1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitAnd, visitOr, and visitXor functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/CmpInstAnalysis.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Transforms/Utils/Local.h"
18 #include "llvm/IR/ConstantRange.h"
19 #include "llvm/IR/Intrinsics.h"
20 #include "llvm/IR/PatternMatch.h"
21 using namespace llvm;
22 using namespace PatternMatch;
23
24 #define DEBUG_TYPE "instcombine"
25
26 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
27 /// a four bit mask.
getFCmpCode(FCmpInst::Predicate CC)28 static unsigned getFCmpCode(FCmpInst::Predicate CC) {
29 assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
30 "Unexpected FCmp predicate!");
31 // Take advantage of the bit pattern of FCmpInst::Predicate here.
32 // U L G E
33 static_assert(FCmpInst::FCMP_FALSE == 0, ""); // 0 0 0 0
34 static_assert(FCmpInst::FCMP_OEQ == 1, ""); // 0 0 0 1
35 static_assert(FCmpInst::FCMP_OGT == 2, ""); // 0 0 1 0
36 static_assert(FCmpInst::FCMP_OGE == 3, ""); // 0 0 1 1
37 static_assert(FCmpInst::FCMP_OLT == 4, ""); // 0 1 0 0
38 static_assert(FCmpInst::FCMP_OLE == 5, ""); // 0 1 0 1
39 static_assert(FCmpInst::FCMP_ONE == 6, ""); // 0 1 1 0
40 static_assert(FCmpInst::FCMP_ORD == 7, ""); // 0 1 1 1
41 static_assert(FCmpInst::FCMP_UNO == 8, ""); // 1 0 0 0
42 static_assert(FCmpInst::FCMP_UEQ == 9, ""); // 1 0 0 1
43 static_assert(FCmpInst::FCMP_UGT == 10, ""); // 1 0 1 0
44 static_assert(FCmpInst::FCMP_UGE == 11, ""); // 1 0 1 1
45 static_assert(FCmpInst::FCMP_ULT == 12, ""); // 1 1 0 0
46 static_assert(FCmpInst::FCMP_ULE == 13, ""); // 1 1 0 1
47 static_assert(FCmpInst::FCMP_UNE == 14, ""); // 1 1 1 0
48 static_assert(FCmpInst::FCMP_TRUE == 15, ""); // 1 1 1 1
49 return CC;
50 }
51
52 /// This is the complement of getICmpCode, which turns an opcode and two
53 /// operands into either a constant true or false, or a brand new ICmp
54 /// instruction. The sign is passed in to determine which kind of predicate to
55 /// use in the new icmp instruction.
getNewICmpValue(bool Sign,unsigned Code,Value * LHS,Value * RHS,InstCombiner::BuilderTy & Builder)56 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
57 InstCombiner::BuilderTy &Builder) {
58 ICmpInst::Predicate NewPred;
59 if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
60 return NewConstant;
61 return Builder.CreateICmp(NewPred, LHS, RHS);
62 }
63
64 /// This is the complement of getFCmpCode, which turns an opcode and two
65 /// operands into either a FCmp instruction, or a true/false constant.
getFCmpValue(unsigned Code,Value * LHS,Value * RHS,InstCombiner::BuilderTy & Builder)66 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
67 InstCombiner::BuilderTy &Builder) {
68 const auto Pred = static_cast<FCmpInst::Predicate>(Code);
69 assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
70 "Unexpected FCmp predicate!");
71 if (Pred == FCmpInst::FCMP_FALSE)
72 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
73 if (Pred == FCmpInst::FCMP_TRUE)
74 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
75 return Builder.CreateFCmp(Pred, LHS, RHS);
76 }
77
78 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
79 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
80 /// \param I Binary operator to transform.
81 /// \return Pointer to node that must replace the original binary operator, or
82 /// null pointer if no transformation was made.
SimplifyBSwap(BinaryOperator & I,InstCombiner::BuilderTy & Builder)83 static Value *SimplifyBSwap(BinaryOperator &I,
84 InstCombiner::BuilderTy &Builder) {
85 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
86
87 Value *OldLHS = I.getOperand(0);
88 Value *OldRHS = I.getOperand(1);
89
90 Value *NewLHS;
91 if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
92 return nullptr;
93
94 Value *NewRHS;
95 const APInt *C;
96
97 if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
98 // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
99 if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
100 return nullptr;
101 // NewRHS initialized by the matcher.
102 } else if (match(OldRHS, m_APInt(C))) {
103 // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
104 if (!OldLHS->hasOneUse())
105 return nullptr;
106 NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
107 } else
108 return nullptr;
109
110 Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
111 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
112 I.getType());
113 return Builder.CreateCall(F, BinOp);
114 }
115
116 /// This handles expressions of the form ((val OP C1) & C2). Where
117 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.
OptAndOp(BinaryOperator * Op,ConstantInt * OpRHS,ConstantInt * AndRHS,BinaryOperator & TheAnd)118 Instruction *InstCombiner::OptAndOp(BinaryOperator *Op,
119 ConstantInt *OpRHS,
120 ConstantInt *AndRHS,
121 BinaryOperator &TheAnd) {
122 Value *X = Op->getOperand(0);
123
124 switch (Op->getOpcode()) {
125 default: break;
126 case Instruction::Add:
127 if (Op->hasOneUse()) {
128 // Adding a one to a single bit bit-field should be turned into an XOR
129 // of the bit. First thing to check is to see if this AND is with a
130 // single bit constant.
131 const APInt &AndRHSV = AndRHS->getValue();
132
133 // If there is only one bit set.
134 if (AndRHSV.isPowerOf2()) {
135 // Ok, at this point, we know that we are masking the result of the
136 // ADD down to exactly one bit. If the constant we are adding has
137 // no bits set below this bit, then we can eliminate the ADD.
138 const APInt& AddRHS = OpRHS->getValue();
139
140 // Check to see if any bits below the one bit set in AndRHSV are set.
141 if ((AddRHS & (AndRHSV - 1)).isNullValue()) {
142 // If not, the only thing that can effect the output of the AND is
143 // the bit specified by AndRHSV. If that bit is set, the effect of
144 // the XOR is to toggle the bit. If it is clear, then the ADD has
145 // no effect.
146 if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop
147 TheAnd.setOperand(0, X);
148 return &TheAnd;
149 } else {
150 // Pull the XOR out of the AND.
151 Value *NewAnd = Builder.CreateAnd(X, AndRHS);
152 NewAnd->takeName(Op);
153 return BinaryOperator::CreateXor(NewAnd, AndRHS);
154 }
155 }
156 }
157 }
158 break;
159 }
160 return nullptr;
161 }
162
163 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
164 /// (V < Lo || V >= Hi). This method expects that Lo <= Hi. IsSigned indicates
165 /// whether to treat V, Lo, and Hi as signed or not.
insertRangeTest(Value * V,const APInt & Lo,const APInt & Hi,bool isSigned,bool Inside)166 Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
167 bool isSigned, bool Inside) {
168 assert((isSigned ? Lo.sle(Hi) : Lo.ule(Hi)) &&
169 "Lo is not <= Hi in range emission code!");
170
171 Type *Ty = V->getType();
172 if (Lo == Hi)
173 return Inside ? ConstantInt::getFalse(Ty) : ConstantInt::getTrue(Ty);
174
175 // V >= Min && V < Hi --> V < Hi
176 // V < Min || V >= Hi --> V >= Hi
177 ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
178 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
179 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
180 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
181 }
182
183 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo
184 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
185 Value *VMinusLo =
186 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
187 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
188 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
189 }
190
191 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
192 /// that can be simplified.
193 /// One of A and B is considered the mask. The other is the value. This is
194 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
195 /// only "Mask", then both A and B can be considered masks. If A is the mask,
196 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
197 /// If both A and C are constants, this proof is also easy.
198 /// For the following explanations, we assume that A is the mask.
199 ///
200 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
201 /// bits of A are set in B.
202 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
203 ///
204 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
205 /// bits of A are cleared in B.
206 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
207 ///
208 /// "Mixed" declares that (A & B) == C and C might or might not contain any
209 /// number of one bits and zero bits.
210 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
211 ///
212 /// "Not" means that in above descriptions "==" should be replaced by "!=".
213 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
214 ///
215 /// If the mask A contains a single bit, then the following is equivalent:
216 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
217 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
218 enum MaskedICmpType {
219 AMask_AllOnes = 1,
220 AMask_NotAllOnes = 2,
221 BMask_AllOnes = 4,
222 BMask_NotAllOnes = 8,
223 Mask_AllZeros = 16,
224 Mask_NotAllZeros = 32,
225 AMask_Mixed = 64,
226 AMask_NotMixed = 128,
227 BMask_Mixed = 256,
228 BMask_NotMixed = 512
229 };
230
231 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
232 /// satisfies.
getMaskedICmpType(Value * A,Value * B,Value * C,ICmpInst::Predicate Pred)233 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
234 ICmpInst::Predicate Pred) {
235 ConstantInt *ACst = dyn_cast<ConstantInt>(A);
236 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
237 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
238 bool IsEq = (Pred == ICmpInst::ICMP_EQ);
239 bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2());
240 bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2());
241 unsigned MaskVal = 0;
242 if (CCst && CCst->isZero()) {
243 // if C is zero, then both A and B qualify as mask
244 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
245 : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
246 if (IsAPow2)
247 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
248 : (AMask_AllOnes | AMask_Mixed));
249 if (IsBPow2)
250 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
251 : (BMask_AllOnes | BMask_Mixed));
252 return MaskVal;
253 }
254
255 if (A == C) {
256 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
257 : (AMask_NotAllOnes | AMask_NotMixed));
258 if (IsAPow2)
259 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
260 : (Mask_AllZeros | AMask_Mixed));
261 } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) {
262 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
263 }
264
265 if (B == C) {
266 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
267 : (BMask_NotAllOnes | BMask_NotMixed));
268 if (IsBPow2)
269 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
270 : (Mask_AllZeros | BMask_Mixed));
271 } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) {
272 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
273 }
274
275 return MaskVal;
276 }
277
278 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
279 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
280 /// is adjacent to the corresponding normal flag (recording ==), this just
281 /// involves swapping those bits over.
conjugateICmpMask(unsigned Mask)282 static unsigned conjugateICmpMask(unsigned Mask) {
283 unsigned NewMask;
284 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
285 AMask_Mixed | BMask_Mixed))
286 << 1;
287
288 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
289 AMask_NotMixed | BMask_NotMixed))
290 >> 1;
291
292 return NewMask;
293 }
294
295 // Adapts the external decomposeBitTestICmp for local use.
decomposeBitTestICmp(Value * LHS,Value * RHS,CmpInst::Predicate & Pred,Value * & X,Value * & Y,Value * & Z)296 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
297 Value *&X, Value *&Y, Value *&Z) {
298 APInt Mask;
299 if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
300 return false;
301
302 Y = ConstantInt::get(X->getType(), Mask);
303 Z = ConstantInt::get(X->getType(), 0);
304 return true;
305 }
306
307 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
308 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
309 /// the right hand side as a pair.
310 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
311 /// and PredR are their predicates, respectively.
312 static
313 Optional<std::pair<unsigned, unsigned>>
getMaskedTypeForICmpPair(Value * & A,Value * & B,Value * & C,Value * & D,Value * & E,ICmpInst * LHS,ICmpInst * RHS,ICmpInst::Predicate & PredL,ICmpInst::Predicate & PredR)314 getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
315 Value *&D, Value *&E, ICmpInst *LHS,
316 ICmpInst *RHS,
317 ICmpInst::Predicate &PredL,
318 ICmpInst::Predicate &PredR) {
319 // vectors are not (yet?) supported. Don't support pointers either.
320 if (!LHS->getOperand(0)->getType()->isIntegerTy() ||
321 !RHS->getOperand(0)->getType()->isIntegerTy())
322 return None;
323
324 // Here comes the tricky part:
325 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
326 // and L11 & L12 == L21 & L22. The same goes for RHS.
