• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "instruction_simplifier.h"
18 
19 #include "art_method-inl.h"
20 #include "class_linker-inl.h"
21 #include "class_root.h"
22 #include "data_type-inl.h"
23 #include "escape.h"
24 #include "intrinsics.h"
25 #include "mirror/class-inl.h"
26 #include "scoped_thread_state_change-inl.h"
27 #include "sharpening.h"
28 
29 namespace art {
30 
31 // Whether to run an exhaustive test of individual HInstructions cloning when each instruction
32 // is replaced with its copy if it is clonable.
33 static constexpr bool kTestInstructionClonerExhaustively = false;
34 
35 class InstructionSimplifierVisitor : public HGraphDelegateVisitor {
36  public:
InstructionSimplifierVisitor(HGraph * graph,CodeGenerator * codegen,OptimizingCompilerStats * stats)37   InstructionSimplifierVisitor(HGraph* graph,
38                                CodeGenerator* codegen,
39                                OptimizingCompilerStats* stats)
40       : HGraphDelegateVisitor(graph),
41         codegen_(codegen),
42         stats_(stats) {}
43 
44   bool Run();
45 
46  private:
RecordSimplification()47   void RecordSimplification() {
48     simplification_occurred_ = true;
49     simplifications_at_current_position_++;
50     MaybeRecordStat(stats_, MethodCompilationStat::kInstructionSimplifications);
51   }
52 
53   bool ReplaceRotateWithRor(HBinaryOperation* op, HUShr* ushr, HShl* shl);
54   bool TryReplaceWithRotate(HBinaryOperation* instruction);
55   bool TryReplaceWithRotateConstantPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
56   bool TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
57   bool TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
58 
59   bool TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop);
60   // `op` should be either HOr or HAnd.
61   // De Morgan's laws:
62   // ~a & ~b = ~(a | b)  and  ~a | ~b = ~(a & b)
63   bool TryDeMorganNegationFactoring(HBinaryOperation* op);
64   bool TryHandleAssociativeAndCommutativeOperation(HBinaryOperation* instruction);
65   bool TrySubtractionChainSimplification(HBinaryOperation* instruction);
66   bool TryCombineVecMultiplyAccumulate(HVecMul* mul);
67 
68   void VisitShift(HBinaryOperation* shift);
69   void VisitEqual(HEqual* equal) override;
70   void VisitNotEqual(HNotEqual* equal) override;
71   void VisitBooleanNot(HBooleanNot* bool_not) override;
72   void VisitInstanceFieldSet(HInstanceFieldSet* equal) override;
73   void VisitStaticFieldSet(HStaticFieldSet* equal) override;
74   void VisitArraySet(HArraySet* equal) override;
75   void VisitTypeConversion(HTypeConversion* instruction) override;
76   void VisitNullCheck(HNullCheck* instruction) override;
77   void VisitArrayLength(HArrayLength* instruction) override;
78   void VisitCheckCast(HCheckCast* instruction) override;
79   void VisitAbs(HAbs* instruction) override;
80   void VisitAdd(HAdd* instruction) override;
81   void VisitAnd(HAnd* instruction) override;
82   void VisitCondition(HCondition* instruction) override;
83   void VisitGreaterThan(HGreaterThan* condition) override;
84   void VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) override;
85   void VisitLessThan(HLessThan* condition) override;
86   void VisitLessThanOrEqual(HLessThanOrEqual* condition) override;
87   void VisitBelow(HBelow* condition) override;
88   void VisitBelowOrEqual(HBelowOrEqual* condition) override;
89   void VisitAbove(HAbove* condition) override;
90   void VisitAboveOrEqual(HAboveOrEqual* condition) override;
91   void VisitDiv(HDiv* instruction) override;
92   void VisitMul(HMul* instruction) override;
93   void VisitNeg(HNeg* instruction) override;
94   void VisitNot(HNot* instruction) override;
95   void VisitOr(HOr* instruction) override;
96   void VisitShl(HShl* instruction) override;
97   void VisitShr(HShr* instruction) override;
98   void VisitSub(HSub* instruction) override;
99   void VisitUShr(HUShr* instruction) override;
100   void VisitXor(HXor* instruction) override;
101   void VisitSelect(HSelect* select) override;
102   void VisitIf(HIf* instruction) override;
103   void VisitInstanceOf(HInstanceOf* instruction) override;
104   void VisitInvoke(HInvoke* invoke) override;
105   void VisitDeoptimize(HDeoptimize* deoptimize) override;
106   void VisitVecMul(HVecMul* instruction) override;
107 
108   bool CanEnsureNotNullAt(HInstruction* instr, HInstruction* at) const;
109 
110   void SimplifyRotate(HInvoke* invoke, bool is_left, DataType::Type type);
111   void SimplifySystemArrayCopy(HInvoke* invoke);
112   void SimplifyStringEquals(HInvoke* invoke);
113   void SimplifyCompare(HInvoke* invoke, bool is_signum, DataType::Type type);
114   void SimplifyIsNaN(HInvoke* invoke);
115   void SimplifyFP2Int(HInvoke* invoke);
116   void SimplifyStringCharAt(HInvoke* invoke);
117   void SimplifyStringIsEmptyOrLength(HInvoke* invoke);
118   void SimplifyStringIndexOf(HInvoke* invoke);
119   void SimplifyNPEOnArgN(HInvoke* invoke, size_t);
120   void SimplifyReturnThis(HInvoke* invoke);
121   void SimplifyAllocationIntrinsic(HInvoke* invoke);
122   void SimplifyMemBarrier(HInvoke* invoke, MemBarrierKind barrier_kind);
123   void SimplifyMin(HInvoke* invoke, DataType::Type type);
124   void SimplifyMax(HInvoke* invoke, DataType::Type type);
125   void SimplifyAbs(HInvoke* invoke, DataType::Type type);
126 
127   CodeGenerator* codegen_;
128   OptimizingCompilerStats* stats_;
129   bool simplification_occurred_ = false;
130   int simplifications_at_current_position_ = 0;
131   // We ensure we do not loop infinitely. The value should not be too high, since that
132   // would allow looping around the same basic block too many times. The value should
133   // not be too low either, however, since we want to allow revisiting a basic block
134   // with many statements and simplifications at least once.
135   static constexpr int kMaxSamePositionSimplifications = 50;
136 };
137 
Run()138 bool InstructionSimplifier::Run() {
139   if (kTestInstructionClonerExhaustively) {
140     CloneAndReplaceInstructionVisitor visitor(graph_);
141     visitor.VisitReversePostOrder();
142   }
143 
144   InstructionSimplifierVisitor visitor(graph_, codegen_, stats_);
145   return visitor.Run();
146 }
147 
Run()148 bool InstructionSimplifierVisitor::Run() {
149   bool didSimplify = false;
150   // Iterate in reverse post order to open up more simplifications to users
151   // of instructions that got simplified.
152   for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) {
153     // The simplification of an instruction to another instruction may yield
154     // possibilities for other simplifications. So although we perform a reverse
155     // post order visit, we sometimes need to revisit an instruction index.
156     do {
157       simplification_occurred_ = false;
158       VisitBasicBlock(block);
159       if (simplification_occurred_) {
160         didSimplify = true;
161       }
162     } while (simplification_occurred_ &&
163              (simplifications_at_current_position_ < kMaxSamePositionSimplifications));
164     simplifications_at_current_position_ = 0;
165   }
166   return didSimplify;
167 }
168 
169 namespace {
170 
AreAllBitsSet(HConstant * constant)171 bool AreAllBitsSet(HConstant* constant) {
172   return Int64FromConstant(constant) == -1;
173 }
174 
175 }  // namespace
176 
177 // Returns true if the code was simplified to use only one negation operation
178 // after the binary operation instead of one on each of the inputs.
TryMoveNegOnInputsAfterBinop(HBinaryOperation * binop)179 bool InstructionSimplifierVisitor::TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop) {
180   DCHECK(binop->IsAdd() || binop->IsSub());
181   DCHECK(binop->GetLeft()->IsNeg() && binop->GetRight()->IsNeg());
182   HNeg* left_neg = binop->GetLeft()->AsNeg();
183   HNeg* right_neg = binop->GetRight()->AsNeg();
184   if (!left_neg->HasOnlyOneNonEnvironmentUse() ||
185       !right_neg->HasOnlyOneNonEnvironmentUse()) {
186     return false;
187   }
188   // Replace code looking like
189   //    NEG tmp1, a
190   //    NEG tmp2, b
191   //    ADD dst, tmp1, tmp2
192   // with
193   //    ADD tmp, a, b
194   //    NEG dst, tmp
195   // Note that we cannot optimize `(-a) + (-b)` to `-(a + b)` for floating-point.
196   // When `a` is `-0.0` and `b` is `0.0`, the former expression yields `0.0`,
197   // while the later yields `-0.0`.
198   if (!DataType::IsIntegralType(binop->GetType())) {
199     return false;
200   }
201   binop->ReplaceInput(left_neg->GetInput(), 0);
202   binop->ReplaceInput(right_neg->GetInput(), 1);
203   left_neg->GetBlock()->RemoveInstruction(left_neg);
204   right_neg->GetBlock()->RemoveInstruction(right_neg);
205   HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(binop->GetType(), binop);
206   binop->GetBlock()->InsertInstructionBefore(neg, binop->GetNext());
207   binop->ReplaceWithExceptInReplacementAtIndex(neg, 0);
208   RecordSimplification();
209   return true;
210 }
211 
TryDeMorganNegationFactoring(HBinaryOperation * op)212 bool InstructionSimplifierVisitor::TryDeMorganNegationFactoring(HBinaryOperation* op) {
213   DCHECK(op->IsAnd() || op->IsOr()) << op->DebugName();
214   DataType::Type type = op->GetType();
215   HInstruction* left = op->GetLeft();
216   HInstruction* right = op->GetRight();
217 
218   // We can apply De Morgan's laws if both inputs are Not's and are only used
219   // by `op`.
220   if (((left->IsNot() && right->IsNot()) ||
221        (left->IsBooleanNot() && right->IsBooleanNot())) &&
222       left->HasOnlyOneNonEnvironmentUse() &&
223       right->HasOnlyOneNonEnvironmentUse()) {
224     // Replace code looking like
225     //    NOT nota, a
226     //    NOT notb, b
227     //    AND dst, nota, notb (respectively OR)
228     // with
229     //    OR or, a, b         (respectively AND)
230     //    NOT dest, or
231     HInstruction* src_left = left->InputAt(0);
232     HInstruction* src_right = right->InputAt(0);
233     uint32_t dex_pc = op->GetDexPc();
234 
235     // Remove the negations on the inputs.
236     left->ReplaceWith(src_left);
237     right->ReplaceWith(src_right);
238     left->GetBlock()->RemoveInstruction(left);
239     right->GetBlock()->RemoveInstruction(right);
240 
241     // Replace the `HAnd` or `HOr`.
242     HBinaryOperation* hbin;
243     if (op->IsAnd()) {
244       hbin = new (GetGraph()->GetAllocator()) HOr(type, src_left, src_right, dex_pc);
245     } else {
246       hbin = new (GetGraph()->GetAllocator()) HAnd(type, src_left, src_right, dex_pc);
247     }
248     HInstruction* hnot;
249     if (left->IsBooleanNot()) {
250       hnot = new (GetGraph()->GetAllocator()) HBooleanNot(hbin, dex_pc);
251     } else {
252       hnot = new (GetGraph()->GetAllocator()) HNot(type, hbin, dex_pc);
253     }
254 
255     op->GetBlock()->InsertInstructionBefore(hbin, op);
256     op->GetBlock()->ReplaceAndRemoveInstructionWith(op, hnot);
257 
258     RecordSimplification();
259     return true;
260   }
261 
262   return false;
263 }
264 
TryCombineVecMultiplyAccumulate(HVecMul * mul)265 bool InstructionSimplifierVisitor::TryCombineVecMultiplyAccumulate(HVecMul* mul) {
266   DataType::Type type = mul->GetPackedType();
267   InstructionSet isa = codegen_->GetInstructionSet();
268   switch (isa) {
269     case InstructionSet::kArm64:
270       if (!(type == DataType::Type::kUint8 ||
271             type == DataType::Type::kInt8 ||
272             type == DataType::Type::kUint16 ||
273             type == DataType::Type::kInt16 ||
274             type == DataType::Type::kInt32)) {
275         return false;
276       }
277       break;
278     case InstructionSet::kMips:
279     case InstructionSet::kMips64:
280       if (!(type == DataType::Type::kUint8 ||
281             type == DataType::Type::kInt8 ||
282             type == DataType::Type::kUint16 ||
283             type == DataType::Type::kInt16 ||
284             type == DataType::Type::kInt32 ||
285             type == DataType::Type::kInt64)) {
286         return false;
287       }
288       break;
289     default:
290       return false;
291   }
292 
293   ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
294 
295   if (mul->HasOnlyOneNonEnvironmentUse()) {
296     HInstruction* use = mul->GetUses().front().GetUser();
297     if (use->IsVecAdd() || use->IsVecSub()) {
298       // Replace code looking like
299       //    VECMUL tmp, x, y
300       //    VECADD/SUB dst, acc, tmp
301       // with
302       //    VECMULACC dst, acc, x, y
303       // Note that we do not want to (unconditionally) perform the merge when the
304       // multiplication has multiple uses and it can be merged in all of them.
305       // Multiple uses could happen on the same control-flow path, and we would
306       // then increase the amount of work. In the future we could try to evaluate
307       // whether all uses are on different control-flow paths (using dominance and
308       // reverse-dominance information) and only perform the merge when they are.
309       HInstruction* accumulator = nullptr;
310       HVecBinaryOperation* binop = use->AsVecBinaryOperation();
311       HInstruction* binop_left = binop->GetLeft();
312       HInstruction* binop_right = binop->GetRight();
313       // This is always true since the `HVecMul` has only one use (which is checked above).
314       DCHECK_NE(binop_left, binop_right);
315       if (binop_right == mul) {
316         accumulator = binop_left;
317       } else if (use->IsVecAdd()) {
318         DCHECK_EQ(binop_left, mul);
319         accumulator = binop_right;
320       }
321 
322       HInstruction::InstructionKind kind =
323           use->IsVecAdd() ? HInstruction::kAdd : HInstruction::kSub;
324       if (accumulator != nullptr) {
325         HVecMultiplyAccumulate* mulacc =
326             new (allocator) HVecMultiplyAccumulate(allocator,
327                                                    kind,
328                                                    accumulator,
329                                                    mul->GetLeft(),
330                                                    mul->GetRight(),
331                                                    binop->GetPackedType(),
332                                                    binop->GetVectorLength(),
333                                                    binop->GetDexPc());
334 
335         binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
336         DCHECK(!mul->HasUses());
337         mul->GetBlock()->RemoveInstruction(mul);
338         return true;
339       }
340     }
341   }
342 
343   return false;
344 }
345 
VisitShift(HBinaryOperation * instruction)346 void InstructionSimplifierVisitor::VisitShift(HBinaryOperation* instruction) {
347   DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
348   HInstruction* shift_amount = instruction->GetRight();
349   HInstruction* value = instruction->GetLeft();
350 
351   int64_t implicit_mask = (value->GetType() == DataType::Type::kInt64)
352       ? kMaxLongShiftDistance
353       : kMaxIntShiftDistance;
354 
355   if (shift_amount->IsConstant()) {
356     int64_t cst = Int64FromConstant(shift_amount->AsConstant());
357     int64_t masked_cst = cst & implicit_mask;
358     if (masked_cst == 0) {
359       // Replace code looking like
360       //    SHL dst, value, 0
361       // with
362       //    value
363       instruction->ReplaceWith(value);
364       instruction->GetBlock()->RemoveInstruction(instruction);
365       RecordSimplification();
366       return;
367     } else if (masked_cst != cst) {
368       // Replace code looking like
369       //    SHL dst, value, cst
370       // where cst exceeds maximum distance with the equivalent
371       //    SHL dst, value, cst & implicit_mask
372       // (as defined by shift semantics). This ensures other
373       // optimizations do not need to special case for such situations.
