1
2 /* Complex object implementation */
3
4 /* Borrows heavily from floatobject.c */
5
6 /* Submitted by Jim Hugunin */
7
8 #include "Python.h"
9 #include "structmember.h"
10
11 #ifndef WITHOUT_COMPLEX
12
13 /* Precisions used by repr() and str(), respectively.
14
15 The repr() precision (17 significant decimal digits) is the minimal number
16 that is guaranteed to have enough precision so that if the number is read
17 back in the exact same binary value is recreated. This is true for IEEE
18 floating point by design, and also happens to work for all other modern
19 hardware.
20
21 The str() precision is chosen so that in most cases, the rounding noise
22 created by various operations is suppressed, while giving plenty of
23 precision for practical use.
24 */
25
26 #define PREC_REPR 17
27 #define PREC_STR 12
28
29 /* elementary operations on complex numbers */
30
31 static Py_complex c_1 = {1., 0.};
32
33 Py_complex
c_sum(Py_complex a,Py_complex b)34 c_sum(Py_complex a, Py_complex b)
35 {
36 Py_complex r;
37 r.real = a.real + b.real;
38 r.imag = a.imag + b.imag;
39 return r;
40 }
41
42 Py_complex
c_diff(Py_complex a,Py_complex b)43 c_diff(Py_complex a, Py_complex b)
44 {
45 Py_complex r;
46 r.real = a.real - b.real;
47 r.imag = a.imag - b.imag;
48 return r;
49 }
50
51 Py_complex
c_neg(Py_complex a)52 c_neg(Py_complex a)
53 {
54 Py_complex r;
55 r.real = -a.real;
56 r.imag = -a.imag;
57 return r;
58 }
59
60 Py_complex
c_prod(Py_complex a,Py_complex b)61 c_prod(Py_complex a, Py_complex b)
62 {
63 Py_complex r;
64 r.real = a.real*b.real - a.imag*b.imag;
65 r.imag = a.real*b.imag + a.imag*b.real;
66 return r;
67 }
68
69 Py_complex
c_quot(Py_complex a,Py_complex b)70 c_quot(Py_complex a, Py_complex b)
71 {
72 /******************************************************************
73 This was the original algorithm. It's grossly prone to spurious
74 overflow and underflow errors. It also merrily divides by 0 despite
75 checking for that(!). The code still serves a doc purpose here, as
76 the algorithm following is a simple by-cases transformation of this
77 one:
78
79 Py_complex r;
80 double d = b.real*b.real + b.imag*b.imag;
81 if (d == 0.)
82 errno = EDOM;
83 r.real = (a.real*b.real + a.imag*b.imag)/d;
84 r.imag = (a.imag*b.real - a.real*b.imag)/d;
85 return r;
86 ******************************************************************/
87
88 /* This algorithm is better, and is pretty obvious: first divide the
89 * numerators and denominator by whichever of {b.real, b.imag} has
90 * larger magnitude. The earliest reference I found was to CACM
91 * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
92 * University). As usual, though, we're still ignoring all IEEE
93 * endcases.
94 */
95 Py_complex r; /* the result */
96 const double abs_breal = b.real < 0 ? -b.real : b.real;
97 const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
98
99 if (abs_breal >= abs_bimag) {
100 /* divide tops and bottom by b.real */
101 if (abs_breal == 0.0) {
102 errno = EDOM;
103 r.real = r.imag = 0.0;
104 }
105 else {
106 const double ratio = b.imag / b.real;
107 const double denom = b.real + b.imag * ratio;
108 r.real = (a.real + a.imag * ratio) / denom;
109 r.imag = (a.imag - a.real * ratio) / denom;
110 }
111 }
112 else if (abs_bimag >= abs_breal) {
113 /* divide tops and bottom by b.imag */
114 const double ratio = b.real / b.imag;
115 const double denom = b.real * ratio + b.imag;
116 assert(b.imag != 0.0);
117 r.real = (a.real * ratio + a.imag) / denom;
118 r.imag = (a.imag * ratio - a.real) / denom;
119 }
120 else {
121 /* At least one of b.real or b.imag is a NaN */
122 r.real = r.imag = Py_NAN;
123 }
124 return r;
125 }
126
127 Py_complex
c_pow(Py_complex a,Py_complex b)128 c_pow(Py_complex a, Py_complex b)
129 {
130 Py_complex r;
131 double vabs,len,at,phase;
132 if (b.real == 0. && b.imag == 0.) {
133 r.real = 1.;
134 r.imag = 0.;
135 }
136 else if (a.real == 0. && a.imag == 0.) {
137 if (b.imag != 0. || b.real < 0.)