327 // Now we must find those components L** and R**, that are equal, so
328 // that we can extract the parameters A, B, C, D, and E for the canonical
329 // above.
330 Value *L1 = LHS->getOperand(0);
331 Value *L2 = LHS->getOperand(1);
332 Value *L11, *L12, *L21, *L22;
333 // Check whether the icmp can be decomposed into a bit test.
334 if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
335 L21 = L22 = L1 = nullptr;
336 } else {
337 // Look for ANDs in the LHS icmp.
338 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
339 // Any icmp can be viewed as being trivially masked; if it allows us to
340 // remove one, it's worth it.
341 L11 = L1;
342 L12 = Constant::getAllOnesValue(L1->getType());
343 }
344
345 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
346 L21 = L2;
347 L22 = Constant::getAllOnesValue(L2->getType());
348 }
349 }
350
351 // Bail if LHS was a icmp that can't be decomposed into an equality.
352 if (!ICmpInst::isEquality(PredL))
353 return None;
354
355 Value *R1 = RHS->getOperand(0);
356 Value *R2 = RHS->getOperand(1);
357 Value *R11, *R12;
358 bool Ok = false;
359 if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
360 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
361 A = R11;
362 D = R12;
363 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
364 A = R12;
365 D = R11;
366 } else {
367 return None;
368 }
369 E = R2;
370 R1 = nullptr;
371 Ok = true;
372 } else {
373 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
374 // As before, model no mask as a trivial mask if it'll let us do an
375 // optimization.
376 R11 = R1;
377 R12 = Constant::getAllOnesValue(R1->getType());
378 }
379
380 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
381 A = R11;
382 D = R12;
383 E = R2;
384 Ok = true;
385 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
386 A = R12;
387 D = R11;
388 E = R2;
389 Ok = true;
390 }
391 }
392
393 // Bail if RHS was a icmp that can't be decomposed into an equality.
394 if (!ICmpInst::isEquality(PredR))
395 return None;
396
397 // Look for ANDs on the right side of the RHS icmp.
398 if (!Ok) {
399 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
400 R11 = R2;
401 R12 = Constant::getAllOnesValue(R2->getType());
402 }
403
404 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
405 A = R11;
406 D = R12;
407 E = R1;
408 Ok = true;
409 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
410 A = R12;
411 D = R11;
412 E = R1;
413 Ok = true;
414 } else {
415 return None;
416 }
417 }
418 if (!Ok)
419 return None;
420
421 if (L11 == A) {
422 B = L12;
423 C = L2;
424 } else if (L12 == A) {
425 B = L11;
426 C = L2;
427 } else if (L21 == A) {
428 B = L22;
429 C = L1;
430 } else if (L22 == A) {
431 B = L21;
432 C = L1;
433 }
434
435 unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
436 unsigned RightType = getMaskedICmpType(A, D, E, PredR);
437 return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
438 }
439
440 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
441 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
442 /// and the right hand side is of type BMask_Mixed. For example,
443 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,Value * A,Value * B,Value * C,Value * D,Value * E,ICmpInst::Predicate PredL,ICmpInst::Predicate PredR,llvm::InstCombiner::BuilderTy & Builder)444 static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
445 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
446 Value *A, Value *B, Value *C, Value *D, Value *E,
447 ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
448 llvm::InstCombiner::BuilderTy &Builder) {
449 // We are given the canonical form:
450 // (icmp ne (A & B), 0) & (icmp eq (A & D), E).
451 // where D & E == E.
452 //
453 // If IsAnd is false, we get it in negated form:
454 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
455 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
456 //
457 // We currently handle the case of B, C, D, E are constant.
458 //
459 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
460 if (!BCst)
461 return nullptr;
462 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
463 if (!CCst)
464 return nullptr;
465 ConstantInt *DCst = dyn_cast<ConstantInt>(D);
466 if (!DCst)
467 return nullptr;
468 ConstantInt *ECst = dyn_cast<ConstantInt>(E);
469 if (!ECst)
470 return nullptr;
471
472 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
473
474 // Update E to the canonical form when D is a power of two and RHS is
475 // canonicalized as,
476 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
477 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
478 if (PredR != NewCC)
479 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
480
481 // If B or D is zero, skip because if LHS or RHS can be trivially folded by
482 // other folding rules and this pattern won't apply any more.
483 if (BCst->getValue() == 0 || DCst->getValue() == 0)
484 return nullptr;
485
486 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
487 // deduce anything from it.
488 // For example,
489 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
490 if ((BCst->getValue() & DCst->getValue()) == 0)
491 return nullptr;
492
493 // If the following two conditions are met:
494 //
495 // 1. mask B covers only a single bit that's not covered by mask D, that is,
496 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
497 // B and D has only one bit set) and,
498 //
499 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
500 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
501 //
502 // then that single bit in B must be one and thus the whole expression can be
503 // folded to
504 // (A & (B | D)) == (B & (B ^ D)) | E.
505 //
506 // For example,
507 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
508 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
509 if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) &&
510 (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) {
511 APInt BorD = BCst->getValue() | DCst->getValue();
512 APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) |
513 ECst->getValue();
514 Value *NewMask = ConstantInt::get(BCst->getType(), BorD);
515 Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE);
516 Value *NewAnd = Builder.CreateAnd(A, NewMask);
517 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
518 }
519
520 auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
521 return (C1->getValue() & C2->getValue()) == C1->getValue();
522 };
523 auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
524 return (C1->getValue() & C2->getValue()) == C2->getValue();
525 };
526
527 // In the following, we consider only the cases where B is a superset of D, B
528 // is a subset of D, or B == D because otherwise there's at least one bit
529 // covered by B but not D, in which case we can't deduce much from it, so
530 // no folding (aside from the single must-be-one bit case right above.)
531 // For example,
532 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
533 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
534 return nullptr;
535
536 // At this point, either B is a superset of D, B is a subset of D or B == D.
537
538 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
539 // and the whole expression becomes false (or true if negated), otherwise, no
540 // folding.
541 // For example,
542 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
543 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
544 if (ECst->isZero()) {
545 if (IsSubSetOrEqual(BCst, DCst))
546 return ConstantInt::get(LHS->getType(), !IsAnd);
547 return nullptr;
548 }
549
550 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
551 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
552 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
553 // RHS. For example,
554 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
555 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
556 if (IsSuperSetOrEqual(BCst, DCst))
557 return RHS;
558 // Otherwise, B is a subset of D. If B and E have a common bit set,
559 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
560 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
561 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
562 if ((BCst->getValue() & ECst->getValue()) != 0)
563 return RHS;
564 // Otherwise, LHS and RHS contradict and the whole expression becomes false
565 // (or true if negated.) For example,
566 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
567 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
568 return ConstantInt::get(LHS->getType(), !IsAnd);
569 }
570
571 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
572 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
573 /// aren't of the common mask pattern type.
foldLogOpOfMaskedICmpsAsymmetric(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,Value * A,Value * B,Value * C,Value * D,Value * E,ICmpInst::Predicate PredL,ICmpInst::Predicate PredR,unsigned LHSMask,unsigned RHSMask,llvm::InstCombiner::BuilderTy & Builder)574 static Value *foldLogOpOfMaskedICmpsAsymmetric(
575 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
576 Value *A, Value *B, Value *C, Value *D, Value *E,
577 ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
578 unsigned LHSMask, unsigned RHSMask,
579 llvm::InstCombiner::BuilderTy &Builder) {
580 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
581 "Expected equality predicates for masked type of icmps.");
582 // Handle Mask_NotAllZeros-BMask_Mixed cases.
583 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
584 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
585 // which gets swapped to
586 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
587 if (!IsAnd) {
588 LHSMask = conjugateICmpMask(LHSMask);
589 RHSMask = conjugateICmpMask(RHSMask);
590 }
591 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
592 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
593 LHS, RHS, IsAnd, A, B, C, D, E,
594 PredL, PredR, Builder)) {
595 return V;
596 }
597 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
598 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
599 RHS, LHS, IsAnd, A, D, E, B, C,
600 PredR, PredL, Builder)) {
601 return V;
602 }
603 }
604 return nullptr;
605 }
606
607 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
608 /// into a single (icmp(A & X) ==/!= Y).
foldLogOpOfMaskedICmps(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,llvm::InstCombiner::BuilderTy & Builder)609 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
610 llvm::InstCombiner::BuilderTy &Builder) {
611 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
612 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
613 Optional<std::pair<unsigned, unsigned>> MaskPair =
614 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
615 if (!MaskPair)
616 return nullptr;
617 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
618 "Expected equality predicates for masked type of icmps.");
619 unsigned LHSMask = MaskPair->first;
620 unsigned RHSMask = MaskPair->second;
621 unsigned Mask = LHSMask & RHSMask;
622 if (Mask == 0) {
623 // Even if the two sides don't share a common pattern, check if folding can
624 // still happen.
625 if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
626 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
627 Builder))
628 return V;
629 return nullptr;
630 }
631
632 // In full generality:
633 // (icmp (A & B) Op C) | (icmp (A & D) Op E)
634 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
635 //
636 // If the latter can be converted into (icmp (A & X) Op Y) then the former is
637 // equivalent to (icmp (A & X) !Op Y).
638 //
639 // Therefore, we can pretend for the rest of this function that we're dealing
640 // with the conjunction, provided we flip the sense of any comparisons (both
641 // input and output).
642
643 // In most cases we're going to produce an EQ for the "&&" case.
644 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
645 if (!IsAnd) {
646 // Convert the masking analysis into its equivalent with negated
647 // comparisons.
648 Mask = conjugateICmpMask(Mask);
649 }
650
651 if (Mask & Mask_AllZeros) {
652 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
653 // -> (icmp eq (A & (B|D)), 0)
654 Value *NewOr = Builder.CreateOr(B, D);
655 Value *NewAnd = Builder.CreateAnd(A, NewOr);
656 // We can't use C as zero because we might actually handle
657 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
658 // with B and D, having a single bit set.
659 Value *Zero = Constant::getNullValue(A->getType());
660 return Builder.CreateICmp(NewCC, NewAnd, Zero);
661 }
662 if (Mask & BMask_AllOnes) {
663 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
664 // -> (icmp eq (A & (B|D)), (B|D))
665 Value *NewOr = Builder.CreateOr(B, D);
666 Value *NewAnd = Builder.CreateAnd(A, NewOr);
667 return Builder.CreateICmp(NewCC, NewAnd, NewOr);
668 }
669 if (Mask & AMask_AllOnes) {
670 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
671 // -> (icmp eq (A & (B&D)), A)
672 Value *NewAnd1 = Builder.CreateAnd(B, D);
673 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
674 return Builder.CreateICmp(NewCC, NewAnd2, A);
675 }
676
677 // Remaining cases assume at least that B and D are constant, and depend on
678 // their actual values. This isn't strictly necessary, just a "handle the
679 // easy cases for now" decision.
680 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
681 if (!BCst)
682 return nullptr;
683 ConstantInt *DCst = dyn_cast<ConstantInt>(D);
684 if (!DCst)
685 return nullptr;
686
687 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
688 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
689 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
690 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
691 // Only valid if one of the masks is a superset of the other (check "B&D" is
692 // the same as either B or D).
693 APInt NewMask = BCst->getValue() & DCst->getValue();
694
695 if (NewMask == BCst->getValue())
696 return LHS;
697 else if (NewMask == DCst->getValue())
698 return RHS;
699 }
700
701 if (Mask & AMask_NotAllOnes) {
702 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
703 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
704 // Only valid if one of the masks is a superset of the other (check "B|D" is
705 // the same as either B or D).
706 APInt NewMask = BCst->getValue() | DCst->getValue();
707
708 if (NewMask == BCst->getValue())
709 return LHS;
710 else if (NewMask == DCst->getValue())
711 return RHS;
712 }
713
714 if (Mask & BMask_Mixed) {
715 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
716 // We already know that B & C == C && D & E == E.