374       DCHECK_EQ(shift_amount->GetType(), DataType::Type::kInt32);
375       instruction->ReplaceInput(GetGraph()->GetIntConstant(masked_cst), /* index= */ 1);
376       RecordSimplification();
377       return;
378     }
379   }
380 
381   // Shift operations implicitly mask the shift amount according to the type width. Get rid of
382   // unnecessary And/Or/Xor/Add/Sub/TypeConversion operations on the shift amount that do not
383   // affect the relevant bits.
384   // Replace code looking like
385   //    AND adjusted_shift, shift, <superset of implicit mask>
386   //    [OR/XOR/ADD/SUB adjusted_shift, shift, <value not overlapping with implicit mask>]
387   //    [<conversion-from-integral-non-64-bit-type> adjusted_shift, shift]
388   //    SHL dst, value, adjusted_shift
389   // with
390   //    SHL dst, value, shift
391   if (shift_amount->IsAnd() ||
392       shift_amount->IsOr() ||
393       shift_amount->IsXor() ||
394       shift_amount->IsAdd() ||
395       shift_amount->IsSub()) {
396     int64_t required_result = shift_amount->IsAnd() ? implicit_mask : 0;
397     HBinaryOperation* bin_op = shift_amount->AsBinaryOperation();
398     HConstant* mask = bin_op->GetConstantRight();
399     if (mask != nullptr && (Int64FromConstant(mask) & implicit_mask) == required_result) {
400       instruction->ReplaceInput(bin_op->GetLeastConstantLeft(), 1);
401       RecordSimplification();
402       return;
403     }
404   } else if (shift_amount->IsTypeConversion()) {
405     DCHECK_NE(shift_amount->GetType(), DataType::Type::kBool);  // We never convert to bool.
406     DataType::Type source_type = shift_amount->InputAt(0)->GetType();
407     // Non-integral and 64-bit source types require an explicit type conversion.
408     if (DataType::IsIntegralType(source_type) && !DataType::Is64BitType(source_type)) {
409       instruction->ReplaceInput(shift_amount->AsTypeConversion()->GetInput(), 1);
410       RecordSimplification();
411       return;
412     }
413   }
414 }
415 
IsSubRegBitsMinusOther(HSub * sub,size_t reg_bits,HInstruction * other)416 static bool IsSubRegBitsMinusOther(HSub* sub, size_t reg_bits, HInstruction* other) {
417   return (sub->GetRight() == other &&
418           sub->GetLeft()->IsConstant() &&
419           (Int64FromConstant(sub->GetLeft()->AsConstant()) & (reg_bits - 1)) == 0);
420 }
421 
ReplaceRotateWithRor(HBinaryOperation * op,HUShr * ushr,HShl * shl)422 bool InstructionSimplifierVisitor::ReplaceRotateWithRor(HBinaryOperation* op,
423                                                         HUShr* ushr,
424                                                         HShl* shl) {
425   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()) << op->DebugName();
426   HRor* ror =
427       new (GetGraph()->GetAllocator()) HRor(ushr->GetType(), ushr->GetLeft(), ushr->GetRight());
428   op->GetBlock()->ReplaceAndRemoveInstructionWith(op, ror);
429   if (!ushr->HasUses()) {
430     ushr->GetBlock()->RemoveInstruction(ushr);
431   }
432   if (!ushr->GetRight()->HasUses()) {
433     ushr->GetRight()->GetBlock()->RemoveInstruction(ushr->GetRight());
434   }
435   if (!shl->HasUses()) {
436     shl->GetBlock()->RemoveInstruction(shl);
437   }
438   if (!shl->GetRight()->HasUses()) {
439     shl->GetRight()->GetBlock()->RemoveInstruction(shl->GetRight());
440   }
441   RecordSimplification();
442   return true;
443 }
444 
445 // Try to replace a binary operation flanked by one UShr and one Shl with a bitfield rotation.
TryReplaceWithRotate(HBinaryOperation * op)446 bool InstructionSimplifierVisitor::TryReplaceWithRotate(HBinaryOperation* op) {
447   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
448   HInstruction* left = op->GetLeft();
449   HInstruction* right = op->GetRight();
450   // If we have an UShr and a Shl (in either order).
451   if ((left->IsUShr() && right->IsShl()) || (left->IsShl() && right->IsUShr())) {
452     HUShr* ushr = left->IsUShr() ? left->AsUShr() : right->AsUShr();
453     HShl* shl = left->IsShl() ? left->AsShl() : right->AsShl();
454     DCHECK(DataType::IsIntOrLongType(ushr->GetType()));
455     if (ushr->GetType() == shl->GetType() &&
456         ushr->GetLeft() == shl->GetLeft()) {
457       if (ushr->GetRight()->IsConstant() && shl->GetRight()->IsConstant()) {
458         // Shift distances are both constant, try replacing with Ror if they
459         // add up to the register size.
460         return TryReplaceWithRotateConstantPattern(op, ushr, shl);
461       } else if (ushr->GetRight()->IsSub() || shl->GetRight()->IsSub()) {
462         // Shift distances are potentially of the form x and (reg_size - x).
463         return TryReplaceWithRotateRegisterSubPattern(op, ushr, shl);
464       } else if (ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg()) {
465         // Shift distances are potentially of the form d and -d.
466         return TryReplaceWithRotateRegisterNegPattern(op, ushr, shl);
467       }
468     }
469   }
470   return false;
471 }
472 
473 // Try replacing code looking like (x >>> #rdist OP x << #ldist):
474 //    UShr dst, x,   #rdist
475 //    Shl  tmp, x,   #ldist
476 //    OP   dst, dst, tmp
477 // or like (x >>> #rdist OP x << #-ldist):
478 //    UShr dst, x,   #rdist
479 //    Shl  tmp, x,   #-ldist
480 //    OP   dst, dst, tmp
481 // with
482 //    Ror  dst, x,   #rdist
TryReplaceWithRotateConstantPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)483 bool InstructionSimplifierVisitor::TryReplaceWithRotateConstantPattern(HBinaryOperation* op,
484                                                                        HUShr* ushr,
485                                                                        HShl* shl) {
486   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
487   size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte;
488   size_t rdist = Int64FromConstant(ushr->GetRight()->AsConstant());
489   size_t ldist = Int64FromConstant(shl->GetRight()->AsConstant());
490   if (((ldist + rdist) & (reg_bits - 1)) == 0) {
491     ReplaceRotateWithRor(op, ushr, shl);
492     return true;
493   }
494   return false;
495 }
496 
497 // Replace code looking like (x >>> -d OP x << d):
498 //    Neg  neg, d
499 //    UShr dst, x,   neg
500 //    Shl  tmp, x,   d
501 //    OP   dst, dst, tmp
502 // with
503 //    Neg  neg, d
504 //    Ror  dst, x,   neg
505 // *** OR ***
506 // Replace code looking like (x >>> d OP x << -d):
507 //    UShr dst, x,   d
508 //    Neg  neg, d
509 //    Shl  tmp, x,   neg
510 //    OP   dst, dst, tmp
511 // with
512 //    Ror  dst, x,   d
TryReplaceWithRotateRegisterNegPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)513 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op,
514                                                                           HUShr* ushr,
515                                                                           HShl* shl) {
516   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
517   DCHECK(ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg());
518   bool neg_is_left = shl->GetRight()->IsNeg();
519   HNeg* neg = neg_is_left ? shl->GetRight()->AsNeg() : ushr->GetRight()->AsNeg();
520   // And the shift distance being negated is the distance being shifted the other way.
521   if (neg->InputAt(0) == (neg_is_left ? ushr->GetRight() : shl->GetRight())) {
522     ReplaceRotateWithRor(op, ushr, shl);
523   }
524   return false;
525 }
526 
527 // Try replacing code looking like (x >>> d OP x << (#bits - d)):
528 //    UShr dst, x,     d
529 //    Sub  ld,  #bits, d
530 //    Shl  tmp, x,     ld
531 //    OP   dst, dst,   tmp
532 // with
533 //    Ror  dst, x,     d
534 // *** OR ***
535 // Replace code looking like (x >>> (#bits - d) OP x << d):
536 //    Sub  rd,  #bits, d
537 //    UShr dst, x,     rd
538 //    Shl  tmp, x,     d
539 //    OP   dst, dst,   tmp
540 // with
541 //    Neg  neg, d
542 //    Ror  dst, x,     neg
TryReplaceWithRotateRegisterSubPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)543 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op,
544                                                                           HUShr* ushr,
545                                                                           HShl* shl) {
546   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
547   DCHECK(ushr->GetRight()->IsSub() || shl->GetRight()->IsSub());
548   size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte;
549   HInstruction* shl_shift = shl->GetRight();
550   HInstruction* ushr_shift = ushr->GetRight();
551   if ((shl_shift->IsSub() && IsSubRegBitsMinusOther(shl_shift->AsSub(), reg_bits, ushr_shift)) ||
552       (ushr_shift->IsSub() && IsSubRegBitsMinusOther(ushr_shift->AsSub(), reg_bits, shl_shift))) {
553     return ReplaceRotateWithRor(op, ushr, shl);
554   }
555   return false;
556 }
557 
VisitNullCheck(HNullCheck * null_check)558 void InstructionSimplifierVisitor::VisitNullCheck(HNullCheck* null_check) {
559   HInstruction* obj = null_check->InputAt(0);
560   if (!obj->CanBeNull()) {
561     null_check->ReplaceWith(obj);
562     null_check->GetBlock()->RemoveInstruction(null_check);
563     if (stats_ != nullptr) {
564       stats_->RecordStat(MethodCompilationStat::kRemovedNullCheck);
565     }
566   }
567 }
568 
CanEnsureNotNullAt(HInstruction * input,HInstruction * at) const569 bool InstructionSimplifierVisitor::CanEnsureNotNullAt(HInstruction* input, HInstruction* at) const {
570   if (!input->CanBeNull()) {
571     return true;
572   }
573 
574   for (const HUseListNode<HInstruction*>& use : input->GetUses()) {
575     HInstruction* user = use.GetUser();
576     if (user->IsNullCheck() && user->StrictlyDominates(at)) {
577       return true;
578     }
579   }
580 
581   return false;
582 }
583 
584 // Returns whether doing a type test between the class of `object` against `klass` has
585 // a statically known outcome. The result of the test is stored in `outcome`.
TypeCheckHasKnownOutcome(ReferenceTypeInfo class_rti,HInstruction * object,bool * outcome)586 static bool TypeCheckHasKnownOutcome(ReferenceTypeInfo class_rti,
587                                      HInstruction* object,
588                                      /*out*/bool* outcome) {
589   DCHECK(!object->IsNullConstant()) << "Null constants should be special cased";
590   ReferenceTypeInfo obj_rti = object->GetReferenceTypeInfo();
591   ScopedObjectAccess soa(Thread::Current());
592   if (!obj_rti.IsValid()) {
593     // We run the simplifier before the reference type propagation so type info might not be
594     // available.
595     return false;
596   }
597 
598   if (!class_rti.IsValid()) {
599     // Happens when the loaded class is unresolved.
600     return false;
601   }
602   DCHECK(class_rti.IsExact());
603   if (class_rti.IsSupertypeOf(obj_rti)) {
604     *outcome = true;
605     return true;
606   } else if (obj_rti.IsExact()) {
607     // The test failed at compile time so will also fail at runtime.
608     *outcome = false;
609     return true;
610   } else if (!class_rti.IsInterface()
611              && !obj_rti.IsInterface()
612              && !obj_rti.IsSupertypeOf(class_rti)) {
613     // Different type hierarchy. The test will fail.
614     *outcome = false;
615     return true;
616   }
617   return false;
618 }
619 
VisitCheckCast(HCheckCast * check_cast)620 void InstructionSimplifierVisitor::VisitCheckCast(HCheckCast* check_cast) {
621   HInstruction* object = check_cast->InputAt(0);
622   if (check_cast->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck &&
623       check_cast->GetTargetClass()->NeedsAccessCheck()) {
624     // If we need to perform an access check we cannot remove the instruction.
625     return;
626   }
627 
628   if (CanEnsureNotNullAt(object, check_cast)) {
629     check_cast->ClearMustDoNullCheck();
630   }
631 
632   if (object->IsNullConstant()) {
633     check_cast->GetBlock()->RemoveInstruction(check_cast);
634     MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast);
635     return;
636   }
637 
638   // Historical note: The `outcome` was initialized to please Valgrind - the compiler can reorder
639   // the return value check with the `outcome` check, b/27651442.
640   bool outcome = false;
641   if (TypeCheckHasKnownOutcome(check_cast->GetTargetClassRTI(), object, &outcome)) {
642     if (outcome) {
643       check_cast->GetBlock()->RemoveInstruction(check_cast);
644       MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast);
645       if (check_cast->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck) {
646         HLoadClass* load_class = check_cast->GetTargetClass();
647         if (!load_class->HasUses()) {
648           // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
649           // However, here we know that it cannot because the checkcast was successfull, hence
650           // the class was already loaded.
651           load_class->GetBlock()->RemoveInstruction(load_class);
652         }
653       }
654     } else {
655       // Don't do anything for exceptional cases for now. Ideally we should remove
656       // all instructions and blocks this instruction dominates.
657     }
658   }
659 }
660 
VisitInstanceOf(HInstanceOf * instruction)661 void InstructionSimplifierVisitor::VisitInstanceOf(HInstanceOf* instruction) {
662   HInstruction* object = instruction->InputAt(0);
663   if (instruction->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck &&
664       instruction->GetTargetClass()->NeedsAccessCheck()) {
665     // If we need to perform an access check we cannot remove the instruction.
666     return;
667   }
668 
669   bool can_be_null = true;
670   if (CanEnsureNotNullAt(object, instruction)) {
671     can_be_null = false;
672     instruction->ClearMustDoNullCheck();
673   }
674 
675   HGraph* graph = GetGraph();
676   if (object->IsNullConstant()) {
677     MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf);
678     instruction->ReplaceWith(graph->GetIntConstant(0));
679     instruction->GetBlock()->RemoveInstruction(instruction);
680     RecordSimplification();
681     return;
682   }
683 
684   // Historical note: The `outcome` was initialized to please Valgrind - the compiler can reorder
685   // the return value check with the `outcome` check, b/27651442.
686   bool outcome = false;
687   if (TypeCheckHasKnownOutcome(instruction->GetTargetClassRTI(), object, &outcome)) {
688     MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf);
689     if (outcome && can_be_null) {
690       // Type test will succeed, we just need a null test.
691       HNotEqual* test = new (graph->GetAllocator()) HNotEqual(graph->GetNullConstant(), object);
692       instruction->GetBlock()->InsertInstructionBefore(test, instruction);
693       instruction->ReplaceWith(test);
694     } else {
695       // We've statically determined the result of the instanceof.
696       instruction->ReplaceWith(graph->GetIntConstant(outcome));
697     }
698     RecordSimplification();
699     instruction->GetBlock()->RemoveInstruction(instruction);
700     if (outcome && instruction->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck) {
701       HLoadClass* load_class = instruction->GetTargetClass();
702       if (!load_class->HasUses()) {
703         // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
704         // However, here we know that it cannot because the instanceof check was successfull, hence
705         // the class was already loaded.
