• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * mount.c
3  *
4  * Copyright (c) 2013 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include "fsck.h"
12 #include "xattr.h"
13 #include <locale.h>
14 #ifdef HAVE_LINUX_POSIX_ACL_H
15 #include <linux/posix_acl.h>
16 #endif
17 #ifdef HAVE_SYS_ACL_H
18 #include <sys/acl.h>
19 #endif
20 
21 #ifndef ACL_UNDEFINED_TAG
22 #define ACL_UNDEFINED_TAG	(0x00)
23 #define ACL_USER_OBJ		(0x01)
24 #define ACL_USER		(0x02)
25 #define ACL_GROUP_OBJ		(0x04)
26 #define ACL_GROUP		(0x08)
27 #define ACL_MASK		(0x10)
28 #define ACL_OTHER		(0x20)
29 #endif
30 
get_free_segments(struct f2fs_sb_info * sbi)31 u32 get_free_segments(struct f2fs_sb_info *sbi)
32 {
33 	u32 i, free_segs = 0;
34 
35 	for (i = 0; i < TOTAL_SEGS(sbi); i++) {
36 		struct seg_entry *se = get_seg_entry(sbi, i);
37 
38 		if (se->valid_blocks == 0x0 && !IS_CUR_SEGNO(sbi, i))
39 			free_segs++;
40 	}
41 	return free_segs;
42 }
43 
update_free_segments(struct f2fs_sb_info * sbi)44 void update_free_segments(struct f2fs_sb_info *sbi)
45 {
46 	char *progress = "-*|*-";
47 	static int i = 0;
48 
49 	if (c.dbg_lv)
50 		return;
51 
52 	MSG(0, "\r [ %c ] Free segments: 0x%x", progress[i % 5], get_free_segments(sbi));
53 	fflush(stdout);
54 	i++;
55 }
56 
57 #if defined(HAVE_LINUX_POSIX_ACL_H) || defined(HAVE_SYS_ACL_H)
print_acl(char * value,int size)58 void print_acl(char *value, int size)
59 {
60 	struct f2fs_acl_header *hdr = (struct f2fs_acl_header *)value;
61 	struct f2fs_acl_entry *entry = (struct f2fs_acl_entry *)(hdr + 1);
62 	const char *end = value + size;
63 	int i, count;
64 
65 	if (hdr->a_version != cpu_to_le32(F2FS_ACL_VERSION)) {
66 		MSG(0, "Invalid ACL version [0x%x : 0x%x]\n",
67 				le32_to_cpu(hdr->a_version), F2FS_ACL_VERSION);
68 		return;
69 	}
70 
71 	count = f2fs_acl_count(size);
72 	if (count <= 0) {
73 		MSG(0, "Invalid ACL value size %d\n", size);
74 		return;
75 	}
76 
77 	for (i = 0; i < count; i++) {
78 		if ((char *)entry > end) {
79 			MSG(0, "Invalid ACL entries count %d\n", count);
80 			return;
81 		}
82 
83 		switch (le16_to_cpu(entry->e_tag)) {
84 		case ACL_USER_OBJ:
85 		case ACL_GROUP_OBJ:
86 		case ACL_MASK:
87 		case ACL_OTHER:
88 			MSG(0, "tag:0x%x perm:0x%x\n",
89 					le16_to_cpu(entry->e_tag),
90 					le16_to_cpu(entry->e_perm));
91 			entry = (struct f2fs_acl_entry *)((char *)entry +
92 					sizeof(struct f2fs_acl_entry_short));
93 			break;
94 		case ACL_USER:
95 			MSG(0, "tag:0x%x perm:0x%x uid:%u\n",
96 					le16_to_cpu(entry->e_tag),
97 					le16_to_cpu(entry->e_perm),
98 					le32_to_cpu(entry->e_id));
99 			entry = (struct f2fs_acl_entry *)((char *)entry +
100 					sizeof(struct f2fs_acl_entry));
101 			break;
102 		case ACL_GROUP:
103 			MSG(0, "tag:0x%x perm:0x%x gid:%u\n",
104 					le16_to_cpu(entry->e_tag),
105 					le16_to_cpu(entry->e_perm),
106 					le32_to_cpu(entry->e_id));
107 			entry = (struct f2fs_acl_entry *)((char *)entry +
108 					sizeof(struct f2fs_acl_entry));
109 			break;
110 		default:
111 			MSG(0, "Unknown ACL tag 0x%x\n",
112 					le16_to_cpu(entry->e_tag));
113 			return;
114 		}
115 	}
116 }
117 #else
118 #define print_acl(value, size) do {		\
119 	int i;					\
120 	for (i = 0; i < size; i++)		\
121 		MSG(0, "%02X", value[i]);	\
122 	MSG(0, "\n");				\
123 } while (0)
124 #endif
125 
print_xattr_entry(struct f2fs_xattr_entry * ent)126 void print_xattr_entry(struct f2fs_xattr_entry *ent)
127 {
128 	char *value = (char *)(ent->e_name + le16_to_cpu(ent->e_name_len));
129 	struct fscrypt_context *ctx;
130 	int i;
131 
132 	MSG(0, "\nxattr: e_name_index:%d e_name:", ent->e_name_index);
133 	for (i = 0; i < le16_to_cpu(ent->e_name_len); i++)
134 		MSG(0, "%c", ent->e_name[i]);
135 	MSG(0, " e_name_len:%d e_value_size:%d e_value:\n",
136 			ent->e_name_len, le16_to_cpu(ent->e_value_size));
137 
138 	switch (ent->e_name_index) {
139 	case F2FS_XATTR_INDEX_POSIX_ACL_ACCESS:
140 	case F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT:
141 		print_acl(value, le16_to_cpu(ent->e_value_size));
142 		break;
143 	case F2FS_XATTR_INDEX_USER:
144 	case F2FS_XATTR_INDEX_SECURITY:
145 	case F2FS_XATTR_INDEX_TRUSTED:
146 	case F2FS_XATTR_INDEX_LUSTRE:
147 		for (i = 0; i < le16_to_cpu(ent->e_value_size); i++)
148 			MSG(0, "%02X", value[i]);
149 		MSG(0, "\n");
150 		break;
151 	case F2FS_XATTR_INDEX_ENCRYPTION:
152 		ctx = (struct fscrypt_context *)value;
153 		MSG(0, "format: %d\n", ctx->format);
154 		MSG(0, "contents_encryption_mode: 0x%x\n", ctx->contents_encryption_mode);
155 		MSG(0, "filenames_encryption_mode: 0x%x\n", ctx->filenames_encryption_mode);
156 		MSG(0, "flags: 0x%x\n", ctx->flags);
157 		MSG(0, "master_key_descriptor: ");
158 		for (i = 0; i < FS_KEY_DESCRIPTOR_SIZE; i++)
159 			MSG(0, "%02X", ctx->master_key_descriptor[i]);
160 		MSG(0, "\nnonce: ");
161 		for (i = 0; i < FS_KEY_DERIVATION_NONCE_SIZE; i++)
162 			MSG(0, "%02X", ctx->nonce[i]);
163 		MSG(0, "\n");
164 		break;
165 	default:
166 		break;
167 	}
168 }
169 
print_inode_info(struct f2fs_sb_info * sbi,struct f2fs_node * node,int name)170 void print_inode_info(struct f2fs_sb_info *sbi,
171 			struct f2fs_node *node, int name)
172 {
173 	struct f2fs_inode *inode = &node->i;
174 	void *xattr_addr;
175 	struct f2fs_xattr_entry *ent;
176 	unsigned char en[F2FS_NAME_LEN + 1];
177 	unsigned int i = 0;
178 	u32 namelen = le32_to_cpu(inode->i_namelen);
179 	int enc_name = file_enc_name(inode);
180 	int ofs = __get_extra_isize(inode);
181 
182 	namelen = convert_encrypted_name(inode->i_name, namelen, en, enc_name);
183 	en[namelen] = '\0';
184 	if (name && namelen) {
185 		inode->i_name[namelen] = '\0';
186 		MSG(0, " - File name         : %s%s\n", en,
187 				enc_name ? " <encrypted>" : "");
188 		setlocale(LC_ALL, "");
189 		MSG(0, " - File size         : %'llu (bytes)\n",
190 				le64_to_cpu(inode->i_size));
191 		return;
192 	}
193 
194 	DISP_u32(inode, i_mode);
195 	DISP_u32(inode, i_advise);
196 	DISP_u32(inode, i_uid);
197 	DISP_u32(inode, i_gid);
198 	DISP_u32(inode, i_links);
199 	DISP_u64(inode, i_size);
200 	DISP_u64(inode, i_blocks);
201 
202 	DISP_u64(inode, i_atime);
203 	DISP_u32(inode, i_atime_nsec);
204 	DISP_u64(inode, i_ctime);
205 	DISP_u32(inode, i_ctime_nsec);
206 	DISP_u64(inode, i_mtime);
207 	DISP_u32(inode, i_mtime_nsec);
208 
209 	DISP_u32(inode, i_generation);
210 	DISP_u32(inode, i_current_depth);
211 	DISP_u32(inode, i_xattr_nid);
212 	DISP_u32(inode, i_flags);
213 	DISP_u32(inode, i_inline);
214 	DISP_u32(inode, i_pino);
215 	DISP_u32(inode, i_dir_level);
216 
217 	if (namelen) {
218 		DISP_u32(inode, i_namelen);
219 		printf("%-30s\t\t[%s]\n", "i_name", en);
220 	}
221 
222 	printf("i_ext: fofs:%x blkaddr:%x len:%x\n",
223 			le32_to_cpu(inode->i_ext.fofs),
224 			le32_to_cpu(inode->i_ext.blk_addr),
225 			le32_to_cpu(inode->i_ext.len));
226 
227 	if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
228 		DISP_u16(inode, i_extra_isize);
229 		if (c.feature & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR))
230 			DISP_u16(inode, i_inline_xattr_size);
231 		if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
232 			DISP_u32(inode, i_projid);
233 		if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
234 			DISP_u32(inode, i_inode_checksum);
235 		if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
236 			DISP_u64(inode, i_crtime);
237 			DISP_u32(inode, i_crtime_nsec);
238 		}
239 	}
240 
241 	DISP_u32(inode, i_addr[ofs]);		/* Pointers to data blocks */
242 	DISP_u32(inode, i_addr[ofs + 1]);	/* Pointers to data blocks */
243 	DISP_u32(inode, i_addr[ofs + 2]);	/* Pointers to data blocks */
244 	DISP_u32(inode, i_addr[ofs + 3]);	/* Pointers to data blocks */
245 
246 	for (i = ofs + 3; i < ADDRS_PER_INODE(inode); i++) {
247 		if (inode->i_addr[i] == 0x0)
248 			break;
249 		printf("i_addr[0x%x] points data block\t\t[0x%4x]\n",
250 				i, le32_to_cpu(inode->i_addr[i]));
251 	}
252 
253 	DISP_u32(inode, i_nid[0]);	/* direct */
254 	DISP_u32(inode, i_nid[1]);	/* direct */
255 	DISP_u32(inode, i_nid[2]);	/* indirect */
256 	DISP_u32(inode, i_nid[3]);	/* indirect */
257 	DISP_u32(inode, i_nid[4]);	/* double indirect */
258 
259 	xattr_addr = read_all_xattrs(sbi, node);
260 	list_for_each_xattr(ent, xattr_addr) {
261 		print_xattr_entry(ent);
262 	}
263 	free(xattr_addr);
264 
265 	printf("\n");
266 }
267 
print_node_info(struct f2fs_sb_info * sbi,struct f2fs_node * node_block,int verbose)268 void print_node_info(struct f2fs_sb_info *sbi,
269 			struct f2fs_node *node_block, int verbose)
270 {
271 	nid_t ino = le32_to_cpu(node_block->footer.ino);
272 	nid_t nid = le32_to_cpu(node_block->footer.nid);
273 	/* Is this inode? */
274 	if (ino == nid) {
275 		DBG(verbose, "Node ID [0x%x:%u] is inode\n", nid, nid);
276 		print_inode_info(sbi, node_block, verbose);
277 	} else {
278 		int i;
279 		u32 *dump_blk = (u32 *)node_block;
280 		DBG(verbose,
281 			"Node ID [0x%x:%u] is direct node or indirect node.\n",
282 								nid, nid);
283 		for (i = 0; i <= 10; i++)
284 			MSG(verbose, "[%d]\t\t\t[0x%8x : %d]\n",
285 						i, dump_blk[i], dump_blk[i]);
286 	}
287 }
288 
DISP_label(u_int16_t * name)289 static void DISP_label(u_int16_t *name)
290 {
291 	char buffer[MAX_VOLUME_NAME];
292 
293 	utf16_to_utf8(buffer, name, MAX_VOLUME_NAME, MAX_VOLUME_NAME);
294 	printf("%-30s" "\t\t[%s]\n", "volum_name", buffer);
295 }
296 
print_raw_sb_info(struct f2fs_super_block * sb)297 void print_raw_sb_info(struct f2fs_super_block *sb)
298 {
299 	if (!c.dbg_lv)
300 		return;
301 
302 	printf("\n");
303 	printf("+--------------------------------------------------------+\n");
304 	printf("| Super block                                            |\n");
305 	printf("+--------------------------------------------------------+\n");
306 
307 	DISP_u32(sb, magic);
308 	DISP_u32(sb, major_ver);
309 
310 	DISP_label(sb->volume_name);
311 
312 	DISP_u32(sb, minor_ver);
313 	DISP_u32(sb, log_sectorsize);
314 	DISP_u32(sb, log_sectors_per_block);
315 
316 	DISP_u32(sb, log_blocksize);
317 	DISP_u32(sb, log_blocks_per_seg);