717 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
718 // C and E, which are shared by both the mask B and the mask D, don't
719 // contradict, then we can transform to
720 // -> (icmp eq (A & (B|D)), (C|E))
721 // Currently, we only handle the case of B, C, D, and E being constant.
722 // We can't simply use C and E because we might actually handle
723 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
724 // with B and D, having a single bit set.
725 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
726 if (!CCst)
727 return nullptr;
728 ConstantInt *ECst = dyn_cast<ConstantInt>(E);
729 if (!ECst)
730 return nullptr;
731 if (PredL != NewCC)
732 CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
733 if (PredR != NewCC)
734 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
735
736 // If there is a conflict, we should actually return a false for the
737 // whole construct.
738 if (((BCst->getValue() & DCst->getValue()) &
739 (CCst->getValue() ^ ECst->getValue())).getBoolValue())
740 return ConstantInt::get(LHS->getType(), !IsAnd);
741
742 Value *NewOr1 = Builder.CreateOr(B, D);
743 Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
744 Value *NewAnd = Builder.CreateAnd(A, NewOr1);
745 return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
746 }
747
748 return nullptr;
749 }
750
751 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
752 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
753 /// If \p Inverted is true then the check is for the inverted range, e.g.
754 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
simplifyRangeCheck(ICmpInst * Cmp0,ICmpInst * Cmp1,bool Inverted)755 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
756 bool Inverted) {
757 // Check the lower range comparison, e.g. x >= 0
758 // InstCombine already ensured that if there is a constant it's on the RHS.
759 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
760 if (!RangeStart)
761 return nullptr;
762
763 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
764 Cmp0->getPredicate());
765
766 // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
767 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
768 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
769 return nullptr;
770
771 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
772 Cmp1->getPredicate());
773
774 Value *Input = Cmp0->getOperand(0);
775 Value *RangeEnd;
776 if (Cmp1->getOperand(0) == Input) {
777 // For the upper range compare we have: icmp x, n
778 RangeEnd = Cmp1->getOperand(1);
779 } else if (Cmp1->getOperand(1) == Input) {
780 // For the upper range compare we have: icmp n, x
781 RangeEnd = Cmp1->getOperand(0);
782 Pred1 = ICmpInst::getSwappedPredicate(Pred1);
783 } else {
784 return nullptr;
785 }
786
787 // Check the upper range comparison, e.g. x < n
788 ICmpInst::Predicate NewPred;
789 switch (Pred1) {
790 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
791 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
792 default: return nullptr;
793 }
794
795 // This simplification is only valid if the upper range is not negative.
796 KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
797 if (!Known.isNonNegative())
798 return nullptr;
799
800 if (Inverted)
801 NewPred = ICmpInst::getInversePredicate(NewPred);
802
803 return Builder.CreateICmp(NewPred, Input, RangeEnd);
804 }
805
806 static Value *
foldAndOrOfEqualityCmpsWithConstants(ICmpInst * LHS,ICmpInst * RHS,bool JoinedByAnd,InstCombiner::BuilderTy & Builder)807 foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
808 bool JoinedByAnd,
809 InstCombiner::BuilderTy &Builder) {
810 Value *X = LHS->getOperand(0);
811 if (X != RHS->getOperand(0))
812 return nullptr;
813
814 const APInt *C1, *C2;
815 if (!match(LHS->getOperand(1), m_APInt(C1)) ||
816 !match(RHS->getOperand(1), m_APInt(C2)))
817 return nullptr;
818
819 // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
820 ICmpInst::Predicate Pred = LHS->getPredicate();
821 if (Pred != RHS->getPredicate())
822 return nullptr;
823 if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
824 return nullptr;
825 if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
826 return nullptr;
827
828 // The larger unsigned constant goes on the right.
829 if (C1->ugt(*C2))
830 std::swap(C1, C2);
831
832 APInt Xor = *C1 ^ *C2;
833 if (Xor.isPowerOf2()) {
834 // If LHSC and RHSC differ by only one bit, then set that bit in X and
835 // compare against the larger constant:
836 // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
837 // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
838 // We choose an 'or' with a Pow2 constant rather than the inverse mask with
839 // 'and' because that may lead to smaller codegen from a smaller constant.
840 Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
841 return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
842 }
843
844 // Special case: get the ordering right when the values wrap around zero.
845 // Ie, we assumed the constants were unsigned when swapping earlier.
846 if (C1->isNullValue() && C2->isAllOnesValue())
847 std::swap(C1, C2);
848
849 if (*C1 == *C2 - 1) {
850 // (X == 13 || X == 14) --> X - 13 <=u 1
851 // (X != 13 && X != 14) --> X - 13 >u 1
852 // An 'add' is the canonical IR form, so favor that over a 'sub'.
853 Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1)));
854 auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
855 return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1));
856 }
857
858 return nullptr;
859 }
860
861 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
862 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
foldAndOrOfICmpsOfAndWithPow2(ICmpInst * LHS,ICmpInst * RHS,bool JoinedByAnd,Instruction & CxtI)863 Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
864 bool JoinedByAnd,
865 Instruction &CxtI) {
866 ICmpInst::Predicate Pred = LHS->getPredicate();
867 if (Pred != RHS->getPredicate())
868 return nullptr;
869 if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
870 return nullptr;
871 if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
872 return nullptr;
873
874 // TODO support vector splats
875 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
876 ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
877 if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero())
878 return nullptr;
879
880 Value *A, *B, *C, *D;
881 if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) &&
882 match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) {
883 if (A == D || B == D)
884 std::swap(C, D);
885 if (B == C)
886 std::swap(A, B);
887
888 if (A == C &&
889 isKnownToBeAPowerOfTwo(B, false, 0, &CxtI) &&
890 isKnownToBeAPowerOfTwo(D, false, 0, &CxtI)) {
891 Value *Mask = Builder.CreateOr(B, D);
892 Value *Masked = Builder.CreateAnd(A, Mask);
893 auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
894 return Builder.CreateICmp(NewPred, Masked, Mask);
895 }
896 }
897
898 return nullptr;
899 }
900
901 /// Fold (icmp)&(icmp) if possible.
foldAndOfICmps(ICmpInst * LHS,ICmpInst * RHS,Instruction & CxtI)902 Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
903 Instruction &CxtI) {
904 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
905 // if K1 and K2 are a one-bit mask.
906 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, true, CxtI))
907 return V;
908
909 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
910
911 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
912 if (PredicatesFoldable(PredL, PredR)) {
913 if (LHS->getOperand(0) == RHS->getOperand(1) &&
914 LHS->getOperand(1) == RHS->getOperand(0))
915 LHS->swapOperands();
916 if (LHS->getOperand(0) == RHS->getOperand(0) &&
917 LHS->getOperand(1) == RHS->getOperand(1)) {
918 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
919 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
920 bool isSigned = LHS->isSigned() || RHS->isSigned();
921 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
922 }
923 }
924
925 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
926 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
927 return V;
928
929 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
930 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
931 return V;
932
933 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
934 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
935 return V;
936
937 if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
938 return V;
939
940 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
941 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
942 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
943 ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
944 if (!LHSC || !RHSC)
945 return nullptr;
946
947 if (LHSC == RHSC && PredL == PredR) {
948 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
949 // where C is a power of 2 or
950 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
951 if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) ||
952 (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) {
953 Value *NewOr = Builder.CreateOr(LHS0, RHS0);
954 return Builder.CreateICmp(PredL, NewOr, LHSC);
955 }
956 }
957
958 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
959 // where CMAX is the all ones value for the truncated type,
960 // iff the lower bits of C2 and CA are zero.
961 if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
962 RHS->hasOneUse()) {
963 Value *V;
964 ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr;
965
966 // (trunc x) == C1 & (and x, CA) == C2
967 // (and x, CA) == C2 & (trunc x) == C1
968 if (match(RHS0, m_Trunc(m_Value(V))) &&
969 match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
970 SmallC = RHSC;
971 BigC = LHSC;
972 } else if (match(LHS0, m_Trunc(m_Value(V))) &&
973 match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
974 SmallC = LHSC;
975 BigC = RHSC;
976 }
977
978 if (SmallC && BigC) {
979 unsigned BigBitSize = BigC->getType()->getBitWidth();
980 unsigned SmallBitSize = SmallC->getType()->getBitWidth();
981
982 // Check that the low bits are zero.
983 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
984 if ((Low & AndC->getValue()).isNullValue() &&
985 (Low & BigC->getValue()).isNullValue()) {
986 Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue());
987 APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue();
988 Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N);
989 return Builder.CreateICmp(PredL, NewAnd, NewVal);
990 }
991 }
992 }
993
994 // From here on, we only handle:
995 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
996 if (LHS0 != RHS0)
997 return nullptr;
998
999 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
1000 if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
1001 PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
1002 PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
1003 PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
1004 return nullptr;
1005
1006 // We can't fold (ugt x, C) & (sgt x, C2).
1007 if (!PredicatesFoldable(PredL, PredR))
1008 return nullptr;
1009
1010 // Ensure that the larger constant is on the RHS.
1011 bool ShouldSwap;
1012 if (CmpInst::isSigned(PredL) ||
1013 (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
1014 ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
1015 else
1016 ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
1017
1018 if (ShouldSwap) {
1019 std::swap(LHS, RHS);
1020 std::swap(LHSC, RHSC);
1021 std::swap(PredL, PredR);
1022 }
1023
1024 // At this point, we know we have two icmp instructions
1025 // comparing a value against two constants and and'ing the result
1026 // together. Because of the above check, we know that we only have
1027 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
1028 // (from the icmp folding check above), that the two constants
1029 // are not equal and that the larger constant is on the RHS
1030 assert(LHSC != RHSC && "Compares not folded above?");
1031
1032 switch (PredL) {
1033 default:
1034 llvm_unreachable("Unknown integer condition code!");
1035 case ICmpInst::ICMP_NE:
1036 switch (PredR) {
1037 default:
1038 llvm_unreachable("Unknown integer condition code!");
1039 case ICmpInst::ICMP_ULT:
1040 if (LHSC == SubOne(RHSC)) // (X != 13 & X u< 14) -> X < 13
1041 return Builder.CreateICmpULT(LHS0, LHSC);
1042 if (LHSC->isZero()) // (X != 0 & X u< 14) -> X-1 u< 13
1043 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1044 false, true);
1045 break; // (X != 13 & X u< 15) -> no change
1046 case ICmpInst::ICMP_SLT:
1047 if (LHSC == SubOne(RHSC)) // (X != 13 & X s< 14) -> X < 13
1048 return Builder.CreateICmpSLT(LHS0, LHSC);
1049 break; // (X != 13 & X s< 15) -> no change
1050 case ICmpInst::ICMP_NE:
1051 // Potential folds for this case should already be handled.
1052 break;
1053 }
1054 break;
1055 case ICmpInst::ICMP_UGT:
1056 switch (PredR) {
1057 default:
1058 llvm_unreachable("Unknown integer condition code!");
1059 case ICmpInst::ICMP_NE:
1060 if (RHSC == AddOne(LHSC)) // (X u> 13 & X != 14) -> X u> 14
1061 return Builder.CreateICmp(PredL, LHS0, RHSC);
1062 break; // (X u> 13 & X != 15) -> no change
1063 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
1064 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1065 false, true);
1066 }
1067 break;
1068 case ICmpInst::ICMP_SGT:
1069 switch (PredR) {
1070 default:
1071 llvm_unreachable("Unknown integer condition code!");
1072 case ICmpInst::ICMP_NE:
1073 if (RHSC == AddOne(LHSC)) // (X s> 13 & X != 14) -> X s> 14
1074 return Builder.CreateICmp(PredL, LHS0, RHSC);
1075 break; // (X s> 13 & X != 15) -> no change
1076 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
1077 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true,
1078 true);
1079 }
1080 break;
1081 }
1082
1083 return nullptr;
1084 }
1085
foldLogicOfFCmps(FCmpInst * LHS,FCmpInst * RHS,bool IsAnd)1086 Value *InstCombiner::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1087 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1088 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1089 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1090
1091 if (LHS0 == RHS1 && RHS0 == LHS1) {
1092 // Swap RHS operands to match LHS.