706         load_class->GetBlock()->RemoveInstruction(load_class);
707       }
708     }
709   }
710 }
711 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)712 void InstructionSimplifierVisitor::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
713   if ((instruction->GetValue()->GetType() == DataType::Type::kReference)
714       && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
715     instruction->ClearValueCanBeNull();
716   }
717 }
718 
VisitStaticFieldSet(HStaticFieldSet * instruction)719 void InstructionSimplifierVisitor::VisitStaticFieldSet(HStaticFieldSet* instruction) {
720   if ((instruction->GetValue()->GetType() == DataType::Type::kReference)
721       && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
722     instruction->ClearValueCanBeNull();
723   }
724 }
725 
GetOppositeConditionSwapOps(ArenaAllocator * allocator,HInstruction * cond)726 static HCondition* GetOppositeConditionSwapOps(ArenaAllocator* allocator, HInstruction* cond) {
727   HInstruction *lhs = cond->InputAt(0);
728   HInstruction *rhs = cond->InputAt(1);
729   switch (cond->GetKind()) {
730     case HInstruction::kEqual:
731       return new (allocator) HEqual(rhs, lhs);
732     case HInstruction::kNotEqual:
733       return new (allocator) HNotEqual(rhs, lhs);
734     case HInstruction::kLessThan:
735       return new (allocator) HGreaterThan(rhs, lhs);
736     case HInstruction::kLessThanOrEqual:
737       return new (allocator) HGreaterThanOrEqual(rhs, lhs);
738     case HInstruction::kGreaterThan:
739       return new (allocator) HLessThan(rhs, lhs);
740     case HInstruction::kGreaterThanOrEqual:
741       return new (allocator) HLessThanOrEqual(rhs, lhs);
742     case HInstruction::kBelow:
743       return new (allocator) HAbove(rhs, lhs);
744     case HInstruction::kBelowOrEqual:
745       return new (allocator) HAboveOrEqual(rhs, lhs);
746     case HInstruction::kAbove:
747       return new (allocator) HBelow(rhs, lhs);
748     case HInstruction::kAboveOrEqual:
749       return new (allocator) HBelowOrEqual(rhs, lhs);
750     default:
751       LOG(FATAL) << "Unknown ConditionType " << cond->GetKind();
752       UNREACHABLE();
753   }
754 }
755 
VisitEqual(HEqual * equal)756 void InstructionSimplifierVisitor::VisitEqual(HEqual* equal) {
757   HInstruction* input_const = equal->GetConstantRight();
758   if (input_const != nullptr) {
759     HInstruction* input_value = equal->GetLeastConstantLeft();
760     if ((input_value->GetType() == DataType::Type::kBool) && input_const->IsIntConstant()) {
761       HBasicBlock* block = equal->GetBlock();
762       // We are comparing the boolean to a constant which is of type int and can
763       // be any constant.
764       if (input_const->AsIntConstant()->IsTrue()) {
765         // Replace (bool_value == true) with bool_value
766         equal->ReplaceWith(input_value);
767         block->RemoveInstruction(equal);
768         RecordSimplification();
769       } else if (input_const->AsIntConstant()->IsFalse()) {
770         // Replace (bool_value == false) with !bool_value
771         equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, equal));
772         block->RemoveInstruction(equal);
773         RecordSimplification();
774       } else {
775         // Replace (bool_value == integer_not_zero_nor_one_constant) with false
776         equal->ReplaceWith(GetGraph()->GetIntConstant(0));
777         block->RemoveInstruction(equal);
778         RecordSimplification();
779       }
780     } else {
781       VisitCondition(equal);
782     }
783   } else {
784     VisitCondition(equal);
785   }
786 }
787 
VisitNotEqual(HNotEqual * not_equal)788 void InstructionSimplifierVisitor::VisitNotEqual(HNotEqual* not_equal) {
789   HInstruction* input_const = not_equal->GetConstantRight();
790   if (input_const != nullptr) {
791     HInstruction* input_value = not_equal->GetLeastConstantLeft();
792     if ((input_value->GetType() == DataType::Type::kBool) && input_const->IsIntConstant()) {
793       HBasicBlock* block = not_equal->GetBlock();
794       // We are comparing the boolean to a constant which is of type int and can
795       // be any constant.
796       if (input_const->AsIntConstant()->IsTrue()) {
797         // Replace (bool_value != true) with !bool_value
798         not_equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, not_equal));
799         block->RemoveInstruction(not_equal);
800         RecordSimplification();
801       } else if (input_const->AsIntConstant()->IsFalse()) {
802         // Replace (bool_value != false) with bool_value
803         not_equal->ReplaceWith(input_value);
804         block->RemoveInstruction(not_equal);
805         RecordSimplification();
806       } else {
807         // Replace (bool_value != integer_not_zero_nor_one_constant) with true
808         not_equal->ReplaceWith(GetGraph()->GetIntConstant(1));
809         block->RemoveInstruction(not_equal);
810         RecordSimplification();
811       }
812     } else {
813       VisitCondition(not_equal);
814     }
815   } else {
816     VisitCondition(not_equal);
817   }
818 }
819 
VisitBooleanNot(HBooleanNot * bool_not)820 void InstructionSimplifierVisitor::VisitBooleanNot(HBooleanNot* bool_not) {
821   HInstruction* input = bool_not->InputAt(0);
822   HInstruction* replace_with = nullptr;
823 
824   if (input->IsIntConstant()) {
825     // Replace !(true/false) with false/true.
826     if (input->AsIntConstant()->IsTrue()) {
827       replace_with = GetGraph()->GetIntConstant(0);
828     } else {
829       DCHECK(input->AsIntConstant()->IsFalse()) << input->AsIntConstant()->GetValue();
830       replace_with = GetGraph()->GetIntConstant(1);
831     }
832   } else if (input->IsBooleanNot()) {
833     // Replace (!(!bool_value)) with bool_value.
834     replace_with = input->InputAt(0);
835   } else if (input->IsCondition() &&
836              // Don't change FP compares. The definition of compares involving
837              // NaNs forces the compares to be done as written by the user.
838              !DataType::IsFloatingPointType(input->InputAt(0)->GetType())) {
839     // Replace condition with its opposite.
840     replace_with = GetGraph()->InsertOppositeCondition(input->AsCondition(), bool_not);
841   }
842 
843   if (replace_with != nullptr) {
844     bool_not->ReplaceWith(replace_with);
845     bool_not->GetBlock()->RemoveInstruction(bool_not);
846     RecordSimplification();
847   }
848 }
849 
850 // Constructs a new ABS(x) node in the HIR.
NewIntegralAbs(ArenaAllocator * allocator,HInstruction * x,HInstruction * cursor)851 static HInstruction* NewIntegralAbs(ArenaAllocator* allocator,
852                                     HInstruction* x,
853                                     HInstruction* cursor) {
854   DataType::Type type = DataType::Kind(x->GetType());
855   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
856   HAbs* abs = new (allocator) HAbs(type, x, cursor->GetDexPc());
857   cursor->GetBlock()->InsertInstructionBefore(abs, cursor);
858   return abs;
859 }
860 
861 // Constructs a new MIN/MAX(x, y) node in the HIR.
NewIntegralMinMax(ArenaAllocator * allocator,HInstruction * x,HInstruction * y,HInstruction * cursor,bool is_min)862 static HInstruction* NewIntegralMinMax(ArenaAllocator* allocator,
863                                        HInstruction* x,
864                                        HInstruction* y,
865                                        HInstruction* cursor,
866                                        bool is_min) {
867   DataType::Type type = DataType::Kind(x->GetType());
868   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
869   HBinaryOperation* minmax = nullptr;
870   if (is_min) {
871     minmax = new (allocator) HMin(type, x, y, cursor->GetDexPc());
872   } else {
873     minmax = new (allocator) HMax(type, x, y, cursor->GetDexPc());
874   }
875   cursor->GetBlock()->InsertInstructionBefore(minmax, cursor);
876   return minmax;
877 }
878 
879 // Returns true if operands a and b consists of widening type conversions
880 // (either explicit or implicit) to the given to_type.
AreLowerPrecisionArgs(DataType::Type to_type,HInstruction * a,HInstruction * b)881 static bool AreLowerPrecisionArgs(DataType::Type to_type, HInstruction* a, HInstruction* b) {
882   if (a->IsTypeConversion() && a->GetType() == to_type) {
883     a = a->InputAt(0);
884   }
885   if (b->IsTypeConversion() && b->GetType() == to_type) {
886     b = b->InputAt(0);
887   }
888   DataType::Type type1 = a->GetType();
889   DataType::Type type2 = b->GetType();
890   return (type1 == DataType::Type::kUint8  && type2 == DataType::Type::kUint8) ||
891          (type1 == DataType::Type::kInt8   && type2 == DataType::Type::kInt8) ||
892          (type1 == DataType::Type::kInt16  && type2 == DataType::Type::kInt16) ||
893          (type1 == DataType::Type::kUint16 && type2 == DataType::Type::kUint16) ||
894          (type1 == DataType::Type::kInt32  && type2 == DataType::Type::kInt32 &&
895           to_type == DataType::Type::kInt64);
896 }
897 
898 // Returns an acceptable substitution for "a" on the select
899 // construct "a <cmp> b ? c : .."  during MIN/MAX recognition.
AllowInMinMax(IfCondition cmp,HInstruction * a,HInstruction * b,HInstruction * c)900 static HInstruction* AllowInMinMax(IfCondition cmp,
901                                    HInstruction* a,
902                                    HInstruction* b,
903                                    HInstruction* c) {
904   int64_t value = 0;
905   if (IsInt64AndGet(b, /*out*/ &value) &&
906       (((cmp == kCondLT || cmp == kCondLE) && c->IsMax()) ||
907        ((cmp == kCondGT || cmp == kCondGE) && c->IsMin()))) {
908     HConstant* other = c->AsBinaryOperation()->GetConstantRight();
909     if (other != nullptr && a == c->AsBinaryOperation()->GetLeastConstantLeft()) {
910       int64_t other_value = Int64FromConstant(other);
911       bool is_max = (cmp == kCondLT || cmp == kCondLE);
912       // Allow the max for a <  100 ? max(a, -100) : ..
913       //    or the min for a > -100 ? min(a,  100) : ..
914       if (is_max ? (value >= other_value) : (value <= other_value)) {
915         return c;
916       }
917     }
918   }
919   return nullptr;
920 }
921 
VisitSelect(HSelect * select)922 void InstructionSimplifierVisitor::VisitSelect(HSelect* select) {
923   HInstruction* replace_with = nullptr;
924   HInstruction* condition = select->GetCondition();
925   HInstruction* true_value = select->GetTrueValue();
926   HInstruction* false_value = select->GetFalseValue();
927 
928   if (condition->IsBooleanNot()) {
929     // Change ((!cond) ? x : y) to (cond ? y : x).
930     condition = condition->InputAt(0);
931     std::swap(true_value, false_value);
932     select->ReplaceInput(false_value, 0);
933     select->ReplaceInput(true_value, 1);
934     select->ReplaceInput(condition, 2);
935     RecordSimplification();
936   }
937 
938   if (true_value == false_value) {
939     // Replace (cond ? x : x) with (x).
940     replace_with = true_value;
941   } else if (condition->IsIntConstant()) {
942     if (condition->AsIntConstant()->IsTrue()) {
943       // Replace (true ? x : y) with (x).
944       replace_with = true_value;
945     } else {
946       // Replace (false ? x : y) with (y).
947       DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
948       replace_with = false_value;
949     }
950   } else if (true_value->IsIntConstant() && false_value->IsIntConstant()) {
951     if (true_value->AsIntConstant()->IsTrue() && false_value->AsIntConstant()->IsFalse()) {
952       // Replace (cond ? true : false) with (cond).
953       replace_with = condition;
954     } else if (true_value->AsIntConstant()->IsFalse() && false_value->AsIntConstant()->IsTrue()) {
955       // Replace (cond ? false : true) with (!cond).
956       replace_with = GetGraph()->InsertOppositeCondition(condition, select);
957     }
958   } else if (condition->IsCondition()) {
959     IfCondition cmp = condition->AsCondition()->GetCondition();
960     HInstruction* a = condition->InputAt(0);
961     HInstruction* b = condition->InputAt(1);
962     DataType::Type t_type = true_value->GetType();
963     DataType::Type f_type = false_value->GetType();
964     // Here we have a <cmp> b ? true_value : false_value.
965     // Test if both values are compatible integral types (resulting MIN/MAX/ABS
966     // type will be int or long, like the condition). Replacements are general,
967     // but assume conditions prefer constants on the right.
968     if (DataType::IsIntegralType(t_type) && DataType::Kind(t_type) == DataType::Kind(f_type)) {
969       // Allow a <  100 ? max(a, -100) : ..
970       //    or a > -100 ? min(a,  100) : ..
971       // to use min/max instead of a to detect nested min/max expressions.
972       HInstruction* new_a = AllowInMinMax(cmp, a, b, true_value);
973       if (new_a != nullptr) {
974         a = new_a;
975       }
976       // Try to replace typical integral MIN/MAX/ABS constructs.
977       if ((cmp == kCondLT || cmp == kCondLE || cmp == kCondGT || cmp == kCondGE) &&
978           ((a == true_value && b == false_value) ||
979            (b == true_value && a == false_value))) {
980         // Found a < b ? a : b (MIN) or a < b ? b : a (MAX)
981         //    or a > b ? a : b (MAX) or a > b ? b : a (MIN).
982         bool is_min = (cmp == kCondLT || cmp == kCondLE) == (a == true_value);
983         replace_with = NewIntegralMinMax(GetGraph()->GetAllocator(), a, b, select, is_min);
984       } else if (((cmp == kCondLT || cmp == kCondLE) && true_value->IsNeg()) ||
985                  ((cmp == kCondGT || cmp == kCondGE) && false_value->IsNeg())) {
986         bool negLeft = (cmp == kCondLT || cmp == kCondLE);
987         HInstruction* the_negated = negLeft ? true_value->InputAt(0) : false_value->InputAt(0);
988         HInstruction* not_negated = negLeft ? false_value : true_value;
989         if (a == the_negated && a == not_negated && IsInt64Value(b, 0)) {
990           // Found a < 0 ? -a :  a
991           //    or a > 0 ?  a : -a
992           // which can be replaced by ABS(a).
993           replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), a, select);
994         }
995       } else if (true_value->IsSub() && false_value->IsSub()) {
996         HInstruction* true_sub1 = true_value->InputAt(0);
997         HInstruction* true_sub2 = true_value->InputAt(1);
998         HInstruction* false_sub1 = false_value->InputAt(0);
999         HInstruction* false_sub2 = false_value->InputAt(1);
1000         if ((((cmp == kCondGT || cmp == kCondGE) &&
1001               (a == true_sub1 && b == true_sub2 && a == false_sub2 && b == false_sub1)) ||
1002              ((cmp == kCondLT || cmp == kCondLE) &&
1003               (a == true_sub2 && b == true_sub1 && a == false_sub1 && b == false_sub2))) &&
1004             AreLowerPrecisionArgs(t_type, a, b)) {
1005           // Found a > b ? a - b  : b - a
1006           //    or a < b ? b - a  : a - b
1007           // which can be replaced by ABS(a - b) for lower precision operands a, b.
1008           replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), true_value, select);
1009         }
1010       }
1011     }
1012   }
1013 
1014   if (replace_with != nullptr) {
1015     select->ReplaceWith(replace_with);
1016     select->GetBlock()->RemoveInstruction(select);
1017     RecordSimplification();
1018   }
1019 }
1020 
VisitIf(HIf * instruction)1021 void InstructionSimplifierVisitor::VisitIf(HIf* instruction) {
1022   HInstruction* condition = instruction->InputAt(0);
1023   if (condition->IsBooleanNot()) {
1024     // Swap successors if input is negated.
1025     instruction->ReplaceInput(condition->InputAt(0), 0);
1026     instruction->GetBlock()->SwapSuccessors();
1027     RecordSimplification();
1028   }
1029 }
1030 
VisitArrayLength(HArrayLength * instruction)1031 void InstructionSimplifierVisitor::VisitArrayLength(HArrayLength* instruction) {
1032   HInstruction* input = instruction->InputAt(0);
1033   // If the array is a NewArray with constant size, replace the array length
1034   // with the constant instruction. This helps the bounds check elimination phase.
1035   if (input->IsNewArray()) {
1036     input = input->AsNewArray()->GetLength();
1037     if (input->IsIntConstant()) {
1038       instruction->ReplaceWith(input);
1039     }
1040   }
1041 }
1042 
VisitArraySet(HArraySet * instruction)1043 void InstructionSimplifierVisitor::VisitArraySet(HArraySet* instruction) {
1044   HInstruction* value = instruction->GetValue();
1045   if (value->GetType() != DataType::Type::kReference) {
1046     return;
1047   }
1048 
1049   if (CanEnsureNotNullAt(value, instruction)) {
1050     instruction->ClearValueCanBeNull();
1051   }
1052 
1053   if (value->IsArrayGet()) {
1054     if (value->AsArrayGet()->GetArray() == instruction->GetArray()) {
1055       // If the code is just swapping elements in the array, no need for a type check.