318 	DISP_u32(sb, segs_per_sec);
319 	DISP_u32(sb, secs_per_zone);
320 	DISP_u32(sb, checksum_offset);
321 	DISP_u64(sb, block_count);
322 
323 	DISP_u32(sb, section_count);
324 	DISP_u32(sb, segment_count);
325 	DISP_u32(sb, segment_count_ckpt);
326 	DISP_u32(sb, segment_count_sit);
327 	DISP_u32(sb, segment_count_nat);
328 
329 	DISP_u32(sb, segment_count_ssa);
330 	DISP_u32(sb, segment_count_main);
331 	DISP_u32(sb, segment0_blkaddr);
332 
333 	DISP_u32(sb, cp_blkaddr);
334 	DISP_u32(sb, sit_blkaddr);
335 	DISP_u32(sb, nat_blkaddr);
336 	DISP_u32(sb, ssa_blkaddr);
337 	DISP_u32(sb, main_blkaddr);
338 
339 	DISP_u32(sb, root_ino);
340 	DISP_u32(sb, node_ino);
341 	DISP_u32(sb, meta_ino);
342 	DISP_u32(sb, cp_payload);
343 	DISP_u32(sb, crc);
344 	DISP("%-.256s", sb, version);
345 	printf("\n");
346 }
347 
print_ckpt_info(struct f2fs_sb_info * sbi)348 void print_ckpt_info(struct f2fs_sb_info *sbi)
349 {
350 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
351 
352 	if (!c.dbg_lv)
353 		return;
354 
355 	printf("\n");
356 	printf("+--------------------------------------------------------+\n");
357 	printf("| Checkpoint                                             |\n");
358 	printf("+--------------------------------------------------------+\n");
359 
360 	DISP_u64(cp, checkpoint_ver);
361 	DISP_u64(cp, user_block_count);
362 	DISP_u64(cp, valid_block_count);
363 	DISP_u32(cp, rsvd_segment_count);
364 	DISP_u32(cp, overprov_segment_count);
365 	DISP_u32(cp, free_segment_count);
366 
367 	DISP_u32(cp, alloc_type[CURSEG_HOT_NODE]);
368 	DISP_u32(cp, alloc_type[CURSEG_WARM_NODE]);
369 	DISP_u32(cp, alloc_type[CURSEG_COLD_NODE]);
370 	DISP_u32(cp, cur_node_segno[0]);
371 	DISP_u32(cp, cur_node_segno[1]);
372 	DISP_u32(cp, cur_node_segno[2]);
373 
374 	DISP_u32(cp, cur_node_blkoff[0]);
375 	DISP_u32(cp, cur_node_blkoff[1]);
376 	DISP_u32(cp, cur_node_blkoff[2]);
377 
378 
379 	DISP_u32(cp, alloc_type[CURSEG_HOT_DATA]);
380 	DISP_u32(cp, alloc_type[CURSEG_WARM_DATA]);
381 	DISP_u32(cp, alloc_type[CURSEG_COLD_DATA]);
382 	DISP_u32(cp, cur_data_segno[0]);
383 	DISP_u32(cp, cur_data_segno[1]);
384 	DISP_u32(cp, cur_data_segno[2]);
385 
386 	DISP_u32(cp, cur_data_blkoff[0]);
387 	DISP_u32(cp, cur_data_blkoff[1]);
388 	DISP_u32(cp, cur_data_blkoff[2]);
389 
390 	DISP_u32(cp, ckpt_flags);
391 	DISP_u32(cp, cp_pack_total_block_count);
392 	DISP_u32(cp, cp_pack_start_sum);
393 	DISP_u32(cp, valid_node_count);
394 	DISP_u32(cp, valid_inode_count);
395 	DISP_u32(cp, next_free_nid);
396 	DISP_u32(cp, sit_ver_bitmap_bytesize);
397 	DISP_u32(cp, nat_ver_bitmap_bytesize);
398 	DISP_u32(cp, checksum_offset);
399 	DISP_u64(cp, elapsed_time);
400 
401 	DISP_u32(cp, sit_nat_version_bitmap[0]);
402 	printf("\n\n");
403 }
404 
print_cp_state(u32 flag)405 void print_cp_state(u32 flag)
406 {
407 	MSG(0, "Info: checkpoint state = %x : ", flag);
408 	if (flag & CP_QUOTA_NEED_FSCK_FLAG)
409 		MSG(0, "%s", " quota_need_fsck");
410 	if (flag & CP_LARGE_NAT_BITMAP_FLAG)
411 		MSG(0, "%s", " large_nat_bitmap");
412 	if (flag & CP_NOCRC_RECOVERY_FLAG)
413 		MSG(0, "%s", " allow_nocrc");
414 	if (flag & CP_TRIMMED_FLAG)
415 		MSG(0, "%s", " trimmed");
416 	if (flag & CP_NAT_BITS_FLAG)
417 		MSG(0, "%s", " nat_bits");
418 	if (flag & CP_CRC_RECOVERY_FLAG)
419 		MSG(0, "%s", " crc");
420 	if (flag & CP_FASTBOOT_FLAG)
421 		MSG(0, "%s", " fastboot");
422 	if (flag & CP_FSCK_FLAG)
423 		MSG(0, "%s", " fsck");
424 	if (flag & CP_ERROR_FLAG)
425 		MSG(0, "%s", " error");
426 	if (flag & CP_COMPACT_SUM_FLAG)
427 		MSG(0, "%s", " compacted_summary");
428 	if (flag & CP_ORPHAN_PRESENT_FLAG)
429 		MSG(0, "%s", " orphan_inodes");
430 	if (flag & CP_DISABLED_FLAG)
431 		MSG(0, "%s", " disabled");
432 	if (flag & CP_UMOUNT_FLAG)
433 		MSG(0, "%s", " unmount");
434 	else
435 		MSG(0, "%s", " sudden-power-off");
436 	MSG(0, "\n");
437 }
438 
print_sb_state(struct f2fs_super_block * sb)439 void print_sb_state(struct f2fs_super_block *sb)
440 {
441 	__le32 f = sb->feature;
442 	int i;
443 
444 	MSG(0, "Info: superblock features = %x : ", f);
445 	if (f & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) {
446 		MSG(0, "%s", " encrypt");
447 	}
448 	if (f & cpu_to_le32(F2FS_FEATURE_VERITY)) {
449 		MSG(0, "%s", " verity");
450 	}
451 	if (f & cpu_to_le32(F2FS_FEATURE_BLKZONED)) {
452 		MSG(0, "%s", " blkzoned");
453 	}
454 	if (f & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
455 		MSG(0, "%s", " extra_attr");
456 	}
457 	if (f & cpu_to_le32(F2FS_FEATURE_PRJQUOTA)) {
458 		MSG(0, "%s", " project_quota");
459 	}
460 	if (f & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) {
461 		MSG(0, "%s", " inode_checksum");
462 	}
463 	if (f & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR)) {
464 		MSG(0, "%s", " flexible_inline_xattr");
465 	}
466 	if (f & cpu_to_le32(F2FS_FEATURE_QUOTA_INO)) {
467 		MSG(0, "%s", " quota_ino");
468 	}
469 	if (f & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
470 		MSG(0, "%s", " inode_crtime");
471 	}
472 	if (f & cpu_to_le32(F2FS_FEATURE_LOST_FOUND)) {
473 		MSG(0, "%s", " lost_found");
474 	}
475 	if (f & cpu_to_le32(F2FS_FEATURE_SB_CHKSUM)) {
476 		MSG(0, "%s", " sb_checksum");
477 	}
478 	MSG(0, "\n");
479 	MSG(0, "Info: superblock encrypt level = %d, salt = ",
480 					sb->encryption_level);
481 	for (i = 0; i < 16; i++)
482 		MSG(0, "%02x", sb->encrypt_pw_salt[i]);
483 	MSG(0, "\n");
484 }
485 
update_superblock(struct f2fs_super_block * sb,int sb_mask)486 void update_superblock(struct f2fs_super_block *sb, int sb_mask)
487 {
488 	int addr, ret;
489 	u_int8_t *buf;
490 	u32 old_crc, new_crc;
491 
492 	buf = calloc(BLOCK_SZ, 1);
493 	ASSERT(buf);
494 
495 	if (get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) {
496 		old_crc = get_sb(crc);
497 		new_crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, sb,
498 						SB_CHKSUM_OFFSET);
499 		set_sb(crc, new_crc);
500 		MSG(1, "Info: SB CRC is updated (0x%x -> 0x%x)\n",
501 							old_crc, new_crc);
502 	}
503 
504 	memcpy(buf + F2FS_SUPER_OFFSET, sb, sizeof(*sb));
505 	for (addr = SB0_ADDR; addr < SB_MAX_ADDR; addr++) {
506 		if (SB_MASK(addr) & sb_mask) {
507 			ret = dev_write_block(buf, addr);
508 			ASSERT(ret >= 0);
509 		}
510 	}
511 
512 	free(buf);
513 	DBG(0, "Info: Done to update superblock\n");
514 }
515 
sanity_check_area_boundary(struct f2fs_super_block * sb,enum SB_ADDR sb_addr)516 static inline int sanity_check_area_boundary(struct f2fs_super_block *sb,
517 							enum SB_ADDR sb_addr)
518 {
519 	u32 segment0_blkaddr = get_sb(segment0_blkaddr);
520 	u32 cp_blkaddr = get_sb(cp_blkaddr);
521 	u32 sit_blkaddr = get_sb(sit_blkaddr);
522 	u32 nat_blkaddr = get_sb(nat_blkaddr);
523 	u32 ssa_blkaddr = get_sb(ssa_blkaddr);
524 	u32 main_blkaddr = get_sb(main_blkaddr);
525 	u32 segment_count_ckpt = get_sb(segment_count_ckpt);
526 	u32 segment_count_sit = get_sb(segment_count_sit);
527 	u32 segment_count_nat = get_sb(segment_count_nat);
528 	u32 segment_count_ssa = get_sb(segment_count_ssa);
529 	u32 segment_count_main = get_sb(segment_count_main);
530 	u32 segment_count = get_sb(segment_count);
531 	u32 log_blocks_per_seg = get_sb(log_blocks_per_seg);
532 	u64 main_end_blkaddr = main_blkaddr +
533 				(segment_count_main << log_blocks_per_seg);
534 	u64 seg_end_blkaddr = segment0_blkaddr +
535 				(segment_count << log_blocks_per_seg);
536 
537 	if (segment0_blkaddr != cp_blkaddr) {
538 		MSG(0, "\tMismatch segment0(%u) cp_blkaddr(%u)\n",
539 				segment0_blkaddr, cp_blkaddr);
540 		return -1;
541 	}
542 
543 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
544 							sit_blkaddr) {
545 		MSG(0, "\tWrong CP boundary, start(%u) end(%u) blocks(%u)\n",
546 			cp_blkaddr, sit_blkaddr,
547 			segment_count_ckpt << log_blocks_per_seg);
548 		return -1;
549 	}
550 
551 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
552 							nat_blkaddr) {
553 		MSG(0, "\tWrong SIT boundary, start(%u) end(%u) blocks(%u)\n",
554 			sit_blkaddr, nat_blkaddr,
555 			segment_count_sit << log_blocks_per_seg);
556 		return -1;
557 	}
558 
559 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
560 							ssa_blkaddr) {
561 		MSG(0, "\tWrong NAT boundary, start(%u) end(%u) blocks(%u)\n",
562 			nat_blkaddr, ssa_blkaddr,
563 			segment_count_nat << log_blocks_per_seg);
564 		return -1;
565 	}
566 
567 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
568 							main_blkaddr) {
569 		MSG(0, "\tWrong SSA boundary, start(%u) end(%u) blocks(%u)\n",
570 			ssa_blkaddr, main_blkaddr,
571 			segment_count_ssa << log_blocks_per_seg);
572 		return -1;
573 	}
574 
575 	if (main_end_blkaddr > seg_end_blkaddr) {
576 		MSG(0, "\tWrong MAIN_AREA, start(%u) end(%u) block(%u)\n",
577 			main_blkaddr,
578 			segment0_blkaddr +
579 				(segment_count << log_blocks_per_seg),
580 			segment_count_main << log_blocks_per_seg);
581 		return -1;
582 	} else if (main_end_blkaddr < seg_end_blkaddr) {
583 		set_sb(segment_count, (main_end_blkaddr -
584 				segment0_blkaddr) >> log_blocks_per_seg);
585 
586 		update_superblock(sb, SB_MASK(sb_addr));
587 		MSG(0, "Info: Fix alignment: start(%u) end(%u) block(%u)\n",
588 			main_blkaddr,
589 			segment0_blkaddr +
590 				(segment_count << log_blocks_per_seg),
591 			segment_count_main << log_blocks_per_seg);
592 	}
593 	return 0;
594 }
595 
verify_sb_chksum(struct f2fs_super_block * sb)596 static int verify_sb_chksum(struct f2fs_super_block *sb)
597 {
598 	if (SB_CHKSUM_OFFSET != get_sb(checksum_offset)) {
599 		MSG(0, "\tInvalid SB CRC offset: %u\n",
600 					get_sb(checksum_offset));
601 		return -1;
602 	}
603 	if (f2fs_crc_valid(get_sb(crc), sb,
604 			get_sb(checksum_offset))) {
605 		MSG(0, "\tInvalid SB CRC: 0x%x\n", get_sb(crc));
606 		return -1;
607 	}
608 	return 0;
609 }
610 
sanity_check_raw_super(struct f2fs_super_block * sb,enum SB_ADDR sb_addr)611 int sanity_check_raw_super(struct f2fs_super_block *sb, enum SB_ADDR sb_addr)
612 {
613 	unsigned int blocksize;
614 
615 	if ((get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) &&
616 					verify_sb_chksum(sb))