1093 PredR = FCmpInst::getSwappedPredicate(PredR);
1094 std::swap(RHS0, RHS1);
1095 }
1096
1097 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1098 // Suppose the relation between x and y is R, where R is one of
1099 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1100 // testing the desired relations.
1101 //
1102 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1103 // bool(R & CC0) && bool(R & CC1)
1104 // = bool((R & CC0) & (R & CC1))
1105 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1106 //
1107 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1108 // bool(R & CC0) || bool(R & CC1)
1109 // = bool((R & CC0) | (R & CC1))
1110 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1111 if (LHS0 == RHS0 && LHS1 == RHS1) {
1112 unsigned FCmpCodeL = getFCmpCode(PredL);
1113 unsigned FCmpCodeR = getFCmpCode(PredR);
1114 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1115 return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1116 }
1117
1118 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1119 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1120 if (LHS0->getType() != RHS0->getType())
1121 return nullptr;
1122
1123 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1124 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1125 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1126 // Ignore the constants because they are obviously not NANs:
1127 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y)
1128 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y)
1129 return Builder.CreateFCmp(PredL, LHS0, RHS0);
1130 }
1131
1132 return nullptr;
1133 }
1134
1135 /// Match De Morgan's Laws:
1136 /// (~A & ~B) == (~(A | B))
1137 /// (~A | ~B) == (~(A & B))
matchDeMorgansLaws(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1138 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1139 InstCombiner::BuilderTy &Builder) {
1140 auto Opcode = I.getOpcode();
1141 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1142 "Trying to match De Morgan's Laws with something other than and/or");
1143
1144 // Flip the logic operation.
1145 Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1146
1147 Value *A, *B;
1148 if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) &&
1149 match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) &&
1150 !IsFreeToInvert(A, A->hasOneUse()) &&
1151 !IsFreeToInvert(B, B->hasOneUse())) {
1152 Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan");
1153 return BinaryOperator::CreateNot(AndOr);
1154 }
1155
1156 return nullptr;
1157 }
1158
shouldOptimizeCast(CastInst * CI)1159 bool InstCombiner::shouldOptimizeCast(CastInst *CI) {
1160 Value *CastSrc = CI->getOperand(0);
1161
1162 // Noop casts and casts of constants should be eliminated trivially.
1163 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1164 return false;
1165
1166 // If this cast is paired with another cast that can be eliminated, we prefer
1167 // to have it eliminated.
1168 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1169 if (isEliminableCastPair(PrecedingCI, CI))
1170 return false;
1171
1172 return true;
1173 }
1174
1175 /// Fold {and,or,xor} (cast X), C.
foldLogicCastConstant(BinaryOperator & Logic,CastInst * Cast,InstCombiner::BuilderTy & Builder)1176 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1177 InstCombiner::BuilderTy &Builder) {
1178 Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1179 if (!C)
1180 return nullptr;
1181
1182 auto LogicOpc = Logic.getOpcode();
1183 Type *DestTy = Logic.getType();
1184 Type *SrcTy = Cast->getSrcTy();
1185
1186 // Move the logic operation ahead of a zext or sext if the constant is
1187 // unchanged in the smaller source type. Performing the logic in a smaller
1188 // type may provide more information to later folds, and the smaller logic
1189 // instruction may be cheaper (particularly in the case of vectors).
1190 Value *X;
1191 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1192 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1193 Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
1194 if (ZextTruncC == C) {
1195 // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1196 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1197 return new ZExtInst(NewOp, DestTy);
1198 }
1199 }
1200
1201 if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1202 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1203 Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
1204 if (SextTruncC == C) {
1205 // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1206 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1207 return new SExtInst(NewOp, DestTy);
1208 }
1209 }
1210
1211 return nullptr;
1212 }
1213
1214 /// Fold {and,or,xor} (cast X), Y.
foldCastedBitwiseLogic(BinaryOperator & I)1215 Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
1216 auto LogicOpc = I.getOpcode();
1217 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1218
1219 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1220 CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1221 if (!Cast0)
1222 return nullptr;
1223
1224 // This must be a cast from an integer or integer vector source type to allow
1225 // transformation of the logic operation to the source type.
1226 Type *DestTy = I.getType();
1227 Type *SrcTy = Cast0->getSrcTy();
1228 if (!SrcTy->isIntOrIntVectorTy())
1229 return nullptr;
1230
1231 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
1232 return Ret;
1233
1234 CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1235 if (!Cast1)
1236 return nullptr;
1237
1238 // Both operands of the logic operation are casts. The casts must be of the
1239 // same type for reduction.
1240 auto CastOpcode = Cast0->getOpcode();
1241 if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
1242 return nullptr;
1243
1244 Value *Cast0Src = Cast0->getOperand(0);
1245 Value *Cast1Src = Cast1->getOperand(0);
1246
1247 // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1248 if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1249 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1250 I.getName());
1251 return CastInst::Create(CastOpcode, NewOp, DestTy);
1252 }
1253
1254 // For now, only 'and'/'or' have optimizations after this.
1255 if (LogicOpc == Instruction::Xor)
1256 return nullptr;
1257
1258 // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1259 // cast is otherwise not optimizable. This happens for vector sexts.
1260 ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1261 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1262 if (ICmp0 && ICmp1) {
1263 Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
1264 : foldOrOfICmps(ICmp0, ICmp1, I);
1265 if (Res)
1266 return CastInst::Create(CastOpcode, Res, DestTy);
1267 return nullptr;
1268 }
1269
1270 // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1271 // cast is otherwise not optimizable. This happens for vector sexts.
1272 FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1273 FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1274 if (FCmp0 && FCmp1)
1275 if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
1276 return CastInst::Create(CastOpcode, R, DestTy);
1277
1278 return nullptr;
1279 }
1280
foldAndToXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1281 static Instruction *foldAndToXor(BinaryOperator &I,
1282 InstCombiner::BuilderTy &Builder) {
1283 assert(I.getOpcode() == Instruction::And);
1284 Value *Op0 = I.getOperand(0);
1285 Value *Op1 = I.getOperand(1);
1286 Value *A, *B;
1287
1288 // Operand complexity canonicalization guarantees that the 'or' is Op0.
1289 // (A | B) & ~(A & B) --> A ^ B
1290 // (A | B) & ~(B & A) --> A ^ B
1291 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1292 m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1293 return BinaryOperator::CreateXor(A, B);
1294
1295 // (A | ~B) & (~A | B) --> ~(A ^ B)
1296 // (A | ~B) & (B | ~A) --> ~(A ^ B)
1297 // (~B | A) & (~A | B) --> ~(A ^ B)
1298 // (~B | A) & (B | ~A) --> ~(A ^ B)
1299 if (Op0->hasOneUse() || Op1->hasOneUse())
1300 if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1301 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1302 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1303
1304 return nullptr;
1305 }
1306
foldOrToXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1307 static Instruction *foldOrToXor(BinaryOperator &I,
1308 InstCombiner::BuilderTy &Builder) {
1309 assert(I.getOpcode() == Instruction::Or);
1310 Value *Op0 = I.getOperand(0);
1311 Value *Op1 = I.getOperand(1);
1312 Value *A, *B;
1313
1314 // Operand complexity canonicalization guarantees that the 'and' is Op0.
1315 // (A & B) | ~(A | B) --> ~(A ^ B)
1316 // (A & B) | ~(B | A) --> ~(A ^ B)
1317 if (Op0->hasOneUse() || Op1->hasOneUse())
1318 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1319 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1320 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1321
1322 // (A & ~B) | (~A & B) --> A ^ B
1323 // (A & ~B) | (B & ~A) --> A ^ B
1324 // (~B & A) | (~A & B) --> A ^ B
1325 // (~B & A) | (B & ~A) --> A ^ B
1326 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1327 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1328 return BinaryOperator::CreateXor(A, B);
1329
1330 return nullptr;
1331 }
1332
1333 /// Return true if a constant shift amount is always less than the specified
1334 /// bit-width. If not, the shift could create poison in the narrower type.
canNarrowShiftAmt(Constant * C,unsigned BitWidth)1335 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1336 if (auto *ScalarC = dyn_cast<ConstantInt>(C))
1337 return ScalarC->getZExtValue() < BitWidth;
1338
1339 if (C->getType()->isVectorTy()) {
1340 // Check each element of a constant vector.
1341 unsigned NumElts = C->getType()->getVectorNumElements();
1342 for (unsigned i = 0; i != NumElts; ++i) {
1343 Constant *Elt = C->getAggregateElement(i);
1344 if (!Elt)
1345 return false;
1346 if (isa<UndefValue>(Elt))
1347 continue;
1348 auto *CI = dyn_cast<ConstantInt>(Elt);
1349 if (!CI || CI->getZExtValue() >= BitWidth)
1350 return false;
1351 }
1352 return true;
1353 }
1354
1355 // The constant is a constant expression or unknown.
1356 return false;
1357 }
1358
1359 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1360 /// a common zext operand: and (binop (zext X), C), (zext X).
narrowMaskedBinOp(BinaryOperator & And)1361 Instruction *InstCombiner::narrowMaskedBinOp(BinaryOperator &And) {
1362 // This transform could also apply to {or, and, xor}, but there are better
1363 // folds for those cases, so we don't expect those patterns here. AShr is not
1364 // handled because it should always be transformed to LShr in this sequence.
1365 // The subtract transform is different because it has a constant on the left.
1366 // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1367 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1368 Constant *C;
1369 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1370 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1371 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1372 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1373 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1374 return nullptr;
1375
1376 Value *X;
1377 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1378 return nullptr;
1379
1380 Type *Ty = And.getType();
1381 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1382 return nullptr;
1383
1384 // If we're narrowing a shift, the shift amount must be safe (less than the
1385 // width) in the narrower type. If the shift amount is greater, instsimplify
1386 // usually handles that case, but we can't guarantee/assert it.
1387 Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1388 if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1389 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1390 return nullptr;
1391
1392 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1393 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1394 Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1395 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1396 : Builder.CreateBinOp(Opc, X, NewC);
1397 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1398 }
1399
1400 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1401 // here. We should standardize that construct where it is needed or choose some
1402 // other way to ensure that commutated variants of patterns are not missed.
visitAnd(BinaryOperator & I)1403 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1404 if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1),
1405 SQ.getWithInstruction(&I)))
1406 return replaceInstUsesWith(I, V);
1407
1408 if (SimplifyAssociativeOrCommutative(I))
1409 return &I;
1410
1411 if (Instruction *X = foldShuffledBinop(I))
1412 return X;
1413
1414 // See if we can simplify any instructions used by the instruction whose sole
1415 // purpose is to compute bits we don't care about.
1416 if (SimplifyDemandedInstructionBits(I))
1417 return &I;
1418
1419 // Do this before using distributive laws to catch simple and/or/not patterns.
1420 if (Instruction *Xor = foldAndToXor(I, Builder))
1421 return Xor;
1422
1423 // (A|B)&(A|C) -> A|(B&C) etc
1424 if (Value *V = SimplifyUsingDistributiveLaws(I))
1425 return replaceInstUsesWith(I, V);
1426
1427 if (Value *V = SimplifyBSwap(I, Builder))
1428 return replaceInstUsesWith(I, V);
1429
1430 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1431 const APInt *C;
1432 if (match(Op1, m_APInt(C))) {
1433 Value *X, *Y;
1434 if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
1435 C->isOneValue()) {
1436 // (1 << X) & 1 --> zext(X == 0)
1437 // (1 >> X) & 1 --> zext(X == 0)
1438 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0));
1439 return new ZExtInst(IsZero, I.getType());
1440 }
1441
1442 const APInt *XorC;
1443 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
1444 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1445 Constant *NewC = ConstantInt::get(I.getType(), *C & *XorC);
1446 Value *And = Builder.CreateAnd(X, Op1);
1447 And->takeName(Op0);
1448 return BinaryOperator::CreateXor(And, NewC);
1449 }
1450
1451 const APInt *OrC;
1452 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
1453 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
1454 // NOTE: This reduces the number of bits set in the & mask, which
1455 // can expose opportunities for store narrowing for scalars.