1056       instruction->ClearNeedsTypeCheck();
1057       return;
1058     }
1059   }
1060 
1061   if (value->IsNullConstant()) {
1062     instruction->ClearNeedsTypeCheck();
1063     return;
1064   }
1065 
1066   ScopedObjectAccess soa(Thread::Current());
1067   ReferenceTypeInfo array_rti = instruction->GetArray()->GetReferenceTypeInfo();
1068   ReferenceTypeInfo value_rti = value->GetReferenceTypeInfo();
1069   if (!array_rti.IsValid()) {
1070     return;
1071   }
1072 
1073   if (value_rti.IsValid() && array_rti.CanArrayHold(value_rti)) {
1074     instruction->ClearNeedsTypeCheck();
1075     return;
1076   }
1077 
1078   if (array_rti.IsObjectArray()) {
1079     if (array_rti.IsExact()) {
1080       instruction->ClearNeedsTypeCheck();
1081       return;
1082     }
1083     instruction->SetStaticTypeOfArrayIsObjectArray();
1084   }
1085 }
1086 
IsTypeConversionLossless(DataType::Type input_type,DataType::Type result_type)1087 static bool IsTypeConversionLossless(DataType::Type input_type, DataType::Type result_type) {
1088   // Make sure all implicit conversions have been simplified and no new ones have been introduced.
1089   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
1090       << input_type << "," << result_type;
1091   // The conversion to a larger type is loss-less with the exception of two cases,
1092   //   - conversion to the unsigned type Uint16, where we may lose some bits, and
1093   //   - conversion from float to long, the only FP to integral conversion with smaller FP type.
1094   // For integral to FP conversions this holds because the FP mantissa is large enough.
1095   // Note: The size check excludes Uint8 as the result type.
1096   return DataType::Size(result_type) > DataType::Size(input_type) &&
1097       result_type != DataType::Type::kUint16 &&
1098       !(result_type == DataType::Type::kInt64 && input_type == DataType::Type::kFloat32);
1099 }
1100 
TryReplaceFieldOrArrayGetType(HInstruction * maybe_get,DataType::Type new_type)1101 static inline bool TryReplaceFieldOrArrayGetType(HInstruction* maybe_get, DataType::Type new_type) {
1102   if (maybe_get->IsInstanceFieldGet()) {
1103     maybe_get->AsInstanceFieldGet()->SetType(new_type);
1104     return true;
1105   } else if (maybe_get->IsStaticFieldGet()) {
1106     maybe_get->AsStaticFieldGet()->SetType(new_type);
1107     return true;
1108   } else if (maybe_get->IsArrayGet() && !maybe_get->AsArrayGet()->IsStringCharAt()) {
1109     maybe_get->AsArrayGet()->SetType(new_type);
1110     return true;
1111   } else {
1112     return false;
1113   }
1114 }
1115 
1116 // The type conversion is only used for storing into a field/element of the
1117 // same/narrower size.
IsTypeConversionForStoringIntoNoWiderFieldOnly(HTypeConversion * type_conversion)1118 static bool IsTypeConversionForStoringIntoNoWiderFieldOnly(HTypeConversion* type_conversion) {
1119   if (type_conversion->HasEnvironmentUses()) {
1120     return false;
1121   }
1122   DataType::Type input_type = type_conversion->GetInputType();
1123   DataType::Type result_type = type_conversion->GetResultType();
1124   if (!DataType::IsIntegralType(input_type) ||
1125       !DataType::IsIntegralType(result_type) ||
1126       input_type == DataType::Type::kInt64 ||
1127       result_type == DataType::Type::kInt64) {
1128     // Type conversion is needed if non-integer types are involved, or 64-bit
1129     // types are involved, which may use different number of registers.
1130     return false;
1131   }
1132   if (DataType::Size(input_type) >= DataType::Size(result_type)) {
1133     // Type conversion is not necessary when storing to a field/element of the
1134     // same/smaller size.
1135   } else {
1136     // We do not handle this case here.
1137     return false;
1138   }
1139 
1140   // Check if the converted value is only used for storing into heap.
1141   for (const HUseListNode<HInstruction*>& use : type_conversion->GetUses()) {
1142     HInstruction* instruction = use.GetUser();
1143     if (instruction->IsInstanceFieldSet() &&
1144         instruction->AsInstanceFieldSet()->GetFieldType() == result_type) {
1145       DCHECK_EQ(instruction->AsInstanceFieldSet()->GetValue(), type_conversion);
1146       continue;
1147     }
1148     if (instruction->IsStaticFieldSet() &&
1149         instruction->AsStaticFieldSet()->GetFieldType() == result_type) {
1150       DCHECK_EQ(instruction->AsStaticFieldSet()->GetValue(), type_conversion);
1151       continue;
1152     }
1153     if (instruction->IsArraySet() &&
1154         instruction->AsArraySet()->GetComponentType() == result_type &&
1155         // not index use.
1156         instruction->AsArraySet()->GetIndex() != type_conversion) {
1157       DCHECK_EQ(instruction->AsArraySet()->GetValue(), type_conversion);
1158       continue;
1159     }
1160     // The use is not as a store value, or the field/element type is not the
1161     // same as the result_type, keep the type conversion.
1162     return false;
1163   }
1164   // Codegen automatically handles the type conversion during the store.
1165   return true;
1166 }
1167 
VisitTypeConversion(HTypeConversion * instruction)1168 void InstructionSimplifierVisitor::VisitTypeConversion(HTypeConversion* instruction) {
1169   HInstruction* input = instruction->GetInput();
1170   DataType::Type input_type = input->GetType();
1171   DataType::Type result_type = instruction->GetResultType();
1172   if (instruction->IsImplicitConversion()) {
1173     instruction->ReplaceWith(input);
1174     instruction->GetBlock()->RemoveInstruction(instruction);
1175     RecordSimplification();
1176     return;
1177   }
1178 
1179   if (input->IsTypeConversion()) {
1180     HTypeConversion* input_conversion = input->AsTypeConversion();
1181     HInstruction* original_input = input_conversion->GetInput();
1182     DataType::Type original_type = original_input->GetType();
1183 
1184     // When the first conversion is lossless, a direct conversion from the original type
1185     // to the final type yields the same result, even for a lossy second conversion, for
1186     // example float->double->int or int->double->float.
1187     bool is_first_conversion_lossless = IsTypeConversionLossless(original_type, input_type);
1188 
1189     // For integral conversions, see if the first conversion loses only bits that the second
1190     // doesn't need, i.e. the final type is no wider than the intermediate. If so, direct
1191     // conversion yields the same result, for example long->int->short or int->char->short.
1192     bool integral_conversions_with_non_widening_second =
1193         DataType::IsIntegralType(input_type) &&
1194         DataType::IsIntegralType(original_type) &&
1195         DataType::IsIntegralType(result_type) &&
1196         DataType::Size(result_type) <= DataType::Size(input_type);
1197 
1198     if (is_first_conversion_lossless || integral_conversions_with_non_widening_second) {
1199       // If the merged conversion is implicit, do the simplification unconditionally.
1200       if (DataType::IsTypeConversionImplicit(original_type, result_type)) {
1201         instruction->ReplaceWith(original_input);
1202         instruction->GetBlock()->RemoveInstruction(instruction);
1203         if (!input_conversion->HasUses()) {
1204           // Don't wait for DCE.
1205           input_conversion->GetBlock()->RemoveInstruction(input_conversion);
1206         }
1207         RecordSimplification();
1208         return;
1209       }
1210       // Otherwise simplify only if the first conversion has no other use.
1211       if (input_conversion->HasOnlyOneNonEnvironmentUse()) {
1212         input_conversion->ReplaceWith(original_input);
1213         input_conversion->GetBlock()->RemoveInstruction(input_conversion);
1214         RecordSimplification();
1215         return;
1216       }
1217     }
1218   } else if (input->IsAnd() && DataType::IsIntegralType(result_type)) {
1219     DCHECK(DataType::IsIntegralType(input_type));
1220     HAnd* input_and = input->AsAnd();
1221     HConstant* constant = input_and->GetConstantRight();
1222     if (constant != nullptr) {
1223       int64_t value = Int64FromConstant(constant);
1224       DCHECK_NE(value, -1);  // "& -1" would have been optimized away in VisitAnd().
1225       size_t trailing_ones = CTZ(~static_cast<uint64_t>(value));
1226       if (trailing_ones >= kBitsPerByte * DataType::Size(result_type)) {
1227         // The `HAnd` is useless, for example in `(byte) (x & 0xff)`, get rid of it.
1228         HInstruction* original_input = input_and->GetLeastConstantLeft();
1229         if (DataType::IsTypeConversionImplicit(original_input->GetType(), result_type)) {
1230           instruction->ReplaceWith(original_input);
1231           instruction->GetBlock()->RemoveInstruction(instruction);
1232           RecordSimplification();
1233           return;
1234         } else if (input->HasOnlyOneNonEnvironmentUse()) {
1235           input_and->ReplaceWith(original_input);
1236           input_and->GetBlock()->RemoveInstruction(input_and);
1237           RecordSimplification();
1238           return;
1239         }
1240       }
1241     }
1242   } else if (input->HasOnlyOneNonEnvironmentUse() &&
1243              ((input_type == DataType::Type::kInt8 && result_type == DataType::Type::kUint8) ||
1244               (input_type == DataType::Type::kUint8 && result_type == DataType::Type::kInt8) ||
1245               (input_type == DataType::Type::kInt16 && result_type == DataType::Type::kUint16) ||
1246               (input_type == DataType::Type::kUint16 && result_type == DataType::Type::kInt16))) {
1247     // Try to modify the type of the load to `result_type` and remove the explicit type conversion.
1248     if (TryReplaceFieldOrArrayGetType(input, result_type)) {
1249       instruction->ReplaceWith(input);
1250       instruction->GetBlock()->RemoveInstruction(instruction);
1251       RecordSimplification();
1252       return;
1253     }
1254   }
1255 
1256   if (IsTypeConversionForStoringIntoNoWiderFieldOnly(instruction)) {
1257     instruction->ReplaceWith(input);
1258     instruction->GetBlock()->RemoveInstruction(instruction);
1259     RecordSimplification();
1260     return;
1261   }
1262 }
1263 
VisitAbs(HAbs * instruction)1264 void InstructionSimplifierVisitor::VisitAbs(HAbs* instruction) {
1265   HInstruction* input = instruction->GetInput();
1266   if (DataType::IsZeroExtension(input->GetType(), instruction->GetResultType())) {
1267     // Zero extension from narrow to wide can never set sign bit in the wider
1268     // operand, making the subsequent Abs redundant (e.g., abs(b & 0xff) for byte b).
1269     instruction->ReplaceWith(input);
1270     instruction->GetBlock()->RemoveInstruction(instruction);
1271     RecordSimplification();
1272   }
1273 }
1274 
VisitAdd(HAdd * instruction)1275 void InstructionSimplifierVisitor::VisitAdd(HAdd* instruction) {
1276   HConstant* input_cst = instruction->GetConstantRight();
1277   HInstruction* input_other = instruction->GetLeastConstantLeft();
1278   bool integral_type = DataType::IsIntegralType(instruction->GetType());
1279   if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
1280     // Replace code looking like
1281     //    ADD dst, src, 0
1282     // with
1283     //    src
1284     // Note that we cannot optimize `x + 0.0` to `x` for floating-point. When
1285     // `x` is `-0.0`, the former expression yields `0.0`, while the later
1286     // yields `-0.0`.
1287     if (integral_type) {
1288       instruction->ReplaceWith(input_other);
1289       instruction->GetBlock()->RemoveInstruction(instruction);
1290       RecordSimplification();
1291       return;
1292     }
1293   }
1294 
1295   HInstruction* left = instruction->GetLeft();
1296   HInstruction* right = instruction->GetRight();
1297   bool left_is_neg = left->IsNeg();
1298   bool right_is_neg = right->IsNeg();
1299 
1300   if (left_is_neg && right_is_neg) {
1301     if (TryMoveNegOnInputsAfterBinop(instruction)) {
1302       return;
1303     }
1304   }
1305 
1306   HNeg* neg = left_is_neg ? left->AsNeg() : right->AsNeg();
1307   if (left_is_neg != right_is_neg && neg->HasOnlyOneNonEnvironmentUse()) {
1308     // Replace code looking like
1309     //    NEG tmp, b
1310     //    ADD dst, a, tmp
1311     // with
1312     //    SUB dst, a, b
1313     // We do not perform the optimization if the input negation has environment
1314     // uses or multiple non-environment uses as it could lead to worse code. In
1315     // particular, we do not want the live range of `b` to be extended if we are
1316     // not sure the initial 'NEG' instruction can be removed.
1317     HInstruction* other = left_is_neg ? right : left;
1318     HSub* sub =
1319         new(GetGraph()->GetAllocator()) HSub(instruction->GetType(), other, neg->GetInput());
1320     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, sub);
1321     RecordSimplification();
1322     neg->GetBlock()->RemoveInstruction(neg);
1323     return;
1324   }
1325 
1326   if (TryReplaceWithRotate(instruction)) {
1327     return;
1328   }
1329 
1330   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1331   // so no need to return.
1332   TryHandleAssociativeAndCommutativeOperation(instruction);
1333 
1334   if ((left->IsSub() || right->IsSub()) &&
1335       TrySubtractionChainSimplification(instruction)) {
1336     return;
1337   }
1338 
1339   if (integral_type) {
1340     // Replace code patterns looking like
1341     //    SUB dst1, x, y        SUB dst1, x, y
1342     //    ADD dst2, dst1, y     ADD dst2, y, dst1
1343     // with
1344     //    SUB dst1, x, y
1345     // ADD instruction is not needed in this case, we may use
1346     // one of inputs of SUB instead.
1347     if (left->IsSub() && left->InputAt(1) == right) {
1348       instruction->ReplaceWith(left->InputAt(0));
1349       RecordSimplification();
1350       instruction->GetBlock()->RemoveInstruction(instruction);
1351       return;
1352     } else if (right->IsSub() && right->InputAt(1) == left) {
1353       instruction->ReplaceWith(right->InputAt(0));
1354       RecordSimplification();
1355       instruction->GetBlock()->RemoveInstruction(instruction);
1356       return;
1357     }
1358   }
1359 }
1360 
VisitAnd(HAnd * instruction)1361 void InstructionSimplifierVisitor::VisitAnd(HAnd* instruction) {
1362   DCHECK(DataType::IsIntegralType(instruction->GetType()));
1363   HConstant* input_cst = instruction->GetConstantRight();
1364   HInstruction* input_other = instruction->GetLeastConstantLeft();
1365 
1366   if (input_cst != nullptr) {
1367     int64_t value = Int64FromConstant(input_cst);
1368     if (value == -1 ||
1369         // Similar cases under zero extension.
1370         (DataType::IsUnsignedType(input_other->GetType()) &&
1371          ((DataType::MaxValueOfIntegralType(input_other->GetType()) & ~value) == 0))) {
1372       // Replace code looking like
1373       //    AND dst, src, 0xFFF...FF
1374       // with
1375       //    src
1376       instruction->ReplaceWith(input_other);
1377       instruction->GetBlock()->RemoveInstruction(instruction);
1378       RecordSimplification();
1379       return;
1380     }
1381     if (input_other->IsTypeConversion() &&
1382         input_other->GetType() == DataType::Type::kInt64 &&
1383         DataType::IsIntegralType(input_other->InputAt(0)->GetType()) &&
1384         IsInt<32>(value) &&
1385         input_other->HasOnlyOneNonEnvironmentUse()) {
1386       // The AND can be reordered before the TypeConversion. Replace
1387       //   LongConstant cst, <32-bit-constant-sign-extended-to-64-bits>
1388       //   TypeConversion<Int64> tmp, src
1389       //   AND dst, tmp, cst
1390       // with
1391       //   IntConstant cst, <32-bit-constant>
1392       //   AND tmp, src, cst
1393       //   TypeConversion<Int64> dst, tmp
1394       // This helps 32-bit targets and does not hurt 64-bit targets.
1395       // This also simplifies detection of other patterns, such as Uint8 loads.
1396       HInstruction* new_and_input = input_other->InputAt(0);
1397       // Implicit conversion Int64->Int64 would have been removed previously.
1398       DCHECK_NE(new_and_input->GetType(), DataType::Type::kInt64);
1399       HConstant* new_const = GetGraph()->GetConstant(DataType::Type::kInt32, value);
1400       HAnd* new_and =
1401           new (GetGraph()->GetAllocator()) HAnd(DataType::Type::kInt32, new_and_input, new_const);
1402       instruction->GetBlock()->InsertInstructionBefore(new_and, instruction);
1403       HTypeConversion* new_conversion =
1404           new (GetGraph()->GetAllocator()) HTypeConversion(DataType::Type::kInt64, new_and);
1405       instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_conversion);
1406       input_other->GetBlock()->RemoveInstruction(input_other);
1407       RecordSimplification();
1408       // Try to process the new And now, do not wait for the next round of simplifications.