617 		return -1;
618 
619 	if (F2FS_SUPER_MAGIC != get_sb(magic))
620 		return -1;
621 
622 	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE)
623 		return -1;
624 
625 	blocksize = 1 << get_sb(log_blocksize);
626 	if (F2FS_BLKSIZE != blocksize)
627 		return -1;
628 
629 	/* check log blocks per segment */
630 	if (get_sb(log_blocks_per_seg) != 9)
631 		return -1;
632 
633 	/* Currently, support 512/1024/2048/4096 bytes sector size */
634 	if (get_sb(log_sectorsize) > F2FS_MAX_LOG_SECTOR_SIZE ||
635 			get_sb(log_sectorsize) < F2FS_MIN_LOG_SECTOR_SIZE)
636 		return -1;
637 
638 	if (get_sb(log_sectors_per_block) + get_sb(log_sectorsize) !=
639 						F2FS_MAX_LOG_SECTOR_SIZE)
640 		return -1;
641 
642 	/* check reserved ino info */
643 	if (get_sb(node_ino) != 1 || get_sb(meta_ino) != 2 ||
644 					get_sb(root_ino) != 3)
645 		return -1;
646 
647 	/* Check zoned block device feature */
648 	if (c.devices[0].zoned_model == F2FS_ZONED_HM &&
649 			!(sb->feature & cpu_to_le32(F2FS_FEATURE_BLKZONED))) {
650 		MSG(0, "\tMissing zoned block device feature\n");
651 		return -1;
652 	}
653 
654 	if (get_sb(segment_count) > F2FS_MAX_SEGMENT)
655 		return -1;
656 
657 	if (sanity_check_area_boundary(sb, sb_addr))
658 		return -1;
659 	return 0;
660 }
661 
validate_super_block(struct f2fs_sb_info * sbi,enum SB_ADDR sb_addr)662 int validate_super_block(struct f2fs_sb_info *sbi, enum SB_ADDR sb_addr)
663 {
664 	char buf[F2FS_BLKSIZE];
665 
666 	sbi->raw_super = malloc(sizeof(struct f2fs_super_block));
667 	if (!sbi->raw_super)
668 		return -ENOMEM;
669 
670 	if (dev_read_block(buf, sb_addr))
671 		return -1;
672 
673 	memcpy(sbi->raw_super, buf + F2FS_SUPER_OFFSET,
674 					sizeof(struct f2fs_super_block));
675 
676 	if (!sanity_check_raw_super(sbi->raw_super, sb_addr)) {
677 		/* get kernel version */
678 		if (c.kd >= 0) {
679 			dev_read_version(c.version, 0, VERSION_LEN);
680 			get_kernel_version(c.version);
681 		} else {
682 			get_kernel_uname_version(c.version);
683 		}
684 
685 		/* build sb version */
686 		memcpy(c.sb_version, sbi->raw_super->version, VERSION_LEN);
687 		get_kernel_version(c.sb_version);
688 		memcpy(c.init_version, sbi->raw_super->init_version, VERSION_LEN);
689 		get_kernel_version(c.init_version);
690 
691 		MSG(0, "Info: MKFS version\n  \"%s\"\n", c.init_version);
692 		MSG(0, "Info: FSCK version\n  from \"%s\"\n    to \"%s\"\n",
693 					c.sb_version, c.version);
694 		if (memcmp(c.sb_version, c.version, VERSION_LEN)) {
695 			memcpy(sbi->raw_super->version,
696 						c.version, VERSION_LEN);
697 			update_superblock(sbi->raw_super, SB_MASK(sb_addr));
698 
699 			c.auto_fix = 0;
700 			c.fix_on = 1;
701 		}
702 		print_sb_state(sbi->raw_super);
703 		return 0;
704 	}
705 
706 	free(sbi->raw_super);
707 	sbi->raw_super = NULL;
708 	MSG(0, "\tCan't find a valid F2FS superblock at 0x%x\n", sb_addr);
709 
710 	return -EINVAL;
711 }
712 
init_sb_info(struct f2fs_sb_info * sbi)713 int init_sb_info(struct f2fs_sb_info *sbi)
714 {
715 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
716 	u64 total_sectors;
717 	int i;
718 
719 	sbi->log_sectors_per_block = get_sb(log_sectors_per_block);
720 	sbi->log_blocksize = get_sb(log_blocksize);
721 	sbi->blocksize = 1 << sbi->log_blocksize;
722 	sbi->log_blocks_per_seg = get_sb(log_blocks_per_seg);
723 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
724 	sbi->segs_per_sec = get_sb(segs_per_sec);
725 	sbi->secs_per_zone = get_sb(secs_per_zone);
726 	sbi->total_sections = get_sb(section_count);
727 	sbi->total_node_count = (get_sb(segment_count_nat) / 2) *
728 				sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
729 	sbi->root_ino_num = get_sb(root_ino);
730 	sbi->node_ino_num = get_sb(node_ino);
731 	sbi->meta_ino_num = get_sb(meta_ino);
732 	sbi->cur_victim_sec = NULL_SEGNO;
733 
734 	for (i = 0; i < MAX_DEVICES; i++) {
735 		if (!sb->devs[i].path[0])
736 			break;
737 
738 		if (i) {
739 			c.devices[i].path = strdup((char *)sb->devs[i].path);
740 			if (get_device_info(i))
741 				ASSERT(0);
742 		} else {
743 			ASSERT(!strcmp((char *)sb->devs[i].path,
744 						(char *)c.devices[i].path));
745 		}
746 
747 		c.devices[i].total_segments =
748 			le32_to_cpu(sb->devs[i].total_segments);
749 		if (i)
750 			c.devices[i].start_blkaddr =
751 				c.devices[i - 1].end_blkaddr + 1;
752 		c.devices[i].end_blkaddr = c.devices[i].start_blkaddr +
753 			c.devices[i].total_segments *
754 			c.blks_per_seg - 1;
755 		if (i == 0)
756 			c.devices[i].end_blkaddr += get_sb(segment0_blkaddr);
757 
758 		c.ndevs = i + 1;
759 		MSG(0, "Info: Device[%d] : %s blkaddr = %"PRIx64"--%"PRIx64"\n",
760 				i, c.devices[i].path,
761 				c.devices[i].start_blkaddr,
762 				c.devices[i].end_blkaddr);
763 	}
764 
765 	total_sectors = get_sb(block_count) << sbi->log_sectors_per_block;
766 	MSG(0, "Info: total FS sectors = %"PRIu64" (%"PRIu64" MB)\n",
767 				total_sectors, total_sectors >>
768 						(20 - get_sb(log_sectorsize)));
769 	return 0;
770 }
771 
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)772 void *validate_checkpoint(struct f2fs_sb_info *sbi, block_t cp_addr,
773 				unsigned long long *version)
774 {
775 	void *cp_page_1, *cp_page_2;
776 	struct f2fs_checkpoint *cp;
777 	unsigned long blk_size = sbi->blocksize;
778 	unsigned long long cur_version = 0, pre_version = 0;
779 	unsigned int crc = 0;
780 	size_t crc_offset;
781 
782 	/* Read the 1st cp block in this CP pack */
783 	cp_page_1 = malloc(PAGE_SIZE);
784 	ASSERT(cp_page_1);
785 
786 	if (dev_read_block(cp_page_1, cp_addr) < 0)
787 		goto invalid_cp1;
788 
789 	cp = (struct f2fs_checkpoint *)cp_page_1;
790 	crc_offset = get_cp(checksum_offset);
791 	if (crc_offset > (blk_size - sizeof(__le32)))
792 		goto invalid_cp1;
793 
794 	crc = le32_to_cpu(*(__le32 *)((unsigned char *)cp + crc_offset));
795 	if (f2fs_crc_valid(crc, cp, crc_offset))
796 		goto invalid_cp1;
797 
798 	if (get_cp(cp_pack_total_block_count) > sbi->blocks_per_seg)
799 		goto invalid_cp1;
800 
801 	pre_version = get_cp(checkpoint_ver);
802 
803 	/* Read the 2nd cp block in this CP pack */
804 	cp_page_2 = malloc(PAGE_SIZE);
805 	ASSERT(cp_page_2);
806 
807 	cp_addr += get_cp(cp_pack_total_block_count) - 1;
808 
809 	if (dev_read_block(cp_page_2, cp_addr) < 0)
810 		goto invalid_cp2;
811 
812 	cp = (struct f2fs_checkpoint *)cp_page_2;
813 	crc_offset = get_cp(checksum_offset);
814 	if (crc_offset > (blk_size - sizeof(__le32)))
815 		goto invalid_cp2;
816 
817 	crc = le32_to_cpu(*(__le32 *)((unsigned char *)cp + crc_offset));
818 	if (f2fs_crc_valid(crc, cp, crc_offset))
819 		goto invalid_cp2;
820 
821 	cur_version = get_cp(checkpoint_ver);
822 
823 	if (cur_version == pre_version) {
824 		*version = cur_version;
825 		free(cp_page_2);
826 		return cp_page_1;
827 	}
828 
829 invalid_cp2:
830 	free(cp_page_2);
831 invalid_cp1:
832 	free(cp_page_1);
833 	return NULL;
834 }
835 
get_valid_checkpoint(struct f2fs_sb_info * sbi)836 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
837 {
838 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
839 	void *cp1, *cp2, *cur_page;
840 	unsigned long blk_size = sbi->blocksize;
841 	unsigned long long cp1_version = 0, cp2_version = 0, version;
842 	unsigned long long cp_start_blk_no;
843 	unsigned int cp_payload, cp_blks;
844 	int ret;
845 
846 	cp_payload = get_sb(cp_payload);
847 	if (cp_payload > F2FS_BLK_ALIGN(MAX_SIT_BITMAP_SIZE))
848 		return -EINVAL;
849 
850 	cp_blks = 1 + cp_payload;
851 	sbi->ckpt = malloc(cp_blks * blk_size);
852 	if (!sbi->ckpt)
853 		return -ENOMEM;
854 	/*
855 	 * Finding out valid cp block involves read both
856 	 * sets( cp pack1 and cp pack 2)
857 	 */
858 	cp_start_blk_no = get_sb(cp_blkaddr);
859 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
860 
861 	/* The second checkpoint pack should start at the next segment */
862 	cp_start_blk_no += 1 << get_sb(log_blocks_per_seg);
863 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
864 
865 	if (cp1 && cp2) {
866 		if (ver_after(cp2_version, cp1_version)) {
867 			cur_page = cp2;
868 			sbi->cur_cp = 2;
869 			version = cp2_version;
870 		} else {
871 			cur_page = cp1;
872 			sbi->cur_cp = 1;
873 			version = cp1_version;
874 		}
875 	} else if (cp1) {
876 		cur_page = cp1;
877 		sbi->cur_cp = 1;
878 		version = cp1_version;
879 	} else if (cp2) {
880 		cur_page = cp2;
881 		sbi->cur_cp = 2;
882 		version = cp2_version;
883 	} else
884 		goto fail_no_cp;
885 
886 	MSG(0, "Info: CKPT version = %llx\n", version);
887 
888 	memcpy(sbi->ckpt, cur_page, blk_size);
889 
890 	if (cp_blks > 1) {
891 		unsigned int i;
892 		unsigned long long cp_blk_no;
893 
894 		cp_blk_no = get_sb(cp_blkaddr);
895 		if (cur_page == cp2)
896 			cp_blk_no += 1 << get_sb(log_blocks_per_seg);
897 
898 		/* copy sit bitmap */
899 		for (i = 1; i < cp_blks; i++) {
900 			unsigned char *ckpt = (unsigned char *)sbi->ckpt;
901 			ret = dev_read_block(cur_page, cp_blk_no + i);
902 			ASSERT(ret >= 0);
903 			memcpy(ckpt + i * blk_size, cur_page, blk_size);
904 		}
905 	}
906 	if (cp1)
907 		free(cp1);
908 	if (cp2)
909 		free(cp2);
910 	return 0;
911 
912 fail_no_cp:
913 	free(sbi->ckpt);
914 	sbi->ckpt = NULL;
915 	return -EINVAL;
916 }
917 
sanity_check_ckpt(struct f2fs_sb_info * sbi)918 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
919 {
920 	unsigned int total, fsmeta;
921 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
922 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
923 	unsigned int ovp_segments, reserved_segments;
924 	unsigned int main_segs, blocks_per_seg;
925 	unsigned int sit_segs, nat_segs;
926 	unsigned int sit_bitmap_size, nat_bitmap_size;
927 	unsigned int log_blocks_per_seg;
928 	unsigned int segment_count_main;
929 	unsigned int cp_pack_start_sum, cp_payload;
930 	block_t user_block_count;
931 	int i;
932 
933 	total = get_sb(segment_count);
934 	fsmeta = get_sb(segment_count_ckpt);
935 	sit_segs = get_sb(segment_count_sit);
936 	fsmeta += sit_segs;
937 	nat_segs = get_sb(segment_count_nat);
938 	fsmeta += nat_segs;