1456 // NOTE: SimplifyDemandedBits should have already removed bits from C1
1457 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
1458 // above, but this feels safer.
1459 APInt Together = *C & *OrC;
1460 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(),
1461 Together ^ *C));
1462 And->takeName(Op0);
1463 return BinaryOperator::CreateOr(And, ConstantInt::get(I.getType(),
1464 Together));
1465 }
1466
1467 // If the mask is only needed on one incoming arm, push the 'and' op up.
1468 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
1469 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
1470 APInt NotAndMask(~(*C));
1471 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
1472 if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
1473 // Not masking anything out for the LHS, move mask to RHS.
1474 // and ({x}or X, Y), C --> {x}or X, (and Y, C)
1475 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
1476 return BinaryOperator::Create(BinOp, X, NewRHS);
1477 }
1478 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
1479 // Not masking anything out for the RHS, move mask to LHS.
1480 // and ({x}or X, Y), C --> {x}or (and X, C), Y
1481 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
1482 return BinaryOperator::Create(BinOp, NewLHS, Y);
1483 }
1484 }
1485
1486 }
1487
1488 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1489 const APInt &AndRHSMask = AndRHS->getValue();
1490
1491 // Optimize a variety of ((val OP C1) & C2) combinations...
1492 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1493 // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
1494 // of X and OP behaves well when given trunc(C1) and X.
1495 switch (Op0I->getOpcode()) {
1496 default:
1497 break;
1498 case Instruction::Xor:
1499 case Instruction::Or:
1500 case Instruction::Mul:
1501 case Instruction::Add:
1502 case Instruction::Sub:
1503 Value *X;
1504 ConstantInt *C1;
1505 if (match(Op0I, m_c_BinOp(m_ZExt(m_Value(X)), m_ConstantInt(C1)))) {
1506 if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) {
1507 auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType());
1508 Value *BinOp;
1509 Value *Op0LHS = Op0I->getOperand(0);
1510 if (isa<ZExtInst>(Op0LHS))
1511 BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1);
1512 else
1513 BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X);
1514 auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType());
1515 auto *And = Builder.CreateAnd(BinOp, TruncC2);
1516 return new ZExtInst(And, I.getType());
1517 }
1518 }
1519 }
1520
1521 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1522 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1523 return Res;
1524 }
1525
1526 // If this is an integer truncation, and if the source is an 'and' with
1527 // immediate, transform it. This frequently occurs for bitfield accesses.
1528 {
1529 Value *X = nullptr; ConstantInt *YC = nullptr;
1530 if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1531 // Change: and (trunc (and X, YC) to T), C2
1532 // into : and (trunc X to T), trunc(YC) & C2
1533 // This will fold the two constants together, which may allow
1534 // other simplifications.
1535 Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk");
1536 Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1537 C3 = ConstantExpr::getAnd(C3, AndRHS);
1538 return BinaryOperator::CreateAnd(NewCast, C3);
1539 }
1540 }
1541 }
1542
1543 if (Instruction *Z = narrowMaskedBinOp(I))
1544 return Z;
1545
1546 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
1547 return FoldedLogic;
1548
1549 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
1550 return DeMorgan;
1551
1552 {
1553 Value *A, *B, *C;
1554 // A & (A ^ B) --> A & ~B
1555 if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
1556 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
1557 // (A ^ B) & A --> A & ~B
1558 if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
1559 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
1560
1561 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1562 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
1563 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
1564 if (Op1->hasOneUse() || IsFreeToInvert(C, C->hasOneUse()))
1565 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
1566
1567 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1568 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
1569 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
1570 if (Op0->hasOneUse() || IsFreeToInvert(C, C->hasOneUse()))
1571 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
1572
1573 // (A | B) & ((~A) ^ B) -> (A & B)
1574 // (A | B) & (B ^ (~A)) -> (A & B)
1575 // (B | A) & ((~A) ^ B) -> (A & B)
1576 // (B | A) & (B ^ (~A)) -> (A & B)
1577 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1578 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1579 return BinaryOperator::CreateAnd(A, B);
1580
1581 // ((~A) ^ B) & (A | B) -> (A & B)
1582 // ((~A) ^ B) & (B | A) -> (A & B)
1583 // (B ^ (~A)) & (A | B) -> (A & B)
1584 // (B ^ (~A)) & (B | A) -> (A & B)
1585 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1586 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
1587 return BinaryOperator::CreateAnd(A, B);
1588 }
1589
1590 {
1591 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
1592 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
1593 if (LHS && RHS)
1594 if (Value *Res = foldAndOfICmps(LHS, RHS, I))
1595 return replaceInstUsesWith(I, Res);
1596
1597 // TODO: Make this recursive; it's a little tricky because an arbitrary
1598 // number of 'and' instructions might have to be created.
1599 Value *X, *Y;
1600 if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1601 if (auto *Cmp = dyn_cast<ICmpInst>(X))
1602 if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1603 return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1604 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1605 if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1606 return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1607 }
1608 if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1609 if (auto *Cmp = dyn_cast<ICmpInst>(X))
1610 if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1611 return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1612 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1613 if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1614 return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1615 }
1616 }
1617
1618 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1619 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1620 if (Value *Res = foldLogicOfFCmps(LHS, RHS, true))
1621 return replaceInstUsesWith(I, Res);
1622
1623 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
1624 return CastedAnd;
1625
1626 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
1627 Value *A;
1628 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
1629 A->getType()->isIntOrIntVectorTy(1))
1630 return SelectInst::Create(A, Op1, Constant::getNullValue(I.getType()));
1631 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
1632 A->getType()->isIntOrIntVectorTy(1))
1633 return SelectInst::Create(A, Op0, Constant::getNullValue(I.getType()));
1634
1635 return nullptr;
1636 }
1637
1638 /// Given an OR instruction, check to see if this is a bswap idiom. If so,
1639 /// insert the new intrinsic and return it.
MatchBSwap(BinaryOperator & I)1640 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
1641 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1642
1643 // Look through zero extends.
1644 if (Instruction *Ext = dyn_cast<ZExtInst>(Op0))
1645 Op0 = Ext->getOperand(0);
1646
1647 if (Instruction *Ext = dyn_cast<ZExtInst>(Op1))
1648 Op1 = Ext->getOperand(0);
1649
1650 // (A | B) | C and A | (B | C) -> bswap if possible.
1651 bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
1652 match(Op1, m_Or(m_Value(), m_Value()));
1653
1654 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
1655 bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1656 match(Op1, m_LogicalShift(m_Value(), m_Value()));
1657
1658 // (A & B) | (C & D) -> bswap if possible.
1659 bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
1660 match(Op1, m_And(m_Value(), m_Value()));
1661
1662 // (A << B) | (C & D) -> bswap if possible.
1663 // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a
1664 // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935,
1665 // C2 = 8 for i32).
1666 // This pattern can occur when the operands of the 'or' are not canonicalized
1667 // for some reason (not having only one use, for example).
1668 bool OrOfAndAndSh = (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1669 match(Op1, m_And(m_Value(), m_Value()))) ||
1670 (match(Op0, m_And(m_Value(), m_Value())) &&
1671 match(Op1, m_LogicalShift(m_Value(), m_Value())));
1672
1673 if (!OrOfOrs && !OrOfShifts && !OrOfAnds && !OrOfAndAndSh)
1674 return nullptr;
1675
1676 SmallVector<Instruction*, 4> Insts;
1677 if (!recognizeBSwapOrBitReverseIdiom(&I, true, false, Insts))
1678 return nullptr;
1679 Instruction *LastInst = Insts.pop_back_val();
1680 LastInst->removeFromParent();
1681
1682 for (auto *Inst : Insts)
1683 Worklist.Add(Inst);
1684 return LastInst;
1685 }
1686
1687 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
areInverseVectorBitmasks(Constant * C1,Constant * C2)1688 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
1689 unsigned NumElts = C1->getType()->getVectorNumElements();
1690 for (unsigned i = 0; i != NumElts; ++i) {
1691 Constant *EltC1 = C1->getAggregateElement(i);
1692 Constant *EltC2 = C2->getAggregateElement(i);
1693 if (!EltC1 || !EltC2)
1694 return false;
1695
1696 // One element must be all ones, and the other must be all zeros.
1697 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
1698 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
1699 return false;
1700 }
1701 return true;
1702 }
1703
1704 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
1705 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
1706 /// B, it can be used as the condition operand of a select instruction.
getSelectCondition(Value * A,Value * B,InstCombiner::BuilderTy & Builder)1707 static Value *getSelectCondition(Value *A, Value *B,
1708 InstCombiner::BuilderTy &Builder) {
1709 // If these are scalars or vectors of i1, A can be used directly.
1710 Type *Ty = A->getType();
1711 if (match(A, m_Not(m_Specific(B))) && Ty->isIntOrIntVectorTy(1))
1712 return A;
1713
1714 // If A and B are sign-extended, look through the sexts to find the booleans.
1715 Value *Cond;
1716 Value *NotB;
1717 if (match(A, m_SExt(m_Value(Cond))) &&
1718 Cond->getType()->isIntOrIntVectorTy(1) &&
1719 match(B, m_OneUse(m_Not(m_Value(NotB))))) {
1720 NotB = peekThroughBitcast(NotB, true);
1721 if (match(NotB, m_SExt(m_Specific(Cond))))
1722 return Cond;
1723 }
1724
1725 // All scalar (and most vector) possibilities should be handled now.
1726 // Try more matches that only apply to non-splat constant vectors.
1727 if (!Ty->isVectorTy())
1728 return nullptr;
1729
1730 // If both operands are constants, see if the constants are inverse bitmasks.
1731 Constant *AC, *BC;
1732 if (match(A, m_Constant(AC)) && match(B, m_Constant(BC)) &&
1733 areInverseVectorBitmasks(AC, BC)) {
1734 return Builder.CreateZExtOrTrunc(AC, CmpInst::makeCmpResultType(Ty));
1735 }
1736
1737 // If both operands are xor'd with constants using the same sexted boolean
1738 // operand, see if the constants are inverse bitmasks.
1739 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AC)))) &&
1740 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BC)))) &&
1741 Cond->getType()->isIntOrIntVectorTy(1) &&
1742 areInverseVectorBitmasks(AC, BC)) {
1743 AC = ConstantExpr::getTrunc(AC, CmpInst::makeCmpResultType(Ty));
1744 return Builder.CreateXor(Cond, AC);
1745 }
1746 return nullptr;
1747 }
1748
1749 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
1750 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
matchSelectFromAndOr(Value * A,Value * C,Value * B,Value * D,InstCombiner::BuilderTy & Builder)1751 static Value *matchSelectFromAndOr(Value *A, Value *C, Value *B, Value *D,
1752 InstCombiner::BuilderTy &Builder) {
1753 // The potential condition of the select may be bitcasted. In that case, look
1754 // through its bitcast and the corresponding bitcast of the 'not' condition.
1755 Type *OrigType = A->getType();
1756 A = peekThroughBitcast(A, true);
1757 B = peekThroughBitcast(B, true);
1758
1759 if (Value *Cond = getSelectCondition(A, B, Builder)) {
1760 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
1761 // The bitcasts will either all exist or all not exist. The builder will
1762 // not create unnecessary casts if the types already match.