138 errno = EDOM;
139 r.real = 0.;
140 r.imag = 0.;
141 }
142 else {
143 vabs = hypot(a.real,a.imag);
144 len = pow(vabs,b.real);
145 at = atan2(a.imag, a.real);
146 phase = at*b.real;
147 if (b.imag != 0.0) {
148 len /= exp(at*b.imag);
149 phase += b.imag*log(vabs);
150 }
151 r.real = len*cos(phase);
152 r.imag = len*sin(phase);
153 }
154 return r;
155 }
156
157 static Py_complex
c_powu(Py_complex x,long n)158 c_powu(Py_complex x, long n)
159 {
160 Py_complex r, p;
161 long mask = 1;
162 r = c_1;
163 p = x;
164 while (mask > 0 && n >= mask) {
165 if (n & mask)
166 r = c_prod(r,p);
167 mask <<= 1;
168 p = c_prod(p,p);
169 }
170 return r;
171 }
172
173 static Py_complex
c_powi(Py_complex x,long n)174 c_powi(Py_complex x, long n)
175 {
176 Py_complex cn;
177
178 if (n > 100 || n < -100) {
179 cn.real = (double) n;
180 cn.imag = 0.;
181 return c_pow(x,cn);
182 }
183 else if (n > 0)
184 return c_powu(x,n);
185 else
186 return c_quot(c_1,c_powu(x,-n));
187
188 }
189
190 double
c_abs(Py_complex z)191 c_abs(Py_complex z)
192 {
193 /* sets errno = ERANGE on overflow; otherwise errno = 0 */
194 double result;
195
196 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
197 /* C99 rules: if either the real or the imaginary part is an
198 infinity, return infinity, even if the other part is a
199 NaN. */
200 if (Py_IS_INFINITY(z.real)) {
201 result = fabs(z.real);
202 errno = 0;
203 return result;
204 }
205 if (Py_IS_INFINITY(z.imag)) {
206 result = fabs(z.imag);
207 errno = 0;
208 return result;
209 }
210 /* either the real or imaginary part is a NaN,
211 and neither is infinite. Result should be NaN. */
212 return Py_NAN;
213 }
214 result = hypot(z.real, z.imag);
215 if (!Py_IS_FINITE(result))
216 errno = ERANGE;
217 else
218 errno = 0;
219 return result;
220 }
221
222 static PyObject *
complex_subtype_from_c_complex(PyTypeObject * type,Py_complex cval)223 complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
224 {
225 PyObject *op;
226
227 op = type->tp_alloc(type, 0);
228 if (op != NULL)
229 ((PyComplexObject *)op)->cval = cval;
230 return op;
231 }
232
233 PyObject *
PyComplex_FromCComplex(Py_complex cval)234 PyComplex_FromCComplex(Py_complex cval)
235 {
236 register PyComplexObject *op;
237
238 /* Inline PyObject_New */
239 op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
240 if (op == NULL)
241 return PyErr_NoMemory();
242 (void)PyObject_INIT(op, &PyComplex_Type);
243 op->cval = cval;
244 return (PyObject *) op;
245 }
246
247 static PyObject *
complex_subtype_from_doubles(PyTypeObject * type,double real,double imag)248 complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
249 {
250 Py_complex c;
251 c.real = real;
252 c.imag = imag;
253 return complex_subtype_from_c_complex(type, c);
254 }
255
256 PyObject *
PyComplex_FromDoubles(double real,double imag)257 PyComplex_FromDoubles(double real, double imag)
258 {
259 Py_complex c;
260 c.real = real;
261 c.imag = imag;
262 return PyComplex_FromCComplex(c);
263 }
264
265 double
PyComplex_RealAsDouble(PyObject * op)266 PyComplex_RealAsDouble(PyObject *op)
267 {
268 if (PyComplex_Check(op)) {
269 return ((PyComplexObject *)op)->cval.real;
270 }
271 else {
272 return PyFloat_AsDouble(op);
273 }
274 }
275
276 double
PyComplex_ImagAsDouble(PyObject * op)277 PyComplex_ImagAsDouble(PyObject *op)
278 {
279 if (PyComplex_Check(op)) {
280 return ((PyComplexObject *)op)->cval.imag;
281 }
282 else {
283 return 0.0;
284 }
285 }
286
287 static PyObject *
try_complex_special_method(PyObject * op)288 try_complex_special_method(PyObject *op) {
289 PyObject *f;
290 static PyObject *complexstr;
291
292 if (complexstr == NULL) {
293 complexstr = PyString_InternFromString("__complex__");
294 if (complexstr == NULL)
295 return NULL;
296 }
297 if (PyInstance_Check(op)) {
298 f = PyObject_GetAttr(op, complexstr);
299 if (f == NULL) {
300 if (PyErr_ExceptionMatches(PyExc_AttributeError))
301 PyErr_Clear();
302 else
303 return NULL;
304 }
305 }
306 else {
307 f = _PyObject_LookupSpecial(op, "__complex__", &complexstr);
308 if (f == NULL && PyErr_Occurred())
309 return NULL;
310 }
311 if (f != NULL) {
312 PyObject *res = PyObject_CallFunctionObjArgs(f, NULL);
313 Py_DECREF(f);
314 return res;
315 }
316 return NULL;
317 }
318
319 Py_complex
PyComplex_AsCComplex(PyObject * op)320 PyComplex_AsCComplex(PyObject *op)