939 	fsmeta += get_cp(rsvd_segment_count);
940 	fsmeta += get_sb(segment_count_ssa);
941 
942 	if (fsmeta >= total)
943 		return 1;
944 
945 	ovp_segments = get_cp(overprov_segment_count);
946 	reserved_segments = get_cp(rsvd_segment_count);
947 
948 	if (fsmeta < F2FS_MIN_SEGMENT || ovp_segments == 0 ||
949 					reserved_segments == 0) {
950 		MSG(0, "\tWrong layout: check mkfs.f2fs version\n");
951 		return 1;
952 	}
953 
954 	user_block_count = get_cp(user_block_count);
955 	segment_count_main = get_sb(segment_count_main);
956 	log_blocks_per_seg = get_sb(log_blocks_per_seg);
957 	if (!user_block_count || user_block_count >=
958 			segment_count_main << log_blocks_per_seg) {
959 		MSG(0, "\tWrong user_block_count(%u)\n", user_block_count);
960 		return 1;
961 	}
962 
963 	main_segs = get_sb(segment_count_main);
964 	blocks_per_seg = sbi->blocks_per_seg;
965 
966 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
967 		if (get_cp(cur_node_segno[i]) >= main_segs ||
968 			get_cp(cur_node_blkoff[i]) >= blocks_per_seg)
969 			return 1;
970 	}
971 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
972 		if (get_cp(cur_data_segno[i]) >= main_segs ||
973 			get_cp(cur_data_blkoff[i]) >= blocks_per_seg)
974 			return 1;
975 	}
976 
977 	sit_bitmap_size = get_cp(sit_ver_bitmap_bytesize);
978 	nat_bitmap_size = get_cp(nat_ver_bitmap_bytesize);
979 
980 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
981 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
982 		MSG(0, "\tWrong bitmap size: sit(%u), nat(%u)\n",
983 				sit_bitmap_size, nat_bitmap_size);
984 		return 1;
985 	}
986 
987 	cp_pack_start_sum = __start_sum_addr(sbi);
988 	cp_payload = __cp_payload(sbi);
989 	if (cp_pack_start_sum < cp_payload + 1 ||
990 		cp_pack_start_sum > blocks_per_seg - 1 -
991 			NR_CURSEG_TYPE) {
992 		MSG(0, "\tWrong cp_pack_start_sum(%u) or cp_payload(%u)\n",
993 			cp_pack_start_sum, cp_payload);
994 		if ((get_sb(feature) & F2FS_FEATURE_SB_CHKSUM))
995 			return 1;
996 		set_sb(cp_payload, cp_pack_start_sum - 1);
997 		update_superblock(sb, SB_MASK_ALL);
998 	}
999 
1000 	return 0;
1001 }
1002 
current_nat_addr(struct f2fs_sb_info * sbi,nid_t start,int * pack)1003 pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start, int *pack)
1004 {
1005 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1006 	pgoff_t block_off;
1007 	pgoff_t block_addr;
1008 	int seg_off;
1009 
1010 	block_off = NAT_BLOCK_OFFSET(start);
1011 	seg_off = block_off >> sbi->log_blocks_per_seg;
1012 
1013 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
1014 			(seg_off << sbi->log_blocks_per_seg << 1) +
1015 			(block_off & ((1 << sbi->log_blocks_per_seg) -1)));
1016 	if (pack)
1017 		*pack = 1;
1018 
1019 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) {
1020 		block_addr += sbi->blocks_per_seg;
1021 		if (pack)
1022 			*pack = 2;
1023 	}
1024 
1025 	return block_addr;
1026 }
1027 
f2fs_init_nid_bitmap(struct f2fs_sb_info * sbi)1028 static int f2fs_init_nid_bitmap(struct f2fs_sb_info *sbi)
1029 {
1030 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1031 	int nid_bitmap_size = (nm_i->max_nid + BITS_PER_BYTE - 1) / BITS_PER_BYTE;
1032 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1033 	struct f2fs_summary_block *sum = curseg->sum_blk;
1034 	struct f2fs_journal *journal = &sum->journal;
1035 	struct f2fs_nat_block *nat_block;
1036 	block_t start_blk;
1037 	nid_t nid;
1038 	int i;
1039 
1040 	if (!(c.func == SLOAD || c.func == FSCK))
1041 		return 0;
1042 
1043 	nm_i->nid_bitmap = (char *)calloc(nid_bitmap_size, 1);
1044 	if (!nm_i->nid_bitmap)
1045 		return -ENOMEM;
1046 
1047 	/* arbitrarily set 0 bit */
1048 	f2fs_set_bit(0, nm_i->nid_bitmap);
1049 
1050 	nat_block = malloc(F2FS_BLKSIZE);
1051 	if (!nat_block) {
1052 		free(nm_i->nid_bitmap);
1053 		return -ENOMEM;
1054 	}
1055 
1056 	for (nid = 0; nid < nm_i->max_nid; nid++) {
1057 		if (!(nid % NAT_ENTRY_PER_BLOCK)) {
1058 			int ret;
1059 
1060 			start_blk = current_nat_addr(sbi, nid, NULL);
1061 			ret = dev_read_block(nat_block, start_blk);
1062 			ASSERT(ret >= 0);
1063 		}
1064 
1065 		if (nat_block->entries[nid % NAT_ENTRY_PER_BLOCK].block_addr)
1066 			f2fs_set_bit(nid, nm_i->nid_bitmap);
1067 	}
1068 
1069 	if (nats_in_cursum(journal) > NAT_JOURNAL_ENTRIES) {
1070 		MSG(0, "\tError: f2fs_init_nid_bitmap truncate n_nats(%u) to "
1071 			"NAT_JOURNAL_ENTRIES(%lu)\n",
1072 			nats_in_cursum(journal), NAT_JOURNAL_ENTRIES);
1073 		journal->n_nats = cpu_to_le16(NAT_JOURNAL_ENTRIES);
1074 	}
1075 
1076 	for (i = 0; i < nats_in_cursum(journal); i++) {
1077 		block_t addr;
1078 
1079 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1080 		if (!IS_VALID_BLK_ADDR(sbi, addr)) {
1081 			MSG(0, "\tError: f2fs_init_nid_bitmap: addr(%u) is invalid!!!\n", addr);
1082 			journal->n_nats = cpu_to_le16(i);
1083 			continue;
1084 		}
1085 
1086 		nid = le32_to_cpu(nid_in_journal(journal, i));
1087 		if (!IS_VALID_NID(sbi, nid)) {
1088 			MSG(0, "\tError: f2fs_init_nid_bitmap: nid(%u) is invalid!!!\n", nid);
1089 			journal->n_nats = cpu_to_le16(i);
1090 			continue;
1091 		}
1092 		if (addr != NULL_ADDR)
1093 			f2fs_set_bit(nid, nm_i->nid_bitmap);
1094 	}
1095 	free(nat_block);
1096 	return 0;
1097 }
1098 
update_nat_bits_flags(struct f2fs_super_block * sb,struct f2fs_checkpoint * cp,u32 flags)1099 u32 update_nat_bits_flags(struct f2fs_super_block *sb,
1100 				struct f2fs_checkpoint *cp, u32 flags)
1101 {
1102 	u_int32_t nat_bits_bytes, nat_bits_blocks;
1103 
1104 	nat_bits_bytes = get_sb(segment_count_nat) << 5;
1105 	nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
1106 						F2FS_BLKSIZE - 1);
1107 	if (get_cp(cp_pack_total_block_count) <=
1108 			(1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks)
1109 		flags |= CP_NAT_BITS_FLAG;
1110 	else
1111 		flags &= (~CP_NAT_BITS_FLAG);
1112 
1113 	return flags;
1114 }
1115 
1116 /* should call flush_journal_entries() bfore this */
write_nat_bits(struct f2fs_sb_info * sbi,struct f2fs_super_block * sb,struct f2fs_checkpoint * cp,int set)1117 void write_nat_bits(struct f2fs_sb_info *sbi,
1118 	struct f2fs_super_block *sb, struct f2fs_checkpoint *cp, int set)
1119 {
1120 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1121 	u_int32_t nat_blocks = get_sb(segment_count_nat) <<
1122 				(get_sb(log_blocks_per_seg) - 1);
1123 	u_int32_t nat_bits_bytes = nat_blocks >> 3;
1124 	u_int32_t nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) +
1125 					8 + F2FS_BLKSIZE - 1);
1126 	unsigned char *nat_bits, *full_nat_bits, *empty_nat_bits;
1127 	struct f2fs_nat_block *nat_block;
1128 	u_int32_t i, j;
1129 	block_t blkaddr;
1130 	int ret;
1131 
1132 	nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
1133 	ASSERT(nat_bits);
1134 
1135 	nat_block = malloc(F2FS_BLKSIZE);
1136 	ASSERT(nat_block);
1137 
1138 	full_nat_bits = nat_bits + 8;
1139 	empty_nat_bits = full_nat_bits + nat_bits_bytes;
1140 
1141 	memset(full_nat_bits, 0, nat_bits_bytes);
1142 	memset(empty_nat_bits, 0, nat_bits_bytes);
1143 
1144 	for (i = 0; i < nat_blocks; i++) {
1145 		int seg_off = i >> get_sb(log_blocks_per_seg);
1146 		int valid = 0;
1147 
1148 		blkaddr = (pgoff_t)(get_sb(nat_blkaddr) +
1149 				(seg_off << get_sb(log_blocks_per_seg) << 1) +
1150 				(i & ((1 << get_sb(log_blocks_per_seg)) - 1)));
1151 
1152 		/*
1153 		 * Should consider new nat_blocks is larger than old
1154 		 * nm_i->nat_blocks, since nm_i->nat_bitmap is based on
1155 		 * old one.
1156 		 */
1157 		if (i < nm_i->nat_blocks && f2fs_test_bit(i, nm_i->nat_bitmap))
1158 			blkaddr += (1 << get_sb(log_blocks_per_seg));
1159 
1160 		ret = dev_read_block(nat_block, blkaddr);
1161 		ASSERT(ret >= 0);
1162 
1163 		for (j = 0; j < NAT_ENTRY_PER_BLOCK; j++) {
1164 			if ((i == 0 && j == 0) ||
1165 				nat_block->entries[j].block_addr != NULL_ADDR)
1166 				valid++;
1167 		}
1168 		if (valid == 0)
1169 			test_and_set_bit_le(i, empty_nat_bits);
1170 		else if (valid == NAT_ENTRY_PER_BLOCK)
1171 			test_and_set_bit_le(i, full_nat_bits);
1172 	}
1173 	*(__le64 *)nat_bits = get_cp_crc(cp);
1174 	free(nat_block);
1175 
1176 	blkaddr = get_sb(segment0_blkaddr) + (set <<
1177 				get_sb(log_blocks_per_seg)) - nat_bits_blocks;
1178 
1179 	DBG(1, "\tWriting NAT bits pages, at offset 0x%08x\n", blkaddr);
1180 
1181 	for (i = 0; i < nat_bits_blocks; i++) {
1182 		if (dev_write_block(nat_bits + i * F2FS_BLKSIZE, blkaddr + i))
1183 			ASSERT_MSG("\tError: write NAT bits to disk!!!\n");
1184 	}
1185 	MSG(0, "Info: Write valid nat_bits in checkpoint\n");
1186 
1187 	free(nat_bits);
1188 }
1189 
check_nat_bits(struct f2fs_sb_info * sbi,struct f2fs_super_block * sb,struct f2fs_checkpoint * cp)1190 static int check_nat_bits(struct f2fs_sb_info *sbi,
1191 	struct f2fs_super_block *sb, struct f2fs_checkpoint *cp)
1192 {
1193 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1194 	u_int32_t nat_blocks = get_sb(segment_count_nat) <<
1195 				(get_sb(log_blocks_per_seg) - 1);
1196 	u_int32_t nat_bits_bytes = nat_blocks >> 3;
1197 	u_int32_t nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) +
1198 					8 + F2FS_BLKSIZE - 1);
1199 	unsigned char *nat_bits, *full_nat_bits, *empty_nat_bits;
1200 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1201 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
1202 	u_int32_t i, j;
1203 	block_t blkaddr;
1204 	int err = 0;
1205 
1206 	nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
1207 	ASSERT(nat_bits);
1208 
1209 	full_nat_bits = nat_bits + 8;
1210 	empty_nat_bits = full_nat_bits + nat_bits_bytes;
1211 
1212 	blkaddr = get_sb(segment0_blkaddr) + (sbi->cur_cp <<
1213 				get_sb(log_blocks_per_seg)) - nat_bits_blocks;
1214 
1215 	for (i = 0; i < nat_bits_blocks; i++) {
1216 		if (dev_read_block(nat_bits + i * F2FS_BLKSIZE, blkaddr + i))
1217 			ASSERT_MSG("\tError: read NAT bits to disk!!!\n");
1218 	}
1219 
1220 	if (*(__le64 *)nat_bits != get_cp_crc(cp) || nats_in_cursum(journal)) {
1221 		/*
1222 		 * if there is a journal, f2fs was not shutdown cleanly. Let's
1223 		 * flush them with nat_bits.