1763 Value *BitcastC = Builder.CreateBitCast(C, A->getType());
1764 Value *BitcastD = Builder.CreateBitCast(D, A->getType());
1765 Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
1766 return Builder.CreateBitCast(Select, OrigType);
1767 }
1768
1769 return nullptr;
1770 }
1771
1772 /// Fold (icmp)|(icmp) if possible.
foldOrOfICmps(ICmpInst * LHS,ICmpInst * RHS,Instruction & CxtI)1773 Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
1774 Instruction &CxtI) {
1775 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
1776 // if K1 and K2 are a one-bit mask.
1777 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, false, CxtI))
1778 return V;
1779
1780 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1781
1782 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
1783 ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
1784
1785 // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
1786 // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
1787 // The original condition actually refers to the following two ranges:
1788 // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
1789 // We can fold these two ranges if:
1790 // 1) C1 and C2 is unsigned greater than C3.
1791 // 2) The two ranges are separated.
1792 // 3) C1 ^ C2 is one-bit mask.
1793 // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
1794 // This implies all values in the two ranges differ by exactly one bit.
1795
1796 if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
1797 PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
1798 LHSC->getType() == RHSC->getType() &&
1799 LHSC->getValue() == (RHSC->getValue())) {
1800
1801 Value *LAdd = LHS->getOperand(0);
1802 Value *RAdd = RHS->getOperand(0);
1803
1804 Value *LAddOpnd, *RAddOpnd;
1805 ConstantInt *LAddC, *RAddC;
1806 if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) &&
1807 match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) &&
1808 LAddC->getValue().ugt(LHSC->getValue()) &&
1809 RAddC->getValue().ugt(LHSC->getValue())) {
1810
1811 APInt DiffC = LAddC->getValue() ^ RAddC->getValue();
1812 if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) {
1813 ConstantInt *MaxAddC = nullptr;
1814 if (LAddC->getValue().ult(RAddC->getValue()))
1815 MaxAddC = RAddC;
1816 else
1817 MaxAddC = LAddC;
1818
1819 APInt RRangeLow = -RAddC->getValue();
1820 APInt RRangeHigh = RRangeLow + LHSC->getValue();
1821 APInt LRangeLow = -LAddC->getValue();
1822 APInt LRangeHigh = LRangeLow + LHSC->getValue();
1823 APInt LowRangeDiff = RRangeLow ^ LRangeLow;
1824 APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
1825 APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
1826 : RRangeLow - LRangeLow;
1827
1828 if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
1829 RangeDiff.ugt(LHSC->getValue())) {
1830 Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC);
1831
1832 Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC);
1833 Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC);
1834 return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC);
1835 }
1836 }
1837 }
1838 }
1839
1840 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1841 if (PredicatesFoldable(PredL, PredR)) {
1842 if (LHS->getOperand(0) == RHS->getOperand(1) &&
1843 LHS->getOperand(1) == RHS->getOperand(0))
1844 LHS->swapOperands();
1845 if (LHS->getOperand(0) == RHS->getOperand(0) &&
1846 LHS->getOperand(1) == RHS->getOperand(1)) {
1847 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1848 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1849 bool isSigned = LHS->isSigned() || RHS->isSigned();
1850 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
1851 }
1852 }
1853
1854 // handle (roughly):
1855 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1856 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
1857 return V;
1858
1859 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
1860 if (LHS->hasOneUse() || RHS->hasOneUse()) {
1861 // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
1862 // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
1863 Value *A = nullptr, *B = nullptr;
1864 if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) {
1865 B = LHS0;
1866 if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1))
1867 A = RHS0;
1868 else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
1869 A = RHS->getOperand(1);
1870 }
1871 // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
1872 // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
1873 else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) {
1874 B = RHS0;
1875 if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1))
1876 A = LHS0;
1877 else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0)
1878 A = LHS->getOperand(1);
1879 }
1880 if (A && B)
1881 return Builder.CreateICmp(
1882 ICmpInst::ICMP_UGE,
1883 Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
1884 }
1885
1886 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
1887 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
1888 return V;
1889
1890 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
1891 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
1892 return V;
1893
1894 if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
1895 return V;
1896
1897 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1898 if (!LHSC || !RHSC)
1899 return nullptr;
1900
1901 if (LHSC == RHSC && PredL == PredR) {
1902 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1903 if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) {
1904 Value *NewOr = Builder.CreateOr(LHS0, RHS0);
1905 return Builder.CreateICmp(PredL, NewOr, LHSC);
1906 }
1907 }
1908
1909 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
1910 // iff C2 + CA == C1.
1911 if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) {
1912 ConstantInt *AddC;
1913 if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC))))
1914 if (RHSC->getValue() + AddC->getValue() == LHSC->getValue())
1915 return Builder.CreateICmpULE(LHS0, LHSC);
1916 }
1917
1918 // From here on, we only handle:
1919 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1920 if (LHS0 != RHS0)
1921 return nullptr;
1922
1923 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
1924 if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
1925 PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
1926 PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
1927 PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
1928 return nullptr;
1929
1930 // We can't fold (ugt x, C) | (sgt x, C2).
1931 if (!PredicatesFoldable(PredL, PredR))
1932 return nullptr;
1933
1934 // Ensure that the larger constant is on the RHS.
1935 bool ShouldSwap;
1936 if (CmpInst::isSigned(PredL) ||
1937 (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
1938 ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
1939 else
1940 ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
1941
1942 if (ShouldSwap) {
1943 std::swap(LHS, RHS);
1944 std::swap(LHSC, RHSC);
1945 std::swap(PredL, PredR);
1946 }
1947
1948 // At this point, we know we have two icmp instructions
1949 // comparing a value against two constants and or'ing the result
1950 // together. Because of the above check, we know that we only have
1951 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1952 // icmp folding check above), that the two constants are not
1953 // equal.
1954 assert(LHSC != RHSC && "Compares not folded above?");
1955
1956 switch (PredL) {
1957 default:
1958 llvm_unreachable("Unknown integer condition code!");
1959 case ICmpInst::ICMP_EQ:
1960 switch (PredR) {
1961 default:
1962 llvm_unreachable("Unknown integer condition code!");
1963 case ICmpInst::ICMP_EQ:
1964 // Potential folds for this case should already be handled.
1965 break;
1966 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
1967 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
1968 break;
1969 }
1970 break;
1971 case ICmpInst::ICMP_ULT:
1972 switch (PredR) {
1973 default:
1974 llvm_unreachable("Unknown integer condition code!");
1975 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
1976 break;
1977 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
1978 assert(!RHSC->isMaxValue(false) && "Missed icmp simplification");
1979 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1,
1980 false, false);
1981 }
1982 break;
1983 case ICmpInst::ICMP_SLT:
1984 switch (PredR) {
1985 default:
1986 llvm_unreachable("Unknown integer condition code!");
1987 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
1988 break;
1989 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
1990 assert(!RHSC->isMaxValue(true) && "Missed icmp simplification");
1991 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true,
1992 false);
1993 }
1994 break;
1995 }
1996 return nullptr;
1997 }
1998
1999 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2000 // here. We should standardize that construct where it is needed or choose some
2001 // other way to ensure that commutated variants of patterns are not missed.
visitOr(BinaryOperator & I)2002 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
2003 if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1),
2004 SQ.getWithInstruction(&I)))
2005 return replaceInstUsesWith(I, V);
2006
2007 if (SimplifyAssociativeOrCommutative(I))
2008 return &I;
2009
2010 if (Instruction *X = foldShuffledBinop(I))
2011 return X;
2012
2013 // See if we can simplify any instructions used by the instruction whose sole
2014 // purpose is to compute bits we don't care about.
2015 if (SimplifyDemandedInstructionBits(I))
2016 return &I;
2017
2018 // Do this before using distributive laws to catch simple and/or/not patterns.
2019 if (Instruction *Xor = foldOrToXor(I, Builder))
2020 return Xor;
2021
2022 // (A&B)|(A&C) -> A&(B|C) etc
2023 if (Value *V = SimplifyUsingDistributiveLaws(I))
2024 return replaceInstUsesWith(I, V);
2025
2026 if (Value *V = SimplifyBSwap(I, Builder))
2027 return replaceInstUsesWith(I, V);
2028
2029 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2030 return FoldedLogic;
2031
2032 // Given an OR instruction, check to see if this is a bswap.
2033 if (Instruction *BSwap = MatchBSwap(I))
2034 return BSwap;
2035
2036 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2037 {
2038 Value *A;
2039 const APInt *C;
2040 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
2041 if (match(Op0, m_OneUse(m_Xor(m_Value(A), m_APInt(C)))) &&
2042 MaskedValueIsZero(Op1, *C, 0, &I)) {
2043 Value *NOr = Builder.CreateOr(A, Op1);
2044 NOr->takeName(Op0);
2045 return BinaryOperator::CreateXor(NOr,
2046 ConstantInt::get(NOr->getType(), *C));
2047 }
2048
2049 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
2050 if (match(Op1, m_OneUse(m_Xor(m_Value(A), m_APInt(C)))) &&
2051 MaskedValueIsZero(Op0, *C, 0, &I)) {
2052 Value *NOr = Builder.CreateOr(A, Op0);
2053 NOr->takeName(Op0);
2054 return BinaryOperator::CreateXor(NOr,
2055 ConstantInt::get(NOr->getType(), *C));
2056 }
2057 }
2058
2059 Value *A, *B;
2060
2061 // (A & C)|(B & D)
2062 Value *C = nullptr, *D = nullptr;
2063 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2064 match(Op1, m_And(m_Value(B), m_Value(D)))) {
2065 ConstantInt *C1 = dyn_cast<ConstantInt>(C);
2066 ConstantInt *C2 = dyn_cast<ConstantInt>(D);
2067 if (C1 && C2) { // (A & C1)|(B & C2)
2068 Value *V1 = nullptr, *V2 = nullptr;
2069 if ((C1->getValue() & C2->getValue()).isNullValue()) {
2070 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2071 // iff (C1&C2) == 0 and (N&~C1) == 0
2072 if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2073 ((V1 == B &&
2074 MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
2075 (V2 == B &&
2076 MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V)
2077 return BinaryOperator::CreateAnd(A,
2078 Builder.getInt(C1->getValue()|C2->getValue()));
2079 // Or commutes, try both ways.
2080 if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2081 ((V1 == A &&
2082 MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
2083 (V2 == A &&
2084 MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V)
2085 return BinaryOperator::CreateAnd(B,
2086 Builder.getInt(C1->getValue()|C2->getValue()));
2087
2088 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2089 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2090 ConstantInt *C3 = nullptr, *C4 = nullptr;
2091 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2092 (C3->getValue() & ~C1->getValue()).isNullValue() &&
2093 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2094 (C4->getValue() & ~C2->getValue()).isNullValue()) {
2095 V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2096 return BinaryOperator::CreateAnd(V2,
2097 Builder.getInt(C1->getValue()|C2->getValue()));
2098 }
2099 }
2100
2101 if (C1->getValue() == ~C2->getValue()) {
2102 Value *X;
2103
2104 // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2
2105 if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
2106 return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B);
2107 // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2
2108 if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
2109 return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A);
2110
2111 // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2
2112 if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
2113 return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B);
2114 // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2
2115 if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
2116 return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A);
2117 }
2118 }
2119
2120 // Don't try to form a select if it's unlikely that we'll get rid of at
2121 // least one of the operands. A select is generally more expensive than the
2122 // 'or' that it is replacing.