321 {
322 Py_complex cv;
323 PyObject *newop = NULL;
324
325 assert(op);
326 /* If op is already of type PyComplex_Type, return its value */
327 if (PyComplex_Check(op)) {
328 return ((PyComplexObject *)op)->cval;
329 }
330 /* If not, use op's __complex__ method, if it exists */
331
332 /* return -1 on failure */
333 cv.real = -1.;
334 cv.imag = 0.;
335
336 newop = try_complex_special_method(op);
337
338 if (newop) {
339 if (!PyComplex_Check(newop)) {
340 PyErr_SetString(PyExc_TypeError,
341 "__complex__ should return a complex object");
342 Py_DECREF(newop);
343 return cv;
344 }
345 cv = ((PyComplexObject *)newop)->cval;
346 Py_DECREF(newop);
347 return cv;
348 }
349 else if (PyErr_Occurred()) {
350 return cv;
351 }
352 /* If neither of the above works, interpret op as a float giving the
353 real part of the result, and fill in the imaginary part as 0. */
354 else {
355 /* PyFloat_AsDouble will return -1 on failure */
356 cv.real = PyFloat_AsDouble(op);
357 return cv;
358 }
359 }
360
361 static void
complex_dealloc(PyObject * op)362 complex_dealloc(PyObject *op)
363 {
364 op->ob_type->tp_free(op);
365 }
366
367
368 static PyObject *
complex_format(PyComplexObject * v,int precision,char format_code)369 complex_format(PyComplexObject *v, int precision, char format_code)
370 {
371 PyObject *result = NULL;
372 Py_ssize_t len;
373
374 /* If these are non-NULL, they'll need to be freed. */
375 char *pre = NULL;
376 char *im = NULL;
377 char *buf = NULL;
378
379 /* These do not need to be freed. re is either an alias
380 for pre or a pointer to a constant. lead and tail
381 are pointers to constants. */
382 char *re = NULL;
383 char *lead = "";
384 char *tail = "";
385
386 if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
387 re = "";
388 im = PyOS_double_to_string(v->cval.imag, format_code,
389 precision, 0, NULL);
390 if (!im) {
391 PyErr_NoMemory();
392 goto done;
393 }
394 } else {
395 /* Format imaginary part with sign, real part without */
396 pre = PyOS_double_to_string(v->cval.real, format_code,
397 precision, 0, NULL);
398 if (!pre) {
399 PyErr_NoMemory();
400 goto done;
401 }
402 re = pre;
403
404 im = PyOS_double_to_string(v->cval.imag, format_code,
405 precision, Py_DTSF_SIGN, NULL);
406 if (!im) {
407 PyErr_NoMemory();
408 goto done;
409 }
410 lead = "(";
411 tail = ")";
412 }
413 /* Alloc the final buffer. Add one for the "j" in the format string,
414 and one for the trailing zero. */
415 len = strlen(lead) + strlen(re) + strlen(im) + strlen(tail) + 2;
416 buf = PyMem_Malloc(len);
417 if (!buf) {
418 PyErr_NoMemory();
419 goto done;
420 }
421 PyOS_snprintf(buf, len, "%s%s%sj%s", lead, re, im, tail);
422 result = PyString_FromString(buf);
423 done:
424 PyMem_Free(im);
425 PyMem_Free(pre);
426 PyMem_Free(buf);
427
428 return result;
429 }
430
431 static int
complex_print(PyComplexObject * v,FILE * fp,int flags)432 complex_print(PyComplexObject *v, FILE *fp, int flags)
433 {
434 PyObject *formatv;
435 char *buf;
436 if (flags & Py_PRINT_RAW)
437 formatv = complex_format(v, PyFloat_STR_PRECISION, 'g');
438 else
439 formatv = complex_format(v, 0, 'r');
440 if (formatv == NULL)
441 return -1;
442 buf = PyString_AS_STRING(formatv);
443 Py_BEGIN_ALLOW_THREADS
444 fputs(buf, fp);
445 Py_END_ALLOW_THREADS
446 Py_DECREF(formatv);
447 return 0;
448 }
449
450 static PyObject *
complex_repr(PyComplexObject * v)451 complex_repr(PyComplexObject *v)
452 {
453 return complex_format(v, 0, 'r');
454 }
455
456 static PyObject *
complex_str(PyComplexObject * v)457 complex_str(PyComplexObject *v)
458 {
459 return complex_format(v, PyFloat_STR_PRECISION, 'g');
460 }
461
462 static long
complex_hash(PyComplexObject * v)463 complex_hash(PyComplexObject *v)
464 {
465 long hashreal, hashimag, combined;
466 hashreal = _Py_HashDouble(v->cval.real);
467 if (hashreal == -1)
468 return -1;
469 hashimag = _Py_HashDouble(v->cval.imag);
470 if (hashimag == -1)
471 return -1;
472 /* Note: if the imaginary part is 0, hashimag is 0 now,
473 * so the following returns hashreal unchanged. This is
474 * important because numbers of different types that
475 * compare equal must have the same hash value, so that
476 * hash(x + 0*j) must equal hash(x).
477 */
478 combined = hashreal + 1000003 * hashimag;
479 if (combined == -1)
480 combined = -2;
481 return combined;
482 }
483