1409       instruction = new_and;
1410       input_other = new_and_input;
1411     }
1412     // Eliminate And from UShr+And if the And-mask contains all the bits that
1413     // can be non-zero after UShr. Transform Shr+And to UShr if the And-mask
1414     // precisely clears the shifted-in sign bits.
1415     if ((input_other->IsUShr() || input_other->IsShr()) && input_other->InputAt(1)->IsConstant()) {
1416       size_t reg_bits = (instruction->GetResultType() == DataType::Type::kInt64) ? 64 : 32;
1417       size_t shift = Int64FromConstant(input_other->InputAt(1)->AsConstant()) & (reg_bits - 1);
1418       size_t num_tail_bits_set = CTZ(value + 1);
1419       if ((num_tail_bits_set >= reg_bits - shift) && input_other->IsUShr()) {
1420         // This AND clears only bits known to be clear, for example "(x >>> 24) & 0xff".
1421         instruction->ReplaceWith(input_other);
1422         instruction->GetBlock()->RemoveInstruction(instruction);
1423         RecordSimplification();
1424         return;
1425       }  else if ((num_tail_bits_set == reg_bits - shift) && IsPowerOfTwo(value + 1) &&
1426           input_other->HasOnlyOneNonEnvironmentUse()) {
1427         DCHECK(input_other->IsShr());  // For UShr, we would have taken the branch above.
1428         // Replace SHR+AND with USHR, for example "(x >> 24) & 0xff" -> "x >>> 24".
1429         HUShr* ushr = new (GetGraph()->GetAllocator()) HUShr(instruction->GetType(),
1430                                                              input_other->InputAt(0),
1431                                                              input_other->InputAt(1),
1432                                                              input_other->GetDexPc());
1433         instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, ushr);
1434         input_other->GetBlock()->RemoveInstruction(input_other);
1435         RecordSimplification();
1436         return;
1437       }
1438     }
1439     if ((value == 0xff || value == 0xffff) && instruction->GetType() != DataType::Type::kInt64) {
1440       // Transform AND to a type conversion to Uint8/Uint16. If `input_other` is a field
1441       // or array Get with only a single use, short-circuit the subsequent simplification
1442       // of the Get+TypeConversion and change the Get's type to `new_type` instead.
1443       DataType::Type new_type = (value == 0xff) ? DataType::Type::kUint8 : DataType::Type::kUint16;
1444       DataType::Type find_type = (value == 0xff) ? DataType::Type::kInt8 : DataType::Type::kInt16;
1445       if (input_other->GetType() == find_type &&
1446           input_other->HasOnlyOneNonEnvironmentUse() &&
1447           TryReplaceFieldOrArrayGetType(input_other, new_type)) {
1448         instruction->ReplaceWith(input_other);
1449         instruction->GetBlock()->RemoveInstruction(instruction);
1450       } else if (DataType::IsTypeConversionImplicit(input_other->GetType(), new_type)) {
1451         instruction->ReplaceWith(input_other);
1452         instruction->GetBlock()->RemoveInstruction(instruction);
1453       } else {
1454         HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion(
1455             new_type, input_other, instruction->GetDexPc());
1456         instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, type_conversion);
1457       }
1458       RecordSimplification();
1459       return;
1460     }
1461   }
1462 
1463   // We assume that GVN has run before, so we only perform a pointer comparison.
1464   // If for some reason the values are equal but the pointers are different, we
1465   // are still correct and only miss an optimization opportunity.
1466   if (instruction->GetLeft() == instruction->GetRight()) {
1467     // Replace code looking like
1468     //    AND dst, src, src
1469     // with
1470     //    src
1471     instruction->ReplaceWith(instruction->GetLeft());
1472     instruction->GetBlock()->RemoveInstruction(instruction);
1473     RecordSimplification();
1474     return;
1475   }
1476 
1477   if (TryDeMorganNegationFactoring(instruction)) {
1478     return;
1479   }
1480 
1481   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1482   // so no need to return.
1483   TryHandleAssociativeAndCommutativeOperation(instruction);
1484 }
1485 
VisitGreaterThan(HGreaterThan * condition)1486 void InstructionSimplifierVisitor::VisitGreaterThan(HGreaterThan* condition) {
1487   VisitCondition(condition);
1488 }
1489 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * condition)1490 void InstructionSimplifierVisitor::VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) {
1491   VisitCondition(condition);
1492 }
1493 
VisitLessThan(HLessThan * condition)1494 void InstructionSimplifierVisitor::VisitLessThan(HLessThan* condition) {
1495   VisitCondition(condition);
1496 }
1497 
VisitLessThanOrEqual(HLessThanOrEqual * condition)1498 void InstructionSimplifierVisitor::VisitLessThanOrEqual(HLessThanOrEqual* condition) {
1499   VisitCondition(condition);
1500 }
1501 
VisitBelow(HBelow * condition)1502 void InstructionSimplifierVisitor::VisitBelow(HBelow* condition) {
1503   VisitCondition(condition);
1504 }
1505 
VisitBelowOrEqual(HBelowOrEqual * condition)1506 void InstructionSimplifierVisitor::VisitBelowOrEqual(HBelowOrEqual* condition) {
1507   VisitCondition(condition);
1508 }
1509 
VisitAbove(HAbove * condition)1510 void InstructionSimplifierVisitor::VisitAbove(HAbove* condition) {
1511   VisitCondition(condition);
1512 }
1513 
VisitAboveOrEqual(HAboveOrEqual * condition)1514 void InstructionSimplifierVisitor::VisitAboveOrEqual(HAboveOrEqual* condition) {
1515   VisitCondition(condition);
1516 }
1517 
1518 // Recognize the following pattern:
1519 // obj.getClass() ==/!= Foo.class
1520 // And replace it with a constant value if the type of `obj` is statically known.
RecognizeAndSimplifyClassCheck(HCondition * condition)1521 static bool RecognizeAndSimplifyClassCheck(HCondition* condition) {
1522   HInstruction* input_one = condition->InputAt(0);
1523   HInstruction* input_two = condition->InputAt(1);
1524   HLoadClass* load_class = input_one->IsLoadClass()
1525       ? input_one->AsLoadClass()
1526       : input_two->AsLoadClass();
1527   if (load_class == nullptr) {
1528     return false;
1529   }
1530 
1531   ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
1532   if (!class_rti.IsValid()) {
1533     // Unresolved class.
1534     return false;
1535   }
1536 
1537   HInstanceFieldGet* field_get = (load_class == input_one)
1538       ? input_two->AsInstanceFieldGet()
1539       : input_one->AsInstanceFieldGet();
1540   if (field_get == nullptr) {
1541     return false;
1542   }
1543 
1544   HInstruction* receiver = field_get->InputAt(0);
1545   ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
1546   if (!receiver_type.IsExact()) {
1547     return false;
1548   }
1549 
1550   {
1551     ScopedObjectAccess soa(Thread::Current());
1552     ArtField* field = GetClassRoot<mirror::Object>()->GetInstanceField(0);
1553     DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
1554     if (field_get->GetFieldInfo().GetField() != field) {
1555       return false;
1556     }
1557 
1558     // We can replace the compare.
1559     int value = 0;
1560     if (receiver_type.IsEqual(class_rti)) {
1561       value = condition->IsEqual() ? 1 : 0;
1562     } else {
1563       value = condition->IsNotEqual() ? 1 : 0;
1564     }
1565     condition->ReplaceWith(condition->GetBlock()->GetGraph()->GetIntConstant(value));
1566     return true;
1567   }
1568 }
1569 
VisitCondition(HCondition * condition)1570 void InstructionSimplifierVisitor::VisitCondition(HCondition* condition) {
1571   if (condition->IsEqual() || condition->IsNotEqual()) {
1572     if (RecognizeAndSimplifyClassCheck(condition)) {
1573       return;
1574     }
1575   }
1576 
1577   // Reverse condition if left is constant. Our code generators prefer constant
1578   // on the right hand side.
1579   if (condition->GetLeft()->IsConstant() && !condition->GetRight()->IsConstant()) {
1580     HBasicBlock* block = condition->GetBlock();
1581     HCondition* replacement =
1582         GetOppositeConditionSwapOps(block->GetGraph()->GetAllocator(), condition);
1583     // If it is a fp we must set the opposite bias.
1584     if (replacement != nullptr) {
1585       if (condition->IsLtBias()) {
1586         replacement->SetBias(ComparisonBias::kGtBias);
1587       } else if (condition->IsGtBias()) {
1588         replacement->SetBias(ComparisonBias::kLtBias);
1589       }
1590       block->ReplaceAndRemoveInstructionWith(condition, replacement);
1591       RecordSimplification();
1592 
1593       condition = replacement;
1594     }
1595   }
1596 
1597   HInstruction* left = condition->GetLeft();
1598   HInstruction* right = condition->GetRight();
1599 
1600   // Try to fold an HCompare into this HCondition.
1601 
1602   // We can only replace an HCondition which compares a Compare to 0.
1603   // Both 'dx' and 'jack' generate a compare to 0 when compiling a
1604   // condition with a long, float or double comparison as input.
1605   if (!left->IsCompare() || !right->IsConstant() || right->AsIntConstant()->GetValue() != 0) {
1606     // Conversion is not possible.
1607     return;
1608   }
1609 
1610   // Is the Compare only used for this purpose?
1611   if (!left->GetUses().HasExactlyOneElement()) {
1612     // Someone else also wants the result of the compare.
1613     return;
1614   }
1615 
1616   if (!left->GetEnvUses().empty()) {
1617     // There is a reference to the compare result in an environment. Do we really need it?
1618     if (GetGraph()->IsDebuggable()) {
1619       return;
1620     }
1621 
1622     // We have to ensure that there are no deopt points in the sequence.
1623     if (left->HasAnyEnvironmentUseBefore(condition)) {
1624       return;
1625     }
1626   }
1627 
1628   // Clean up any environment uses from the HCompare, if any.
1629   left->RemoveEnvironmentUsers();
1630 
1631   // We have decided to fold the HCompare into the HCondition. Transfer the information.
1632   condition->SetBias(left->AsCompare()->GetBias());
1633 
1634   // Replace the operands of the HCondition.
1635   condition->ReplaceInput(left->InputAt(0), 0);
1636   condition->ReplaceInput(left->InputAt(1), 1);
1637 
1638   // Remove the HCompare.
1639   left->GetBlock()->RemoveInstruction(left);
1640 
1641   RecordSimplification();
1642 }
1643 
1644 // Return whether x / divisor == x * (1.0f / divisor), for every float x.
CanDivideByReciprocalMultiplyFloat(int32_t divisor)1645 static constexpr bool CanDivideByReciprocalMultiplyFloat(int32_t divisor) {
1646   // True, if the most significant bits of divisor are 0.
1647   return ((divisor & 0x7fffff) == 0);
1648 }
1649 
1650 // Return whether x / divisor == x * (1.0 / divisor), for every double x.
CanDivideByReciprocalMultiplyDouble(int64_t divisor)1651 static constexpr bool CanDivideByReciprocalMultiplyDouble(int64_t divisor) {
1652   // True, if the most significant bits of divisor are 0.
1653   return ((divisor & ((UINT64_C(1) << 52) - 1)) == 0);
1654 }
1655 
VisitDiv(HDiv * instruction)1656 void InstructionSimplifierVisitor::VisitDiv(HDiv* instruction) {
1657   HConstant* input_cst = instruction->GetConstantRight();
1658   HInstruction* input_other = instruction->GetLeastConstantLeft();
1659   DataType::Type type = instruction->GetType();
1660 
1661   if ((input_cst != nullptr) && input_cst->IsOne()) {
1662     // Replace code looking like
1663     //    DIV dst, src, 1
1664     // with
1665     //    src
1666     instruction->ReplaceWith(input_other);
1667     instruction->GetBlock()->RemoveInstruction(instruction);
1668     RecordSimplification();
1669     return;
1670   }
1671 
1672   if ((input_cst != nullptr) && input_cst->IsMinusOne()) {
1673     // Replace code looking like
1674     //    DIV dst, src, -1
1675     // with
1676     //    NEG dst, src
1677     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1678         instruction, new (GetGraph()->GetAllocator()) HNeg(type, input_other));
1679     RecordSimplification();
1680     return;
1681   }
1682 
1683   if ((input_cst != nullptr) && DataType::IsFloatingPointType(type)) {
1684     // Try replacing code looking like
1685     //    DIV dst, src, constant
1686     // with
1687     //    MUL dst, src, 1 / constant
1688     HConstant* reciprocal = nullptr;
1689     if (type == DataType::Type::kFloat64) {
1690       double value = input_cst->AsDoubleConstant()->GetValue();
1691       if (CanDivideByReciprocalMultiplyDouble(bit_cast<int64_t, double>(value))) {
1692         reciprocal = GetGraph()->GetDoubleConstant(1.0 / value);
1693       }
1694     } else {
1695       DCHECK_EQ(type, DataType::Type::kFloat32);
1696       float value = input_cst->AsFloatConstant()->GetValue();
1697       if (CanDivideByReciprocalMultiplyFloat(bit_cast<int32_t, float>(value))) {
1698         reciprocal = GetGraph()->GetFloatConstant(1.0f / value);
1699       }
1700     }
1701 
1702     if (reciprocal != nullptr) {
1703       instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1704           instruction, new (GetGraph()->GetAllocator()) HMul(type, input_other, reciprocal));
1705       RecordSimplification();
1706       return;
1707     }
1708   }
1709 }
1710 
VisitMul(HMul * instruction)1711 void InstructionSimplifierVisitor::VisitMul(HMul* instruction) {
1712   HConstant* input_cst = instruction->GetConstantRight();
1713   HInstruction* input_other = instruction->GetLeastConstantLeft();
1714   DataType::Type type = instruction->GetType();
1715   HBasicBlock* block = instruction->GetBlock();
1716   ArenaAllocator* allocator = GetGraph()->GetAllocator();
1717 
1718   if (input_cst == nullptr) {
1719     return;
1720   }
1721 
1722   if (input_cst->IsOne()) {
1723     // Replace code looking like
1724     //    MUL dst, src, 1
1725     // with
1726     //    src
1727     instruction->ReplaceWith(input_other);
1728     instruction->GetBlock()->RemoveInstruction(instruction);
1729     RecordSimplification();
1730     return;
1731   }
1732 
1733   if (input_cst->IsMinusOne() &&
1734       (DataType::IsFloatingPointType(type) || DataType::IsIntOrLongType(type))) {
1735     // Replace code looking like
1736     //    MUL dst, src, -1
1737     // with
1738     //    NEG dst, src
1739     HNeg* neg = new (allocator) HNeg(type, input_other);
1740     block->ReplaceAndRemoveInstructionWith(instruction, neg);
1741     RecordSimplification();
1742     return;
1743   }
1744 
1745   if (DataType::IsFloatingPointType(type) &&
1746       ((input_cst->IsFloatConstant() && input_cst->AsFloatConstant()->GetValue() == 2.0f) ||
1747        (input_cst->IsDoubleConstant() && input_cst->AsDoubleConstant()->GetValue() == 2.0))) {
1748     // Replace code looking like
1749     //    FP_MUL dst, src, 2.0
1750     // with
1751     //    FP_ADD dst, src, src
1752     // The 'int' and 'long' cases are handled below.
1753     block->ReplaceAndRemoveInstructionWith(instruction,
1754                                            new (allocator) HAdd(type, input_other, input_other));
1755     RecordSimplification();
1756     return;
1757   }
1758 
1759   if (DataType::IsIntOrLongType(type)) {
1760     int64_t factor = Int64FromConstant(input_cst);
1761     // Even though constant propagation also takes care of the zero case, other
1762     // optimizations can lead to having a zero multiplication.