2123 if (Op0->hasOneUse() || Op1->hasOneUse()) {
2124 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
2125 if (Value *V = matchSelectFromAndOr(A, C, B, D, Builder))
2126 return replaceInstUsesWith(I, V);
2127 if (Value *V = matchSelectFromAndOr(A, C, D, B, Builder))
2128 return replaceInstUsesWith(I, V);
2129 if (Value *V = matchSelectFromAndOr(C, A, B, D, Builder))
2130 return replaceInstUsesWith(I, V);
2131 if (Value *V = matchSelectFromAndOr(C, A, D, B, Builder))
2132 return replaceInstUsesWith(I, V);
2133 if (Value *V = matchSelectFromAndOr(B, D, A, C, Builder))
2134 return replaceInstUsesWith(I, V);
2135 if (Value *V = matchSelectFromAndOr(B, D, C, A, Builder))
2136 return replaceInstUsesWith(I, V);
2137 if (Value *V = matchSelectFromAndOr(D, B, A, C, Builder))
2138 return replaceInstUsesWith(I, V);
2139 if (Value *V = matchSelectFromAndOr(D, B, C, A, Builder))
2140 return replaceInstUsesWith(I, V);
2141 }
2142 }
2143
2144 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2145 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2146 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2147 return BinaryOperator::CreateOr(Op0, C);
2148
2149 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2150 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2151 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2152 return BinaryOperator::CreateOr(Op1, C);
2153
2154 // ((B | C) & A) | B -> B | (A & C)
2155 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2156 return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
2157
2158 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2159 return DeMorgan;
2160
2161 // Canonicalize xor to the RHS.
2162 bool SwappedForXor = false;
2163 if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2164 std::swap(Op0, Op1);
2165 SwappedForXor = true;
2166 }
2167
2168 // A | ( A ^ B) -> A | B
2169 // A | (~A ^ B) -> A | ~B
2170 // (A & B) | (A ^ B)
2171 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2172 if (Op0 == A || Op0 == B)
2173 return BinaryOperator::CreateOr(A, B);
2174
2175 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2176 match(Op0, m_And(m_Specific(B), m_Specific(A))))
2177 return BinaryOperator::CreateOr(A, B);
2178
2179 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2180 Value *Not = Builder.CreateNot(B, B->getName() + ".not");
2181 return BinaryOperator::CreateOr(Not, Op0);
2182 }
2183 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2184 Value *Not = Builder.CreateNot(A, A->getName() + ".not");
2185 return BinaryOperator::CreateOr(Not, Op0);
2186 }
2187 }
2188
2189 // A | ~(A | B) -> A | ~B
2190 // A | ~(A ^ B) -> A | ~B
2191 if (match(Op1, m_Not(m_Value(A))))
2192 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2193 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2194 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2195 B->getOpcode() == Instruction::Xor)) {
2196 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2197 B->getOperand(0);
2198 Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
2199 return BinaryOperator::CreateOr(Not, Op0);
2200 }
2201
2202 if (SwappedForXor)
2203 std::swap(Op0, Op1);
2204
2205 {
2206 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2207 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2208 if (LHS && RHS)
2209 if (Value *Res = foldOrOfICmps(LHS, RHS, I))
2210 return replaceInstUsesWith(I, Res);
2211
2212 // TODO: Make this recursive; it's a little tricky because an arbitrary
2213 // number of 'or' instructions might have to be created.
2214 Value *X, *Y;
2215 if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2216 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2217 if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2218 return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2219 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2220 if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2221 return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2222 }
2223 if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2224 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2225 if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2226 return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2227 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2228 if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2229 return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2230 }
2231 }
2232
2233 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2234 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2235 if (Value *Res = foldLogicOfFCmps(LHS, RHS, false))
2236 return replaceInstUsesWith(I, Res);
2237
2238 if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
2239 return CastedOr;
2240
2241 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
2242 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2243 A->getType()->isIntOrIntVectorTy(1))
2244 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2245 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2246 A->getType()->isIntOrIntVectorTy(1))
2247 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2248
2249 // Note: If we've gotten to the point of visiting the outer OR, then the
2250 // inner one couldn't be simplified. If it was a constant, then it won't
2251 // be simplified by a later pass either, so we try swapping the inner/outer
2252 // ORs in the hopes that we'll be able to simplify it this way.
2253 // (X|C) | V --> (X|V) | C
2254 ConstantInt *C1;
2255 if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2256 match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2257 Value *Inner = Builder.CreateOr(A, Op1);
2258 Inner->takeName(Op0);
2259 return BinaryOperator::CreateOr(Inner, C1);
2260 }
2261
2262 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2263 // Since this OR statement hasn't been optimized further yet, we hope
2264 // that this transformation will allow the new ORs to be optimized.
2265 {
2266 Value *X = nullptr, *Y = nullptr;
2267 if (Op0->hasOneUse() && Op1->hasOneUse() &&
2268 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2269 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2270 Value *orTrue = Builder.CreateOr(A, C);
2271 Value *orFalse = Builder.CreateOr(B, D);
2272 return SelectInst::Create(X, orTrue, orFalse);
2273 }
2274 }
2275
2276 return nullptr;
2277 }
2278
2279 /// A ^ B can be specified using other logic ops in a variety of patterns. We
2280 /// can fold these early and efficiently by morphing an existing instruction.
foldXorToXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)2281 static Instruction *foldXorToXor(BinaryOperator &I,
2282 InstCombiner::BuilderTy &Builder) {
2283 assert(I.getOpcode() == Instruction::Xor);
2284 Value *Op0 = I.getOperand(0);
2285 Value *Op1 = I.getOperand(1);
2286 Value *A, *B;
2287
2288 // There are 4 commuted variants for each of the basic patterns.
2289
2290 // (A & B) ^ (A | B) -> A ^ B
2291 // (A & B) ^ (B | A) -> A ^ B
2292 // (A | B) ^ (A & B) -> A ^ B
2293 // (A | B) ^ (B & A) -> A ^ B
2294 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
2295 m_c_Or(m_Deferred(A), m_Deferred(B))))) {
2296 I.setOperand(0, A);
2297 I.setOperand(1, B);
2298 return &I;
2299 }
2300
2301 // (A | ~B) ^ (~A | B) -> A ^ B
2302 // (~B | A) ^ (~A | B) -> A ^ B
2303 // (~A | B) ^ (A | ~B) -> A ^ B
2304 // (B | ~A) ^ (A | ~B) -> A ^ B
2305 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
2306 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) {
2307 I.setOperand(0, A);
2308 I.setOperand(1, B);
2309 return &I;
2310 }
2311
2312 // (A & ~B) ^ (~A & B) -> A ^ B
2313 // (~B & A) ^ (~A & B) -> A ^ B
2314 // (~A & B) ^ (A & ~B) -> A ^ B
2315 // (B & ~A) ^ (A & ~B) -> A ^ B
2316 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
2317 m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) {
2318 I.setOperand(0, A);
2319 I.setOperand(1, B);
2320 return &I;
2321 }
2322
2323 // For the remaining cases we need to get rid of one of the operands.
2324 if (!Op0->hasOneUse() && !Op1->hasOneUse())
2325 return nullptr;
2326
2327 // (A | B) ^ ~(A & B) -> ~(A ^ B)
2328 // (A | B) ^ ~(B & A) -> ~(A ^ B)
2329 // (A & B) ^ ~(A | B) -> ~(A ^ B)
2330 // (A & B) ^ ~(B | A) -> ~(A ^ B)
2331 // Complexity sorting ensures the not will be on the right side.
2332 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
2333 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
2334 (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2335 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
2336 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
2337
2338 return nullptr;
2339 }
2340
foldXorOfICmps(ICmpInst * LHS,ICmpInst * RHS)2341 Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
2342 if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2343 if (LHS->getOperand(0) == RHS->getOperand(1) &&
2344 LHS->getOperand(1) == RHS->getOperand(0))
2345 LHS->swapOperands();
2346 if (LHS->getOperand(0) == RHS->getOperand(0) &&
2347 LHS->getOperand(1) == RHS->getOperand(1)) {
2348 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2349 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2350 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2351 bool isSigned = LHS->isSigned() || RHS->isSigned();
2352 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
2353 }
2354 }
2355
2356 // TODO: This can be generalized to compares of non-signbits using
2357 // decomposeBitTestICmp(). It could be enhanced more by using (something like)
2358 // foldLogOpOfMaskedICmps().
2359 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2360 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
2361 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
2362 if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
2363 LHS0->getType() == RHS0->getType()) {
2364 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
2365 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0
2366 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2367 PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) ||
2368 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2369 PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) {
2370 Value *Zero = ConstantInt::getNullValue(LHS0->getType());
2371 return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero);
2372 }
2373 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1
2374 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1
2375 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2376 PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) ||
2377 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2378 PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) {
2379 Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType());
2380 return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne);
2381 }
2382 }
2383
2384 // Instead of trying to imitate the folds for and/or, decompose this 'xor'
2385 // into those logic ops. That is, try to turn this into an and-of-icmps
2386 // because we have many folds for that pattern.
2387 //
2388 // This is based on a truth table definition of xor:
2389 // X ^ Y --> (X | Y) & !(X & Y)
2390 if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
2391 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
2392 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
2393 if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
2394 // TODO: Independently handle cases where the 'and' side is a constant.
2395 if (OrICmp == LHS && AndICmp == RHS && RHS->hasOneUse()) {
2396 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS
2397 RHS->setPredicate(RHS->getInversePredicate());
2398 return Builder.CreateAnd(LHS, RHS);
2399 }
2400 if (OrICmp == RHS && AndICmp == LHS && LHS->hasOneUse()) {
2401 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS
2402 LHS->setPredicate(LHS->getInversePredicate());
2403 return Builder.CreateAnd(LHS, RHS);
2404 }
2405 }
2406 }
2407
2408 return nullptr;
2409 }
2410
2411 /// If we have a masked merge, in the canonical form of:
2412 /// (assuming that A only has one use.)
2413 /// | A | |B|
2414 /// ((x ^ y) & M) ^ y
2415 /// | D |
2416 /// * If M is inverted:
2417 /// | D |
2418 /// ((x ^ y) & ~M) ^ y
2419 /// We can canonicalize by swapping the final xor operand
2420 /// to eliminate the 'not' of the mask.
2421 /// ((x ^ y) & M) ^ x
2422 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
2423 /// because that shortens the dependency chain and improves analysis:
2424 /// (x & M) | (y & ~M)
visitMaskedMerge(BinaryOperator & I,InstCombiner::BuilderTy & Builder)2425 static Instruction *visitMaskedMerge(BinaryOperator &I,
2426 InstCombiner::BuilderTy &Builder) {
2427 Value *B, *X, *D;
2428 Value *M;
2429 if (!match(&I, m_c_Xor(m_Value(B),
2430 m_OneUse(m_c_And(
2431 m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
2432 m_Value(D)),
2433 m_Value(M))))))
2434 return nullptr;
2435
2436 Value *NotM;
2437 if (match(M, m_Not(m_Value(NotM)))) {
2438 // De-invert the mask and swap the value in B part.
2439 Value *NewA = Builder.CreateAnd(D, NotM);
2440 return BinaryOperator::CreateXor(NewA, X);
2441 }
2442
2443 Constant *C;
2444 if (D->hasOneUse() && match(M, m_Constant(C))) {
2445 // Unfold.
2446 Value *LHS = Builder.CreateAnd(X, C);
2447 Value *NotC = Builder.CreateNot(C);
2448 Value *RHS = Builder.CreateAnd(B, NotC);
2449 return BinaryOperator::CreateOr(LHS, RHS);
2450 }
2451
2452 return nullptr;
2453 }
2454
2455 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2456 // here. We should standardize that construct where it is needed or choose some
2457 // other way to ensure that commutated variants of patterns are not missed.
visitXor(BinaryOperator & I)2458 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2459 if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1),
2460 SQ.getWithInstruction(&I)))
2461 return replaceInstUsesWith(I, V);
2462
2463 if (SimplifyAssociativeOrCommutative(I))
2464 return &I;
2465
2466 if (Instruction *X = foldShuffledBinop(I))
2467 return X;
2468
2469 if (Instruction *NewXor = foldXorToXor(I, Builder))
2470 return NewXor;
2471
2472 // (A&B)^(A&C) -> A&(B^C) etc
2473 if (Value *V = SimplifyUsingDistributiveLaws(I))
2474 return replaceInstUsesWith(I, V);
2475
2476 // See if we can simplify any instructions used by the instruction whose sole
2477 // purpose is to compute bits we don't care about.