484 /* This macro may return! */
485 #define TO_COMPLEX(obj, c) \
486 if (PyComplex_Check(obj)) \
487 c = ((PyComplexObject *)(obj))->cval; \
488 else if (to_complex(&(obj), &(c)) < 0) \
489 return (obj)
490
491 static int
to_complex(PyObject ** pobj,Py_complex * pc)492 to_complex(PyObject **pobj, Py_complex *pc)
493 {
494 PyObject *obj = *pobj;
495
496 pc->real = pc->imag = 0.0;
497 if (PyInt_Check(obj)) {
498 pc->real = PyInt_AS_LONG(obj);
499 return 0;
500 }
501 if (PyLong_Check(obj)) {
502 pc->real = PyLong_AsDouble(obj);
503 if (pc->real == -1.0 && PyErr_Occurred()) {
504 *pobj = NULL;
505 return -1;
506 }
507 return 0;
508 }
509 if (PyFloat_Check(obj)) {
510 pc->real = PyFloat_AsDouble(obj);
511 return 0;
512 }
513 Py_INCREF(Py_NotImplemented);
514 *pobj = Py_NotImplemented;
515 return -1;
516 }
517
518
519 static PyObject *
complex_add(PyObject * v,PyObject * w)520 complex_add(PyObject *v, PyObject *w)
521 {
522 Py_complex result;
523 Py_complex a, b;
524 TO_COMPLEX(v, a);
525 TO_COMPLEX(w, b);
526 PyFPE_START_PROTECT("complex_add", return 0)
527 result = c_sum(a, b);
528 PyFPE_END_PROTECT(result)
529 return PyComplex_FromCComplex(result);
530 }
531
532 static PyObject *
complex_sub(PyObject * v,PyObject * w)533 complex_sub(PyObject *v, PyObject *w)
534 {
535 Py_complex result;
536 Py_complex a, b;
537 TO_COMPLEX(v, a);
538 TO_COMPLEX(w, b);;
539 PyFPE_START_PROTECT("complex_sub", return 0)
540 result = c_diff(a, b);
541 PyFPE_END_PROTECT(result)
542 return PyComplex_FromCComplex(result);
543 }
544
545 static PyObject *
complex_mul(PyObject * v,PyObject * w)546 complex_mul(PyObject *v, PyObject *w)
547 {
548 Py_complex result;
549 Py_complex a, b;
550 TO_COMPLEX(v, a);
551 TO_COMPLEX(w, b);
552 PyFPE_START_PROTECT("complex_mul", return 0)
553 result = c_prod(a, b);
554 PyFPE_END_PROTECT(result)
555 return PyComplex_FromCComplex(result);
556 }
557
558 static PyObject *
complex_div(PyObject * v,PyObject * w)559 complex_div(PyObject *v, PyObject *w)
560 {
561 Py_complex quot;
562 Py_complex a, b;
563 TO_COMPLEX(v, a);
564 TO_COMPLEX(w, b);
565 PyFPE_START_PROTECT("complex_div", return 0)
566 errno = 0;
567 quot = c_quot(a, b);
568 PyFPE_END_PROTECT(quot)
569 if (errno == EDOM) {
570 PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
571 return NULL;
572 }
573 return PyComplex_FromCComplex(quot);
574 }
575
576 static PyObject *
complex_classic_div(PyObject * v,PyObject * w)577 complex_classic_div(PyObject *v, PyObject *w)
578 {
579 Py_complex quot;
580 Py_complex a, b;
581 TO_COMPLEX(v, a);
582 TO_COMPLEX(w, b);
583 if (Py_DivisionWarningFlag >= 2 &&
584 PyErr_Warn(PyExc_DeprecationWarning,
585 "classic complex division") < 0)
586 return NULL;
587
588 PyFPE_START_PROTECT("complex_classic_div", return 0)
589 errno = 0;
590 quot = c_quot(a, b);
591 PyFPE_END_PROTECT(quot)
592 if (errno == EDOM) {
593 PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
594 return NULL;
595 }
596 return PyComplex_FromCComplex(quot);
597 }
598
599 static PyObject *
complex_remainder(PyObject * v,PyObject * w)600 complex_remainder(PyObject *v, PyObject *w)
601 {
602 Py_complex div, mod;
603 Py_complex a, b;
604 TO_COMPLEX(v, a);
605 TO_COMPLEX(w, b);
606 if (PyErr_Warn(PyExc_DeprecationWarning,
607 "complex divmod(), // and % are deprecated") < 0)
608 return NULL;
609
610 errno = 0;
611 div = c_quot(a, b); /* The raw divisor value. */
612 if (errno == EDOM) {
613 PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder");
614 return NULL;
615 }
616 div.real = floor(div.real); /* Use the floor of the real part. */
617 div.imag = 0.0;
618 mod = c_diff(a, c_prod(b, div));
619
620 return PyComplex_FromCComplex(mod);
621 }
622
623
624 static PyObject *
complex_divmod(PyObject * v,PyObject * w)625 complex_divmod(PyObject *v, PyObject *w)
626 {
627 Py_complex div, mod;
628 PyObject *d, *m, *z;
629 Py_complex a, b;
630 TO_COMPLEX(v, a);
631 TO_COMPLEX(w, b);
632 if (PyErr_Warn(PyExc_DeprecationWarning,
633 "complex divmod(), // and % are deprecated") < 0)
634 return NULL;
635
636 errno = 0;
637 div = c_quot(a, b); /* The raw divisor value. */
638 if (errno == EDOM) {
639 PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()");
640 return NULL;
641 }
642 div.real = floor(div.real); /* Use the floor of the real part. */
643 div.imag = 0.0;
644 mod = c_diff(a, c_prod(b, div));