1224 		 */
1225 		if (c.fix_on)
1226 			err = -1;
1227 		/* Otherwise, kernel will disable nat_bits */
1228 		goto out;
1229 	}
1230 
1231 	for (i = 0; i < nat_blocks; i++) {
1232 		u_int32_t start_nid = i * NAT_ENTRY_PER_BLOCK;
1233 		u_int32_t valid = 0;
1234 		int empty = test_bit_le(i, empty_nat_bits);
1235 		int full = test_bit_le(i, full_nat_bits);
1236 
1237 		for (j = 0; j < NAT_ENTRY_PER_BLOCK; j++) {
1238 			if (f2fs_test_bit(start_nid + j, nm_i->nid_bitmap))
1239 				valid++;
1240 		}
1241 		if (valid == 0) {
1242 			if (!empty || full) {
1243 				err = -1;
1244 				goto out;
1245 			}
1246 		} else if (valid == NAT_ENTRY_PER_BLOCK) {
1247 			if (empty || !full) {
1248 				err = -1;
1249 				goto out;
1250 			}
1251 		} else {
1252 			if (empty || full) {
1253 				err = -1;
1254 				goto out;
1255 			}
1256 		}
1257 	}
1258 out:
1259 	free(nat_bits);
1260 	if (!err) {
1261 		MSG(0, "Info: Checked valid nat_bits in checkpoint\n");
1262 	} else {
1263 		c.bug_nat_bits = 1;
1264 		MSG(0, "Info: Corrupted valid nat_bits in checkpoint\n");
1265 	}
1266 	return err;
1267 }
1268 
init_node_manager(struct f2fs_sb_info * sbi)1269 int init_node_manager(struct f2fs_sb_info *sbi)
1270 {
1271 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
1272 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
1273 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1274 	unsigned char *version_bitmap;
1275 	unsigned int nat_segs;
1276 
1277 	nm_i->nat_blkaddr = get_sb(nat_blkaddr);
1278 
1279 	/* segment_count_nat includes pair segment so divide to 2. */
1280 	nat_segs = get_sb(segment_count_nat) >> 1;
1281 	nm_i->nat_blocks = nat_segs << get_sb(log_blocks_per_seg);
1282 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
1283 	nm_i->fcnt = 0;
1284 	nm_i->nat_cnt = 0;
1285 	nm_i->init_scan_nid = get_cp(next_free_nid);
1286 	nm_i->next_scan_nid = get_cp(next_free_nid);
1287 
1288 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1289 
1290 	nm_i->nat_bitmap = malloc(nm_i->bitmap_size);
1291 	if (!nm_i->nat_bitmap)
1292 		return -ENOMEM;
1293 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1294 	if (!version_bitmap)
1295 		return -EFAULT;
1296 
1297 	/* copy version bitmap */
1298 	memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
1299 	return f2fs_init_nid_bitmap(sbi);
1300 }
1301 
build_node_manager(struct f2fs_sb_info * sbi)1302 int build_node_manager(struct f2fs_sb_info *sbi)
1303 {
1304 	int err;
1305 	sbi->nm_info = malloc(sizeof(struct f2fs_nm_info));
1306 	if (!sbi->nm_info)
1307 		return -ENOMEM;
1308 
1309 	err = init_node_manager(sbi);
1310 	if (err)
1311 		return err;
1312 
1313 	return 0;
1314 }
1315 
build_sit_info(struct f2fs_sb_info * sbi)1316 int build_sit_info(struct f2fs_sb_info *sbi)
1317 {
1318 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
1319 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
1320 	struct sit_info *sit_i;
1321 	unsigned int sit_segs, start;
1322 	char *src_bitmap, *dst_bitmap;
1323 	unsigned int bitmap_size;
1324 
1325 	sit_i = malloc(sizeof(struct sit_info));
1326 	if (!sit_i) {
1327 		MSG(1, "\tError: Malloc failed for build_sit_info!\n");
1328 		return -ENOMEM;
1329 	}
1330 
1331 	SM_I(sbi)->sit_info = sit_i;
1332 
1333 	sit_i->sentries = calloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry), 1);
1334 	if (!sit_i->sentries) {
1335 		MSG(1, "\tError: Calloc failed for build_sit_info!\n");
1336 		goto free_sit_info;
1337 	}
1338 
1339 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1340 		sit_i->sentries[start].cur_valid_map
1341 			= calloc(SIT_VBLOCK_MAP_SIZE, 1);
1342 		if (!sit_i->sentries[start].cur_valid_map) {
1343 			MSG(1, "\tError: Calloc failed for build_sit_info!!\n");
1344 			goto free_validity_maps;
1345 		}
1346 	}
1347 
1348 	sit_segs = get_sb(segment_count_sit) >> 1;
1349 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1350 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1351 
1352 	dst_bitmap = malloc(bitmap_size);
1353 	if (!dst_bitmap) {
1354 		MSG(1, "\tError: Malloc failed for build_sit_info!!\n");
1355 		goto free_validity_maps;
1356 	}
1357 
1358 	memcpy(dst_bitmap, src_bitmap, bitmap_size);
1359 
1360 	sit_i->sit_base_addr = get_sb(sit_blkaddr);
1361 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1362 	sit_i->written_valid_blocks = get_cp(valid_block_count);
1363 	sit_i->sit_bitmap = dst_bitmap;
1364 	sit_i->bitmap_size = bitmap_size;
1365 	sit_i->dirty_sentries = 0;
1366 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1367 	sit_i->elapsed_time = get_cp(elapsed_time);
1368 	return 0;
1369 
1370 free_validity_maps:
1371 	for (--start ; start >= 0; --start)
1372 		free(sit_i->sentries[start].cur_valid_map);
1373 	free(sit_i->sentries);
1374 
1375 free_sit_info:
1376 	free(sit_i);
1377 
1378 	return -ENOMEM;
1379 }
1380 
reset_curseg(struct f2fs_sb_info * sbi,int type)1381 void reset_curseg(struct f2fs_sb_info *sbi, int type)
1382 {
1383 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1384 	struct summary_footer *sum_footer;
1385 	struct seg_entry *se;
1386 
1387 	sum_footer = &(curseg->sum_blk->footer);
1388 	memset(sum_footer, 0, sizeof(struct summary_footer));
1389 	if (IS_DATASEG(type))
1390 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1391 	if (IS_NODESEG(type))
1392 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1393 	se = get_seg_entry(sbi, curseg->segno);
1394 	se->type = type;
1395 	se->dirty = 1;
1396 }
1397 
read_compacted_summaries(struct f2fs_sb_info * sbi)1398 static void read_compacted_summaries(struct f2fs_sb_info *sbi)
1399 {
1400 	struct curseg_info *curseg;
1401 	unsigned int i, j, offset;
1402 	block_t start;
1403 	char *kaddr;
1404 	int ret;
1405 
1406 	start = start_sum_block(sbi);
1407 
1408 	kaddr = (char *)malloc(PAGE_SIZE);
1409 	ASSERT(kaddr);
1410 
1411 	ret = dev_read_block(kaddr, start++);
1412 	ASSERT(ret >= 0);
1413 
1414 	curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1415 	memcpy(&curseg->sum_blk->journal.n_nats, kaddr, SUM_JOURNAL_SIZE);
1416 
1417 	curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1418 	memcpy(&curseg->sum_blk->journal.n_sits, kaddr + SUM_JOURNAL_SIZE,
1419 						SUM_JOURNAL_SIZE);
1420 
1421 	offset = 2 * SUM_JOURNAL_SIZE;
1422 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1423 		unsigned short blk_off;
1424 		struct curseg_info *curseg = CURSEG_I(sbi, i);
1425 
1426 		reset_curseg(sbi, i);
1427 
1428 		if (curseg->alloc_type == SSR)
1429 			blk_off = sbi->blocks_per_seg;
1430 		else
1431 			blk_off = curseg->next_blkoff;
1432 
1433 		ASSERT(blk_off <= ENTRIES_IN_SUM);
1434 
1435 		for (j = 0; j < blk_off; j++) {
1436 			struct f2fs_summary *s;
1437 			s = (struct f2fs_summary *)(kaddr + offset);
1438 			curseg->sum_blk->entries[j] = *s;
1439 			offset += SUMMARY_SIZE;
1440 			if (offset + SUMMARY_SIZE <=
1441 					PAGE_CACHE_SIZE - SUM_FOOTER_SIZE)
1442 				continue;
1443 			memset(kaddr, 0, PAGE_SIZE);
1444 			ret = dev_read_block(kaddr, start++);
1445 			ASSERT(ret >= 0);
1446 			offset = 0;
1447 		}
1448 	}
1449 	free(kaddr);
1450 }
1451 
restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum_blk)1452 static void restore_node_summary(struct f2fs_sb_info *sbi,
1453 		unsigned int segno, struct f2fs_summary_block *sum_blk)
1454 {
1455 	struct f2fs_node *node_blk;
1456 	struct f2fs_summary *sum_entry;
1457 	block_t addr;
1458 	unsigned int i;
1459 	int ret;
1460 
1461 	node_blk = malloc(F2FS_BLKSIZE);
1462 	ASSERT(node_blk);
1463 
1464 	/* scan the node segment */
1465 	addr = START_BLOCK(sbi, segno);
1466 	sum_entry = &sum_blk->entries[0];
1467 
1468 	for (i = 0; i < sbi->blocks_per_seg; i++, sum_entry++) {
1469 		ret = dev_read_block(node_blk, addr);
1470 		ASSERT(ret >= 0);
1471 		sum_entry->nid = node_blk->footer.nid;
1472 		addr++;
1473 	}
1474 	free(node_blk);
1475 }
1476 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)1477 static void read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1478 {
1479 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
1480 	struct f2fs_summary_block *sum_blk;
1481 	struct curseg_info *curseg;
1482 	unsigned int segno = 0;
1483 	block_t blk_addr = 0;
1484 	int ret;
1485 
1486 	if (IS_DATASEG(type)) {
1487 		segno = get_cp(cur_data_segno[type]);
1488 		if (is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
1489 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1490 		else
1491 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1492 	} else {
1493 		segno = get_cp(cur_node_segno[type - CURSEG_HOT_NODE]);
1494 		if (is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
1495 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1496 							type - CURSEG_HOT_NODE);
1497 		else
1498 			blk_addr = GET_SUM_BLKADDR(sbi, segno);
1499 	}
1500 
1501 	sum_blk = (struct f2fs_summary_block *)malloc(PAGE_SIZE);
1502 	ASSERT(sum_blk);
1503 
1504 	ret = dev_read_block(sum_blk, blk_addr);
1505 	ASSERT(ret >= 0);
1506 
1507 	if (IS_NODESEG(type) && !is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
1508 		restore_node_summary(sbi, segno, sum_blk);
1509 
1510 	curseg = CURSEG_I(sbi, type);
1511 	memcpy(curseg->sum_blk, sum_blk, PAGE_CACHE_SIZE);
1512 	reset_curseg(sbi, type);
1513 	free(sum_blk);
1514 }
1515 
update_sum_entry(struct f2fs_sb_info * sbi,block_t blk_addr,struct f2fs_summary * sum)1516 void update_sum_entry(struct f2fs_sb_info *sbi, block_t blk_addr,
1517 					struct f2fs_summary *sum)
1518 {
1519 	struct f2fs_summary_block *sum_blk;
1520 	u32 segno, offset;
1521 	int type, ret;
1522 	struct seg_entry *se;
1523 
1524 	segno = GET_SEGNO(sbi, blk_addr);
1525 	offset = OFFSET_IN_SEG(sbi, blk_addr);
1526 
1527 	se = get_seg_entry(sbi, segno);
1528 
1529 	sum_blk = get_sum_block(sbi, segno, &type);
1530 	memcpy(&sum_blk->entries[offset], sum, sizeof(*sum));
1531 	sum_blk->footer.entry_type = IS_NODESEG(se->type) ? SUM_TYPE_NODE :
1532 							SUM_TYPE_DATA;
1533 
1534 	/* write SSA all the time */
1535 	ret = dev_write_block(sum_blk, GET_SUM_BLKADDR(sbi, segno));
1536 	ASSERT(ret >= 0);
1537 
1538 	if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
1539 					type == SEG_TYPE_MAX)
1540 		free(sum_blk);
1541 }
1542 
restore_curseg_summaries(struct f2fs_sb_info * sbi)1543 static void restore_curseg_summaries(struct f2fs_sb_info *sbi)
1544 {
1545 	int type = CURSEG_HOT_DATA;
1546 
1547 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1548 		read_compacted_summaries(sbi);
1549 		type = CURSEG_HOT_NODE;
1550 	}
1551 
1552 	for (; type <= CURSEG_COLD_NODE; type++)
1553 		read_normal_summaries(sbi, type);
1554 }
1555 
build_curseg(struct f2fs_sb_info * sbi)1556 static int build_curseg(struct f2fs_sb_info *sbi)
1557 {
1558 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
1559 	struct curseg_info *array;
1560 	unsigned short blk_off;
1561 	unsigned int segno;
1562 	int i;
1563 
1564 	array = malloc(sizeof(*array) * NR_CURSEG_TYPE);
1565 	if (!array) {
1566 		MSG(1, "\tError: Malloc failed for build_curseg!\n");
1567 		return -ENOMEM;
1568 	}
1569 
1570 	SM_I(sbi)->curseg_array = array;
1571 
1572 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1573 		array[i].sum_blk = malloc(PAGE_CACHE_SIZE);
1574 		if (!array[i].sum_blk) {
1575 			MSG(1, "\tError: Malloc failed for build_curseg!!\n");
1576 			goto seg_cleanup;
1577 		}
1578 
1579 		if (i <= CURSEG_COLD_DATA) {
1580 			blk_off = get_cp(cur_data_blkoff[i]);
1581 			segno = get_cp(cur_data_segno[i]);
1582 		}
1583 		if (i > CURSEG_COLD_DATA) {
1584 			blk_off = get_cp(cur_node_blkoff[i - CURSEG_HOT_NODE]);
1585 			segno = get_cp(cur_node_segno[i - CURSEG_HOT_NODE]);
1586 		}
1587 		ASSERT(segno < TOTAL_SEGS(sbi));
1588 		ASSERT(blk_off < DEFAULT_BLOCKS_PER_SEGMENT);
1589 
1590 		array[i].segno = segno;
1591 		array[i].zone = GET_ZONENO_FROM_SEGNO(sbi, segno);
1592 		array[i].next_segno = NULL_SEGNO;
1593 		array[i].next_blkoff = blk_off;
1594 		array[i].alloc_type = cp->alloc_type[i];
1595 	}
1596 	restore_curseg_summaries(sbi);
1597 	return 0;
1598 
1599 seg_cleanup:
1600 	for(--i ; i >=0; --i)
1601 		free(array[i].sum_blk);
1602 	free(array);
1603 
1604 	return -ENOMEM;
1605 }
1606 
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)1607 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
1608 {
1609 	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
1610 	ASSERT(segno <= end_segno);
1611 }
1612 
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_sit_block * sit_blk)1613 void get_current_sit_page(struct f2fs_sb_info *sbi,
1614 			unsigned int segno, struct f2fs_sit_block *sit_blk)
1615 {
1616 	struct sit_info *sit_i = SIT_I(sbi);
1617 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1618 	block_t blk_addr = sit_i->sit_base_addr + offset;
1619 	int ret;
1620 
1621 	check_seg_range(sbi, segno);
1622 
1623 	/* calculate sit block address */
1624 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1625 		blk_addr += sit_i->sit_blocks;
1626 
1627 	ret = dev_read_block(sit_blk, blk_addr);
1628 	ASSERT(ret >= 0);
1629 }
1630 
rewrite_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_sit_block * sit_blk)1631 void rewrite_current_sit_page(struct f2fs_sb_info *sbi,
1632 			unsigned int segno, struct f2fs_sit_block *sit_blk)
1633 {
1634 	struct sit_info *sit_i = SIT_I(sbi);
1635 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1636 	block_t blk_addr = sit_i->sit_base_addr + offset;
1637 	int ret;
1638 
1639 	/* calculate sit block address */
1640 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1641 		blk_addr += sit_i->sit_blocks;
1642 
1643 	ret = dev_write_block(sit_blk, blk_addr);
1644 	ASSERT(ret >= 0);
1645 }
1646 
check_block_count(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_sit_entry * raw_sit)1647 void check_block_count(struct f2fs_sb_info *sbi,
1648 		unsigned int segno, struct f2fs_sit_entry *raw_sit)
1649 {