2478 if (SimplifyDemandedInstructionBits(I))
2479 return &I;
2480
2481 if (Value *V = SimplifyBSwap(I, Builder))
2482 return replaceInstUsesWith(I, V);
2483
2484 // A^B --> A|B iff A and B have no bits set in common.
2485 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2486 if (haveNoCommonBitsSet(Op0, Op1, DL, &AC, &I, &DT))
2487 return BinaryOperator::CreateOr(Op0, Op1);
2488
2489 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
2490 Value *X, *Y;
2491
2492 // We must eliminate the and/or (one-use) for these transforms to not increase
2493 // the instruction count.
2494 // ~(~X & Y) --> (X | ~Y)
2495 // ~(Y & ~X) --> (X | ~Y)
2496 if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) {
2497 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
2498 return BinaryOperator::CreateOr(X, NotY);
2499 }
2500 // ~(~X | Y) --> (X & ~Y)
2501 // ~(Y | ~X) --> (X & ~Y)
2502 if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) {
2503 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
2504 return BinaryOperator::CreateAnd(X, NotY);
2505 }
2506
2507 if (Instruction *Xor = visitMaskedMerge(I, Builder))
2508 return Xor;
2509
2510 // Is this a 'not' (~) fed by a binary operator?
2511 BinaryOperator *NotVal;
2512 if (match(&I, m_Not(m_BinOp(NotVal)))) {
2513 if (NotVal->getOpcode() == Instruction::And ||
2514 NotVal->getOpcode() == Instruction::Or) {
2515 // Apply DeMorgan's Law when inverts are free:
2516 // ~(X & Y) --> (~X | ~Y)
2517 // ~(X | Y) --> (~X & ~Y)
2518 if (IsFreeToInvert(NotVal->getOperand(0),
2519 NotVal->getOperand(0)->hasOneUse()) &&
2520 IsFreeToInvert(NotVal->getOperand(1),
2521 NotVal->getOperand(1)->hasOneUse())) {
2522 Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
2523 Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
2524 if (NotVal->getOpcode() == Instruction::And)
2525 return BinaryOperator::CreateOr(NotX, NotY);
2526 return BinaryOperator::CreateAnd(NotX, NotY);
2527 }
2528 }
2529
2530 // ~(X - Y) --> ~X + Y
2531 if (match(NotVal, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))))
2532 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
2533
2534 // ~(~X >>s Y) --> (X >>s Y)
2535 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
2536 return BinaryOperator::CreateAShr(X, Y);
2537
2538 // If we are inverting a right-shifted constant, we may be able to eliminate
2539 // the 'not' by inverting the constant and using the opposite shift type.
2540 // Canonicalization rules ensure that only a negative constant uses 'ashr',
2541 // but we must check that in case that transform has not fired yet.
2542 Constant *C;
2543 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
2544 match(C, m_Negative())) {
2545 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
2546 Constant *NotC = ConstantExpr::getNot(C);
2547 return BinaryOperator::CreateLShr(NotC, Y);
2548 }
2549
2550 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
2551 match(C, m_NonNegative())) {
2552 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
2553 Constant *NotC = ConstantExpr::getNot(C);
2554 return BinaryOperator::CreateAShr(NotC, Y);
2555 }
2556 }
2557
2558 // not (cmp A, B) = !cmp A, B
2559 CmpInst::Predicate Pred;
2560 if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) {
2561 cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred));
2562 return replaceInstUsesWith(I, Op0);
2563 }
2564
2565 {
2566 const APInt *RHSC;
2567 if (match(Op1, m_APInt(RHSC))) {
2568 Value *X;
2569 const APInt *C;
2570 if (match(Op0, m_Sub(m_APInt(C), m_Value(X)))) {
2571 // ~(c-X) == X-c-1 == X+(-c-1)
2572 if (RHSC->isAllOnesValue()) {
2573 Constant *NewC = ConstantInt::get(I.getType(), -(*C) - 1);
2574 return BinaryOperator::CreateAdd(X, NewC);
2575 }
2576 if (RHSC->isSignMask()) {
2577 // (C - X) ^ signmask -> (C + signmask - X)
2578 Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
2579 return BinaryOperator::CreateSub(NewC, X);
2580 }
2581 } else if (match(Op0, m_Add(m_Value(X), m_APInt(C)))) {
2582 // ~(X-c) --> (-c-1)-X
2583 if (RHSC->isAllOnesValue()) {
2584 Constant *NewC = ConstantInt::get(I.getType(), -(*C) - 1);
2585 return BinaryOperator::CreateSub(NewC, X);
2586 }
2587 if (RHSC->isSignMask()) {
2588 // (X + C) ^ signmask -> (X + C + signmask)
2589 Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
2590 return BinaryOperator::CreateAdd(X, NewC);
2591 }
2592 }
2593
2594 // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0
2595 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
2596 MaskedValueIsZero(X, *C, 0, &I)) {
2597 Constant *NewC = ConstantInt::get(I.getType(), *C ^ *RHSC);
2598 Worklist.Add(cast<Instruction>(Op0));
2599 I.setOperand(0, X);
2600 I.setOperand(1, NewC);
2601 return &I;
2602 }
2603 }
2604 }
2605
2606 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) {
2607 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2608 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2609 if (Op0I->getOpcode() == Instruction::LShr) {
2610 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
2611 // E1 = "X ^ C1"
2612 BinaryOperator *E1;
2613 ConstantInt *C1;
2614 if (Op0I->hasOneUse() &&
2615 (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
2616 E1->getOpcode() == Instruction::Xor &&
2617 (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
2618 // fold (C1 >> C2) ^ C3
2619 ConstantInt *C2 = Op0CI, *C3 = RHSC;
2620 APInt FoldConst = C1->getValue().lshr(C2->getValue());
2621 FoldConst ^= C3->getValue();
2622 // Prepare the two operands.
2623 Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2);
2624 Opnd0->takeName(Op0I);
2625 cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
2626 Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
2627
2628 return BinaryOperator::CreateXor(Opnd0, FoldVal);
2629 }
2630 }
2631 }
2632 }
2633 }
2634
2635 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2636 return FoldedLogic;
2637
2638 {
2639 Value *A, *B;
2640 if (match(Op1, m_OneUse(m_Or(m_Value(A), m_Value(B))))) {
2641 if (A == Op0) { // A^(A|B) == A^(B|A)
2642 cast<BinaryOperator>(Op1)->swapOperands();
2643 std::swap(A, B);
2644 }
2645 if (B == Op0) { // A^(B|A) == (B|A)^A
2646 I.swapOperands(); // Simplified below.
2647 std::swap(Op0, Op1);
2648 }
2649 } else if (match(Op1, m_OneUse(m_And(m_Value(A), m_Value(B))))) {
2650 if (A == Op0) { // A^(A&B) -> A^(B&A)
2651 cast<BinaryOperator>(Op1)->swapOperands();
2652 std::swap(A, B);
2653 }
2654 if (B == Op0) { // A^(B&A) -> (B&A)^A
2655 I.swapOperands(); // Simplified below.
2656 std::swap(Op0, Op1);
2657 }
2658 }
2659 }
2660
2661 {
2662 Value *A, *B;
2663 if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B))))) {
2664 if (A == Op1) // (B|A)^B == (A|B)^B
2665 std::swap(A, B);
2666 if (B == Op1) // (A|B)^B == A & ~B
2667 return BinaryOperator::CreateAnd(A, Builder.CreateNot(Op1));
2668 } else if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B))))) {
2669 if (A == Op1) // (A&B)^A -> (B&A)^A
2670 std::swap(A, B);
2671 const APInt *C;
2672 if (B == Op1 && // (B&A)^A == ~B & A
2673 !match(Op1, m_APInt(C))) { // Canonical form is (B&C)^C
2674 return BinaryOperator::CreateAnd(Builder.CreateNot(A), Op1);
2675 }
2676 }
2677 }
2678
2679 {
2680 Value *A, *B, *C, *D;
2681 // (A ^ C)^(A | B) -> ((~A) & B) ^ C
2682 if (match(Op0, m_Xor(m_Value(D), m_Value(C))) &&
2683 match(Op1, m_Or(m_Value(A), m_Value(B)))) {
2684 if (D == A)
2685 return BinaryOperator::CreateXor(
2686 Builder.CreateAnd(Builder.CreateNot(A), B), C);
2687 if (D == B)
2688 return BinaryOperator::CreateXor(
2689 Builder.CreateAnd(Builder.CreateNot(B), A), C);
2690 }
2691 // (A | B)^(A ^ C) -> ((~A) & B) ^ C
2692 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
2693 match(Op1, m_Xor(m_Value(D), m_Value(C)))) {
2694 if (D == A)
2695 return BinaryOperator::CreateXor(
2696 Builder.CreateAnd(Builder.CreateNot(A), B), C);
2697 if (D == B)
2698 return BinaryOperator::CreateXor(
2699 Builder.CreateAnd(Builder.CreateNot(B), A), C);
2700 }
2701 // (A & B) ^ (A ^ B) -> (A | B)
2702 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2703 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
2704 return BinaryOperator::CreateOr(A, B);
2705 // (A ^ B) ^ (A & B) -> (A | B)
2706 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2707 match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
2708 return BinaryOperator::CreateOr(A, B);
2709 }
2710
2711 // (A & ~B) ^ ~A -> ~(A & B)
2712 // (~B & A) ^ ~A -> ~(A & B)
2713 Value *A, *B;
2714 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2715 match(Op1, m_Not(m_Specific(A))))
2716 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
2717
2718 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2719 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2720 if (Value *V = foldXorOfICmps(LHS, RHS))
2721 return replaceInstUsesWith(I, V);
2722
2723 if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
2724 return CastedXor;
2725
2726 // Canonicalize a shifty way to code absolute value to the common pattern.
2727 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
2728 // We're relying on the fact that we only do this transform when the shift has
2729 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
2730 // instructions).
2731 if (Op0->hasNUses(2))
2732 std::swap(Op0, Op1);
2733
2734 const APInt *ShAmt;
2735 Type *Ty = I.getType();
2736 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2737 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
2738 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
2739 // B = ashr i32 A, 31 ; smear the sign bit
2740 // xor (add A, B), B ; add -1 and flip bits if negative
2741 // --> (A < 0) ? -A : A
2742 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
2743 // Copy the nuw/nsw flags from the add to the negate.
2744 auto *Add = cast<BinaryOperator>(Op0);
2745 Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
2746 Add->hasNoSignedWrap());
2747 return SelectInst::Create(Cmp, Neg, A);
2748 }
2749
2750 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
2751 //
2752 // %notx = xor i32 %x, -1
2753 // %cmp1 = icmp sgt i32 %notx, %y
2754 // %smax = select i1 %cmp1, i32 %notx, i32 %y
2755 // %res = xor i32 %smax, -1
2756 // =>
2757 // %noty = xor i32 %y, -1
2758 // %cmp2 = icmp slt %x, %noty
2759 // %res = select i1 %cmp2, i32 %x, i32 %noty
2760 //
2761 // Same is applicable for smin/umax/umin.
2762 {
2763 Value *LHS, *RHS;
2764 SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor;
2765 if (Op0->hasOneUse() && SelectPatternResult::isMinOrMax(SPF) &&
2766 match(Op1, m_AllOnes())) {
2767
2768 Value *X;
2769 if (match(RHS, m_Not(m_Value(X))))
2770 std::swap(RHS, LHS);
2771
2772 if (match(LHS, m_Not(m_Value(X)))) {
2773 Value *NotY = Builder.CreateNot(RHS);
2774 return SelectInst::Create(
2775 Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY);
2776 }
2777 }
2778 }
2779
2780 return nullptr;
2781 }
2782