645 d = PyComplex_FromCComplex(div);
646 m = PyComplex_FromCComplex(mod);
647 z = PyTuple_Pack(2, d, m);
648 Py_XDECREF(d);
649 Py_XDECREF(m);
650 return z;
651 }
652
653 static PyObject *
complex_pow(PyObject * v,PyObject * w,PyObject * z)654 complex_pow(PyObject *v, PyObject *w, PyObject *z)
655 {
656 Py_complex p;
657 Py_complex exponent;
658 long int_exponent;
659 Py_complex a, b;
660 TO_COMPLEX(v, a);
661 TO_COMPLEX(w, b);
662 if (z!=Py_None) {
663 PyErr_SetString(PyExc_ValueError, "complex modulo");
664 return NULL;
665 }
666 PyFPE_START_PROTECT("complex_pow", return 0)
667 errno = 0;
668 exponent = b;
669 int_exponent = (long)exponent.real;
670 if (exponent.imag == 0. && exponent.real == int_exponent)
671 p = c_powi(a,int_exponent);
672 else
673 p = c_pow(a,exponent);
674
675 PyFPE_END_PROTECT(p)
676 Py_ADJUST_ERANGE2(p.real, p.imag);
677 if (errno == EDOM) {
678 PyErr_SetString(PyExc_ZeroDivisionError,
679 "0.0 to a negative or complex power");
680 return NULL;
681 }
682 else if (errno == ERANGE) {
683 PyErr_SetString(PyExc_OverflowError,
684 "complex exponentiation");
685 return NULL;
686 }
687 return PyComplex_FromCComplex(p);
688 }
689
690 static PyObject *
complex_int_div(PyObject * v,PyObject * w)691 complex_int_div(PyObject *v, PyObject *w)
692 {
693 PyObject *t, *r;
694 Py_complex a, b;
695 TO_COMPLEX(v, a);
696 TO_COMPLEX(w, b);
697 if (PyErr_Warn(PyExc_DeprecationWarning,
698 "complex divmod(), // and % are deprecated") < 0)
699 return NULL;
700
701 t = complex_divmod(v, w);
702 if (t != NULL) {
703 r = PyTuple_GET_ITEM(t, 0);
704 Py_INCREF(r);
705 Py_DECREF(t);
706 return r;
707 }
708 return NULL;
709 }
710
711 static PyObject *
complex_neg(PyComplexObject * v)712 complex_neg(PyComplexObject *v)
713 {
714 Py_complex neg;
715 neg.real = -v->cval.real;
716 neg.imag = -v->cval.imag;
717 return PyComplex_FromCComplex(neg);
718 }
719
720 static PyObject *
complex_pos(PyComplexObject * v)721 complex_pos(PyComplexObject *v)
722 {
723 if (PyComplex_CheckExact(v)) {
724 Py_INCREF(v);
725 return (PyObject *)v;
726 }
727 else
728 return PyComplex_FromCComplex(v->cval);
729 }
730
731 static PyObject *
complex_abs(PyComplexObject * v)732 complex_abs(PyComplexObject *v)
733 {
734 double result;
735
736 PyFPE_START_PROTECT("complex_abs", return 0)
737 result = c_abs(v->cval);
738 PyFPE_END_PROTECT(result)
739
740 if (errno == ERANGE) {
741 PyErr_SetString(PyExc_OverflowError,
742 "absolute value too large");
743 return NULL;
744 }
745 return PyFloat_FromDouble(result);
746 }
747
748 static int
complex_nonzero(PyComplexObject * v)749 complex_nonzero(PyComplexObject *v)
750 {
751 return v->cval.real != 0.0 || v->cval.imag != 0.0;
752 }
753
754 static int
complex_coerce(PyObject ** pv,PyObject ** pw)755 complex_coerce(PyObject **pv, PyObject **pw)
756 {
757 Py_complex cval;
758 cval.imag = 0.;
759 if (PyInt_Check(*pw)) {
760 cval.real = (double)PyInt_AsLong(*pw);
761 *pw = PyComplex_FromCComplex(cval);
762 Py_INCREF(*pv);
763 return 0;
764 }
765 else if (PyLong_Check(*pw)) {
766 cval.real = PyLong_AsDouble(*pw);
767 if (cval.real == -1.0 && PyErr_Occurred())
768 return -1;
769 *pw = PyComplex_FromCComplex(cval);
770 Py_INCREF(*pv);
771 return 0;
772 }
773 else if (PyFloat_Check(*pw)) {
774 cval.real = PyFloat_AsDouble(*pw);
775 *pw = PyComplex_FromCComplex(cval);
776 Py_INCREF(*pv);
777 return 0;
778 }
779 else if (PyComplex_Check(*pw)) {
780 Py_INCREF(*pv);
781 Py_INCREF(*pw);
782 return 0;
783 }
784 return 1; /* Can't do it */
785 }
786
787 static PyObject *
complex_richcompare(PyObject * v,PyObject * w,int op)788 complex_richcompare(PyObject *v, PyObject *w, int op)
789 {
790 PyObject *res;
791 Py_complex i;
792 int equal;
793
794 if (op != Py_EQ && op != Py_NE) {
795 /* for backwards compatibility, comparisons with non-numbers return
796 * NotImplemented. Only comparisons with core numeric types raise
797 * TypeError.
798 */
799 if (_PyAnyInt_Check(w) ||
800 PyFloat_Check(w) || PyComplex_Check(w)) {
801 PyErr_SetString(PyExc_TypeError,
802 "no ordering relation is defined "
803 "for complex numbers");
804 return NULL;
805 }
806 goto Unimplemented;
807 }
808
809 assert(PyComplex_Check(v));
810 TO_COMPLEX(v, i);
811
812 if (_PyAnyInt_Check(w)) {
813 /* Check for 0.0 imaginary part first to avoid the rich
814 * comparison when possible.