1650 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1651 	unsigned int end_segno = sm_info->segment_count - 1;
1652 	int valid_blocks = 0;
1653 	unsigned int i;
1654 
1655 	/* check segment usage */
1656 	if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
1657 		ASSERT_MSG("Invalid SIT vblocks: segno=0x%x, %u",
1658 				segno, GET_SIT_VBLOCKS(raw_sit));
1659 
1660 	/* check boundary of a given segment number */
1661 	if (segno > end_segno)
1662 		ASSERT_MSG("Invalid SEGNO: 0x%x", segno);
1663 
1664 	/* check bitmap with valid block count */
1665 	for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++)
1666 		valid_blocks += get_bits_in_byte(raw_sit->valid_map[i]);
1667 
1668 	if (GET_SIT_VBLOCKS(raw_sit) != valid_blocks)
1669 		ASSERT_MSG("Wrong SIT valid blocks: segno=0x%x, %u vs. %u",
1670 				segno, GET_SIT_VBLOCKS(raw_sit), valid_blocks);
1671 
1672 	if (GET_SIT_TYPE(raw_sit) >= NO_CHECK_TYPE)
1673 		ASSERT_MSG("Wrong SIT type: segno=0x%x, %u",
1674 				segno, GET_SIT_TYPE(raw_sit));
1675 }
1676 
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * raw_sit)1677 void seg_info_from_raw_sit(struct seg_entry *se,
1678 		struct f2fs_sit_entry *raw_sit)
1679 {
1680 	se->valid_blocks = GET_SIT_VBLOCKS(raw_sit);
1681 	memcpy(se->cur_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE);
1682 	se->type = GET_SIT_TYPE(raw_sit);
1683 	se->orig_type = GET_SIT_TYPE(raw_sit);
1684 	se->mtime = le64_to_cpu(raw_sit->mtime);
1685 }
1686 
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)1687 struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
1688 		unsigned int segno)
1689 {
1690 	struct sit_info *sit_i = SIT_I(sbi);
1691 	return &sit_i->sentries[segno];
1692 }
1693 
get_sum_block(struct f2fs_sb_info * sbi,unsigned int segno,int * ret_type)1694 struct f2fs_summary_block *get_sum_block(struct f2fs_sb_info *sbi,
1695 				unsigned int segno, int *ret_type)
1696 {
1697 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
1698 	struct f2fs_summary_block *sum_blk;
1699 	struct curseg_info *curseg;
1700 	int type, ret;
1701 	u64 ssa_blk;
1702 
1703 	*ret_type= SEG_TYPE_MAX;
1704 
1705 	ssa_blk = GET_SUM_BLKADDR(sbi, segno);
1706 	for (type = 0; type < NR_CURSEG_NODE_TYPE; type++) {
1707 		if (segno == get_cp(cur_node_segno[type])) {
1708 			curseg = CURSEG_I(sbi, CURSEG_HOT_NODE + type);
1709 			if (!IS_SUM_NODE_SEG(curseg->sum_blk->footer)) {
1710 				ASSERT_MSG("segno [0x%x] indicates a data "
1711 						"segment, but should be node",
1712 						segno);
1713 				*ret_type = -SEG_TYPE_CUR_NODE;
1714 			} else {
1715 				*ret_type = SEG_TYPE_CUR_NODE;
1716 			}
1717 			return curseg->sum_blk;
1718 		}
1719 	}
1720 
1721 	for (type = 0; type < NR_CURSEG_DATA_TYPE; type++) {
1722 		if (segno == get_cp(cur_data_segno[type])) {
1723 			curseg = CURSEG_I(sbi, type);
1724 			if (IS_SUM_NODE_SEG(curseg->sum_blk->footer)) {
1725 				ASSERT_MSG("segno [0x%x] indicates a node "
1726 						"segment, but should be data",
1727 						segno);
1728 				*ret_type = -SEG_TYPE_CUR_DATA;
1729 			} else {
1730 				*ret_type = SEG_TYPE_CUR_DATA;
1731 			}
1732 			return curseg->sum_blk;
1733 		}
1734 	}
1735 
1736 	sum_blk = calloc(BLOCK_SZ, 1);
1737 	ASSERT(sum_blk);
1738 
1739 	ret = dev_read_block(sum_blk, ssa_blk);
1740 	ASSERT(ret >= 0);
1741 
1742 	if (IS_SUM_NODE_SEG(sum_blk->footer))
1743 		*ret_type = SEG_TYPE_NODE;
1744 	else if (IS_SUM_DATA_SEG(sum_blk->footer))
1745 		*ret_type = SEG_TYPE_DATA;
1746 
1747 	return sum_blk;
1748 }
1749 
get_sum_entry(struct f2fs_sb_info * sbi,u32 blk_addr,struct f2fs_summary * sum_entry)1750 int get_sum_entry(struct f2fs_sb_info *sbi, u32 blk_addr,
1751 				struct f2fs_summary *sum_entry)
1752 {
1753 	struct f2fs_summary_block *sum_blk;
1754 	u32 segno, offset;
1755 	int type;
1756 
1757 	segno = GET_SEGNO(sbi, blk_addr);
1758 	offset = OFFSET_IN_SEG(sbi, blk_addr);
1759 
1760 	sum_blk = get_sum_block(sbi, segno, &type);
1761 	memcpy(sum_entry, &(sum_blk->entries[offset]),
1762 				sizeof(struct f2fs_summary));
1763 	if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
1764 					type == SEG_TYPE_MAX)
1765 		free(sum_blk);
1766 	return type;
1767 }
1768 
get_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * raw_nat)1769 static void get_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
1770 				struct f2fs_nat_entry *raw_nat)
1771 {
1772 	struct f2fs_nat_block *nat_block;
1773 	pgoff_t block_addr;
1774 	int entry_off;
1775 	int ret;
1776 
1777 	if (lookup_nat_in_journal(sbi, nid, raw_nat) >= 0)
1778 		return;
1779 
1780 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
1781 	ASSERT(nat_block);
1782 
1783 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
1784 	block_addr = current_nat_addr(sbi, nid, NULL);
1785 
1786 	ret = dev_read_block(nat_block, block_addr);
1787 	ASSERT(ret >= 0);
1788 
1789 	memcpy(raw_nat, &nat_block->entries[entry_off],
1790 					sizeof(struct f2fs_nat_entry));
1791 	free(nat_block);
1792 }
1793 
update_data_blkaddr(struct f2fs_sb_info * sbi,nid_t nid,u16 ofs_in_node,block_t newaddr)1794 void update_data_blkaddr(struct f2fs_sb_info *sbi, nid_t nid,
1795 				u16 ofs_in_node, block_t newaddr)
1796 {
1797 	struct f2fs_node *node_blk = NULL;
1798 	struct node_info ni;
1799 	block_t oldaddr, startaddr, endaddr;
1800 	int ret;
1801 
1802 	node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
1803 	ASSERT(node_blk);
1804 
1805 	get_node_info(sbi, nid, &ni);
1806 
1807 	/* read node_block */
1808 	ret = dev_read_block(node_blk, ni.blk_addr);
1809 	ASSERT(ret >= 0);
1810 
1811 	/* check its block address */
1812 	if (node_blk->footer.nid == node_blk->footer.ino) {
1813 		int ofs = get_extra_isize(node_blk);
1814 
1815 		oldaddr = le32_to_cpu(node_blk->i.i_addr[ofs + ofs_in_node]);
1816 		node_blk->i.i_addr[ofs + ofs_in_node] = cpu_to_le32(newaddr);
1817 	} else {
1818 		oldaddr = le32_to_cpu(node_blk->dn.addr[ofs_in_node]);
1819 		node_blk->dn.addr[ofs_in_node] = cpu_to_le32(newaddr);
1820 	}
1821 
1822 	ret = dev_write_block(node_blk, ni.blk_addr);
1823 	ASSERT(ret >= 0);
1824 
1825 	/* check extent cache entry */
1826 	if (node_blk->footer.nid != node_blk->footer.ino) {
1827 		get_node_info(sbi, le32_to_cpu(node_blk->footer.ino), &ni);
1828 
1829 		/* read inode block */
1830 		ret = dev_read_block(node_blk, ni.blk_addr);
1831 		ASSERT(ret >= 0);
1832 	}
1833 
1834 	startaddr = le32_to_cpu(node_blk->i.i_ext.blk_addr);
1835 	endaddr = startaddr + le32_to_cpu(node_blk->i.i_ext.len);
1836 	if (oldaddr >= startaddr && oldaddr < endaddr) {
1837 		node_blk->i.i_ext.len = 0;
1838 
1839 		/* update inode block */
1840 		ret = dev_write_block(node_blk, ni.blk_addr);
1841 		ASSERT(ret >= 0);
1842 	}
1843 	free(node_blk);
1844 }
1845 
update_nat_blkaddr(struct f2fs_sb_info * sbi,nid_t ino,nid_t nid,block_t newaddr)1846 void update_nat_blkaddr(struct f2fs_sb_info *sbi, nid_t ino,
1847 					nid_t nid, block_t newaddr)
1848 {
1849 	struct f2fs_nat_block *nat_block;
1850 	pgoff_t block_addr;
1851 	int entry_off;
1852 	int ret;
1853 
1854 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
1855 	ASSERT(nat_block);
1856 
1857 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
1858 	block_addr = current_nat_addr(sbi, nid, NULL);
1859 
1860 	ret = dev_read_block(nat_block, block_addr);
1861 	ASSERT(ret >= 0);
1862 
1863 	if (ino)
1864 		nat_block->entries[entry_off].ino = cpu_to_le32(ino);
1865 	nat_block->entries[entry_off].block_addr = cpu_to_le32(newaddr);
1866 	if (c.func == FSCK)
1867 		F2FS_FSCK(sbi)->entries[nid] = nat_block->entries[entry_off];
1868 
1869 	ret = dev_write_block(nat_block, block_addr);
1870 	ASSERT(ret >= 0);
1871 	free(nat_block);
1872 }
1873 
get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)1874 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
1875 {
1876 	struct f2fs_nat_entry raw_nat;
1877 
1878 	ni->nid = nid;
1879 	if (c.func == FSCK) {
1880 		node_info_from_raw_nat(ni, &(F2FS_FSCK(sbi)->entries[nid]));
1881 		if (ni->blk_addr)
1882 			return;
1883 		/* nat entry is not cached, read it */
1884 	}
1885 
1886 	get_nat_entry(sbi, nid, &raw_nat);
1887 	node_info_from_raw_nat(ni, &raw_nat);
1888 }
1889 
build_sit_entries(struct f2fs_sb_info * sbi)1890 static int build_sit_entries(struct f2fs_sb_info *sbi)
1891 {
1892 	struct sit_info *sit_i = SIT_I(sbi);
1893 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1894 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
1895 	struct f2fs_sit_block *sit_blk;
1896 	struct seg_entry *se;
1897 	struct f2fs_sit_entry sit;
1898 	unsigned int i, segno;
1899 
1900 	sit_blk = calloc(BLOCK_SZ, 1);
1901 	if (!sit_blk) {
1902 		MSG(1, "\tError: Calloc failed for build_sit_entries!\n");
1903 		return -ENOMEM;
1904 	}
1905 
1906 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
1907 		se = &sit_i->sentries[segno];
1908 
1909 		get_current_sit_page(sbi, segno, sit_blk);
1910 		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
1911 
1912 		check_block_count(sbi, segno, &sit);
1913 		seg_info_from_raw_sit(se, &sit);
1914 	}
1915 
1916 	free(sit_blk);
1917 	for (i = 0; i < sits_in_cursum(journal); i++) {
1918 		segno = le32_to_cpu(segno_in_journal(journal, i));
1919 		se = &sit_i->sentries[segno];
1920 		sit = sit_in_journal(journal, i);
1921 
1922 		check_block_count(sbi, segno, &sit);
1923 		seg_info_from_raw_sit(se, &sit);
1924 	}
1925 	return 0;
1926 }
1927 
build_segment_manager(struct f2fs_sb_info * sbi)1928 static int build_segment_manager(struct f2fs_sb_info *sbi)
1929 {
1930 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
1931 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
1932 	struct f2fs_sm_info *sm_info;
1933 
1934 	sm_info = malloc(sizeof(struct f2fs_sm_info));
1935 	if (!sm_info) {
1936 		MSG(1, "\tError: Malloc failed for build_segment_manager!\n");
1937 		return -ENOMEM;
1938 	}
1939 
1940 	/* init sm info */
1941 	sbi->sm_info = sm_info;
1942 	sm_info->seg0_blkaddr = get_sb(segment0_blkaddr);
1943 	sm_info->main_blkaddr = get_sb(main_blkaddr);
1944 	sm_info->segment_count = get_sb(segment_count);
1945 	sm_info->reserved_segments = get_cp(rsvd_segment_count);
1946 	sm_info->ovp_segments = get_cp(overprov_segment_count);
1947 	sm_info->main_segments = get_sb(segment_count_main);
1948 	sm_info->ssa_blkaddr = get_sb(ssa_blkaddr);
1949 
1950 	if (build_sit_info(sbi) || build_curseg(sbi) || build_sit_entries(sbi)) {
1951 		free(sm_info);
1952 		return -ENOMEM;
1953 	}
1954 
1955 	return 0;
1956 }
1957 
build_sit_area_bitmap(struct f2fs_sb_info * sbi)1958 void build_sit_area_bitmap(struct f2fs_sb_info *sbi)
1959 {
1960 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
1961 	struct f2fs_sm_info *sm_i = SM_I(sbi);
1962 	unsigned int segno = 0;
1963 	char *ptr = NULL;
1964 	u32 sum_vblocks = 0;
1965 	u32 free_segs = 0;
1966 	struct seg_entry *se;
1967 
1968 	fsck->sit_area_bitmap_sz = sm_i->main_segments * SIT_VBLOCK_MAP_SIZE;
1969 	fsck->sit_area_bitmap = calloc(1, fsck->sit_area_bitmap_sz);
1970 	ASSERT(fsck->sit_area_bitmap);
1971 	ptr = fsck->sit_area_bitmap;
1972 
1973 	ASSERT(fsck->sit_area_bitmap_sz == fsck->main_area_bitmap_sz);
1974 
1975 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
1976 		se = get_seg_entry(sbi, segno);
1977 
1978 		memcpy(ptr, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
1979 		ptr += SIT_VBLOCK_MAP_SIZE;
1980 
1981 		if (se->valid_blocks == 0x0) {
1982 			if (le32_to_cpu(sbi->ckpt->cur_node_segno[0]) == segno ||
1983 				le32_to_cpu(sbi->ckpt->cur_data_segno[0]) == segno ||
1984 				le32_to_cpu(sbi->ckpt->cur_node_segno[1]) == segno ||
1985 				le32_to_cpu(sbi->ckpt->cur_data_segno[1]) == segno ||
1986 				le32_to_cpu(sbi->ckpt->cur_node_segno[2]) == segno ||
1987 				le32_to_cpu(sbi->ckpt->cur_data_segno[2]) == segno) {
1988 				continue;
1989 			} else {
1990 				free_segs++;
1991 			}
1992 		} else {
1993 			sum_vblocks += se->valid_blocks;
1994 		}
1995 	}
1996 	fsck->chk.sit_valid_blocks = sum_vblocks;
1997 	fsck->chk.sit_free_segs = free_segs;
1998 
1999 	DBG(1, "Blocks [0x%x : %d] Free Segs [0x%x : %d]\n\n",
2000 			sum_vblocks, sum_vblocks,
2001 			free_segs, free_segs);
2002 }
2003 
rewrite_sit_area_bitmap(struct f2fs_sb_info * sbi)2004 void rewrite_sit_area_bitmap(struct f2fs_sb_info *sbi)
2005 {
2006 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
2007 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2008 	struct sit_info *sit_i = SIT_I(sbi);
2009 	struct f2fs_sit_block *sit_blk;
2010 	unsigned int segno = 0;
2011 	struct f2fs_summary_block *sum = curseg->sum_blk;
2012 	char *ptr = NULL;
2013 
2014 	sit_blk = calloc(BLOCK_SZ, 1);
2015 	ASSERT(sit_blk);
2016 	/* remove sit journal */
2017 	sum->journal.n_sits = 0;
2018 
2019 	ptr = fsck->main_area_bitmap;
2020 
2021 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
2022 		struct f2fs_sit_entry *sit;
2023 		struct seg_entry *se;
2024 		u16 valid_blocks = 0;
2025 		u16 type;
2026 		int i;
2027 
2028 		get_current_sit_page(sbi, segno, sit_blk);
2029 		sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
2030 		memcpy(sit->valid_map, ptr, SIT_VBLOCK_MAP_SIZE);
2031 
2032 		/* update valid block count */
2033 		for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++)
2034 			valid_blocks += get_bits_in_byte(sit->valid_map[i]);
2035 
2036 		se = get_seg_entry(sbi, segno);
2037 		memcpy(se->cur_valid_map, ptr, SIT_VBLOCK_MAP_SIZE);
2038 		se->valid_blocks = valid_blocks;
2039 		type = se->type;
2040 		if (type >= NO_CHECK_TYPE) {
2041 			ASSERT_MSG("Invalide type and valid blocks=%x,%x",
2042 					segno, valid_blocks);
2043 			type = 0;
2044 		}
2045 		sit->vblocks = cpu_to_le16((type << SIT_VBLOCKS_SHIFT) |
2046 								valid_blocks);
2047 		rewrite_current_sit_page(sbi, segno, sit_blk);
2048 
2049 		ptr += SIT_VBLOCK_MAP_SIZE;
2050 	}
2051 
2052 	free(sit_blk);
2053 }
2054 
flush_sit_journal_entries(struct f2fs_sb_info * sbi)2055 static int flush_sit_journal_entries(struct f2fs_sb_info *sbi)
