	default:
4549 		pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4550 		BUG();
4551 	}
4552 
4553 	/* For many systems, the standard OOB write also works for raw */
4554 	if (!ecc->read_oob_raw)
4555 		ecc->read_oob_raw = ecc->read_oob;
4556 	if (!ecc->write_oob_raw)
4557 		ecc->write_oob_raw = ecc->write_oob;
4558 
4559 	/*
4560 	 * The number of bytes available for a client to place data into
4561 	 * the out of band area.
4562 	 */
4563 	mtd->oobavail = 0;
4564 	if (ecc->layout) {
4565 		for (i = 0; ecc->layout->oobfree[i].length; i++)
4566 			mtd->oobavail += ecc->layout->oobfree[i].length;
4567 	}
4568 
4569 	/* ECC sanity check: warn if it's too weak */
4570 	if (!nand_ecc_strength_good(mtd))
4571 		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4572 			mtd->name);
4573 
4574 	/*
4575 	 * Set the number of read / write steps for one page depending on ECC
4576 	 * mode.
4577 	 */
4578 	ecc->steps = mtd->writesize / ecc->size;
4579 	if (ecc->steps * ecc->size != mtd->writesize) {
4580 		pr_warn("Invalid ECC parameters\n");
4581 		BUG();
4582 	}
4583 	ecc->total = ecc->steps * ecc->bytes;
4584 
4585 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4586 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4587 		switch (ecc->steps) {
4588 		case 2:
4589 			mtd->subpage_sft = 1;
4590 			break;
4591 		case 4:
4592 		case 8:
4593 		case 16:
4594 			mtd->subpage_sft = 2;
4595 			break;
4596 		}
4597 	}
4598 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4599 
4600 	/* Initialize state */
4601 	chip->state = FL_READY;
4602 
4603 	/* Invalidate the pagebuffer reference */
4604 	chip->pagebuf = -1;
4605 
4606 	/* Large page NAND with SOFT_ECC should support subpage reads */
4607 	switch (ecc->mode) {
4608 	case NAND_ECC_SOFT:
4609 	case NAND_ECC_SOFT_BCH:
4610 		if (chip->page_shift > 9)
4611 			chip->options |= NAND_SUBPAGE_READ;
4612 		break;
4613 
4614 	default:
4615 		break;
4616 	}
4617 
4618 	/* Fill in remaining MTD driver data */
4619 	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4620 	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4621 						MTD_CAP_NANDFLASH;
4622 	mtd->_erase = nand_erase;
4623 	mtd->_read = nand_read;
4624 	mtd->_write = nand_write;
4625 	mtd->_panic_write = panic_nand_write;
4626 	mtd->_read_oob = nand_read_oob;
4627 	mtd->_write_oob = nand_write_oob;
4628 	mtd->_sync = nand_sync;
4629 	mtd->_lock = NULL;
4630 	mtd->_unlock = NULL;
4631 	mtd->_block_isreserved = nand_block_isreserved;
4632 	mtd->_block_isbad = nand_block_isbad;
4633 	mtd->_block_markbad = nand_block_markbad;
4634 	mtd->writebufsize = mtd->writesize;
4635 
4636 	/* propagate ecc info to mtd_info */
4637 	mtd->ecclayout = ecc->layout;
4638 	mtd->ecc_strength = ecc->strength;
4639 	mtd->ecc_step_size = ecc->size;
4640 	/*
4641 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4642 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4643 	 * properly set.
4644 	 */
4645 	if (!mtd->bitflip_threshold)
4646 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4647 
4648 	return 0;
4649 }
4650 EXPORT_SYMBOL(nand_scan_tail);
4651 
4652 /**
4653  * nand_scan - [NAND Interface] Scan for the NAND device
4654  * @mtd: MTD device structure
4655  * @maxchips: number of chips to scan for
4656  *
4657  * This fills out all the uninitialized function pointers with the defaults.
4658  * The flash ID is read and the mtd/chip structures are filled with the
4659  * appropriate values.
4660  */
nand_scan(struct mtd_info * mtd,int maxchips)4661 int nand_scan(struct mtd_info *mtd, int maxchips)
4662 {
4663 	int ret;
4664 
4665 	ret = nand_scan_ident(mtd, maxchips, NULL);
4666 	if (!ret)
4667 		ret = nand_scan_tail(mtd);
4668 	return ret;
4669 }
4670 EXPORT_SYMBOL(nand_scan);
4671 
4672 MODULE_LICENSE("GPL");
4673 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4674 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4675 MODULE_DESCRIPTION("Generic NAND flash driver code");
4676