815 */
816 if (i.imag == 0.0) {
817 PyObject *j, *sub_res;
818 j = PyFloat_FromDouble(i.real);
819 if (j == NULL)
820 return NULL;
821
822 sub_res = PyObject_RichCompare(j, w, op);
823 Py_DECREF(j);
824 return sub_res;
825 }
826 else {
827 equal = 0;
828 }
829 }
830 else if (PyFloat_Check(w)) {
831 equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);
832 }
833 else if (PyComplex_Check(w)) {
834 Py_complex j;
835
836 TO_COMPLEX(w, j);
837 equal = (i.real == j.real && i.imag == j.imag);
838 }
839 else {
840 goto Unimplemented;
841 }
842
843 if (equal == (op == Py_EQ))
844 res = Py_True;
845 else
846 res = Py_False;
847
848 Py_INCREF(res);
849 return res;
850
851 Unimplemented:
852 Py_INCREF(Py_NotImplemented);
853 return Py_NotImplemented;
854 }
855
856 static PyObject *
complex_int(PyObject * v)857 complex_int(PyObject *v)
858 {
859 PyErr_SetString(PyExc_TypeError,
860 "can't convert complex to int");
861 return NULL;
862 }
863
864 static PyObject *
complex_long(PyObject * v)865 complex_long(PyObject *v)
866 {
867 PyErr_SetString(PyExc_TypeError,
868 "can't convert complex to long");
869 return NULL;
870 }
871
872 static PyObject *
complex_float(PyObject * v)873 complex_float(PyObject *v)
874 {
875 PyErr_SetString(PyExc_TypeError,
876 "can't convert complex to float");
877 return NULL;
878 }
879
880 static PyObject *
complex_conjugate(PyObject * self)881 complex_conjugate(PyObject *self)
882 {
883 Py_complex c;
884 c = ((PyComplexObject *)self)->cval;
885 c.imag = -c.imag;
886 return PyComplex_FromCComplex(c);
887 }
888
889 PyDoc_STRVAR(complex_conjugate_doc,
890 "complex.conjugate() -> complex\n"
891 "\n"
892 "Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
893
894 static PyObject *
complex_getnewargs(PyComplexObject * v)895 complex_getnewargs(PyComplexObject *v)
896 {
897 Py_complex c = v->cval;
898 return Py_BuildValue("(dd)", c.real, c.imag);
899 }
900
901 PyDoc_STRVAR(complex__format__doc,
902 "complex.__format__() -> str\n"
903 "\n"
904 "Convert to a string according to format_spec.");
905
906 static PyObject *
complex__format__(PyObject * self,PyObject * args)907 complex__format__(PyObject* self, PyObject* args)
908 {
909 PyObject *format_spec;
910
911 if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
912 return NULL;
913 if (PyBytes_Check(format_spec))
914 return _PyComplex_FormatAdvanced(self,
915 PyBytes_AS_STRING(format_spec),
916 PyBytes_GET_SIZE(format_spec));
917 if (PyUnicode_Check(format_spec)) {
918 /* Convert format_spec to a str */
919 PyObject *result;
920 PyObject *str_spec = PyObject_Str(format_spec);
921
922 if (str_spec == NULL)
923 return NULL;
924
925 result = _PyComplex_FormatAdvanced(self,
926 PyBytes_AS_STRING(str_spec),
927 PyBytes_GET_SIZE(str_spec));
928
929 Py_DECREF(str_spec);
930 return result;
931 }
932 PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
933 return NULL;
934 }
935
936 #if 0
937 static PyObject *
938 complex_is_finite(PyObject *self)
939 {
940 Py_complex c;
941 c = ((PyComplexObject *)self)->cval;
942 return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
943 Py_IS_FINITE(c.imag)));
944 }
945
946 PyDoc_STRVAR(complex_is_finite_doc,
947 "complex.is_finite() -> bool\n"
948 "\n"
949 "Returns True if the real and the imaginary part is finite.");
950 #endif
951
952 static PyMethodDef complex_methods[] = {
953 {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS,
954 complex_conjugate_doc},
955 #if 0
956 {"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS,
957 complex_is_finite_doc},
958 #endif
959 {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS},
960 {"__format__", (PyCFunction)complex__format__,
961 METH_VARARGS, complex__format__doc},
962 {NULL, NULL} /* sentinel */
963 };
964
965 static PyMemberDef complex_members[] = {
966 {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
967 "the real part of a complex number"},
968 {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
969 "the imaginary part of a complex number"},
970 {0},
971 };
972
973 static PyObject *
complex_subtype_from_string(PyTypeObject * type,PyObject * v)974 complex_subtype_from_string(PyTypeObject *type, PyObject *v)
975 {
976 const char *s, *start;
977 char *end;
978 double x=0.0, y=0.0, z;
979 int got_bracket=0;
980 #ifdef Py_USING_UNICODE
981 char *s_buffer = NULL;
982 #endif
983 Py_ssize_t len;
984
985 if (PyString_Check(v)) {
986 s = PyString_AS_STRING(v);
987 len = PyString_GET_SIZE(v);
988 }
989 #ifdef Py_USING_UNICODE
990 else if (PyUnicode_Check(v)) {
991 s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
992 if (s_buffer == NULL)
993 return PyErr_NoMemory();
994 if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
995 PyUnicode_GET_SIZE(v),
996 s_buffer,
997 NULL))
998 goto error;
999 s = s_buffer;
1000 len = strlen(s);
1001 }
1002 #endif
1003 else {
1004 PyErr_SetString(PyExc_TypeError,
1005 "complex() arg is not a string");
1006 return NULL;
1007 }
1008
1009 /* position on first nonblank */
1010 start = s;
1011 while (Py_ISSPACE(*s))
1012 s++;
1013 if (*s == '(') {
1014 /* Skip over possible bracket from repr(). */
1015 got_bracket = 1;
1016 s++;
1017 while (Py_ISSPACE(*s))
1018 s++;
1019 }
1020
1021 /* a valid complex string usually takes one of the three forms:
1022
1023 <float> - real part only
1024 <float>j - imaginary part only
1025 <float><signed-float>j - real and imaginary parts
1026
1027 where <float> represents any numeric string that's accepted by the
1028 float constructor (including 'nan', 'inf', 'infinity', etc.), and
1029 <signed-float> is any string of the form <float> whose first
1030 character is '+' or '-'.
1031
1032 For backwards compatibility, the extra forms
1033
1034 <float><sign>j
1035 <sign>j
1036 j
1037
1038 are also accepted, though support for these forms may be removed from
1039 a future version of Python.