2056 {
2057 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2058 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
2059 	struct sit_info *sit_i = SIT_I(sbi);
2060 	struct f2fs_sit_block *sit_blk;
2061 	unsigned int segno;
2062 	int i;
2063 
2064 	sit_blk = calloc(BLOCK_SZ, 1);
2065 	ASSERT(sit_blk);
2066 	for (i = 0; i < sits_in_cursum(journal); i++) {
2067 		struct f2fs_sit_entry *sit;
2068 		struct seg_entry *se;
2069 
2070 		segno = segno_in_journal(journal, i);
2071 		se = get_seg_entry(sbi, segno);
2072 
2073 		get_current_sit_page(sbi, segno, sit_blk);
2074 		sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
2075 
2076 		memcpy(sit->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2077 		sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) |
2078 							se->valid_blocks);
2079 		sit->mtime = cpu_to_le64(se->mtime);
2080 
2081 		rewrite_current_sit_page(sbi, segno, sit_blk);
2082 	}
2083 
2084 	free(sit_blk);
2085 	journal->n_sits = 0;
2086 	return i;
2087 }
2088 
flush_nat_journal_entries(struct f2fs_sb_info * sbi)2089 static int flush_nat_journal_entries(struct f2fs_sb_info *sbi)
2090 {
2091 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2092 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
2093 	struct f2fs_nat_block *nat_block;
2094 	pgoff_t block_addr;
2095 	int entry_off;
2096 	nid_t nid;
2097 	int ret;
2098 	int i = 0;
2099 
2100 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
2101 	ASSERT(nat_block);
2102 next:
2103 	if (i >= nats_in_cursum(journal)) {
2104 		free(nat_block);
2105 		journal->n_nats = 0;
2106 		return i;
2107 	}
2108 
2109 	nid = le32_to_cpu(nid_in_journal(journal, i));
2110 
2111 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
2112 	block_addr = current_nat_addr(sbi, nid, NULL);
2113 
2114 	ret = dev_read_block(nat_block, block_addr);
2115 	ASSERT(ret >= 0);
2116 
2117 	memcpy(&nat_block->entries[entry_off], &nat_in_journal(journal, i),
2118 					sizeof(struct f2fs_nat_entry));
2119 
2120 	ret = dev_write_block(nat_block, block_addr);
2121 	ASSERT(ret >= 0);
2122 	i++;
2123 	goto next;
2124 }
2125 
flush_journal_entries(struct f2fs_sb_info * sbi)2126 void flush_journal_entries(struct f2fs_sb_info *sbi)
2127 {
2128 	int n_nats = flush_nat_journal_entries(sbi);
2129 	int n_sits = flush_sit_journal_entries(sbi);
2130 
2131 	if (n_nats || n_sits)
2132 		write_checkpoint(sbi);
2133 }
2134 
flush_sit_entries(struct f2fs_sb_info * sbi)2135 void flush_sit_entries(struct f2fs_sb_info *sbi)
2136 {
2137 	struct sit_info *sit_i = SIT_I(sbi);
2138 	struct f2fs_sit_block *sit_blk;
2139 	unsigned int segno = 0;
2140 
2141 	sit_blk = calloc(BLOCK_SZ, 1);
2142 	ASSERT(sit_blk);
2143 	/* update free segments */
2144 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
2145 		struct f2fs_sit_entry *sit;
2146 		struct seg_entry *se;
2147 
2148 		se = get_seg_entry(sbi, segno);
2149 
2150 		if (!se->dirty)
2151 			continue;
2152 
2153 		get_current_sit_page(sbi, segno, sit_blk);
2154 		sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
2155 		memcpy(sit->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2156 		sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) |
2157 							se->valid_blocks);
2158 		rewrite_current_sit_page(sbi, segno, sit_blk);
2159 	}
2160 
2161 	free(sit_blk);
2162 }
2163 
find_next_free_block(struct f2fs_sb_info * sbi,u64 * to,int left,int type)2164 int find_next_free_block(struct f2fs_sb_info *sbi, u64 *to, int left, int type)
2165 {
2166 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
2167 	struct seg_entry *se;
2168 	u32 segno;
2169 	u32 offset;
2170 	int not_enough = 0;
2171 	u64 end_blkaddr = (get_sb(segment_count_main) <<
2172 			get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr);
2173 
2174 	if (*to > 0)
2175 		*to -= left;
2176 	if (get_free_segments(sbi) <= SM_I(sbi)->reserved_segments + 1)
2177 		not_enough = 1;
2178 
2179 	while (*to >= SM_I(sbi)->main_blkaddr && *to < end_blkaddr) {
2180 		segno = GET_SEGNO(sbi, *to);
2181 		offset = OFFSET_IN_SEG(sbi, *to);
2182 
2183 		se = get_seg_entry(sbi, segno);
2184 
2185 		if (se->valid_blocks == sbi->blocks_per_seg ||
2186 				IS_CUR_SEGNO(sbi, segno)) {
2187 			*to = left ? START_BLOCK(sbi, segno) - 1:
2188 						START_BLOCK(sbi, segno + 1);
2189 			continue;
2190 		}
2191 
2192 		if (se->valid_blocks == 0 && not_enough) {
2193 			*to = left ? START_BLOCK(sbi, segno) - 1:
2194 						START_BLOCK(sbi, segno + 1);
2195 			continue;
2196 		}
2197 
2198 		if (se->valid_blocks == 0 && !(segno % sbi->segs_per_sec)) {
2199 			struct seg_entry *se2;
2200 			unsigned int i;
2201 
2202 			for (i = 1; i < sbi->segs_per_sec; i++) {
2203 				se2 = get_seg_entry(sbi, segno + i);
2204 				if (se2->valid_blocks)
2205 					break;
2206 			}
2207 			if (i == sbi->segs_per_sec)
2208 				return 0;
2209 		}
2210 
2211 		if (se->type == type &&
2212 			!f2fs_test_bit(offset, (const char *)se->cur_valid_map))
2213 			return 0;
2214 
2215 		*to = left ? *to - 1: *to + 1;
2216 	}
2217 	return -1;
2218 }
2219 
move_curseg_info(struct f2fs_sb_info * sbi,u64 from,int left)2220 void move_curseg_info(struct f2fs_sb_info *sbi, u64 from, int left)
2221 {
2222 	int i, ret;
2223 
2224 	/* update summary blocks having nullified journal entries */
2225 	for (i = 0; i < NO_CHECK_TYPE; i++) {
2226 		struct curseg_info *curseg = CURSEG_I(sbi, i);
2227 		struct f2fs_summary_block buf;
2228 		u32 old_segno;
2229 		u64 ssa_blk, to;
2230 
2231 		/* update original SSA too */
2232 		ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno);
2233 		ret = dev_write_block(curseg->sum_blk, ssa_blk);
2234 		ASSERT(ret >= 0);
2235 
2236 		to = from;
2237 		ret = find_next_free_block(sbi, &to, left, i);
2238 		ASSERT(ret == 0);
2239 
2240 		old_segno = curseg->segno;
2241 		curseg->segno = GET_SEGNO(sbi, to);
2242 		curseg->next_blkoff = OFFSET_IN_SEG(sbi, to);
2243 		curseg->alloc_type = SSR;
2244 
2245 		/* update new segno */
2246 		ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno);
2247 		ret = dev_read_block(&buf, ssa_blk);
2248 		ASSERT(ret >= 0);
2249 
2250 		memcpy(curseg->sum_blk, &buf, SUM_ENTRIES_SIZE);
2251 
2252 		/* update se->types */
2253 		reset_curseg(sbi, i);
2254 
2255 		DBG(1, "Move curseg[%d] %x -> %x after %"PRIx64"\n",
2256 				i, old_segno, curseg->segno, from);
2257 	}
2258 }
2259 
zero_journal_entries(struct f2fs_sb_info * sbi)2260 void zero_journal_entries(struct f2fs_sb_info *sbi)
2261 {
2262 	int i;
2263 
2264 	for (i = 0; i < NO_CHECK_TYPE; i++)
2265 		CURSEG_I(sbi, i)->sum_blk->journal.n_nats = 0;
2266 }
2267 
write_curseg_info(struct f2fs_sb_info * sbi)2268 void write_curseg_info(struct f2fs_sb_info *sbi)
2269 {
2270 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
2271 	int i;
2272 
2273 	for (i = 0; i < NO_CHECK_TYPE; i++) {
2274 		cp->alloc_type[i] = CURSEG_I(sbi, i)->alloc_type;
2275 		if (i < CURSEG_HOT_NODE) {
2276 			set_cp(cur_data_segno[i], CURSEG_I(sbi, i)->segno);
2277 			set_cp(cur_data_blkoff[i],
2278 					CURSEG_I(sbi, i)->next_blkoff);
2279 		} else {
2280 			int n = i - CURSEG_HOT_NODE;
2281 
2282 			set_cp(cur_node_segno[n], CURSEG_I(sbi, i)->segno);
2283 			set_cp(cur_node_blkoff[n],
2284 					CURSEG_I(sbi, i)->next_blkoff);
2285 		}
2286 	}
2287 }
2288 
lookup_nat_in_journal(struct f2fs_sb_info * sbi,u32 nid,struct f2fs_nat_entry * raw_nat)2289 int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid,
2290 					struct f2fs_nat_entry *raw_nat)
2291 {
2292 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2293 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
2294 	int i = 0;
2295 
2296 	for (i = 0; i < nats_in_cursum(journal); i++) {
2297 		if (le32_to_cpu(nid_in_journal(journal, i)) == nid) {
2298 			memcpy(raw_nat, &nat_in_journal(journal, i),
2299 						sizeof(struct f2fs_nat_entry));
2300 			DBG(3, "==> Found nid [0x%x] in nat cache\n", nid);
2301 			return i;
2302 		}
2303 	}
2304 	return -1;
2305 }
2306 
nullify_nat_entry(struct f2fs_sb_info * sbi,u32 nid)2307 void nullify_nat_entry(struct f2fs_sb_info *sbi, u32 nid)
2308 {
2309 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2310 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
2311 	struct f2fs_nat_block *nat_block;
2312 	pgoff_t block_addr;
2313 	int entry_off;
2314 	int ret;
2315 	int i = 0;
2316 
2317 	/* check in journal */
2318 	for (i = 0; i < nats_in_cursum(journal); i++) {
2319 		if (le32_to_cpu(nid_in_journal(journal, i)) == nid) {
2320 			memset(&nat_in_journal(journal, i), 0,
2321 					sizeof(struct f2fs_nat_entry));
2322 			FIX_MSG("Remove nid [0x%x] in nat journal", nid);
2323 			return;
2324 		}
2325 	}
2326 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
2327 	ASSERT(nat_block);
2328 
2329 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
2330 	block_addr = current_nat_addr(sbi, nid, NULL);
2331 
2332 	ret = dev_read_block(nat_block, block_addr);
2333 	ASSERT(ret >= 0);
2334 
2335 	if (nid == F2FS_NODE_INO(sbi) || nid == F2FS_META_INO(sbi)) {
2336 		FIX_MSG("nid [0x%x] block_addr= 0x%x -> 0x1", nid,
2337 			le32_to_cpu(nat_block->entries[entry_off].block_addr));
2338 		nat_block->entries[entry_off].block_addr = cpu_to_le32(0x1);
2339 	} else {
2340 		memset(&nat_block->entries[entry_off], 0,
2341 					sizeof(struct f2fs_nat_entry));
2342 		FIX_MSG("Remove nid [0x%x] in NAT", nid);
2343 	}
2344 
2345 	ret = dev_write_block(nat_block, block_addr);
2346 	ASSERT(ret >= 0);
2347 	free(nat_block);
2348 }
2349 
write_checkpoint(struct f2fs_sb_info * sbi)2350 void write_checkpoint(struct f2fs_sb_info *sbi)
2351 {
2352 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
2353 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
2354 	block_t orphan_blks = 0;
2355 	unsigned long long cp_blk_no;
2356 	u32 flags = CP_UMOUNT_FLAG;
2357 	int i, ret;
2358 	u_int32_t crc = 0;
2359 
2360 	if (is_set_ckpt_flags(cp, CP_ORPHAN_PRESENT_FLAG)) {
2361 		orphan_blks = __start_sum_addr(sbi) - 1;
2362 		flags |= CP_ORPHAN_PRESENT_FLAG;
2363 	}
2364 	if (is_set_ckpt_flags(cp, CP_TRIMMED_FLAG))
2365 		flags |= CP_TRIMMED_FLAG;
2366 	if (is_set_ckpt_flags(cp, CP_DISABLED_FLAG))
2367 		flags |= CP_DISABLED_FLAG;
2368 
2369 	set_cp(free_segment_count, get_free_segments(sbi));
2370 	set_cp(valid_block_count, sbi->total_valid_block_count);
2371 	set_cp(cp_pack_total_block_count, 8 + orphan_blks + get_sb(cp_payload));
2372 
2373 	flags = update_nat_bits_flags(sb, cp, flags);
2374 	set_cp(ckpt_flags, flags);
2375 
2376 	crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, cp, CP_CHKSUM_OFFSET);
2377 	*((__le32 *)((unsigned char *)cp + CP_CHKSUM_OFFSET)) = cpu_to_le32(crc);
2378 
2379 	cp_blk_no = get_sb(cp_blkaddr);
2380 	if (sbi->cur_cp == 2)
2381 		cp_blk_no += 1 << get_sb(log_blocks_per_seg);
2382 
2383 	/* write the first cp */
2384 	ret = dev_write_block(cp, cp_blk_no++);
2385 	ASSERT(ret >= 0);
2386 
2387 	/* skip payload */
2388 	cp_blk_no += get_sb(cp_payload);
2389 	/* skip orphan blocks */
2390 	cp_blk_no += orphan_blks;
2391 
2392 	/* update summary blocks having nullified journal entries */
2393 	for (i = 0; i < NO_CHECK_TYPE; i++) {
2394 		struct curseg_info *curseg = CURSEG_I(sbi, i);
2395 		u64 ssa_blk;
2396 
2397 		ret = dev_write_block(curseg->sum_blk, cp_blk_no++);
2398 		ASSERT(ret >= 0);
2399 
2400 		/* update original SSA too */
2401 		ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno);
2402 		ret = dev_write_block(curseg->sum_blk, ssa_blk);
2403 		ASSERT(ret >= 0);
2404 	}
2405 
2406 	/* Write nat bits */
2407 	if (flags & CP_NAT_BITS_FLAG)
2408 		write_nat_bits(sbi, sb, cp, sbi->cur_cp);
2409 
2410 	/* in case of sudden power off */
2411 	ret = f2fs_fsync_device();
2412 	ASSERT(ret >= 0);
2413 
2414 	/* write the last cp */
2415 	ret = dev_write_block(cp, cp_blk_no++);
2416 	ASSERT(ret >= 0);
2417 }
2418 
build_nat_area_bitmap(struct f2fs_sb_info * sbi)2419 void build_nat_area_bitmap(struct f2fs_sb_info *sbi)
2420 {
2421 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2422 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
2423 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
2424 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
2425 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2426 	struct f2fs_nat_block *nat_block;
2427 	struct node_info ni;
2428 	u32 nid, nr_nat_blks;
2429 	pgoff_t block_off;
2430 	pgoff_t block_addr;
2431 	int seg_off;
2432 	int ret;
2433 	unsigned int i;
2434 
2435 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
2436 	ASSERT(nat_block);
2437 
2438 	/* Alloc & build nat entry bitmap */
2439 	nr_nat_blks = (get_sb(segment_count_nat) / 2) <<
2440 					sbi->log_blocks_per_seg;
2441 
2442 	fsck->nr_nat_entries = nr_nat_blks * NAT_ENTRY_PER_BLOCK;
2443 	fsck->nat_area_bitmap_sz = (fsck->nr_nat_entries + 7) / 8;
2444 	fsck->nat_area_bitmap = calloc(fsck->nat_area_bitmap_sz, 1);
2445 	ASSERT(fsck->nat_area_bitmap);
2446 
2447 	fsck->entries = calloc(sizeof(struct f2fs_nat_entry),
2448 					fsck->nr_nat_entries);
2449 	ASSERT(fsck->entries);
2450 
2451 	for (block_off = 0; block_off < nr_nat_blks; block_off++) {
2452 
2453 		seg_off = block_off >> sbi->log_blocks_per_seg;
2454 		block_addr = (pgoff_t)(nm_i->nat_blkaddr +
2455 			(seg_off << sbi->log_blocks_per_seg << 1) +
2456 			(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
2457 
2458 		if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
2459 			block_addr += sbi->blocks_per_seg;
2460 
2461 		ret = dev_read_block(nat_block, block_addr);
2462 		ASSERT(ret >= 0);
2463 
2464 		nid = block_off * NAT_ENTRY_PER_BLOCK;
2465 		for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
2466 			ni.nid = nid + i;
2467 
2468 			if ((nid + i) == F2FS_NODE_INO(sbi) ||
2469 					(nid + i) == F2FS_META_INO(sbi)) {
2470 				/*
2471 				 * block_addr of node/meta inode should be 0x1.