1763     if (factor == 0) {
1764       // Replace code looking like
1765       //    MUL dst, src, 0
1766       // with
1767       //    0
1768       instruction->ReplaceWith(input_cst);
1769       instruction->GetBlock()->RemoveInstruction(instruction);
1770       RecordSimplification();
1771       return;
1772     } else if (IsPowerOfTwo(factor)) {
1773       // Replace code looking like
1774       //    MUL dst, src, pow_of_2
1775       // with
1776       //    SHL dst, src, log2(pow_of_2)
1777       HIntConstant* shift = GetGraph()->GetIntConstant(WhichPowerOf2(factor));
1778       HShl* shl = new (allocator) HShl(type, input_other, shift);
1779       block->ReplaceAndRemoveInstructionWith(instruction, shl);
1780       RecordSimplification();
1781       return;
1782     } else if (IsPowerOfTwo(factor - 1)) {
1783       // Transform code looking like
1784       //    MUL dst, src, (2^n + 1)
1785       // into
1786       //    SHL tmp, src, n
1787       //    ADD dst, src, tmp
1788       HShl* shl = new (allocator) HShl(type,
1789                                        input_other,
1790                                        GetGraph()->GetIntConstant(WhichPowerOf2(factor - 1)));
1791       HAdd* add = new (allocator) HAdd(type, input_other, shl);
1792 
1793       block->InsertInstructionBefore(shl, instruction);
1794       block->ReplaceAndRemoveInstructionWith(instruction, add);
1795       RecordSimplification();
1796       return;
1797     } else if (IsPowerOfTwo(factor + 1)) {
1798       // Transform code looking like
1799       //    MUL dst, src, (2^n - 1)
1800       // into
1801       //    SHL tmp, src, n
1802       //    SUB dst, tmp, src
1803       HShl* shl = new (allocator) HShl(type,
1804                                        input_other,
1805                                        GetGraph()->GetIntConstant(WhichPowerOf2(factor + 1)));
1806       HSub* sub = new (allocator) HSub(type, shl, input_other);
1807 
1808       block->InsertInstructionBefore(shl, instruction);
1809       block->ReplaceAndRemoveInstructionWith(instruction, sub);
1810       RecordSimplification();
1811       return;
1812     }
1813   }
1814 
1815   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1816   // so no need to return.
1817   TryHandleAssociativeAndCommutativeOperation(instruction);
1818 }
1819 
VisitNeg(HNeg * instruction)1820 void InstructionSimplifierVisitor::VisitNeg(HNeg* instruction) {
1821   HInstruction* input = instruction->GetInput();
1822   if (input->IsNeg()) {
1823     // Replace code looking like
1824     //    NEG tmp, src
1825     //    NEG dst, tmp
1826     // with
1827     //    src
1828     HNeg* previous_neg = input->AsNeg();
1829     instruction->ReplaceWith(previous_neg->GetInput());
1830     instruction->GetBlock()->RemoveInstruction(instruction);
1831     // We perform the optimization even if the input negation has environment
1832     // uses since it allows removing the current instruction. But we only delete
1833     // the input negation only if it is does not have any uses left.
1834     if (!previous_neg->HasUses()) {
1835       previous_neg->GetBlock()->RemoveInstruction(previous_neg);
1836     }
1837     RecordSimplification();
1838     return;
1839   }
1840 
1841   if (input->IsSub() && input->HasOnlyOneNonEnvironmentUse() &&
1842       !DataType::IsFloatingPointType(input->GetType())) {
1843     // Replace code looking like
1844     //    SUB tmp, a, b
1845     //    NEG dst, tmp
1846     // with
1847     //    SUB dst, b, a
1848     // We do not perform the optimization if the input subtraction has
1849     // environment uses or multiple non-environment uses as it could lead to
1850     // worse code. In particular, we do not want the live ranges of `a` and `b`
1851     // to be extended if we are not sure the initial 'SUB' instruction can be
1852     // removed.
1853     // We do not perform optimization for fp because we could lose the sign of zero.
1854     HSub* sub = input->AsSub();
1855     HSub* new_sub = new (GetGraph()->GetAllocator()) HSub(
1856         instruction->GetType(), sub->GetRight(), sub->GetLeft());
1857     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_sub);
1858     if (!sub->HasUses()) {
1859       sub->GetBlock()->RemoveInstruction(sub);
1860     }
1861     RecordSimplification();
1862   }
1863 }
1864 
VisitNot(HNot * instruction)1865 void InstructionSimplifierVisitor::VisitNot(HNot* instruction) {
1866   HInstruction* input = instruction->GetInput();
1867   if (input->IsNot()) {
1868     // Replace code looking like
1869     //    NOT tmp, src
1870     //    NOT dst, tmp
1871     // with
1872     //    src
1873     // We perform the optimization even if the input negation has environment
1874     // uses since it allows removing the current instruction. But we only delete
1875     // the input negation only if it is does not have any uses left.
1876     HNot* previous_not = input->AsNot();
1877     instruction->ReplaceWith(previous_not->GetInput());
1878     instruction->GetBlock()->RemoveInstruction(instruction);
1879     if (!previous_not->HasUses()) {
1880       previous_not->GetBlock()->RemoveInstruction(previous_not);
1881     }
1882     RecordSimplification();
1883   }
1884 }
1885 
VisitOr(HOr * instruction)1886 void InstructionSimplifierVisitor::VisitOr(HOr* instruction) {
1887   HConstant* input_cst = instruction->GetConstantRight();
1888   HInstruction* input_other = instruction->GetLeastConstantLeft();
1889 
1890   if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
1891     // Replace code looking like
1892     //    OR dst, src, 0
1893     // with
1894     //    src
1895     instruction->ReplaceWith(input_other);
1896     instruction->GetBlock()->RemoveInstruction(instruction);
1897     RecordSimplification();
1898     return;
1899   }
1900 
1901   // We assume that GVN has run before, so we only perform a pointer comparison.
1902   // If for some reason the values are equal but the pointers are different, we
1903   // are still correct and only miss an optimization opportunity.
1904   if (instruction->GetLeft() == instruction->GetRight()) {
1905     // Replace code looking like
1906     //    OR dst, src, src
1907     // with
1908     //    src
1909     instruction->ReplaceWith(instruction->GetLeft());
1910     instruction->GetBlock()->RemoveInstruction(instruction);
1911     RecordSimplification();
1912     return;
1913   }
1914 
1915   if (TryDeMorganNegationFactoring(instruction)) return;
1916 
1917   if (TryReplaceWithRotate(instruction)) {
1918     return;
1919   }
1920 
1921   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1922   // so no need to return.
1923   TryHandleAssociativeAndCommutativeOperation(instruction);
1924 }
1925 
VisitShl(HShl * instruction)1926 void InstructionSimplifierVisitor::VisitShl(HShl* instruction) {
1927   VisitShift(instruction);
1928 }
1929 
VisitShr(HShr * instruction)1930 void InstructionSimplifierVisitor::VisitShr(HShr* instruction) {
1931   VisitShift(instruction);
1932 }
1933 
VisitSub(HSub * instruction)1934 void InstructionSimplifierVisitor::VisitSub(HSub* instruction) {
1935   HConstant* input_cst = instruction->GetConstantRight();
1936   HInstruction* input_other = instruction->GetLeastConstantLeft();
1937 
1938   DataType::Type type = instruction->GetType();
1939   if (DataType::IsFloatingPointType(type)) {
1940     return;
1941   }
1942 
1943   if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
1944     // Replace code looking like
1945     //    SUB dst, src, 0
1946     // with
1947     //    src
1948     // Note that we cannot optimize `x - 0.0` to `x` for floating-point. When
1949     // `x` is `-0.0`, the former expression yields `0.0`, while the later
1950     // yields `-0.0`.
1951     instruction->ReplaceWith(input_other);
1952     instruction->GetBlock()->RemoveInstruction(instruction);
1953     RecordSimplification();
1954     return;
1955   }
1956 
1957   HBasicBlock* block = instruction->GetBlock();
1958   ArenaAllocator* allocator = GetGraph()->GetAllocator();
1959 
1960   HInstruction* left = instruction->GetLeft();
1961   HInstruction* right = instruction->GetRight();
1962   if (left->IsConstant()) {
1963     if (Int64FromConstant(left->AsConstant()) == 0) {
1964       // Replace code looking like
1965       //    SUB dst, 0, src
1966       // with
1967       //    NEG dst, src
1968       // Note that we cannot optimize `0.0 - x` to `-x` for floating-point. When
1969       // `x` is `0.0`, the former expression yields `0.0`, while the later
1970       // yields `-0.0`.
1971       HNeg* neg = new (allocator) HNeg(type, right);
1972       block->ReplaceAndRemoveInstructionWith(instruction, neg);
1973       RecordSimplification();
1974       return;
1975     }
1976   }
1977 
1978   if (left->IsNeg() && right->IsNeg()) {
1979     if (TryMoveNegOnInputsAfterBinop(instruction)) {
1980       return;
1981     }
1982   }
1983 
1984   if (right->IsNeg() && right->HasOnlyOneNonEnvironmentUse()) {
1985     // Replace code looking like
1986     //    NEG tmp, b
1987     //    SUB dst, a, tmp
1988     // with
1989     //    ADD dst, a, b
1990     HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left, right->AsNeg()->GetInput());
1991     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, add);
1992     RecordSimplification();
1993     right->GetBlock()->RemoveInstruction(right);
1994     return;
1995   }
1996 
1997   if (left->IsNeg() && left->HasOnlyOneNonEnvironmentUse()) {
1998     // Replace code looking like
1999     //    NEG tmp, a
2000     //    SUB dst, tmp, b
2001     // with
2002     //    ADD tmp, a, b
2003     //    NEG dst, tmp
2004     // The second version is not intrinsically better, but enables more
2005     // transformations.
2006     HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left->AsNeg()->GetInput(), right);
2007     instruction->GetBlock()->InsertInstructionBefore(add, instruction);
2008     HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(instruction->GetType(), add);
2009     instruction->GetBlock()->InsertInstructionBefore(neg, instruction);
2010     instruction->ReplaceWith(neg);
2011     instruction->GetBlock()->RemoveInstruction(instruction);
2012     RecordSimplification();
2013     left->GetBlock()->RemoveInstruction(left);
2014     return;
2015   }
2016 
2017   if (TrySubtractionChainSimplification(instruction)) {
2018     return;
2019   }
2020 
2021   if (left->IsAdd()) {
2022     // Replace code patterns looking like
2023     //    ADD dst1, x, y        ADD dst1, x, y
2024     //    SUB dst2, dst1, y     SUB dst2, dst1, x
2025     // with
2026     //    ADD dst1, x, y
2027     // SUB instruction is not needed in this case, we may use
2028     // one of inputs of ADD instead.
2029     // It is applicable to integral types only.
2030     DCHECK(DataType::IsIntegralType(type));
2031     if (left->InputAt(1) == right) {
2032       instruction->ReplaceWith(left->InputAt(0));
2033       RecordSimplification();
2034       instruction->GetBlock()->RemoveInstruction(instruction);
2035       return;
2036     } else if (left->InputAt(0) == right) {
2037       instruction->ReplaceWith(left->InputAt(1));
2038       RecordSimplification();
2039       instruction->GetBlock()->RemoveInstruction(instruction);
2040       return;
2041     }
2042   }
2043 }
2044 
VisitUShr(HUShr * instruction)2045 void InstructionSimplifierVisitor::VisitUShr(HUShr* instruction) {
2046   VisitShift(instruction);
2047 }
2048 
VisitXor(HXor * instruction)2049 void InstructionSimplifierVisitor::VisitXor(HXor* instruction) {
2050   HConstant* input_cst = instruction->GetConstantRight();
2051   HInstruction* input_other = instruction->GetLeastConstantLeft();
2052 
2053   if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
2054     // Replace code looking like
2055     //    XOR dst, src, 0
2056     // with
2057     //    src
2058     instruction->ReplaceWith(input_other);
2059     instruction->GetBlock()->RemoveInstruction(instruction);
2060     RecordSimplification();
2061     return;
2062   }
2063 
2064   if ((input_cst != nullptr) && input_cst->IsOne()
2065       && input_other->GetType() == DataType::Type::kBool) {
2066     // Replace code looking like
2067     //    XOR dst, src, 1
2068     // with
2069     //    BOOLEAN_NOT dst, src
2070     HBooleanNot* boolean_not = new (GetGraph()->GetAllocator()) HBooleanNot(input_other);
2071     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, boolean_not);
2072     RecordSimplification();
2073     return;
2074   }
2075 
2076   if ((input_cst != nullptr) && AreAllBitsSet(input_cst)) {
2077     // Replace code looking like
2078     //    XOR dst, src, 0xFFF...FF
2079     // with
2080     //    NOT dst, src
2081     HNot* bitwise_not = new (GetGraph()->GetAllocator()) HNot(instruction->GetType(), input_other);
2082     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, bitwise_not);
2083     RecordSimplification();
2084     return;
2085   }
2086 
2087   HInstruction* left = instruction->GetLeft();
2088   HInstruction* right = instruction->GetRight();
2089   if (((left->IsNot() && right->IsNot()) ||
2090        (left->IsBooleanNot() && right->IsBooleanNot())) &&
2091       left->HasOnlyOneNonEnvironmentUse() &&
2092       right->HasOnlyOneNonEnvironmentUse()) {
2093     // Replace code looking like
2094     //    NOT nota, a
2095     //    NOT notb, b
2096     //    XOR dst, nota, notb
2097     // with
2098     //    XOR dst, a, b
2099     instruction->ReplaceInput(left->InputAt(0), 0);
2100     instruction->ReplaceInput(right->InputAt(0), 1);
2101     left->GetBlock()->RemoveInstruction(left);
2102     right->GetBlock()->RemoveInstruction(right);
2103     RecordSimplification();
2104     return;
2105   }
2106 
2107   if (TryReplaceWithRotate(instruction)) {
2108     return;
2109   }
2110 
2111   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
2112   // so no need to return.
2113   TryHandleAssociativeAndCommutativeOperation(instruction);
2114 }
2115 
SimplifyStringEquals(HInvoke * instruction)2116 void InstructionSimplifierVisitor::SimplifyStringEquals(HInvoke* instruction) {
2117   HInstruction* argument = instruction->InputAt(1);
2118   HInstruction* receiver = instruction->InputAt(0);
2119   if (receiver == argument) {
2120     // Because String.equals is an instance call, the receiver is
2121     // a null check if we don't know it's null. The argument however, will
2122     // be the actual object. So we cannot end up in a situation where both
2123     // are equal but could be null.
2124     DCHECK(CanEnsureNotNullAt(argument, instruction));
2125     instruction->ReplaceWith(GetGraph()->GetIntConstant(1));
2126     instruction->GetBlock()->RemoveInstruction(instruction);
2127   } else {
2128     StringEqualsOptimizations optimizations(instruction);
2129     if (CanEnsureNotNullAt(argument, instruction)) {
2130       optimizations.SetArgumentNotNull();
2131     }
2132     ScopedObjectAccess soa(Thread::Current());
2133     ReferenceTypeInfo argument_rti = argument->GetReferenceTypeInfo();
2134     if (argument_rti.IsValid() && argument_rti.IsStringClass()) {
2135       optimizations.SetArgumentIsString();
2136     }
2137   }
2138 }
2139 
SimplifyRotate(HInvoke * invoke,bool is_left,DataType::Type type)2140 void InstructionSimplifierVisitor::SimplifyRotate(HInvoke* invoke,
2141                                                   bool is_left,
2142                                                   DataType::Type type) {
2143   DCHECK(invoke->IsInvokeStaticOrDirect());
2144   DCHECK_EQ(invoke->GetInvokeType(), InvokeType::kStatic);
2145   HInstruction* value = invoke->InputAt(0);
2146   HInstruction* distance = invoke->InputAt(1);
2147   // Replace the invoke with an HRor.
2148   if (is_left) {
2149     // Unconditionally set the type of the negated distance to `int`,
2150     // as shift and rotate operations expect a 32-bit (or narrower)
2151     // value for their distance input.
2152     distance = new (GetGraph()->GetAllocator()) HNeg(DataType::Type::kInt32, distance);
2153     invoke->GetBlock()->InsertInstructionBefore(distance, invoke);
2154   }
2155   HRor* ror = new (GetGraph()->GetAllocator()) HRor(type, value, distance);
2156   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, ror);
2157   // Remove ClinitCheck and LoadClass, if possible.