1040 */
1041
1042 /* first look for forms starting with <float> */
1043 z = PyOS_string_to_double(s, &end, NULL);
1044 if (z == -1.0 && PyErr_Occurred()) {
1045 if (PyErr_ExceptionMatches(PyExc_ValueError))
1046 PyErr_Clear();
1047 else
1048 goto error;
1049 }
1050 if (end != s) {
1051 /* all 4 forms starting with <float> land here */
1052 s = end;
1053 if (*s == '+' || *s == '-') {
1054 /* <float><signed-float>j | <float><sign>j */
1055 x = z;
1056 y = PyOS_string_to_double(s, &end, NULL);
1057 if (y == -1.0 && PyErr_Occurred()) {
1058 if (PyErr_ExceptionMatches(PyExc_ValueError))
1059 PyErr_Clear();
1060 else
1061 goto error;
1062 }
1063 if (end != s)
1064 /* <float><signed-float>j */
1065 s = end;
1066 else {
1067 /* <float><sign>j */
1068 y = *s == '+' ? 1.0 : -1.0;
1069 s++;
1070 }
1071 if (!(*s == 'j' || *s == 'J'))
1072 goto parse_error;
1073 s++;
1074 }
1075 else if (*s == 'j' || *s == 'J') {
1076 /* <float>j */
1077 s++;
1078 y = z;
1079 }
1080 else
1081 /* <float> */
1082 x = z;
1083 }
1084 else {
1085 /* not starting with <float>; must be <sign>j or j */
1086 if (*s == '+' || *s == '-') {
1087 /* <sign>j */
1088 y = *s == '+' ? 1.0 : -1.0;
1089 s++;
1090 }
1091 else
1092 /* j */
1093 y = 1.0;
1094 if (!(*s == 'j' || *s == 'J'))
1095 goto parse_error;
1096 s++;
1097 }
1098
1099 /* trailing whitespace and closing bracket */
1100 while (Py_ISSPACE(*s))
1101 s++;
1102 if (got_bracket) {
1103 /* if there was an opening parenthesis, then the corresponding
1104 closing parenthesis should be right here */
1105 if (*s != ')')
1106 goto parse_error;
1107 s++;
1108 while (Py_ISSPACE(*s))
1109 s++;
1110 }
1111
1112 /* we should now be at the end of the string */
1113 if (s-start != len)
1114 goto parse_error;
1115
1116
1117 #ifdef Py_USING_UNICODE
1118 if (s_buffer)
1119 PyMem_FREE(s_buffer);
1120 #endif
1121 return complex_subtype_from_doubles(type, x, y);
1122
1123 parse_error:
1124 PyErr_SetString(PyExc_ValueError,
1125 "complex() arg is a malformed string");
1126 error:
1127 #ifdef Py_USING_UNICODE
1128 if (s_buffer)
1129 PyMem_FREE(s_buffer);
1130 #endif
1131 return NULL;
1132 }
1133
1134 static PyObject *
complex_new(PyTypeObject * type,PyObject * args,PyObject * kwds)1135 complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
1136 {
1137 PyObject *r, *i, *tmp;
1138 PyNumberMethods *nbr, *nbi = NULL;
1139 Py_complex cr, ci;
1140 int own_r = 0;
1141 int cr_is_complex = 0;
1142 int ci_is_complex = 0;
1143 static char *kwlist[] = {"real", "imag", 0};
1144
1145 r = Py_False;
1146 i = NULL;
1147 if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
1148 &r, &i))
1149 return NULL;
1150
1151 /* Special-case for a single argument when type(arg) is complex. */
1152 if (PyComplex_CheckExact(r) && i == NULL &&
1153 type == &PyComplex_Type) {
1154 /* Note that we can't know whether it's safe to return
1155 a complex *subclass* instance as-is, hence the restriction
1156 to exact complexes here. If either the input or the
1157 output is a complex subclass, it will be handled below
1158 as a non-orthogonal vector. */
1159 Py_INCREF(r);
1160 return r;
1161 }
1162 if (PyString_Check(r) || PyUnicode_Check(r)) {
1163 if (i != NULL) {
1164 PyErr_SetString(PyExc_TypeError,
1165 "complex() can't take second arg"
1166 " if first is a string");
1167 return NULL;
1168 }
1169 return complex_subtype_from_string(type, r);
1170 }
1171 if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) {
1172 PyErr_SetString(PyExc_TypeError,
1173 "complex() second arg can't be a string");
1174 return NULL;
1175 }
1176
1177 tmp = try_complex_special_method(r);
1178 if (tmp) {
1179 r = tmp;
1180 own_r = 1;
1181 }
1182 else if (PyErr_Occurred()) {
1183 return NULL;
1184 }
1185
1186 nbr = r->ob_type->tp_as_number;
1187 if (i != NULL)
1188 nbi = i->ob_type->tp_as_number;
1189 if (nbr == NULL || nbr->nb_float == NULL ||
1190 ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
1191 PyErr_SetString(PyExc_TypeError,
1192 "complex() argument must be a string or a number");
1193 if (own_r) {
1194 Py_DECREF(r);
1195 }
1196 return NULL;
1197 }
1198
1199 /* If we get this far, then the "real" and "imag" parts should
1200 both be treated as numbers, and the constructor should return a
1201 complex number equal to (real + imag*1j).
1202
1203 Note that we do NOT assume the input to already be in canonical
1204 form; the "real" and "imag" parts might themselves be complex
1205 numbers, which slightly complicates the code below. */
1206 if (PyComplex_Check(r)) {
1207 /* Note that if r is of a complex subtype, we're only
1208 retaining its real & imag parts here, and the return
1209 value is (properly) of the builtin complex type. */
1210 cr = ((PyComplexObject*)r)->cval;
1211 cr_is_complex = 1;
1212 if (own_r) {
1213 Py_DECREF(r);
1214 }
1215 }
1216 else {
1217 /* The "real" part really is entirely real, and contributes
1218 nothing in the imaginary direction.