2472 				 * Set this bit, and fsck_verify will fix it.
2473 				 */
2474 				if (le32_to_cpu(nat_block->entries[i].block_addr) != 0x1) {
2475 					ASSERT_MSG("\tError: ino[0x%x] block_addr[0x%x] is invalid\n",
2476 							nid + i, le32_to_cpu(nat_block->entries[i].block_addr));
2477 					f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
2478 				}
2479 				continue;
2480 			}
2481 
2482 			node_info_from_raw_nat(&ni, &nat_block->entries[i]);
2483 			if (ni.blk_addr == 0x0)
2484 				continue;
2485 			if (ni.ino == 0x0) {
2486 				ASSERT_MSG("\tError: ino[0x%8x] or blk_addr[0x%16x]"
2487 					" is invalid\n", ni.ino, ni.blk_addr);
2488 			}
2489 			if (ni.ino == (nid + i)) {
2490 				fsck->nat_valid_inode_cnt++;
2491 				DBG(3, "ino[0x%8x] maybe is inode\n", ni.ino);
2492 			}
2493 			if (nid + i == 0) {
2494 				/*
2495 				 * nat entry [0] must be null.  If
2496 				 * it is corrupted, set its bit in
2497 				 * nat_area_bitmap, fsck_verify will
2498 				 * nullify it
2499 				 */
2500 				ASSERT_MSG("Invalid nat entry[0]: "
2501 					"blk_addr[0x%x]\n", ni.blk_addr);
2502 				fsck->chk.valid_nat_entry_cnt--;
2503 			}
2504 
2505 			DBG(3, "nid[0x%8x] addr[0x%16x] ino[0x%8x]\n",
2506 				nid + i, ni.blk_addr, ni.ino);
2507 			f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
2508 			fsck->chk.valid_nat_entry_cnt++;
2509 
2510 			fsck->entries[nid + i] = nat_block->entries[i];
2511 		}
2512 	}
2513 
2514 	/* Traverse nat journal, update the corresponding entries */
2515 	for (i = 0; i < nats_in_cursum(journal); i++) {
2516 		struct f2fs_nat_entry raw_nat;
2517 		nid = le32_to_cpu(nid_in_journal(journal, i));
2518 		ni.nid = nid;
2519 
2520 		DBG(3, "==> Found nid [0x%x] in nat cache, update it\n", nid);
2521 
2522 		/* Clear the original bit and count */
2523 		if (fsck->entries[nid].block_addr != 0x0) {
2524 			fsck->chk.valid_nat_entry_cnt--;
2525 			f2fs_clear_bit(nid, fsck->nat_area_bitmap);
2526 			if (fsck->entries[nid].ino == nid)
2527 				fsck->nat_valid_inode_cnt--;
2528 		}
2529 
2530 		/* Use nat entries in journal */
2531 		memcpy(&raw_nat, &nat_in_journal(journal, i),
2532 					sizeof(struct f2fs_nat_entry));
2533 		node_info_from_raw_nat(&ni, &raw_nat);
2534 		if (ni.blk_addr != 0x0) {
2535 			if (ni.ino == 0x0)
2536 				ASSERT_MSG("\tError: ino[0x%8x] or blk_addr[0x%16x]"
2537 					" is invalid\n", ni.ino, ni.blk_addr);
2538 			if (ni.ino == nid) {
2539 				fsck->nat_valid_inode_cnt++;
2540 				DBG(3, "ino[0x%8x] maybe is inode\n", ni.ino);
2541 			}
2542 			f2fs_set_bit(nid, fsck->nat_area_bitmap);
2543 			fsck->chk.valid_nat_entry_cnt++;
2544 			DBG(3, "nid[0x%x] in nat cache\n", nid);
2545 		}
2546 		fsck->entries[nid] = raw_nat;
2547 	}
2548 	free(nat_block);
2549 
2550 	DBG(1, "valid nat entries (block_addr != 0x0) [0x%8x : %u]\n",
2551 			fsck->chk.valid_nat_entry_cnt,
2552 			fsck->chk.valid_nat_entry_cnt);
2553 }
2554 
check_sector_size(struct f2fs_super_block * sb)2555 static int check_sector_size(struct f2fs_super_block *sb)
2556 {
2557 	u_int32_t log_sectorsize, log_sectors_per_block;
2558 
2559 	log_sectorsize = log_base_2(c.sector_size);
2560 	log_sectors_per_block = log_base_2(c.sectors_per_blk);
2561 
2562 	if (log_sectorsize == get_sb(log_sectorsize) &&
2563 			log_sectors_per_block == get_sb(log_sectors_per_block))
2564 		return 0;
2565 
2566 	set_sb(log_sectorsize, log_sectorsize);
2567 	set_sb(log_sectors_per_block, log_sectors_per_block);
2568 
2569 	update_superblock(sb, SB_MASK_ALL);
2570 	return 0;
2571 }
2572 
tune_sb_features(struct f2fs_sb_info * sbi)2573 static void tune_sb_features(struct f2fs_sb_info *sbi)
2574 {
2575 	int sb_changed = 0;
2576 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
2577 
2578 	if (!(sb->feature & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) &&
2579 			c.feature & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) {
2580 		sb->feature |= cpu_to_le32(F2FS_FEATURE_ENCRYPT);
2581 		MSG(0, "Info: Set Encryption feature\n");
2582 		sb_changed = 1;
2583 	}
2584 	/* TODO: quota needs to allocate inode numbers */
2585 
2586 	c.feature = sb->feature;
2587 	if (!sb_changed)
2588 		return;
2589 
2590 	update_superblock(sb, SB_MASK_ALL);
2591 }
2592 
f2fs_do_mount(struct f2fs_sb_info * sbi)2593 int f2fs_do_mount(struct f2fs_sb_info *sbi)
2594 {
2595 	struct f2fs_checkpoint *cp = NULL;
2596 	struct f2fs_super_block *sb = NULL;
2597 	int ret;
2598 
2599 	sbi->active_logs = NR_CURSEG_TYPE;
2600 	ret = validate_super_block(sbi, SB0_ADDR);
2601 	if (ret) {
2602 		ret = validate_super_block(sbi, SB1_ADDR);
2603 		if (ret)
2604 			return -1;
2605 	}
2606 	sb = F2FS_RAW_SUPER(sbi);
2607 
2608 	ret = check_sector_size(sb);
2609 	if (ret)
2610 		return -1;
2611 
2612 	print_raw_sb_info(sb);
2613 
2614 	init_sb_info(sbi);
2615 
2616 	ret = get_valid_checkpoint(sbi);
2617 	if (ret) {
2618 		ERR_MSG("Can't find valid checkpoint\n");
2619 		return -1;
2620 	}
2621 
2622 	if (sanity_check_ckpt(sbi)) {
2623 		ERR_MSG("Checkpoint is polluted\n");
2624 		return -1;
2625 	}
2626 	cp = F2FS_CKPT(sbi);
2627 
2628 	print_ckpt_info(sbi);
2629 
2630 	if (c.quota_fix) {
2631 		if (get_cp(ckpt_flags) & CP_QUOTA_NEED_FSCK_FLAG)
2632 			c.fix_on = 1;
2633 	}
2634 
2635 	if (c.auto_fix || c.preen_mode) {
2636 		u32 flag = get_cp(ckpt_flags);
2637 
2638 		if (flag & CP_FSCK_FLAG ||
2639 			flag & CP_QUOTA_NEED_FSCK_FLAG ||
2640 			(exist_qf_ino(sb) && (flag & CP_ERROR_FLAG))) {
2641 			c.fix_on = 1;
2642 		} else if (!c.preen_mode) {
2643 			print_cp_state(flag);
2644 			return 1;
2645 		}
2646 	}
2647 
2648 	c.bug_on = 0;
2649 
2650 	tune_sb_features(sbi);
2651 
2652 	/* precompute checksum seed for metadata */
2653 	if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
2654 		c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid));
2655 
2656 	sbi->total_valid_node_count = get_cp(valid_node_count);
2657 	sbi->total_valid_inode_count = get_cp(valid_inode_count);
2658 	sbi->user_block_count = get_cp(user_block_count);
2659 	sbi->total_valid_block_count = get_cp(valid_block_count);
2660 	sbi->last_valid_block_count = sbi->total_valid_block_count;
2661 	sbi->alloc_valid_block_count = 0;
2662 
2663 	if (build_segment_manager(sbi)) {
2664 		ERR_MSG("build_segment_manager failed\n");
2665 		return -1;
2666 	}
2667 
2668 	if (build_node_manager(sbi)) {
2669 		ERR_MSG("build_node_manager failed\n");
2670 		return -1;
2671 	}
2672 
2673 	/* Check nat_bits */
2674 	if (c.func == FSCK && is_set_ckpt_flags(cp, CP_NAT_BITS_FLAG)) {
2675 		if (check_nat_bits(sbi, sb, cp) && c.fix_on)
2676 			write_nat_bits(sbi, sb, cp, sbi->cur_cp);
2677 	}
2678 	return 0;
2679 }
2680 
f2fs_do_umount(struct f2fs_sb_info * sbi)2681 void f2fs_do_umount(struct f2fs_sb_info *sbi)
2682 {
2683 	struct sit_info *sit_i = SIT_I(sbi);
2684 	struct f2fs_sm_info *sm_i = SM_I(sbi);
2685 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2686 	unsigned int i;
2687 
2688 	/* free nm_info */
2689 	if (c.func == SLOAD || c.func == FSCK)
2690 		free(nm_i->nid_bitmap);
2691 	free(nm_i->nat_bitmap);
2692 	free(sbi->nm_info);
2693 
2694 	/* free sit_info */
2695 	for (i = 0; i < TOTAL_SEGS(sbi); i++)
2696 		free(sit_i->sentries[i].cur_valid_map);
2697 
2698 	free(sit_i->sit_bitmap);
2699 	free(sm_i->sit_info);
2700 
2701 	/* free sm_info */
2702 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2703 		free(sm_i->curseg_array[i].sum_blk);
2704 
2705 	free(sm_i->curseg_array);
2706 	free(sbi->sm_info);
2707 
2708 	free(sbi->ckpt);
2709 	free(sbi->raw_super);
2710 }
2711