2158   HInstruction* clinit = invoke->GetInputs().back();
2159   if (clinit->IsClinitCheck() && !clinit->HasUses()) {
2160     clinit->GetBlock()->RemoveInstruction(clinit);
2161     HInstruction* ldclass = clinit->InputAt(0);
2162     if (ldclass->IsLoadClass() && !ldclass->HasUses()) {
2163       ldclass->GetBlock()->RemoveInstruction(ldclass);
2164     }
2165   }
2166 }
2167 
IsArrayLengthOf(HInstruction * potential_length,HInstruction * potential_array)2168 static bool IsArrayLengthOf(HInstruction* potential_length, HInstruction* potential_array) {
2169   if (potential_length->IsArrayLength()) {
2170     return potential_length->InputAt(0) == potential_array;
2171   }
2172 
2173   if (potential_array->IsNewArray()) {
2174     return potential_array->AsNewArray()->GetLength() == potential_length;
2175   }
2176 
2177   return false;
2178 }
2179 
SimplifySystemArrayCopy(HInvoke * instruction)2180 void InstructionSimplifierVisitor::SimplifySystemArrayCopy(HInvoke* instruction) {
2181   HInstruction* source = instruction->InputAt(0);
2182   HInstruction* destination = instruction->InputAt(2);
2183   HInstruction* count = instruction->InputAt(4);
2184   SystemArrayCopyOptimizations optimizations(instruction);
2185   if (CanEnsureNotNullAt(source, instruction)) {
2186     optimizations.SetSourceIsNotNull();
2187   }
2188   if (CanEnsureNotNullAt(destination, instruction)) {
2189     optimizations.SetDestinationIsNotNull();
2190   }
2191   if (destination == source) {
2192     optimizations.SetDestinationIsSource();
2193   }
2194 
2195   if (IsArrayLengthOf(count, source)) {
2196     optimizations.SetCountIsSourceLength();
2197   }
2198 
2199   if (IsArrayLengthOf(count, destination)) {
2200     optimizations.SetCountIsDestinationLength();
2201   }
2202 
2203   {
2204     ScopedObjectAccess soa(Thread::Current());
2205     DataType::Type source_component_type = DataType::Type::kVoid;
2206     DataType::Type destination_component_type = DataType::Type::kVoid;
2207     ReferenceTypeInfo destination_rti = destination->GetReferenceTypeInfo();
2208     if (destination_rti.IsValid()) {
2209       if (destination_rti.IsObjectArray()) {
2210         if (destination_rti.IsExact()) {
2211           optimizations.SetDoesNotNeedTypeCheck();
2212         }
2213         optimizations.SetDestinationIsTypedObjectArray();
2214       }
2215       if (destination_rti.IsPrimitiveArrayClass()) {
2216         destination_component_type = DataTypeFromPrimitive(
2217             destination_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
2218         optimizations.SetDestinationIsPrimitiveArray();
2219       } else if (destination_rti.IsNonPrimitiveArrayClass()) {
2220         optimizations.SetDestinationIsNonPrimitiveArray();
2221       }
2222     }
2223     ReferenceTypeInfo source_rti = source->GetReferenceTypeInfo();
2224     if (source_rti.IsValid()) {
2225       if (destination_rti.IsValid() && destination_rti.CanArrayHoldValuesOf(source_rti)) {
2226         optimizations.SetDoesNotNeedTypeCheck();
2227       }
2228       if (source_rti.IsPrimitiveArrayClass()) {
2229         optimizations.SetSourceIsPrimitiveArray();
2230         source_component_type = DataTypeFromPrimitive(
2231             source_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
2232       } else if (source_rti.IsNonPrimitiveArrayClass()) {
2233         optimizations.SetSourceIsNonPrimitiveArray();
2234       }
2235     }
2236     // For primitive arrays, use their optimized ArtMethod implementations.
2237     if ((source_component_type != DataType::Type::kVoid) &&
2238         (source_component_type == destination_component_type)) {
2239       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2240       PointerSize image_size = class_linker->GetImagePointerSize();
2241       HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect();
2242       ObjPtr<mirror::Class> system = invoke->GetResolvedMethod()->GetDeclaringClass();
2243       ArtMethod* method = nullptr;
2244       switch (source_component_type) {
2245         case DataType::Type::kBool:
2246           method = system->FindClassMethod("arraycopy", "([ZI[ZII)V", image_size);
2247           break;
2248         case DataType::Type::kInt8:
2249           method = system->FindClassMethod("arraycopy", "([BI[BII)V", image_size);
2250           break;
2251         case DataType::Type::kUint16:
2252           method = system->FindClassMethod("arraycopy", "([CI[CII)V", image_size);
2253           break;
2254         case DataType::Type::kInt16:
2255           method = system->FindClassMethod("arraycopy", "([SI[SII)V", image_size);
2256           break;
2257         case DataType::Type::kInt32:
2258           method = system->FindClassMethod("arraycopy", "([II[III)V", image_size);
2259           break;
2260         case DataType::Type::kFloat32:
2261           method = system->FindClassMethod("arraycopy", "([FI[FII)V", image_size);
2262           break;
2263         case DataType::Type::kInt64:
2264           method = system->FindClassMethod("arraycopy", "([JI[JII)V", image_size);
2265           break;
2266         case DataType::Type::kFloat64:
2267           method = system->FindClassMethod("arraycopy", "([DI[DII)V", image_size);
2268           break;
2269         default:
2270           LOG(FATAL) << "Unreachable";
2271       }
2272       DCHECK(method != nullptr);
2273       DCHECK(method->IsStatic());
2274       DCHECK(method->GetDeclaringClass() == system);
2275       invoke->SetResolvedMethod(method);
2276       // Sharpen the new invoke. Note that we do not update the dex method index of
2277       // the invoke, as we would need to look it up in the current dex file, and it
2278       // is unlikely that it exists. The most usual situation for such typed
2279       // arraycopy methods is a direct pointer to the boot image.
2280       invoke->SetDispatchInfo(HSharpening::SharpenInvokeStaticOrDirect(method, codegen_));
2281     }
2282   }
2283 }
2284 
SimplifyCompare(HInvoke * invoke,bool is_signum,DataType::Type type)2285 void InstructionSimplifierVisitor::SimplifyCompare(HInvoke* invoke,
2286                                                    bool is_signum,
2287                                                    DataType::Type type) {
2288   DCHECK(invoke->IsInvokeStaticOrDirect());
2289   uint32_t dex_pc = invoke->GetDexPc();
2290   HInstruction* left = invoke->InputAt(0);
2291   HInstruction* right;
2292   if (!is_signum) {
2293     right = invoke->InputAt(1);
2294   } else if (type == DataType::Type::kInt64) {
2295     right = GetGraph()->GetLongConstant(0);
2296   } else {
2297     right = GetGraph()->GetIntConstant(0);
2298   }
2299   HCompare* compare = new (GetGraph()->GetAllocator())
2300       HCompare(type, left, right, ComparisonBias::kNoBias, dex_pc);
2301   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, compare);
2302 }
2303 
SimplifyIsNaN(HInvoke * invoke)2304 void InstructionSimplifierVisitor::SimplifyIsNaN(HInvoke* invoke) {
2305   DCHECK(invoke->IsInvokeStaticOrDirect());
2306   uint32_t dex_pc = invoke->GetDexPc();
2307   // IsNaN(x) is the same as x != x.
2308   HInstruction* x = invoke->InputAt(0);
2309   HCondition* condition = new (GetGraph()->GetAllocator()) HNotEqual(x, x, dex_pc);
2310   condition->SetBias(ComparisonBias::kLtBias);
2311   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, condition);
2312 }
2313 
SimplifyFP2Int(HInvoke * invoke)2314 void InstructionSimplifierVisitor::SimplifyFP2Int(HInvoke* invoke) {
2315   DCHECK(invoke->IsInvokeStaticOrDirect());
2316   uint32_t dex_pc = invoke->GetDexPc();
2317   HInstruction* x = invoke->InputAt(0);
2318   DataType::Type type = x->GetType();
2319   // Set proper bit pattern for NaN and replace intrinsic with raw version.
2320   HInstruction* nan;
2321   if (type == DataType::Type::kFloat64) {
2322     nan = GetGraph()->GetLongConstant(0x7ff8000000000000L);
2323     invoke->SetIntrinsic(Intrinsics::kDoubleDoubleToRawLongBits,
2324                          kNeedsEnvironmentOrCache,
2325                          kNoSideEffects,
2326                          kNoThrow);
2327   } else {
2328     DCHECK_EQ(type, DataType::Type::kFloat32);
2329     nan = GetGraph()->GetIntConstant(0x7fc00000);
2330     invoke->SetIntrinsic(Intrinsics::kFloatFloatToRawIntBits,
2331                          kNeedsEnvironmentOrCache,
2332                          kNoSideEffects,
2333                          kNoThrow);
2334   }
2335   // Test IsNaN(x), which is the same as x != x.
2336   HCondition* condition = new (GetGraph()->GetAllocator()) HNotEqual(x, x, dex_pc);
2337   condition->SetBias(ComparisonBias::kLtBias);
2338   invoke->GetBlock()->InsertInstructionBefore(condition, invoke->GetNext());
2339   // Select between the two.
2340   HInstruction* select = new (GetGraph()->GetAllocator()) HSelect(condition, nan, invoke, dex_pc);
2341   invoke->GetBlock()->InsertInstructionBefore(select, condition->GetNext());
2342   invoke->ReplaceWithExceptInReplacementAtIndex(select, 0);  // false at index 0
2343 }
2344 
SimplifyStringCharAt(HInvoke * invoke)2345 void InstructionSimplifierVisitor::SimplifyStringCharAt(HInvoke* invoke) {
2346   HInstruction* str = invoke->InputAt(0);
2347   HInstruction* index = invoke->InputAt(1);
2348   uint32_t dex_pc = invoke->GetDexPc();
2349   ArenaAllocator* allocator = GetGraph()->GetAllocator();
2350   // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
2351   // so create the HArrayLength, HBoundsCheck and HArrayGet.
2352   HArrayLength* length = new (allocator) HArrayLength(str, dex_pc, /* is_string_length= */ true);
2353   invoke->GetBlock()->InsertInstructionBefore(length, invoke);
2354   HBoundsCheck* bounds_check = new (allocator) HBoundsCheck(
2355       index, length, dex_pc, /* is_string_char_at= */ true);
2356   invoke->GetBlock()->InsertInstructionBefore(bounds_check, invoke);
2357   HArrayGet* array_get = new (allocator) HArrayGet(str,
2358                                                    bounds_check,
2359                                                    DataType::Type::kUint16,
2360                                                    SideEffects::None(),  // Strings are immutable.
2361                                                    dex_pc,
2362                                                    /* is_string_char_at= */ true);
2363   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, array_get);
2364   bounds_check->CopyEnvironmentFrom(invoke->GetEnvironment());
2365   GetGraph()->SetHasBoundsChecks(true);
2366 }
2367 
SimplifyStringIsEmptyOrLength(HInvoke * invoke)2368 void InstructionSimplifierVisitor::SimplifyStringIsEmptyOrLength(HInvoke* invoke) {
2369   HInstruction* str = invoke->InputAt(0);
2370   uint32_t dex_pc = invoke->GetDexPc();
2371   // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
2372   // so create the HArrayLength.
2373   HArrayLength* length =
2374       new (GetGraph()->GetAllocator()) HArrayLength(str, dex_pc, /* is_string_length= */ true);
2375   HInstruction* replacement;
2376   if (invoke->GetIntrinsic() == Intrinsics::kStringIsEmpty) {
2377     // For String.isEmpty(), create the `HEqual` representing the `length == 0`.
2378     invoke->GetBlock()->InsertInstructionBefore(length, invoke);
2379     HIntConstant* zero = GetGraph()->GetIntConstant(0);
2380     HEqual* equal = new (GetGraph()->GetAllocator()) HEqual(length, zero, dex_pc);
2381     replacement = equal;
2382   } else {
2383     DCHECK_EQ(invoke->GetIntrinsic(), Intrinsics::kStringLength);
2384     replacement = length;
2385   }
2386   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, replacement);
2387 }
2388 
SimplifyStringIndexOf(HInvoke * invoke)2389 void InstructionSimplifierVisitor::SimplifyStringIndexOf(HInvoke* invoke) {
2390   DCHECK(invoke->GetIntrinsic() == Intrinsics::kStringIndexOf ||
2391          invoke->GetIntrinsic() == Intrinsics::kStringIndexOfAfter);
2392   if (invoke->InputAt(0)->IsLoadString()) {
2393     HLoadString* load_string = invoke->InputAt(0)->AsLoadString();
2394     const DexFile& dex_file = load_string->GetDexFile();
2395     uint32_t utf16_length;
2396     const char* data =
2397         dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), &utf16_length);
2398     if (utf16_length == 0) {
2399       invoke->ReplaceWith(GetGraph()->GetIntConstant(-1));
2400       invoke->GetBlock()->RemoveInstruction(invoke);
2401       RecordSimplification();
2402       return;
2403     }
2404     if (utf16_length == 1 && invoke->GetIntrinsic() == Intrinsics::kStringIndexOf) {
2405       // Simplify to HSelect(HEquals(., load_string.charAt(0)), 0, -1).
2406       // If the sought character is supplementary, this gives the correct result, i.e. -1.
2407       uint32_t c = GetUtf16FromUtf8(&data);
2408       DCHECK_EQ(GetTrailingUtf16Char(c), 0u);
2409       DCHECK_EQ(GetLeadingUtf16Char(c), c);
2410       uint32_t dex_pc = invoke->GetDexPc();
2411       ArenaAllocator* allocator = GetGraph()->GetAllocator();
2412       HEqual* equal =
2413           new (allocator) HEqual(invoke->InputAt(1), GetGraph()->GetIntConstant(c), dex_pc);
2414       invoke->GetBlock()->InsertInstructionBefore(equal, invoke);
2415       HSelect* result = new (allocator) HSelect(equal,
2416                                                 GetGraph()->GetIntConstant(0),
2417                                                 GetGraph()->GetIntConstant(-1),
2418                                                 dex_pc);
2419       invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, result);
2420       RecordSimplification();
2421       return;
2422     }
2423   }
2424 }
2425 
2426 // This method should only be used on intrinsics whose sole way of throwing an
2427 // exception is raising a NPE when the nth argument is null. If that argument
2428 // is provably non-null, we can clear the flag.
SimplifyNPEOnArgN(HInvoke * invoke,size_t n)2429 void InstructionSimplifierVisitor::SimplifyNPEOnArgN(HInvoke* invoke, size_t n) {
2430   HInstruction* arg = invoke->InputAt(n);
2431   if (invoke->CanThrow() && !arg->CanBeNull()) {
2432     invoke->SetCanThrow(false);
2433   }
2434 }
2435 
2436 // Methods that return "this" can replace the returned value with the receiver.
SimplifyReturnThis(HInvoke * invoke)2437 void InstructionSimplifierVisitor::SimplifyReturnThis(HInvoke* invoke) {
2438   if (invoke->HasUses()) {
2439     HInstruction* receiver = invoke->InputAt(0);
2440     invoke->ReplaceWith(receiver);
2441     RecordSimplification();
2442   }
2443 }
2444 
2445 // Helper method for StringBuffer escape analysis.
NoEscapeForStringBufferReference(HInstruction * reference,HInstruction * user)2446 static bool NoEscapeForStringBufferReference(HInstruction* reference, HInstruction* user) {
2447   if (user->IsInvokeStaticOrDirect()) {
2448     // Any constructor on StringBuffer is okay.
2449     return user->AsInvokeStaticOrDirect()->GetResolvedMethod() != nullptr &&
2450            user->AsInvokeStaticOrDirect()->GetResolvedMethod()->IsConstructor() &&
2451            user->InputAt(0) == reference;
2452   } else if (user->IsInvokeVirtual()) {
2453     switch (user->AsInvokeVirtual()->GetIntrinsic()) {
2454       case Intrinsics::kStringBufferLength:
2455       case Intrinsics::kStringBufferToString:
2456         DCHECK_EQ(user->InputAt(0), reference);
2457         return true;
2458       case Intrinsics::kStringBufferAppend:
2459         // Returns "this", so only okay if no further uses.