1219 Just treat it as a double. */
1220 tmp = PyNumber_Float(r);
1221 if (own_r) {
1222 /* r was a newly created complex number, rather
1223 than the original "real" argument. */
1224 Py_DECREF(r);
1225 }
1226 if (tmp == NULL)
1227 return NULL;
1228 if (!PyFloat_Check(tmp)) {
1229 PyErr_SetString(PyExc_TypeError,
1230 "float(r) didn't return a float");
1231 Py_DECREF(tmp);
1232 return NULL;
1233 }
1234 cr.real = PyFloat_AsDouble(tmp);
1235 cr.imag = 0.0;
1236 Py_DECREF(tmp);
1237 }
1238 if (i == NULL) {
1239 ci.real = cr.imag;
1240 }
1241 else if (PyComplex_Check(i)) {
1242 ci = ((PyComplexObject*)i)->cval;
1243 ci_is_complex = 1;
1244 } else {
1245 /* The "imag" part really is entirely imaginary, and
1246 contributes nothing in the real direction.
1247 Just treat it as a double. */
1248 tmp = (*nbi->nb_float)(i);
1249 if (tmp == NULL)
1250 return NULL;
1251 ci.real = PyFloat_AsDouble(tmp);
1252 Py_DECREF(tmp);
1253 }
1254 /* If the input was in canonical form, then the "real" and "imag"
1255 parts are real numbers, so that ci.imag and cr.imag are zero.
1256 We need this correction in case they were not real numbers. */
1257
1258 if (ci_is_complex) {
1259 cr.real -= ci.imag;
1260 }
1261 if (cr_is_complex && i != NULL) {
1262 ci.real += cr.imag;
1263 }
1264 return complex_subtype_from_doubles(type, cr.real, ci.real);
1265 }
1266
1267 PyDoc_STRVAR(complex_doc,
1268 "complex(real[, imag]) -> complex number\n"
1269 "\n"
1270 "Create a complex number from a real part and an optional imaginary part.\n"
1271 "This is equivalent to (real + imag*1j) where imag defaults to 0.");
1272
1273 static PyNumberMethods complex_as_number = {
1274 (binaryfunc)complex_add, /* nb_add */
1275 (binaryfunc)complex_sub, /* nb_subtract */
1276 (binaryfunc)complex_mul, /* nb_multiply */
1277 (binaryfunc)complex_classic_div, /* nb_divide */
1278 (binaryfunc)complex_remainder, /* nb_remainder */
1279 (binaryfunc)complex_divmod, /* nb_divmod */
1280 (ternaryfunc)complex_pow, /* nb_power */
1281 (unaryfunc)complex_neg, /* nb_negative */
1282 (unaryfunc)complex_pos, /* nb_positive */
1283 (unaryfunc)complex_abs, /* nb_absolute */
1284 (inquiry)complex_nonzero, /* nb_nonzero */
1285 0, /* nb_invert */
1286 0, /* nb_lshift */
1287 0, /* nb_rshift */
1288 0, /* nb_and */
1289 0, /* nb_xor */
1290 0, /* nb_or */
1291 complex_coerce, /* nb_coerce */
1292 complex_int, /* nb_int */
1293 complex_long, /* nb_long */
1294 complex_float, /* nb_float */
1295 0, /* nb_oct */
1296 0, /* nb_hex */
1297 0, /* nb_inplace_add */
1298 0, /* nb_inplace_subtract */
1299 0, /* nb_inplace_multiply*/
1300 0, /* nb_inplace_divide */
1301 0, /* nb_inplace_remainder */
1302 0, /* nb_inplace_power */
1303 0, /* nb_inplace_lshift */
1304 0, /* nb_inplace_rshift */
1305 0, /* nb_inplace_and */
1306 0, /* nb_inplace_xor */
1307 0, /* nb_inplace_or */
1308 (binaryfunc)complex_int_div, /* nb_floor_divide */
1309 (binaryfunc)complex_div, /* nb_true_divide */
1310 0, /* nb_inplace_floor_divide */
1311 0, /* nb_inplace_true_divide */
1312 };
1313
1314 PyTypeObject PyComplex_Type = {
1315 PyVarObject_HEAD_INIT(&PyType_Type, 0)
1316 "complex",
1317 sizeof(PyComplexObject),
1318 0,
1319 complex_dealloc, /* tp_dealloc */
1320 (printfunc)complex_print, /* tp_print */
1321 0, /* tp_getattr */
1322 0, /* tp_setattr */
1323 0, /* tp_compare */
1324 (reprfunc)complex_repr, /* tp_repr */
1325 &complex_as_number, /* tp_as_number */
1326 0, /* tp_as_sequence */
1327 0, /* tp_as_mapping */
1328 (hashfunc)complex_hash, /* tp_hash */
1329 0, /* tp_call */
1330 (reprfunc)complex_str, /* tp_str */
1331 PyObject_GenericGetAttr, /* tp_getattro */
1332 0, /* tp_setattro */
1333 0, /* tp_as_buffer */
1334 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
1335 Py_TPFLAGS_BASETYPE, /* tp_flags */
1336 complex_doc, /* tp_doc */
1337 0, /* tp_traverse */
1338 0, /* tp_clear */
1339 complex_richcompare, /* tp_richcompare */
1340 0, /* tp_weaklistoffset */
1341 0, /* tp_iter */
1342 0, /* tp_iternext */
1343 complex_methods, /* tp_methods */
1344 complex_members, /* tp_members */
1345 0, /* tp_getset */
1346 0, /* tp_base */
1347 0, /* tp_dict */
1348 0, /* tp_descr_get */
1349 0, /* tp_descr_set */
1350 0, /* tp_dictoffset */
1351 0, /* tp_init */
1352 PyType_GenericAlloc, /* tp_alloc */
1353 complex_new, /* tp_new */
1354 PyObject_Del, /* tp_free */
1355 };
1356
1357 #endif
1358