2460         DCHECK_EQ(user->InputAt(0), reference);
2461         DCHECK_NE(user->InputAt(1), reference);
2462         return !user->HasUses();
2463       default:
2464         break;
2465     }
2466   }
2467   return false;
2468 }
2469 
2470 // Certain allocation intrinsics are not removed by dead code elimination
2471 // because of potentially throwing an OOM exception or other side effects.
2472 // This method removes such intrinsics when special circumstances allow.
SimplifyAllocationIntrinsic(HInvoke * invoke)2473 void InstructionSimplifierVisitor::SimplifyAllocationIntrinsic(HInvoke* invoke) {
2474   if (!invoke->HasUses()) {
2475     // Instruction has no uses. If unsynchronized, we can remove right away, safely ignoring
2476     // the potential OOM of course. Otherwise, we must ensure the receiver object of this
2477     // call does not escape since only thread-local synchronization may be removed.
2478     bool is_synchronized = invoke->GetIntrinsic() == Intrinsics::kStringBufferToString;
2479     HInstruction* receiver = invoke->InputAt(0);
2480     if (!is_synchronized || DoesNotEscape(receiver, NoEscapeForStringBufferReference)) {
2481       invoke->GetBlock()->RemoveInstruction(invoke);
2482       RecordSimplification();
2483     }
2484   }
2485 }
2486 
SimplifyMemBarrier(HInvoke * invoke,MemBarrierKind barrier_kind)2487 void InstructionSimplifierVisitor::SimplifyMemBarrier(HInvoke* invoke,
2488                                                       MemBarrierKind barrier_kind) {
2489   uint32_t dex_pc = invoke->GetDexPc();
2490   HMemoryBarrier* mem_barrier =
2491       new (GetGraph()->GetAllocator()) HMemoryBarrier(barrier_kind, dex_pc);
2492   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, mem_barrier);
2493 }
2494 
SimplifyMin(HInvoke * invoke,DataType::Type type)2495 void InstructionSimplifierVisitor::SimplifyMin(HInvoke* invoke, DataType::Type type) {
2496   DCHECK(invoke->IsInvokeStaticOrDirect());
2497   HMin* min = new (GetGraph()->GetAllocator())
2498       HMin(type, invoke->InputAt(0), invoke->InputAt(1), invoke->GetDexPc());
2499   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, min);
2500 }
2501 
SimplifyMax(HInvoke * invoke,DataType::Type type)2502 void InstructionSimplifierVisitor::SimplifyMax(HInvoke* invoke, DataType::Type type) {
2503   DCHECK(invoke->IsInvokeStaticOrDirect());
2504   HMax* max = new (GetGraph()->GetAllocator())
2505       HMax(type, invoke->InputAt(0), invoke->InputAt(1), invoke->GetDexPc());
2506   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, max);
2507 }
2508 
SimplifyAbs(HInvoke * invoke,DataType::Type type)2509 void InstructionSimplifierVisitor::SimplifyAbs(HInvoke* invoke, DataType::Type type) {
2510   DCHECK(invoke->IsInvokeStaticOrDirect());
2511   HAbs* abs = new (GetGraph()->GetAllocator())
2512       HAbs(type, invoke->InputAt(0), invoke->GetDexPc());
2513   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, abs);
2514 }
2515 
VisitInvoke(HInvoke * instruction)2516 void InstructionSimplifierVisitor::VisitInvoke(HInvoke* instruction) {
2517   switch (instruction->GetIntrinsic()) {
2518     case Intrinsics::kStringEquals:
2519       SimplifyStringEquals(instruction);
2520       break;
2521     case Intrinsics::kSystemArrayCopy:
2522       SimplifySystemArrayCopy(instruction);
2523       break;
2524     case Intrinsics::kIntegerRotateRight:
2525       SimplifyRotate(instruction, /* is_left= */ false, DataType::Type::kInt32);
2526       break;
2527     case Intrinsics::kLongRotateRight:
2528       SimplifyRotate(instruction, /* is_left= */ false, DataType::Type::kInt64);
2529       break;
2530     case Intrinsics::kIntegerRotateLeft:
2531       SimplifyRotate(instruction, /* is_left= */ true, DataType::Type::kInt32);
2532       break;
2533     case Intrinsics::kLongRotateLeft:
2534       SimplifyRotate(instruction, /* is_left= */ true, DataType::Type::kInt64);
2535       break;
2536     case Intrinsics::kIntegerCompare:
2537       SimplifyCompare(instruction, /* is_signum= */ false, DataType::Type::kInt32);
2538       break;
2539     case Intrinsics::kLongCompare:
2540       SimplifyCompare(instruction, /* is_signum= */ false, DataType::Type::kInt64);
2541       break;
2542     case Intrinsics::kIntegerSignum:
2543       SimplifyCompare(instruction, /* is_signum= */ true, DataType::Type::kInt32);
2544       break;
2545     case Intrinsics::kLongSignum:
2546       SimplifyCompare(instruction, /* is_signum= */ true, DataType::Type::kInt64);
2547       break;
2548     case Intrinsics::kFloatIsNaN:
2549     case Intrinsics::kDoubleIsNaN:
2550       SimplifyIsNaN(instruction);
2551       break;
2552     case Intrinsics::kFloatFloatToIntBits:
2553     case Intrinsics::kDoubleDoubleToLongBits:
2554       SimplifyFP2Int(instruction);
2555       break;
2556     case Intrinsics::kStringCharAt:
2557       SimplifyStringCharAt(instruction);
2558       break;
2559     case Intrinsics::kStringIsEmpty:
2560     case Intrinsics::kStringLength:
2561       SimplifyStringIsEmptyOrLength(instruction);
2562       break;
2563     case Intrinsics::kStringIndexOf:
2564     case Intrinsics::kStringIndexOfAfter:
2565       SimplifyStringIndexOf(instruction);
2566       break;
2567     case Intrinsics::kStringStringIndexOf:
2568     case Intrinsics::kStringStringIndexOfAfter:
2569       SimplifyNPEOnArgN(instruction, 1);  // 0th has own NullCheck
2570       break;
2571     case Intrinsics::kStringBufferAppend:
2572     case Intrinsics::kStringBuilderAppend:
2573       SimplifyReturnThis(instruction);
2574       break;
2575     case Intrinsics::kStringBufferToString:
2576     case Intrinsics::kStringBuilderToString:
2577       SimplifyAllocationIntrinsic(instruction);
2578       break;
2579     case Intrinsics::kUnsafeLoadFence:
2580       SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2581       break;
2582     case Intrinsics::kUnsafeStoreFence:
2583       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
2584       break;
2585     case Intrinsics::kUnsafeFullFence:
2586       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
2587       break;
2588     case Intrinsics::kVarHandleFullFence:
2589       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
2590       break;
2591     case Intrinsics::kVarHandleAcquireFence:
2592       SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2593       break;
2594     case Intrinsics::kVarHandleReleaseFence:
2595       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
2596       break;
2597     case Intrinsics::kVarHandleLoadLoadFence:
2598       SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2599       break;
2600     case Intrinsics::kVarHandleStoreStoreFence:
2601       SimplifyMemBarrier(instruction, MemBarrierKind::kStoreStore);
2602       break;
2603     case Intrinsics::kMathMinIntInt:
2604       SimplifyMin(instruction, DataType::Type::kInt32);
2605       break;
2606     case Intrinsics::kMathMinLongLong:
2607       SimplifyMin(instruction, DataType::Type::kInt64);
2608       break;
2609     case Intrinsics::kMathMinFloatFloat:
2610       SimplifyMin(instruction, DataType::Type::kFloat32);
2611       break;
2612     case Intrinsics::kMathMinDoubleDouble:
2613       SimplifyMin(instruction, DataType::Type::kFloat64);
2614       break;
2615     case Intrinsics::kMathMaxIntInt:
2616       SimplifyMax(instruction, DataType::Type::kInt32);
2617       break;
2618     case Intrinsics::kMathMaxLongLong:
2619       SimplifyMax(instruction, DataType::Type::kInt64);
2620       break;
2621     case Intrinsics::kMathMaxFloatFloat:
2622       SimplifyMax(instruction, DataType::Type::kFloat32);
2623       break;
2624     case Intrinsics::kMathMaxDoubleDouble:
2625       SimplifyMax(instruction, DataType::Type::kFloat64);
2626       break;
2627     case Intrinsics::kMathAbsInt:
2628       SimplifyAbs(instruction, DataType::Type::kInt32);
2629       break;
2630     case Intrinsics::kMathAbsLong:
2631       SimplifyAbs(instruction, DataType::Type::kInt64);
2632       break;
2633     case Intrinsics::kMathAbsFloat:
2634       SimplifyAbs(instruction, DataType::Type::kFloat32);
2635       break;
2636     case Intrinsics::kMathAbsDouble:
2637       SimplifyAbs(instruction, DataType::Type::kFloat64);
2638       break;
2639     default:
2640       break;
2641   }
2642 }
2643 
VisitDeoptimize(HDeoptimize * deoptimize)2644 void InstructionSimplifierVisitor::VisitDeoptimize(HDeoptimize* deoptimize) {
2645   HInstruction* cond = deoptimize->InputAt(0);
2646   if (cond->IsConstant()) {
2647     if (cond->AsIntConstant()->IsFalse()) {
2648       // Never deopt: instruction can be removed.
2649       if (deoptimize->GuardsAnInput()) {
2650         deoptimize->ReplaceWith(deoptimize->GuardedInput());
2651       }
2652       deoptimize->GetBlock()->RemoveInstruction(deoptimize);
2653     } else {
2654       // Always deopt.
2655     }
2656   }
2657 }
2658 
2659 // Replace code looking like
2660 //    OP y, x, const1
2661 //    OP z, y, const2
2662 // with
2663 //    OP z, x, const3
2664 // where OP is both an associative and a commutative operation.
TryHandleAssociativeAndCommutativeOperation(HBinaryOperation * instruction)2665 bool InstructionSimplifierVisitor::TryHandleAssociativeAndCommutativeOperation(
2666     HBinaryOperation* instruction) {
2667   DCHECK(instruction->IsCommutative());
2668 
2669   if (!DataType::IsIntegralType(instruction->GetType())) {
2670     return false;
2671   }
2672 
2673   HInstruction* left = instruction->GetLeft();
2674   HInstruction* right = instruction->GetRight();
2675   // Variable names as described above.
2676   HConstant* const2;
2677   HBinaryOperation* y;
2678 
2679   if (instruction->GetKind() == left->GetKind() && right->IsConstant()) {
2680     const2 = right->AsConstant();
2681     y = left->AsBinaryOperation();
2682   } else if (left->IsConstant() && instruction->GetKind() == right->GetKind()) {
2683     const2 = left->AsConstant();
2684     y = right->AsBinaryOperation();
2685   } else {
2686     // The node does not match the pattern.
2687     return false;
2688   }
2689 
2690   // If `y` has more than one use, we do not perform the optimization
2691   // because it might increase code size (e.g. if the new constant is
2692   // no longer encodable as an immediate operand in the target ISA).
2693   if (!y->HasOnlyOneNonEnvironmentUse()) {
2694     return false;
2695   }
2696 
2697   // GetConstantRight() can return both left and right constants
2698   // for commutative operations.
2699   HConstant* const1 = y->GetConstantRight();
2700   if (const1 == nullptr) {
2701     return false;
2702   }
2703 
2704   instruction->ReplaceInput(const1, 0);
2705   instruction->ReplaceInput(const2, 1);
2706   HConstant* const3 = instruction->TryStaticEvaluation();
2707   DCHECK(const3 != nullptr);
2708   instruction->ReplaceInput(y->GetLeastConstantLeft(), 0);
2709   instruction->ReplaceInput(const3, 1);
2710   RecordSimplification();
2711   return true;
2712 }
2713 
AsAddOrSub(HInstruction * binop)2714 static HBinaryOperation* AsAddOrSub(HInstruction* binop) {
2715   return (binop->IsAdd() || binop->IsSub()) ? binop->AsBinaryOperation() : nullptr;
2716 }
2717 
2718 // Helper function that performs addition statically, considering the result type.
ComputeAddition(DataType::Type type,int64_t x,int64_t y)2719 static int64_t ComputeAddition(DataType::Type type, int64_t x, int64_t y) {
2720   // Use the Compute() method for consistency with TryStaticEvaluation().
2721   if (type == DataType::Type::kInt32) {
2722     return HAdd::Compute<int32_t>(x, y);
2723   } else {
2724     DCHECK_EQ(type, DataType::Type::kInt64);
2725     return HAdd::Compute<int64_t>(x, y);
2726   }
2727 }
2728 
2729 // Helper function that handles the child classes of HConstant
2730 // and returns an integer with the appropriate sign.
GetValue(HConstant * constant,bool is_negated)2731 static int64_t GetValue(HConstant* constant, bool is_negated) {
2732   int64_t ret = Int64FromConstant(constant);
2733   return is_negated ? -ret : ret;
2734 }
2735 
2736 // Replace code looking like
2737 //    OP1 y, x, const1
2738 //    OP2 z, y, const2
2739 // with
2740 //    OP3 z, x, const3
2741 // where OPx is either ADD or SUB, and at least one of OP{1,2} is SUB.
TrySubtractionChainSimplification(HBinaryOperation * instruction)2742 bool InstructionSimplifierVisitor::TrySubtractionChainSimplification(
2743     HBinaryOperation* instruction) {
2744   DCHECK(instruction->IsAdd() || instruction->IsSub()) << instruction->DebugName();
2745 
2746   DataType::Type type = instruction->GetType();
2747   if (!DataType::IsIntegralType(type)) {
2748     return false;
2749   }
2750 
2751   HInstruction* left = instruction->GetLeft();
2752   HInstruction* right = instruction->GetRight();
2753   // Variable names as described above.
2754   HConstant* const2 = right->IsConstant() ? right->AsConstant() : left->AsConstant();
2755   if (const2 == nullptr) {
2756     return false;
2757   }
2758 
2759   HBinaryOperation* y = (AsAddOrSub(left) != nullptr)
2760       ? left->AsBinaryOperation()
2761       : AsAddOrSub(right);
2762   // If y has more than one use, we do not perform the optimization because
2763   // it might increase code size (e.g. if the new constant is no longer
2764   // encodable as an immediate operand in the target ISA).
2765   if ((y == nullptr) || !y->HasOnlyOneNonEnvironmentUse()) {
2766     return false;
2767   }
2768 
2769   left = y->GetLeft();
2770   HConstant* const1 = left->IsConstant() ? left->AsConstant() : y->GetRight()->AsConstant();
2771   if (const1 == nullptr) {
2772     return false;
2773   }
2774 
2775   HInstruction* x = (const1 == left) ? y->GetRight() : left;
2776   // If both inputs are constants, let the constant folding pass deal with it.
2777   if (x->IsConstant()) {
2778     return false;
2779   }
2780 
2781   bool is_const2_negated = (const2 == right) && instruction->IsSub();
2782   int64_t const2_val = GetValue(const2, is_const2_negated);
2783   bool is_y_negated = (y == right) && instruction->IsSub();
2784   right = y->GetRight();
2785   bool is_const1_negated = is_y_negated ^ ((const1 == right) && y->IsSub());
2786   int64_t const1_val = GetValue(const1, is_const1_negated);
2787   bool is_x_negated = is_y_negated ^ ((x == right) && y->IsSub());
2788   int64_t const3_val = ComputeAddition(type, const1_val, const2_val);
2789   HBasicBlock* block = instruction->GetBlock();
2790   HConstant* const3 = block->GetGraph()->GetConstant(type, const3_val);
2791   ArenaAllocator* allocator = instruction->GetAllocator();
2792   HInstruction* z;
2793 
2794   if (is_x_negated) {
2795     z = new (allocator) HSub(type, const3, x, instruction->GetDexPc());
2796   } else {
2797     z = new (allocator) HAdd(type, x, const3, instruction->GetDexPc());
2798   }
2799 
2800   block->ReplaceAndRemoveInstructionWith(instruction, z);
2801   RecordSimplification();
2802   return true;
2803 }
2804 
VisitVecMul(HVecMul * instruction)2805 void InstructionSimplifierVisitor::VisitVecMul(HVecMul* instruction) {
2806   if (TryCombineVecMultiplyAccumulate(instruction)) {
2807     RecordSimplification();
2808   }
2809 }
2810 
2811 }  // namespace art
2812